A Reasoning System for a First-Order Logic of Limited Belief

Christoph Schwering

UNSW Sydney
What is limited belief? And why?

Task: Given a KB and a query:

Does the KB *logically entail* the query?
What is limited belief? And why?

Task: Given a KB and a query:

Does the KB *logically entail* the query?

Which logic?
What is limited belief? And why?

Task: Given a KB and a query:

Does the KB *logically entail* the query?

Which logic?

Classical logic makes the agent **omniscient**:

- Unrealistic
- Undecidable (*first-order*) / intractable (*propositional*)
What is limited belief? And why?

Task: Given a KB and a query:

Does the KB *logically entail* the query?

Which logic?

Limited belief:

- **Belief level 0:** explicitly written down in the KB
- **Belief level $k > 0$:** derivable from KB with effort k
Language

FOL with equality + functions + sorts +

- Knowledge: \(K_0 \alpha, K_1 \alpha, K_2 \alpha, \ldots \)
- Contingency: \(M_0 \alpha, M_1 \alpha, M_2 \alpha, \ldots \)

Example:

- \(K_1 (R(\text{Frank}) \lor R(\text{Fred})) \)
 We know Frank or Fred is rich
- \(\forall x \, M_1 f(S) \neq x \)
 We don’t know who Sally’s father is
- \(K_1 \exists x (f(S) = x \land R(x) \land M_1 f(S) \neq x) \)
 We know Sally’s father is rich, but we don’t who he is
Semantics

Model: set of clauses closed under unit propagation

- **Belief level 0:** subsumption
- **Belief level** $k > 0$: k case splits

Example:

If all we know is (1) $f(S) = \text{Frank} \lor f(S) = \text{Fred}$

and (2) $\forall x (f(S) \neq x \lor R(x))$,

then $K_1 (R(\text{Frank}) \lor R(\text{Fred}))$?

Yes! Branch on $f(S)$:

- $\{ (1), (2), f(S) = \text{Frank} \} \ni R(\text{Frank})$ by UP with (2)
- $\{ (1), (2), f(S) = \text{Fred} \} \ni R(\text{Fred})$ by UP with (2)
- $\{ (1), (2), f(S) = n \} \ni \bot$ by UP with (1)

for $n \neq \text{Frank, Fred}$
KB entails σ at some belief level \implies KB classically entails σ

if σ contains no $\neg K, \neg M$
KB entails σ at some belief level \iff KB classically entails σ

if σ contains no $\neg K$, $\neg M$ and KB, σ contain no \exists, \forall
KB entails σ at some belief level is decidable
KB entails σ at some belief level is tractable
for fixed belief level if KB, σ contain no \exists, \forall
Hypothesis: human-level results at small belief levels
Hypothesis: human-level results at small belief levels ✓

Experiments: Sudoku

- Easy
- Medium
- Hard
- Top

Average # of cells solved at...

- clues
- level 0
- level 1
- level 2
- level 3
- level 4
- level 5
Hypothesis: human-level results at small belief levels ✔
Limbo = Limited Belief

www.cse.unsw.edu.au/~cschwering/limbo

www.github.com/schwering/limbo

Next: 1. actions 2. belief change 3. multiple agents
Appendix
Language in detail

Terms:
- First-order variables
- Functions $f(t_1, \ldots, t_m)$ where each t_i is a name or variable
- Standard names infinitely many and sorted

Formulas:
- FOL: \(t_1 = t_2 \quad \neg \alpha \quad \alpha \lor \beta \quad \exists x \alpha \)
- Knowledge: \(K_0 \alpha \quad K_1 \alpha \quad K_2 \alpha \quad \ldots \)
- Contingency: \(M_0 \alpha \quad M_1 \alpha \quad M_2 \alpha \quad \ldots \)
- Knowledge base: \(O \alpha \) where \(\alpha \) is in universal CNF

\(\alpha \land \beta \quad \alpha \supset \beta \quad \alpha \equiv \beta \quad \forall x \alpha \) are abbreviations

- Predicates are simulated with functions
- Existentials in KBs are simulated with Skolem functions
- Functions on the right-hand side and within functions are flattened:
 \[
 f(\cdot) = g(\cdot) \quad \iff \quad \forall x (g(\cdot) = x \supset f(\cdot) = x)
 \]
 \[
 f(g(\cdot)) = t \quad \iff \quad \forall x (g(\cdot) = x \supset f(x) = t)
 \]
Literal encoding

- Functions cannot be nested
 \[f(\cdot) = g(\cdot) \quad \Rightarrow \quad \forall x (g(\cdot) = x \supset f(\cdot) = x) \]

- Functions cannot appear on rhs
 \[f(g(\cdot)) = t \quad \Rightarrow \quad \forall x (g(\cdot) = x \supset f(x) = t) \]

- Term is 30-bit pointer (interning)

- Literal is 64-bit number
 - 60 bits for lhs and rhs
 - 1 bit to indicate whether = or ≠
 - 2 bits to indicate if lhs / rhs is name

- Literal subsumption and complement test:
 - \(\ell \) subsumes \(\ell' \)
 - \(t = n_1 \) subsumes \(t \neq n_2 \)
 - \(t = t' \) and \(t \neq t' \) are complementary
 - \(t = n_1 \) and \(t = n_2 \) are complementary

- Bitwise op’s on 64-bit numbers suffice

- Fast clause subsumption and unit propagation
Example: “I don’t know Sally’s father, but I know he’s rich”

\[c_1 = f(S) = \text{Frank} \lor f(S) = \text{Fred} \]
\[c_2 = \forall x (f(S) \neq x \lor r(x) = \top) \]
\[O(c_1 \land c_2) \models K \exists x (f(S) = x \land r(x) = \top \land M f(S) \neq x) \]
Example: “I don’t know Sally’s father, but I know he’s rich”

\[e = \{ w \mid w \models f(S) = \text{Frank} \lor f(S) = \text{Fred} \land \\
\quad \forall x (f(S) \neq x \lor r(x) = \top) \} \]

\[e \models K \exists x (f(S) = x \land r(x) = \top \land M f(S) \neq x) \]
Example: “I don’t know Sally’s father, but I know he’s rich”

\[e = \{ w \mid w \models f(S) = \text{Frank} \lor f(S) = \text{Fred} \land \forall x (f(S) \neq x \lor r(x) = \top) \} \]

\[e \models K\exists x (f(S) = x \land r(x) = \top \land Mf(S) \neq x) \]

- For every \(w \in e \), for some \(n \), \(w \models f(S) = n \land R(n) \)
- For some \(w' \in e \), \(w \models f(S) \neq n \)
Example: “I don’t know Sally’s father, but I know he’s rich”

- $c_1 = f(S) = \text{Frank} \lor f(S) = \text{Fred}$
- $c_2 = \forall x (f(S) \neq x \lor r(x) = \top)$
- $O(c_1 \land c_2) \models K_1 \exists x (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x)$
Example: “I don’t know Sally’s father, but I know he’s rich”

\[
\begin{align*}
\text{s} &= \{ f(S) = \text{Frank} \lor f(S) = \text{Fred}, \\
&\quad \quad \quad \quad \quad \quad \quad \quad f(S) \neq n \lor r(n) = \top \mid n \text{ is a name} \} \\
\text{s} &\vdash K_1 \exists x \left(f(S) = x \land r(x) = \top \land M_1 f(S) \neq x \right)
\end{align*}
\]
Example: “I don’t know Sally’s father, but I know he’s rich”

- $s = \{f(S) = \text{Frank} \lor f(S) = \text{Fred}, \quad f(S) \neq n \lor r(n) = \top \mid n \text{ is a name}\}$
- $s \models K_1 \exists x (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x)$

\iff

for some t_1, for all n_1, for some n,

$s \cup \{t_1 = n_1\} \models f(S) = n \land r(n) = \top \land M_1 f(S) \neq n$
Example: “I don’t know Sally’s father, but I know he’s rich”

- $s = \{ f(S) = \text{Frank} \lor f(S) = \text{Fred}, \quad f(S) \neq n \lor r(n) = \top \mid n \text{ is a name} \}$
- $s \models K_1 \exists x (f(S) = x \land r(x) = \top \land M_1 f(S) \neq x)$

\iff

for some t_1, for all n_1, for some n, $s \cup \{ t_1 = n_1 \} \models f(S) = n \land r(n) = \top \land M_1 f(S) \neq n$

\iff

for some t_1, for all n_1, for some n, $s \cup \{ t_1 = n_1 \} \models f(S) = n \land r(n) = \top$

for some t_2 and n_2, $s \cup \{ t_2 = n_2 \} \models f(S) \neq n$
Example: “I don’t know Sally’s father, but I know he’s rich”

- \(s = \{ \text{f(S) = Frank} \lor \text{f(S) = Fred}, \) \]
 \[\text{f(S) \neq n} \lor \text{r(n) = } \top \mid n \text{ is a name} \} \]

- \(s \models \mathbf{K}_1 \exists x (\text{f(S) = x} \land \text{r(x) = } \top \land \mathbf{M}_1 \text{f(S) \neq x}) \)

\[\iff \]

(a) for some \(t_1 \), for all \(n_1 \), for some \(n \), \(s \cup \{ t_1 = n_1 \} \models \text{f(S) = n} \land \text{r(n) = } \top \)

(b) for some \(t_2 \) and \(n_2 \), \(s \cup \{ t_2 = n_2 \} \models \text{f(S) \neq n} \)

\[\iff \]

(a) choose \(t_1 = \text{f(S)} \):

 if \(n_1 = \text{Frank} \), choose \(n = \text{Frank} \):

 \(s \cup \{ \text{f(S) = Frank} \} \) contains \(\text{f(S) = Frank, r(Frank) = } \top \)

(b) choose \(t_2 = \text{f(S)} \) and \(n_2 = \text{Fred} \):

 \(s \cup \{ \text{f(S) = Fred} \} \) contains \(\text{f(S) \neq Frank} \)

 if \(n_1 = \text{Fred} \), analogous

 if \(n_1 \neq \text{Frank, Fred} \), \(s \cup \{ \text{f(S) = n_1} \} \) is obv. inconsistent
Theorems in detail

- \models is classical entailment
- $\models \approx$ is limited entailment
- σ contains no $O, \neg K_k, \neg M_k$
- σ^* removes belief levels
- σ_k sets belief levels to k

Soundness & Eventual Completeness

| $O \alpha \models \approx \sigma$ | \implies | $O \alpha \models \models \sigma^*$ | if σ without $\neg K_k, \neg M_k$
| $O \alpha \models \approx \sigma_k$ for some k | \iff | $O \alpha \models \models \sigma^*$ | if α, σ quantifier-free

Complexity

| $O \alpha \models \approx \sigma$ is decidable | | |
| $O \alpha \models \approx \sigma_k$ is tractable in $O(2^k(|\alpha| + |\sigma|)^{k+3})$ | if α, σ quantifier-free |
Semantics in detail

- $(\neg) t = n$
- $(\alpha \lor \beta)$
- $\neg(\alpha \lor \beta)$
- $\exists x \alpha$
- $\neg \exists x \alpha$
- $\neg \neg \alpha$

- $K_0 \alpha$
- $K_{k+1} \alpha$
- $M_0 \alpha$
- $M_{k+1} \alpha$
- $O \alpha$
Semantics in detail

- $s \models (\neg) t = n$ iff $(\neg) t = n \in s$
- $s \models (\alpha \lor \beta)$ iff $(\alpha \lor \beta) \in s$ or $s \models \alpha$ or $s \models \beta$
- $s \models \neg(\alpha \lor \beta)$ iff $s \models \neg \alpha$ and $s \models \neg \beta$
- $s \models \exists x \alpha$ iff $s \models \alpha^x_n$ for some name n
- $s \models \neg \exists x \alpha$ iff $s \models \neg \alpha^x_n$ for every name n
- $s \models \neg \neg \alpha$ iff $s \models \alpha$

- $K_0 \alpha$
- $K_{k+1} \alpha$
- $M_0 \alpha$
- $M_{k+1} \alpha$
- $O \alpha$

\[\hat{=} \text{ contains the empty clause} \]

\[\hat{=} \text{ not potentially inconsistent} \]

\[\hat{=} \text{ potentially inconsistent} \]

\[\hat{=} (A) \text{ obviously consistent} \]

\[\hat{=} (B) \text{ two unsubsumed clauses mention two complementary literals} \]

\[\hat{=} (C) \text{ for every name } n, t \neq n \text{ occurs in an unsubsumed clause} \]
Semantics in detail

- $s \models (\neg) t = n$ iff $(\neg) t = n \in s$
- $s \models (\alpha \vee \beta)$ iff $(\alpha \vee \beta) \in s$ or $s \models \alpha$ or $s \models \beta$
- $s \models \neg (\alpha \vee \beta)$ iff $s \models \neg \alpha$ and $s \models \neg \beta$
- $s \models \exists x \alpha$ iff $s \models \alpha^x_n$ for some name n
- $s \models \neg \exists x \alpha$ iff $s \models \neg \alpha^x_n$ for every name n
- $s \models \neg \neg \alpha$ iff $s \models \alpha$

- $s \models K_0 \alpha$ iff s is obviously inconsistent or $s \models \alpha$
- $s \models K_{k+1} \alpha$ iff for some t and all n, $s \cup \{t = n\} \models K_k \alpha$
- $s \models M_0 \alpha$ iff s is obviously consistent and $s \models \alpha$
- $s \models M_{k+1} \alpha$ iff for some t and n, $s \cup \{t = n\} \models M_k \alpha$
- $s \models O \alpha$ iff s is minimal s.t. $s \models \alpha$
Semantics in detail

- $s \models (\lnot) t = n$ if and only if $(\lnot) t = n \in s$
- $s \models (\alpha \lor \beta)$ if and only if $(\alpha \lor \beta) \in s$ or $s \models \alpha$ or $s \models \beta$
- $s \models \lnot(\alpha \lor \beta)$ if and only if $s \models \lnot \alpha$ and $s \models \lnot \beta$
- $s \models \exists x \alpha$ if and only if $s \models \alpha^x_n$ for some name n
- $s \models \lnot \exists x \alpha$ if and only if $s \models \lnot \alpha^x_n$ for every name n
- $s \models \lnot \lnot \alpha$ if and only if $s \models \alpha$
- $s \models K_0 \alpha$ if and only if s is obviously inconsistent or $s \models \alpha$
- $s \models K_{k+1} \alpha$ if and only if for some t and all n, $s \cup \{t = n\} \models K_k \alpha$
- $s \models M_0 \alpha$ if and only if s is obviously consistent and $s \models \alpha$
- $s \models M_{k+1} \alpha$ if and only if for some t and n, $s \cup \{t = n\} \models M_k \alpha$
- $s \models O \alpha$ if and only if s is minimal s.t. $s \models \alpha$

Obviously inconsistent \triangleleft contains the empty clause

Obviously consistent \triangleleft not potentially inconsistent

Potentially inconsistent \triangleleft

(a) Obviously consistent

(b) Two unsubsumed clauses mention two complementary literals

(c) For every name n, $t \neq n$ occurs in an unsubsumed clause
 Semantics in detail

- $s_0, s, v \models (\neg t = n)$ iff $(\neg t = n) \in s$
- $s_0, s, v \models (\alpha \lor \beta)$ iff $(\alpha \lor \beta) \in s$ or $s_0, s, v \models \alpha$ or $s_0, s, v \models \beta$
- $s_0, s, v \models \neg (\alpha \lor \beta)$ iff $s_0, s, v \models \neg \alpha$ and $s_0, s, v \models \neg \beta$
- $s_0, s, v \models \exists x \alpha$ iff $s_0, s, v \models \alpha^x_n$ for some name n
- $s_0, s, v \models \neg \exists x \alpha$ iff $s_0, s, v \models \neg \alpha^x_n$ for every name n
- $s_0, s, v \models \neg \neg \alpha$ iff $s_0, s, v \models \alpha$

- $s_0, s, v \models K_0 \alpha$ iff $s_0 \cup v$ is obv. inconsistent or $s_0, s_0 \cup v, \emptyset \models \alpha$
- $s_0, s, v \models K_{k+1} \alpha$ iff for some t and all n, $s_0, s, v \cup \{t = n\} \models K_k \alpha$
- $s_0, s, v \models M_0 \alpha$ iff $s_0 \cup v$ is obv. consistent and $s_0, s_0 \cup v, \emptyset \models \alpha$
- $s_0, s, v \models M_{k+1} \alpha$ iff for some t and n, $s_0, s, v \cup \{t = n\} \models M_k \alpha$
- $s_0, s, v \models O \alpha$ iff s_0 is minimal s.t. $s_0, s_0, \emptyset \models \alpha$

obviously inconsistent \triangleleft contains the empty clause
obviously consistent \triangleleft not potentially inconsistent
potentially inconsistent \triangleleft

(a) obviously consistent
(b) two unsubsumed clauses mention two complementary literals
(c) for every name $n, t \neq n$ occurs in an unsubsumed clause