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ABSTRACT
Chemical reactors are designed to efficiently produce high-
value chemical products but at the same time they also
produce low-value by-products. The selectivity of a chem-
ical process refers to the proportion of high-value product
produced. A nano sensor network (NSN) monitoring the
chemical process at the molecule level could help improv-
ing the selectivity by preventing the reactions that lead to
low value by-products. Therefore, a central requirement
to achieve high selectivity by NSN is reliable communica-
tion. A challenge to realising reliable communication within
a chemical reactor is its time-varying chemical composition,
which in turn creates a time-varying radio channel and noise.
The sensor nodes therefore need to adjust their transmission
power according to the chemical composition while main-
taining a low overall power budget. We show that this prob-
lem can be modelled as a Markov Decision Process (MDP).
However, the MDP solution requires the sensors to know the
composition of the reactor at each time instance, which is
prohibitive. We therefore derive off-line time-based policies
that these sensors can use. We illustrate our work by us-
ing an important chemical process for fuel production and
demonstrate the performance of our proposed off-line poli-
cies against the optimal MDP policy.

1. INTRODUCTION
Nanosensors are tiny motes (nanomotes) made from novel

nanomaterials capable of sensing new types of phenomenon
at the molecular level. For example, a hydrogen nanosen-
sor was reported in [23], where the optical properties of the
palladium layer changes when exposed to hydrogen. Yon-
zon et al. [27] survey many other types of nanosensors that
can be used for chemical and biological sensing. Similarly,
significant progress has been made in building nanoactua-
tors that can be used to accomplish some basic tasks at
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the molecular level by harnessing the interactions between
nanoparticles, electromagnetic fields and heat [3, 6]. The
next step is to connect these nanosensors into a wireless
nano sensor network (NSN) for wider coverage and control
of the environment. NSNs open up the possibility to sense
and control important physical processes from the very bot-
tom, right at the molecule level. There are early indications
suggesting that such bottom-up approach to sensing and con-
trol, which has hitherto not been possible with conventional
macro-scale wireless sensor networks, has the potential to
radically improve the performance of many applications in
medical, biological, and chemical fields [2, 3, 28, 29].

In our earlier work [28, 29, 30], we have shown how a NSN
could be deployed inside a reactor for a bottom-up control
of the chemical synthesis with the ultimate goal of improv-
ing the performance of the reactor. Chemical reactors are
built to produce some high-value products, but they also
generate some low-value materials as a by-product of some
specific chemical reactions. The performance of a reactor
is measured by its selectivity, which refers to the percent-
age of high-value products in the overall output [20]. By
monitoring a reactor at the molecular level and turning off
elementary reactions leading to undesired molecular species,
a NSN can potentially achieve very high selectivity.

An important finding of our earlier work [30] is that the
packet loss in the NSN reduces its ability to monitor and
control chemical reactions, which ultimately reduces selec-
tivity. The impact of packet loss on the selectivity depends
on the chemical composition of the reactor. Interestingly, as
nanomotes are expected to operate in the terahertz band [3],
the absorption coefficient and the packet error rate (PER)
at the receiver are also heavily influenced by the molecular
composition of the reactor. However, unlike a home or an
office environment, the chemical composition of the reactor
varies rapidly due to the chain reactions consuming certain
molecules and producing others. The time-varying composi-
tion leads to changing absorption coefficients, which in turn
leads to changing PER. This means the nanomotes cannot
use the same power throughout the chemical production.
If the nanomotes choose to use a very high power so that
they can overcome the worst possible absorption during the
lifetime of the synthesis, this high power creates a high inter-
ference when the channel is good. Similarly, the nanomotes
cannot choose a low power that is only suitable for good
channel condition because the nanomotes will not be able
to communicate when the channel is bad. For autonomous
NSNs, which are powered by limited-capacity nano-batteries
[24, 25] or limited-throughput energy-harvesting circuits [22,
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26], a better strategy is to adjust the power over time to
maximize the selectivity with a minimal amount of power
consumption.

In this paper, we make the following contributions. We
show that the optimal power allocation strategy can be ob-
tained by formulating the problem as a Markov Decision
Process (MDP). However, the MDP solution requires the
nanomotes to know the chemical composition of the reactor
at any given time, which is not practical. We, therefore,
propose an alternative for the nanomotes to adjust power
following a rule or heuristic computed offline. By simulat-
ing the process details of a real chemical reactor, we demon-
strate that the proposed heuristics perform well relative to
MDP optimization.

The rest of the paper is organised as follows. Related work
is reviewed in Section 2 followed by a more detailed overview
of NSNs for chemical reactors in Section 3. We present our
MDP formulation and its solution in Section 4. Section 5
explains the proposed offline power allocation heuristics with
numerical results presented in Section 6. We conclude the
paper in Section 7.

2. RELATED WORK
Much work has been done in using power allocation to

combat the effect of time-varying wireless communication
channel due, for example, to fading or node mobility. For
example, in [15] the technique of Lyapunov optimization [18]
has been extended to perform a joint optimization on rout-
ing and power allocation to provide bounded average delay
in a wireless network with time-varying channel. Similarly,
several attempts have been made to maximize the appli-
cation layer performance via an optimum power allocation
scheme in time-varying wireless sensor networks (WSNs).
For instance, the papers [19] and [32] use power allocation
to optimize, respectively, the mean squared error and prob-
ability of detection, in wireless sensor networks. Although
these work, as well as ours, aim at using power allocation to
improve the application layer performance, our performance
objective is the selectivity of a chemical production process,
which is a very different type of performance metric.

A common technique to deal with time-varying channel is
to use feedback mechanisms. There are a lot of past work in
this field. We would like to highlight the work [5] which takes
into account the battery power level of resource constrained
device into account. The work therefore targets resource
constrained devices. However, it is not sure whether this
scheme can be applicable to NSNs due to their extremely
constrained resources. Therefore, in this paper, we focus
on deriving off-line policies that nanomotes can use without
any online feedback from the channel.

There are also a lot of works on designing optimum power
allocation for WSNs in a specific topology such as grid or
honeycomb structure. In [12] a local power allocation strat-
egy for WSNs has been proposed that operates based on
estimation of the distance between sensors. In [14] an adap-
tive power control scheme for WSN has been introduced that
aims to improve the quality of the link between sensors by
building a model for each node describing the correlation
between transmission power and link quality of each indi-
vidual neighbour over time. Authors in [13] have proposed
a new method based on sleep state policy to optimize power
allocation and increase the lifetime of the WSN. A distin-
guishing feature of our work is that, the nanomotes, due

to their very limited resources, are not able to perform ex-
tensive computation. We therefore focus on off-line power
allocation algorithms.

There is limited work done on power allocation specifically
for wireless NSNs. In a recent work, Jornet and Akyildiz [9]
considered optimization of the power spectral density (PSD)
of the transmitted signal over the teraherz band. In our
work, we use the same molecular noise and path loss model of
[9], but instead of optimizing the PSD, we consider dynamic
power allocation with the aim of improving packet delivery
rate with the ultimate aim of achieving better selectivity.

Work on NSN applications to chemical reactor perfor-
mance improvement is rare. In [28, 30, 29], we showed how
NSN could be potentially deployed on the surface of a reac-
tor catalyst to control and improve selectivity of the reaction
process from the bottom up. In [31], we proposed frequency
hopping for NSN as a method of mitigating absorption of
THz radiation in a chemically changing environment. The
current work is different from these previous works in that
it aims to maximize selectivity with minimal power con-
sumption in the NSN by dynamically adjusting the transmit
power.

3. NSN FOR CHEMICAL REACTORS
Catalysts are often used in chemical reactors to speed up

the reaction process. The surface of a catalyst contains nu-
merous sites where reactants (molecules) adsorb and react
with each other. Only one molecule can be adsorbed in an
empty site at any given time and it can only react with a
molecule adsorbed in another close-by site. After a reac-
tion between two molecules in two close-by sites, a different
molecule is formed in either of the two sites, making one
of them empty again. This process continues until all in-
put molecules are used up. Some composite molecules des-
orb from the sites, which become the (desired or unwanted)
output of the reactor. Figure 1 shows a magnified view of
a catalyst and a proposed NSN with nanomotes filling up
each site. Each nanomote is assumed to be capable of sens-
ing the molecule type adsorbed (or attempting to adsorb)
in the site, communicate with other nanomotes in the vicin-
ity, and perform actuation to prevent adsorption of specific
molecule types attempting to adsorb in the site.
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Figure 1: (a) A scanning electron microscopy image
(adapted from [17]) showing that the sites are ar-
ranged in a regular 2D grid, (b) an imaginary 3x3
nano sensor grid where each site hosts a nanomote.

In order to give a more concrete discussion on how NSN
can be used to improve chemical production, we have cho-



sen to use Fischer-Tropsch (FT) synthesis [1] which is a
major process for converting natural gas to liquid hydro-
carbons. IN FT synthesis, a hydrogen atom H can react
with molecules having the chemical formula CnH2n+1 to
form paraffins, which is an unwanted product of this synthe-
sis. This class of reactions is known as hydrogen-to-paraffin
(HTP) reactions. The aim of the proposed NSN is to sup-
press the number of HTP (unwanted) reactions by ensur-
ing that there are no hydrogen atoms near the vicinity of
a CnH2n+1 so that HTP reactions cannot occur. An exam-
ple in Figure 2 shows that adsorption of H in Site 1 could
lead to paraffin because of the presence of an C4H9 in the
neighborhood, but its adsorption in Site 2 cannot produce
paraffin. Therefore, if the nanomote at Site 1 knows that its
neighbouring site has a C4H9, it can attempt to prevent the
hydrogen H atom from adsorbing into its site, preventing
an HTP reaction and improving the selectivity thereby. In
order for all this to work, one important requirement is that
nanomotes must be able to communicate with each other re-
liably. Our previous work shows that selectivity is sensitive
to the packet loss in the network [30].

CH

C4H9 1

CH2

C3H6

CH

H

2C

H adsorption in this site
 cannot lead to paraffin

H adsorption in this site 
could lead to paraffin

Figure 2: Nano sensing and control on the surface
of a catalyst. Nanomote in Site 1 prevents H ad-
sorption, but the nanomote in Site 2 allows it.

4. MDP FOR DYNAMIC POWER ALLOCA-
TION

In Section 3, we describe how a NSN can be used to im-
prove the selectivity of a chemical production by suppress-
ing those undesirable chemical reactions that lead to low
value products. We also explain that the efficacy of sup-
pressing the undesirable reactions depends on the PER be-
tween neighbouring nodes in the NSN. The PER depends
on the transmission power, path loss, molecular absorption
noise and interference. The latter three factors depend on
the chemical composition of the transmission medium [9],
which is constantly changing in a chemical reactor because of
production and consumption of chemical molecules. There-
fore, if the nanomotes use a constant transmission power,
the PER will change over time and this can affect the se-
lectivity. An alternative strategy is for the motes to adjust
their transmission power to keep the PER low. However,
given the limited energy budget of an autonomous NSN, the
transmission power has to be appropriately adjusted to give
maximum improvement in selectivity. In this section, we
show that this dynamic power allocation problem can be
formulated as an MDP.

In section 4.1, we use a simple example to illustrate how
an uncontrolled chemical reaction can be modelled by an

embedded Markov chain (EMC). The aim of this section is to
draw a connection between state transition probability and
reaction rates. Given that the goal of our NSN is to control
the reaction rates, which is related to the state transition
probability, therefore the power allocation problem can be
formulated as an MDP. In section 4.2, this MDP will be
defined.

4.1 Markov chain for uncontrolled chemical
reactions

The paper [8] proves that the dynamics of a set of chemi-
cal reactions can be modelled by a continuous-time Markov
chain (CTMC). We use a simple example to illustrate the
idea. In particular, we want to show how the states and
transition probabilities are defined. This will help us to de-
fine the MDP problem in the next section. We consider a

S0
(1,1,1,0,0)

S2
(0,1,0,0,1)

r2=k2*1*1

r1=k1*1*1

S1
(0,0,1,1,0)

S0
(1,1,1,0,0)

S2
(0,1,0,0,1)

r2/r1+r2

r1/r1+r2

S1
(0,0,1,1,0)

(a) CTMC (b) EMC

Figure 3: CTMC and EMC of a simple set of chem-
ical reactions.

chemical reactor with 3 input chemical species A, B and C.
Two possible chemical reactions can take place in this re-
actor. In the first reaction, a molecule of A reacts with a
molecule of B to form a molecule of D; this is commonly
expressed using the chemical formula of A + B −−→ D. The
second reaction is A + C −−→ E. We use nX to denote the
number of molecules of chemical species X. The state of the
chemical reactor is the 5-tuple (nA, nB , nC , nD, nE). That
is, the state consists of the number of each type of molecules
in the chemical reactor. For simplicity, we assume the ini-
tial state of the reactor is S0 = (1, 1, 1, 0, 0) which means
there is a molecule of A, B and C and no molecules of D
and E. If the reaction A + B −−→ D occurs, then the state
will transit from S0 to S1 = (0, 0, 1, 1, 0) with one molecule
of C and D. Similarly, if A + C −−→ E occurs, then the
state will become S2 = (0, 1, 0, 0, 1). Given the initial state
S0, it can be seen that S0, S1 and S2 are all the allowable
states. These are the states of the CTMC, see figure 3(a).
The transition rate of the CTMC is governed by the rate of
chemical reactions. For reaction A + B −−→ D, the reaction
rate is r1 = k1nAnB where k1 is the kinetic constant of this
reaction and a larger k1 means a higher likelihood for the
reaction to occur (= high state transition rate). Note also
that the reaction rate depends on the state. The transition
rate from S0 to S1 is r1. Similarly, the transition rate from
S0 to S2 is r2 = k2nAnC . The CTMC is now completely
defined and is illustrated in figure 3(a). In order to leverage
the theory of MDP to solve the power allocation problem, we
convert the CTMC to an Embedded Markov Chain (EMC)
[21]. Figure 3(b) illustrates the EMC of the CTMC in fig-
ure 3(a). The states of the EMC are the same as those of
CTMC. However, the transition rates have been replaced
by transition probability. In particular, for our example,
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Figure 4: EMC for the FT process with an initial
state of 2 carbon and 4 hydrogen atoms. S6 and
S8 are absorbing states. The blue number in the
parentheses are probability of transition from one
state to another state. NSN aims to reduce the rate
of HTP reactions e.g. in this example the NSN tries
to reduce probability of going from state 4 to state
6.

the transition probabilities from S0 to, respectively, S1 and
S2, are,

r1
r1+r2

and r2
r1+r2

. In general, if the transition rate
from state Si to Sj in a CTMC is qij , then the transition
probability from state Si to Sj in the corresponding EMC
is

qij∑
j qij

if i �= j and is zero otherwise.

4.2 MDP formulation
We now present an MDP formulation for the dynamic

power allocation problem for the FT reactions.

4.2.1 States
The state of the FT process consists of the number of each

type of molecules in the FT process. For illustration, Figure
4 shows the EMC for the uncontrolled FT process where
the initial state S0 consists of 2 carbon (C) and 4 hydrogen
(H) atoms. The process consists of altogether 9 different
states with different chemical compositions in each state.
The transition probability of the EMC has been calculated
from the corresponding CTMC using the method described
earlier.

The states S6 and S8 of the EMC are the absorbing states.
When the FT process reaches any one of its absorbing states,
we assume the chemical production is complete. The chem-

ical composition of the absorbing state is important. If an
absorbing state consists of a larger quantity of high value
product, then the selectivity of that state is high.

4.2.2 Actions
We assume that at each state, m different transmission

power levels P1, P2, . . . , Pm are available for the nanomotes
to use. The actions of the MDP are these different power lev-
els. This can be viewed as a cross-layer optimisation where
physical layer parameter (in our case, power) is used to max-
imise selectivity, which is an application layer performance.

We will use the EMC in figure 4 to explain the effect of the
actions. Our discussion focuses on state S4. This state can
transit to states S2, S6 and S7. The probability of transiting
to each of these states in the (uncontrolled) EMC is the same
(=0.33). This also means that the transition rates from S4

to any one of these states in the corresponding CTMC is the
same and we will denote it by r. Out of these three transi-
tions, the move from S4 to S6 produces a molecule of CH4,
which is a low value paraffin. The aim of the NSN is to sup-
press this reaction as much as possible. Let us assume that
the probability of successfully suppressing this reaction by
the NSN is p, then NSN reduces the transition rate from S4

to S6 from r to (1−p)r. The reaction rates from S4 to states
S2 and S7 will not be altered by the NSN because no un-
desirable products are produced. With the revised reaction
rate due to the actions of NSN, the transition probability
from S4 to S6 reduces from 0.33 to 1−p

3−p
in the (controlled)

EMC. This shows how the probability of successful suppres-
sion affects the state transition probability.

The probability of successful suppression p depends on
many factors, including those related to efficiency of sensors
and actuators. In this paper, we assume that p is the same
as the probability that sensors from neighbouring sites are
able to successfully communicate with each other. Hence p
is a function of the transmission power, which are the ac-
tions of the MDP. At the same time p depends on molecular
absorption, which is a function of the chemical composition.
Recalling that each state of the MDP is defined by the chem-
ical composition, therefore p is state dependent. Finally, p is
also affected by interference due to other nanomotes’ trans-
missions. This interference depends on nanomotes’ trans-
mission power and also the composition. To sum up, a cho-
sen transmission power at a given state will give rise to a
certain PER, which can in turn affect selectivity.

For the MDP for dynamic power allocation, the actions
are the m different power levels. For each power level, we
can compute the resulting state transition probability in the
EMC similar to that described earlier. Note that the calcu-
lation takes into account the transmission power and channel
condition, which is state dependent.

4.2.3 Revenue function
The revenue is a function of two quantities, the rate of

HTP reactions (r), and the power level (Pi) chosen, where
r > 0 and Pi is within the range 10−16 to 10−11. Increasing
r and Pi should have a negative effect on revenue (or selec-
tivity), and vice versa. This can be captured via different
types of functions. Because Pi has a wide range, we define
the function as:

Revenue =
1

r
+

1

log(Pi)



4.3 Large scale MDP
The number of states in the FT process increases expo-

nentially with the number of initial atoms. For example, for
the initial gas feed comprising only 10 carbon and 20 hy-
drogen atoms, we obtain in excess of 35,000 states. For a
feed gas with large number of carbon and hydrogen atoms,
we face a state explosion problem, which makes it difficult
to solve the MDP problem and obtain the optimum policy
within a reasonable time.

There are several attempts in the literature to alleviate
the MDP state explosion by techniques such as state space
reduction and other approximation methods. Kearns et al.
[11] proposed a sparse sampling algorithm which yields a
near-optimal outcome for a large or infinite MDP. In order
to implement this algorithm in our context, we start with
an initial state with a given number of carbon and hydrogen
atoms and then as long as an absorbing state has not been
reached, the following steps are executed for each state Si

reached:

1. Calculate the revenue for all possible actions (power
levels)

2. Select the action with maximum revenue and call it
Popti .

3. Use the state transition probabilities for action Popti

to randomly follow one of these state transitions and
move to the next state based on the selected transition.
Go back to 1 if the new state is not absorbing.

Note, that the algorithm does not attempt to solve the
MDP problem, i.e., it does not attempt to find an (optimum)
action for every possible state. Instead, it produces a trace
of states and associated power levels from the initial state to
the absorbing state, which is then used to derive selectivity
and average power level.

5. LOCAL POWER ALLOCATION POLICIES
MDP provides the optimal power allocation policy, but

requires the nanomotes to know the global state, or the ex-
act chemical composition, of the chemical reactor. This is
not a practical policy because it requires each nanomotes to
broadcast its local state in the NSN, which would consume
a lot of energy. In this section, we investigate the possibility
of each nanomote executing the same local pre-planned (or
open loop) policy where the transmission power is adjusted
over time. A pre-planned policy can be expressed as a uni-
variate function t �→ P (t) where P (t) specifies the power
level that the nanomotes should use at time t. We propose
three heuristics to derive pre-planned policies.

5.1 Local policy based on reaction rates
Since the goal of the NSN is to reduce the number of HTP

reactions (the undesirable reactions) in the FT reactor, a
possible policy is for the nanomotes to reserve the transmis-
sion power when the HTP reactions are more likely to occur
so as to increase the chance of suppressing them. To ver-
ify the validity of this policy, we first check whether there
is a correlation between high transmission power from the
MDP solution and high HTP reaction rates. Figure 5 shows
a scatter plot of optimal power allocated by MDP and the
ratio of HTP reactions to all other reactions taking place in
the reactor for one of the sample paths. We find that MDP
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Figure 5: The correlation between HTP reaction
rate and the optimal power allocated by MDP.

allocates higher powers when HTP reactions are happening
more frequently, and vice versa. The same observation also
applies to other sample paths.
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Figure 6: The thick line shows the fraction of HTP
reactions at a given time based on the average of 50
SSA simulations. The thin line is a curve fit with an
exponential function.

The methodology for building a reaction rate based pol-
icy is best explained by an example; however, note that
the methodology is general and can be generalised to other
chemical reactors. Consider an uncontrolled FT process
whose initial state has 500 carbon and 1200 hydrogen atoms.
We use the stochastic simulation algorithm (SSA) [7], which
is a standard algorithm to simulate Markov chain for chem-
ical reactions. We perform 50 simulation runs and compute
ρ(t) which is the ratio of the total rate of HTP reactions
at time t to the total rate of all reactions at time t. By
definition, ρ(t) ∈ [0, 1] and a higher ρ(t) means a higher
probability that an HTP reaction will take place at time
t of the uncontrolled FT process. We average the 50 ρ(t)



curves from 50 simulations to obtain the average curve ρ̄(t).
We plot ρ̄(t) in figure 6. The curve ρ̄(t) increases initially as
HTP reactions occur through the consumption of the initial
supply of H in the gas feed, but starts to fall off after about
1200 in the reactor timeline as the initial H supply runs out.
We observe that the ρ̄(t)-curve becomes rather oscillatory
towards the end of the synthesis. In order to obtain a policy
which is smooth over time, we fit a smooth curve ρ̄s(t) to
ρ̄(t), see figure 6. The rationale of the reaction rate-based
policy is to choose the transmission power level at time t
to be proportional to ρ̄s(t) so that a higher power is used
when the chance of an HTP reaction occurring is high. We
assume that the nanomotes use m discrete power levels with

P1 < P2 < · · · < Pm. We compute P̂RR(t) = Pm
ρ̄s(t)

maxt ρ̄s(t)

which means P̂RR(t) is Pm at the time instance that ρ̄s(t) is

maximised. For each t, we map P̂RR(t) to the closest value
in {P1, P2, . . . , Pm} to obtain the power level to be used.
We will refer to this as the reaction rate-based local policy
(RRLP).

5.2 Local policy based on noise distribution
A problem with RRLP is that it does not take the noise

into consideration. The noise in the FT process varies over
time due to the changing composition in the reactor. For
example, at points A and B in figure 6, RRLP uses the same
power level because the mean fractions of HTP reactions are
the same at these two points in time. However, the chemical
composition in the reactor at these two points are different
and it results in different amount of noise levels. In fact,
the noise level at point A is much lower than that at point
B. A noise base policy would therefore allocate a higher
transmission power to point B in order to compensate for
the noise. We now explain how a local policy based on noise
levels can be developed.

The methodology for developing a noise based policy is
similar to that of reaction rate based policy. For a given
initial composition, we use the SSA to simulate the CTMC
of the uncontrolled FT process. At each time t, we record
the state of the CTMC which is the chemical composition
in the reactor at time t. Given this composition at time t,
we use the algorithm in [16] to compute the level of molec-
ular absorption noise at time t. We repeat the simulation
a number of times and compute the average molecular ab-
sorption noise n̄(t) at time t. Figure 7 shows the n̄(t) curve
from the average of 50 simulation runs of the FT process
with 500 carbon and 1200 hydrogen atoms initially. The
figure shows that the noise level increases rapidly as the FT
reactions progress. The noise level near the end of the FT
process is about an order of magnitude higher than that
initially. Since n̄(t) has some high frequency fluctuations
near the end of the reaction run, we approximate n̄(t) by

an exponential function n̄s(t) = 2.73 × 10−15 × e(0.003913t)

to smooth out the fluctuations. The rationale of the noise-
based policy to to use a higher transmission power when the

noise is higher. We compute P̂n(t) = Pm
n̄s(t)

maxt n̄s(t)
. For each

t, we map P̂n(t) to the closest value in {P1, P2, . . . , Pm} to
obtain the power level to be used. We will refer to this as
noise-based local policy (NLP).

5.3 A local policy based on reaction rate and
noise

RRLP allocates higher transmission power when the HTP
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Figure 7: Molecular noise is fitted as an exponential
function of time.

reaction rate is high while NLP allocates higher power when
the noise is high. If we compare figures 6 and 7, we see
that during the third quarter of the reaction cycle, reaction
rate is high while noise is low, but during the last quarter,
the reaction rate is low but noise is high. This means that
RRLP may not perform well in the last quarter and NLP
not performing well in the third quarter. To overcome this
problem, we propose a local policy that uses both reaction
rates and noise levels. The rationale of this local policy is
to use high transmission power when either reaction rate or
noise is high.

To describe this policy, we assume that we have already
computed ρ̄s(t) and n̄s(t) as before. We define the function
as:

P̂RR,n(t) = Pm max

(
ρ̄s(t)

maxt ρ̄s(t)
,

n̄s(t)

maxt n̄s(t)

)
(1)

The use of the max function will ensure that P̂RR,n(t) is
large when either ρ̄s(t) or n̄s(t) is big. The final step is to

map P̂RR,n(t) to the closest value in {P1, P2, . . . , Pm}. We
will refer to this policy to as reaction-rate and noise local
policy (RR+NLP).

6. RESULTS
This section aims to study the performance of the local

policies proposed in section 5. A good policy is one which
produces a higher selectivity for a given power budget. We
compare these local policies against the the MDP policy and
constant power allocation.
Methodology
We assume the FT process starts with 500 carbon and 1200
hydrogen atoms. The chemical production continues until
no more new chemicals can be produced. The distance be-
tween two neighbouring nanomotes is assumed to be 1 μm.
The reactor is assumed to operate at a temperature of 500K
and pressure of 10 atmospheres. We follow the procedure of
[16] to compute the molecular absorption noise/attenuation
and PER. As in [16], we assume each pulse has a duration of
100 fs and the spectrum band is 0.1−10 THz. The molecu-
lar absorption noise in the reactor depends on the chemical
composition within the reactor and we need the molecu-



lar absorption coefficient of the chemical species within the
reactor. This information is obtained from the HITRAN
database [4]. The nanomotes use ON-OFF keying [10] where
a pulse is sent for a bit 1. We assume the probabilities of
bit 1 and bit 0 are equal. To model the interference between
different nanomotes, we assume each nanomote transmits
with a certain probability and compute the total interfer-
ence power at the nanomotes. We then compute the PER
using the signal-to-inference-noise ratio.

We conduct 30 sets of experiments, each with a different
nominal power level Pnominal chosen from 10−16 to 10−11 W.
The schemes to be compared are constant power allocation,
MDP and the three local policies (RRLP, NLP, RR+NLP)
proposed in the previous section. We now explain how these
schemes make use the the nominal power level.

For constant power allocation, each nanomote uses Pnominal

as the transmission power. For other policies, we generate
m discrete power levels. The minimum power P1 is zero
which means the nanomotes do not communicate. The other
m − 1 power levels are drawn from [Pnominal

100
, 100Pnominal]

with maximum power Pm = 100Pnominal and that have been
equally spaced in this range. These m power levels are
used by the MDP and the three local polices. Here, we
use m = 11.

For MDP, we use the sparse sampling method to compute
selectivity and average power usage. For constant power
allocation and local policies, we incorporate the power se-
lection into the transition rates of the CTMC describing the
FT process. We can therefore simulate these by using SSA.
At the end of each simulation, we compute the selectivity
and the average power usage for that simulation run. Note
that the average power usage for MDP and the local poli-
cies can be different from the nominal power. For each of
these policies, we repeat the simulations five times and then
average the results over the five simulation runs to obtain
the final results.
Results and discussions
Figure 8 shows the power-selectivity tradeoff for the con-
stant power allocation, MDP and the three local policies.
As a reference, we have also shown the average selectivity
for the uncontrolled FT process in the figure. The figure
shows that all the four power allocation schemes achieve
better selectivity than the uncontrolled FT process. As ex-
pected, the MDP solution (optimal policy) gives the highest
selectivity for a given power budget and outperforms all the
other schemes. For power budget below 2 × 10−14W, the
MDP and all the three local policies give similar results.
For higher power budgets, RR+NLP is the best performing
local policy. We also notice that for higher power, the pro-
posed local policies perform much worse than the optimal
policy. We leave the design of better approximations that
can match the optimal solution as a future work.

Figure 9 shows typical policies (power-time function) for
MDP, RRLP, NLP and RR+NLP. All these policies consume
a total power of around 1.5× 10−13W and is the average of
2 simulation runs. The RRLP policy results in a selectivity
of 0.46 and puts most of its power in the middle of the
reaction process cycle. The NLP policy has a selectivity
of 0.59 and puts most of its power near the end. Neither
of them produces very good result. The RR+NLP has the
best performance out of the three local policies. It allocates
its power at where HTP reaction rates or noise is high. It
results in a higher selectivity of 0.71 compared with the other
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Figure 8: The selectivity achieved by different power
allocation policies for a given power budget.
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Policy Selectivity
improvement [%]

Power saving
[%]

Optimal 122.5 69.4
RRLP 48.5 10
NLP 71.4 19.6
RR+NLP 93.6 61.6
Constant 71.9 −

Table 1: Selectivity improvements are against the
uncontrolled FT process and the power savings are
against the constant power allocation.

policies.
In Table 1, we compare the performance of five power al-

location polices over a range of nominal power from 10−16

to 10−11. If we average the selectivity of each policy over all
power budgets, we obtain an average improvement of selec-
tivity for each power allocation policy. The second column
of Table 1 shows the selectivity improvement as a percent-
age using the selectivity of the uncontrolled FT process as
the reference. It can be seen that RR+NLP performs better
than the other two local policies. However, there is a perfor-
mance gap of about 30% between the optimal MDP policy
and that of RR+NLP. We hypothesise that this is due to
the fact that we use the uncontrolled reaction rate and noise
levels to derive our local policies. Since the aim of the NSN
is to control the reactions, the actual state trajectory when
the reactor is controlled is different from that of the uncon-
trolled state trajectory. We plan to investigate this problem
further.

The performance of the power allocation policies can also
be measured by the reduction in power for a given level
of selectivity. The third column of table 1 compares the
performance of the optimal and local policies with respect
to the constant power allocation policy. For that, we divide
selectivity to 7 ranges (0.3 − 0.4, . . . , 0.9 − 1) and compare
the average power consumption of each policy in each range.
The average power saving over all selectivity ranges has been
presented in the last column of Table 1. The optimal policy
saves 69% of the power while RR+NLP saves 61.6%, which
is close to that of the optimal policy.

We now turn to study the robustness of the local policies.
When we design the local policies, we assume that the initial
composition (which will be referred to as the nominal ini-
tial composition) is given. In the above performance study,
we assume that the initial composition of the reactor is the
nominal initial composition. However, it may not be possi-
ble to control the operating initial composition in a reactor
precisely. Here, we study the performance of the local poli-
cies when the operating initial composition in the reactor is
different from the nominal initial composition. The nominal
initial composition used for design is 500 carbon and 1200
hydrogen atoms. In this study, we use two perturbed op-
erating initial compositions: 450 carbon and 1080 hydrogen
atoms (−10% deviation) and 550 carbon and 1320 hydrogen
atoms (+10% deviation). We plot the results on selectiv-
ity versus power in figure 10 for RR+NLP. The figure shows
the results for MDP, and RR+NLP under the nominal initial
composition, as well as under the two perturbed operating
initial compositions. It can be seen from the figure that
the performance of RR+NLP is robust. Our results, reveal
similar robustness for RR and NLP policies.
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Figure 10: Selectivity versus power for MDP and
RR+NLP under nominal initial condition, and the
two perturbed operating initial conditions.

7. CONCLUSIONS
NSN can be used to improve the selectivity of chemi-

cal synthesis by reducing the production rate of unwanted
species. The success of this application requires that the
nanomotes be able to reliably communicate with each other.
The changing chemical composition within a chemical reac-
tor means that the nanomotes need to adjust their trans-
mission power to maintain reliable communication. We show
that an optimal power allocation policy can be derived by us-
ing MDP. However, the optimal policy requires the nanomotes
to know the exact state of the reactor at any time and this is
prohibitive. We therefore study offline policies that do not
require nanomotes to know the exact reactor state. We show
that these offline algorithms can improve the selectivity of
chemical production.
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