
ENGG1811 20T3 (revision 1 13th Oct 2020) Assignment 1: Peak Detection

Learning Objectives:
1. To apply programming concepts of variable declaration, constant declaration,

assignment, selection and iteration (for loop).
2. To translate an algorithm described in a blend of natural language and elements of

pseudocode to a computer language.
3. To organise programs into smaller modules by using functions.
4. To use good program style including comments, meaning variable names and others.
5. To get a practice on software development, which includes incremental development,

testing and debugging.

Aaron Quigley, October, 2020

Deliverables: Submit by 17:00 on Wednesday of Week-07. 
Late Penalty: Late submissions will be penalised at the rate of 10% per day (including
weekends). The penalty applies to the maximum available mark. For example, if you
submit 2 days late, maximum available marks is 80% of the assignment marks. 
Submissions will not be accepted after 9am Monday of Week-08. To Submit this
assignment, go to the Submission page and click the link named "Make
Submission".
GENERAL RULES
1. This assignment is weighted at 20%
2. You are reminded that work submitted for assessment must be your own. It's OK

to discuss approaches to solutions with other students, and to get general help
from tutors or others, but you must write the python code yourself. Increasingly
sophisticated software is used to identify submissions that are unreasonably
similar, and marks will be reduced or removed in such cases.

3. The Student Code of Conduct sets out what the University expects from students
as members of the UNSW community. As well as the learning, teaching and
research environment, the University aims to provide an environment that enables
students to achieve their full potential and to provide an experience consistent
with the University's values and guiding principles. A condition of enrolment is that
students inform themselves of the University's rules and policies affecting them, &
conduct themselves accordingly. (see the course outline page with links).

4. You should also read the following page which describes your rights and
responsibilities in the CSE context: Essential Advice for CSE Students

Essential
The University views plagiarism very seriously. UNSW and CSE treat plagiarism as
academic misconduct, which means that it carries penalties as severe as being
excluded from further study at UNSW. [see: UNSW Plagiarism Procedure]
Change Log
1. Your functions max_peak, total_peaks, peak_list_from_file should import

peak_list in your code for these three functions [Updated Oct 13th].
2. If there are no peaks in the inputs given max_peak should return the string

“No Peaks” [Updated Oct 13th]
3. The text file format is one number per line (as shown in

voltage_data_complete.txt in week 3) [Update Oct 13th]
4. For the purposes of this assignment we are only looking to identify peaks

above the mean (and we will only test for such conditions) [Oct 13th]

https://student.unsw.edu.au/conduct
https://webcms3.cse.unsw.edu.au/ENGG1811/20T3/outline
https://www.engineering.unsw.edu.au/computer-science-engineering/about-us/organisational-structure/student-services/policies/essential-advice-for-cse-students
https://student.unsw.edu.au/plagiarism
https://www.gs.unsw.edu.au/policy/documents/plagiarismprocedure.pdf
https://www.gs.unsw.edu.au/policy/documents/plagiarismprocedure.pdf

ENGG1811 20T3 (revision 1 13th Oct 2020) Assignment 1: Peak Detection

What you must submit

total_peaks.py
max_peak.py
peak_list.py
peak_list_from_file.py

The General Problem: Peak Detection

In this assignment, your goal is to write a python program to determine various
characteristics about some time series data you are given. These types of problems are
very common in many disciplines, including computer science, engineering, medicine and
science. There are many different types of peak detection problems, the setting of this
assignment is similar to that used in pulse oximeter data. The method described below is
based on a sliding window which allows us to calculate a standard score of the number of
standard deviations aways from the mean a value is.

Such peak detection has been used to understand the periodic distributions of nucleotides
from the genome of SARS-CoV-2 had been sequenced and structurally annotated or
pollution peaks or heart rate detection. Peak detection is a very common task in the
understanding of data.

The Algorithmic Problem
What is a “peak” and how can we reliably detect them! Let’s step
back to some basic stats.

For a finite normal population with N members, the
population mean is the following (mu):

Variance is a measure of dispersion (spread). For a
finite normal population with N members, the population
variance is the following (sigma squared):

Standard deviation is a also measure of dispersion
(spread). The standard deviation of the population is the
square root of the variance, it is written as (sigma):

Aaron Quigley, October, 2020

∑
=

=
N

i
ixN 1

1
µ

()∑
=

−=
N

i
ixN 1

22 1
µσ

Oct 7th tip:
Please read the entire practical first and
think carefully about the order in which
you might implement these functions!

ENGG1811 20T3 (revision 1 13th Oct 2020) Assignment 1: Peak Detection

[Basic Standard Deviation diagram: Source Wikipedia]

“A low standard deviation indicates that the values tend to be close to the mean (also
called the expected value) of the set, while a high standard deviation indicates that the
values are spread out over a wider range.”

Observation: 1
In statistics, the z-score of “standard score” says, how many standard deviations is a data
point above or below the mean value of what is being observed. As such, looking for
values within our data with “high” z-scores might be a way to identify peaks in our data.

Observation: 2
We can determine the mean by looking at all the data. Or we could determine a moving
mean value for data within a given window, not for all the data we are observing. We can
refer to this “smoothing window” or lag as our “window”.

Observation: 3
Finally, when we do observe something above a particular z-score we can decide how
much (if at all) this should influence the moving mean value for the data within this window
or subsequent windows.

Description of the peak detection algorithm

The goal is to detect does a particular part of an input signal have peaks and if so where.
In the following example, the peak to be detected is a sequence of 20 numbers (see Fig 1)
begins at the 9th element in the input list and ends at the 12th element.

However, if you look at the input list you can see lots of smaller up and down patterns in
the data which could each be considered peaks. So, what makes 9 - 12 a peak while the
others aren’t. Firstly, the values 41, 38, 22 and 10 are beyond the average. How far
beyond the average? Well at least 3 standard deviations in this case. The next question is,

Aaron Quigley, October, 2020

68% within 1 standard deviation

99.7% within 3 standard deviations

95% within 2 standard deviations

68–95–99.7 rule

ENGG1811 20T3 (revision 1 13th Oct 2020) Assignment 1: Peak Detection

what “average”. Well we use an “moving mean” or sliding window to calculate the average
within a window of the last N values (in this case 8).

However, you might be wondering, by the time the input value of 10 is considered surely
the average of the last N numbers of the smoothing window (22, 38, 41, 0 … etc.)
suggests that 10 isn’t that far away from the mean. This is where the notion of “influence”
comes in. When we are considering the input we must filter it so that when we do detect a

Aaron Quigley, October, 2020

Figure 1: Input signal. Plot of input and  
detected peaks (based on a given window of 8 and z-score of 3 and an

input peak influence of 0)

Figure 2: Input and how we calculate the average and the  
standard deviation for the first input value in list s we consider

ENGG1811 20T3 (revision 1 13th Oct 2020) Assignment 1: Peak Detection

peak value, then those input values are treated differently than when we aren’t seeing
inputs from a peak value.

Implementation requirements
You need to implement the following four functions, each in a separate file.  

Your functions max_peak, total_peaks, peak_list_from_file should import peak_list
in your code for these three functions [Updated Oct 13th].  
 
You need to submit these four files, each containing one function you implement

1. def total_peaks(inputs, smoothing, th, influence):
• The aim of this function is to calculate the total number of distinct peaks measured in

the inputs given
• The first parameter 'inputs' is a list of (float) values, and the second parameter

'smoothing' is the size of the window used to determine the meaning average, the third
parameter is the z-score (or how many standard deviations away from the moving
mean does the input need to be for it to be considered a peak) and finally the
‘influence’ says how much should a value which is considered a peak value effect the
moving average

• The function should could the number of distinct “peaks” in the inputs given (a peak
should be considered as a continuous unbroken series of 1 1 1 values)

• This function can be tested using the file ‘test_total_peaks.py'.

Aaron Quigley, October, 2020

Figure 3: Formula required to filter input data and to label peaks (yi)

ENGG1811 20T3 (revision 1 13th Oct 2020) Assignment 1: Peak Detection

2. def max_peak(inputs, smoothing, th, influence):
• The aim of this function is to determine the maximum value of an input which is

considered to be a part of a peak measured in the inputs given
• The parameters are the same as in (1) above
• If there are no peaks in the inputs given then max_peak should return the string

“No Peaks” [Updated Oct 13th]
• This function can be tested using the file ‘test_max_peak.py’.

3. def peak_list(inputs, smoothing, th, influence):
• The two possible outcomes are "Insufficient data” and list which is the same length as

inputs but consistent of 0’s and 1’s where a 1 represents a peak value, given the
smoothing, th and influence values from the inputs

• For the purposes of this assignment we are only looking to identify peaks above
the mean (and we will only test for such conditions) [Updated Oct 13th]

• The first parameter 'inputs' is a list of (float) values, and the second parameter
'smoothing' is the size of the window used to determine the meaning average, the third
parameter is the z-score (or how many standard deviations away from the moving
mean does the input need to be for it to be considered a peak) and finally the
‘influence’ says how much should a value which is considered a peak value effect the
moving average

• To code this function you should first create a copy of the inputs into a filtered_input list
(which can be updated based on the values si (given in figure 3) when you determine
an input value is a peak) you also need a list to hold the outputs measured (ie the 0’s
and 1’s)

• You need to calculate the mean and the standard deviation for the smoothing window
so you can test the zi value (you need to do this each time you move forward in the list)

• When the test passes you should record a 1 into the output list
• When the test passes you need to update the filtered input list with the value for si
• This function can be tested using the file ‘test_peak_list.py’

 4. def peak_list_from_file(smoothing, th, influence,
file_name):
• Here you aren’t provided a list of values but instead you should read in the inputs from

a file
• This function can be tested using a test file you should write yourself called

‘test_peak_list_from_file.py’.
• The text file format is one number per line (as shown in

voltage_data_complete.txt in week 3) [Update Oct 13th]

 

Aaron Quigley, October, 2020

ENGG1811 20T3 (revision 1 13th Oct 2020) Assignment 1: Peak Detection

Getting Started
1. Download the zip file ass1_prelim.zip, and unzip it. This will create the directory

(folder) named 'ass1_prelim'.
2. Rename/move the directory (folder) you just created named 'ass1_prelim' to 'ass1'.

The name is different to avoid possibly overwriting your work if you were to
download the 'ass1_prelim.zip' file again later.

3. First browse through all the files provided, and importantly read comments in the
files.

4. Do not try to implement too much at once, just one function at a time and test that it
is working before moving on.

5. Start implementing the first function, properly test it using the given testing file, and
once you are happy, move on to the the second function, and so on.

6. Please do not use 'print' or 'input' statements. We won't be able to assess your
program properly if you do. Remember, all the required values are part of the
parameters, and your function needs to return the required answer. Do not 'print'
your answers.

Testing
Test your functions thoroughly before submission. You can use the provided python
programs to test your functions.

Please note that the tests provided in these files cover only basic scenarios (cases), you
need to think about other possible cases, modify the files accordingly and test your
functions. For example, you need to add cases to test for "Insufficient data" scenarios.

Submission
You need to submit the following four files. Do not submit any other files. For example, you
do not need to submit your modified test files.

• total_peaks.py
• max_peak.py
• peak_list.py
• peak_list_from_file.py

To Submit this assignment, go to the Submission page and click the tab named "Make
Submission".

Assessment Criteria
We will test your program thoroughly and objectively. This assignment will be marked out
of 20 where 15 marks are for correctness and 5 marks are for style.

Correctness
The 15 marks for correctness are awarded according to these criteria.

Criteria Nominal marks
Function total_peaks 2

Function max_peak 1

Function peak_list 9

Aaron Quigley, October, 2020

https://www.cse.unsw.edu.au/~en1811/20T3/assigns/ass1/ass1_prelim.zip

ENGG1811 20T3 (revision 1 13th Oct 2020) Assignment 1: Peak Detection

Style
Five (5) marks are awarded by your tutor for style and complexity of your solution. The
style assessment includes the following, in no particular order:

• Use of meaningful variable names where applicable
• Use of sensible comments to explain what you're doing
• Use of docstring for documentation to identify purpose, author, date, data dictionary,

parameters, return value(s) and program description at the top of the file

Assignment Originality
You are reminded that work submitted for assessment must be your own. It's OK to
discuss approaches to solutions with other students, and to get help from tutors and
consultants, but you must write the python code yourself. Sophisticated software is used to
identify submissions that are unreasonably similar, and marks will be reduced or removed
in such cases.

Further Information
• Additional Help Sessions will be available for this assignment during week-05 to

week-07.
• Use the forum to ask general questions about the assignment, but take specific

ones to Help Sessions.
• You can ask your tutor during your lab time any queries you may have regarding

this assignment.
• Keep an eye on the class webpage notice board for updates and responses.
• This assignment has never been posed in ENG1811 previously.

Case "Insufficient data" 1

Function peak_list_from_file 2

Aaron Quigley, October, 2020

	Learning Objectives:
	The General Problem: Peak Detection
	The Algorithmic Problem
	Observation: 1
	Observation: 2
	Observation: 3
	Description of the peak detection algorithm
	Implementation requirements
	1. def total_peaks(inputs, smoothing, th, influence):
	The aim of this function is to calculate the total number of distinct peaks measured in the inputs given
	The first parameter 'inputs' is a list of (float) values, and the second parameter 'smoothing' is the size of the window used to determine the meaning average, the third parameter is the z-score (or how many standard deviations away from the moving mean does the input need to be for it to be considered a peak) and finally the ‘influence’ says how much should a value which is considered a peak value effect the moving average
	The function should could the number of distinct “peaks” in the inputs given (a peak should be considered as a continuous unbroken series of 1 1 1 values)
	This function can be tested using the file ‘test_total_peaks.py'.
	2. def max_peak(inputs, smoothing, th, influence):
	The aim of this function is to determine the maximum value of an input which is considered to be a part of a peak measured in the inputs given
	The parameters are the same as in (1) above
	If there are no peaks in the inputs given then max_peak should return the string “No Peaks” [Updated Oct 13th]
	This function can be tested using the file ‘test_max_peak.py’.
	3. def peak_list(inputs, smoothing, th, influence):
	The two possible outcomes are "Insufficient data” and list which is the same length as inputs but consistent of 0’s and 1’s where a 1 represents a peak value, given the smoothing, th and influence values from the inputs
	For the purposes of this assignment we are only looking to identify peaks above the mean (and we will only test for such conditions) [Updated Oct 13th]
	The first parameter 'inputs' is a list of (float) values, and the second parameter 'smoothing' is the size of the window used to determine the meaning average, the third parameter is the z-score (or how many standard deviations away from the moving mean does the input need to be for it to be considered a peak) and finally the ‘influence’ says how much should a value which is considered a peak value effect the moving average
	To code this function you should first create a copy of the inputs into a filtered_input list (which can be updated based on the values si (given in figure 3) when you determine an input value is a peak) you also need a list to hold the outputs measured (ie the 0’s and 1’s)
	This function can be tested using the file ‘test_peak_list.py’
	Here you aren’t provided a list of values but instead you should read in the inputs from a file
	This function can be tested using a test file you should write yourself called ‘test_peak_list_from_file.py’.

