
ENGG1811 © UNSW, CRICOS Provider No: 00098GENGG1811 © UNSW, CRICOS Provider No: 00098G

Professor Aaron Quigley

Thanks to Chun Tung Chou

and Ashesh Mahidadia

Week 2: Selection Structures,
Functions, List, Plotting

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 2

The Story So Far

• Write and run programs in the Spyder editor
• Variables: numbers and string
• Assignment, data types, print(), input()

• A program contains a sequence of instructions which are
executed sequentially

This week’s topics

• Selection structure
• Functions
• List
• Plotting

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 3

Control structure

• Your computer program may need to take different
actions depending on the situation

• This is achieved via control structure

• Python has a few different types of control structure

• We will look at selection structure this week

• Selection structure is similar to making decisions
– There are plenty of real-life examples …

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 4

Examples of control

If too hot
increase cold air flow

Otherwise too cold
decrease cold air flow

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 5

If frontal collision detected
trigger the air bag

Control is used
extensively in
engineering:
• Vehicle stability

control
• Precision

manufacturing
• Chemical process

control
• and more Modern luxury vehicles

contain many computer
programs (about 100 million
lines of code)
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code

Fault tolerant control

• Example: How to keep the flight going when
the plane has experienced severe damages?

• Automatic fault diagnosis and control

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 6

Damage 1

Damage 2

Normal

Damage n

Normal control

Algorithm 1

Algorithm 2

V . F light Test R esul ts wi t h St a te D ep en dent G uidance an d B aseline L inear
C ont roller

A . A sy m m e t r ic S t r uc t u r al D a m age: 50% r igh t w i ng fail u re

We present � ight test resul ts as t he aircraft undergoes a 50% right wing loss (along wi t h losing complete right
aileron funct ionali ty) in au tonomous � ight wit h t he baseline non-adap t ive cont roller and t he st ate-dependent
adap t ive guidance logic. T he resul ts indicate t hat t he aircraft is able to maint ain au tonomous � ight in spi te
of t he severe st ruct ural damage. F igure 3 shows t he G T T winst ar in au tonomous � ight wi t h 50% right
wing loss. F igure 4 show t he ground t rack of t he aircraft as t he aircraft performs a holding pat tern abou t
a given waypoint , aircraft jet t isons 50% right wing at 2021 seconds into � ight . F igure 5 shows t he recorded
al t i t ude of t he aircraft . F igure 6 shows t he recorded angular rates, i t can be seen t hat while t he aircraft is
successful in maint aining � ight , t he angular rate has some oscillat ion. Par t icularly, oscillat ions in angle of
at t ack and roll are observed, which resul t in oscillat ions in al t i t ude seen in F igure 5. F igure 7 shows t he
recorded cont rol inpu ts, i t can be seen t hat t he rudder, aileron, and t hrot t le often sat urate, par t icularly, t he
aileron sat ura t ing at i ts minimum value repet i t ively as t he aircraft t ries to maint ain level � ight . A dap t ive
cont rol algori t hms are current ly being tested t hat augment t he baseline cont rol algori t hm to mi t igate t he
observed oscilla t ions and enable safe landing in presence of signi⇥cant st ruct ural faul ts.

F ig u r e 3. G T T w i nst a r i n a u t o n o m o us � ig h t af t e r j e t t iso n i n g 50 % r ig h t w i n g.

B . Fail u re of all aero d y n a m ic e�ec t ors: P rop u lsion on l y con t rol

T he presented algori t hm is able to mi t igate t he complete loss of all aerodynamic e�ectors by using di�erent ial
t hrot t le for cont rol. T his � ight condi t ion is termed as P ropulsion only cont rol. F igure 8 shows t he ground
t rack of t he T winst ar U A S as i t t racks an ellip t ical pat tern in propulsion only cont rol, while F igure 9
shows t he al t i t ude. F igure 10 shows t he cont rol commands. A t around 1055 seconds into � ight , t he loss of
aileron, elevator, and rudder act uators is simulated by keeping t hem const ant; t he cont rol from t his point
onward is accomplished by using only di�erent ial t hrot t le. T he last sub⇥gure in F igure 10 shows t hat t he
di�erent ial t hrot t le only gets act ivated when t he aerodynamic e�ectors are deemed failed. F igure 11 shows
t he angular ra te dat a. D espi te increased oscillat ions in roll, t he cont rol performance of t he U A S was found
to be sa t isfactory to enable landing.

6 of 18

A merica n I nst i t u t e of A eron a u t ics a n d A st ron a u t ics

D
ow

nl
oa

de
d

by
 U

N
IV

ER
SI

TY
 O

F
N

EW
 S

O
U

TH
 W

A
LE

S
on

 A
ug

us
t 1

3,
 2

01
4

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
10

.2
51

4/
6.

20
11

-1
42

8

Chowdhary et al. Autonomous Guidance and
Control of Airplanes under Severe Damage, 2011

Algorithm n

Boolean expression

• Selection structure is based on whether a condition
(or a set of conditions) is true or false

• Boolean expression
– A statement that is either true or false

• In English language, the following are Boolean
expressions:
– UNSW is a university in New Zealand (False)
– The number 3 is greater than or equal to 3 (True)
– The number 5 is less than 7 and greater than 11 (False)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 7

Boolean expressions in Python

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 8

• Try the following in the console

Relational operators in Python

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 9

Relation Python operator
Greater than >
Greater than or equal to >=
Less than <
Less than or equal to <=
Equal ==
Not equal to !=

• You can compare expressions
• Precedence rule

– Computation before
comparison

Boolean variables

• In Python, Boolean variables can take the value of
True or False
– True and False are Python keywords

• Note: First letter is capital
• Remember: You can’t use keywords as variable names

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 10

Computation, then
comparison, then assignment
var1 = ((c+1) == 5)

You can directly assign True or
False to variables

var1, var2 and var3 are Boolean variables. Try type(var1)

Selection using if/else
• We will write a Python program that

– Asks the user to input a number
– Determines if the number is non-negative or negative

• Non-negative means zero or positive
– Prints the appropriate output to the user

• We have written the first part of the program in
ifelse_prelim.py. The first part
– Asks the user to input a number

• The file is on the course website. Download and open
the file. You will type the rest of the code in.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 11

Selection using if/else

The 4 spaces (= 1 tab) on lines 21 and 23 are called
indentation. They are part of Python syntax.

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 12

}

• Type lines 20-23 as shown below
– Don’t forget the colon at the end of lines 20 and 22
– You can cut-and-paste the print statements in lines 25

and 26 to save typing

The if part

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 13

The statement in the if part is executed if the
condition is evaluated to be True

The else part

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 14

The statement in the else part is executed if the
condition is evaluated to be False

Logic reasoning that you need to know:
(num >= 0) is False implies that (num < 0)

• Symmetric form:
if boolean-expression:
statement-list1

else:

statement-list2

boolean-expression is evaluated
– If it evaluates to True, statement-list1 is executed

– Otherwise, statement-list2 is executed

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 15

Selection if/else

indented!

indented!

flowchart

boolexpr

stmts1

FalseTrue

stmts2

• The if/else statement is used to make decisions using
Boolean expressions

Quiz
• You want to develop a program that does the following

– Given two float variables a and b, the variable
bigger_of_two_numbers should be assigned the bigger value of a
and b

• Most of the code has been written in the file bigger_prelim.py

• What Boolean expression should be put in Line 20?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 16

Program testing
• You write computer programs with an intention for

the programs to do certain tasks

• If a program runs without error, it doesn’t mean it
works in the way you intend it to be
– Language analogy:

• A correct program is similar to a grammatically correct sentence
• However, a grammatically correct sentence doesn’t mean it’s a

sentence that makes sense

• You want to test the programs to ensure they
function as intended

• A way to test a program is to give it many different
sets of input and check whether you get the
expected output for each set of inputs

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 17

Quiz
• You have written a program which returns the

bigger value of 2 numbers

• Which of the following set is a better choice to test
this program?

• Hint: You want to cover all possibilities

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 18

Set 1

a = 5; b = 2
a = -5; b = -10

Set 2

a = 5; b = 2
a = 5; b = 10

You said we should cover all possibilities …

• Should we try?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 19

a = 5
b = “HaHaHaGotYou”

• Yes! Definitely!
• Although you intend the users to enter only

numbers, but a defensive programmer ensures that
a piece of software continues to function under
unexpected circumstances

• This is hard but no one likes software that crashes
• We will come back on this later on in the course

You can have multiple statements in the if or else
section

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 20

These statements in the if part are executed if the
condition is evaluated to be True

Important: These statements must have the same indentation

Indentation tells where the else block ends

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 21

This statement is outside of if/else because it is not indented. It is
executed no matter whether (num >= 0) is True or False.

Indentation tells whether a statement is inside or outside of if/else

Let us add Line 22, 25 and 27 to ifelse_prelim.py and run the code

Indentation error

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 22

Problem: No indentation.

Problem: Irregular indentation.

Note: The editor warns you.

Program development tips

• The programs that we have written is still
short, in terms of the number of lines of code

• You will be writing longer programs
• It’s a good time to start learning some

program development tips

• Incremental development
– Break the program into sections

• Code a section
• Test that it is working
• Then move onto the next section

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 23

Incremental development example

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 24

• The above shows the code for the if/else example
• You can develop the four sections one after another

{

{
{
{

Program planning

• In school, you learn to use storyboards to plan your
story before actually writing it out

• The philosophy of separating planning and writing
also applies to programming
– First plan the workflow in your program
– After planning, write the code

• There are two common planning aids:
– Flowcharts
– Pseudocode

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 25

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 26

Flowcharts

flowchart

num >= 0

Process
non-negative

numbers

FalseTrue

Process
negative
numbers

• Flowcharts are used to visualise workflow of a computer
program
– Diamond block for decision

– Rectangular block for process

– Parallelogram for input

• Example: The flowchart
on the right corresponds
to the program 2 slides
earlier

Print
absolute

value

Input

Pseudocode

• Pseudocode shows the structure of the program but
is written in human language

• For example:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 27

Get a number from the user

IF the number is greater than or equal to 0 THEN
Print the number is non-negative

ELSE (Note for myself: this means the number is neg)
Print the number is negative

END OF IF

Always plan first

• You can use any planning aid you prefer but
– Always plan first
– Then write your code

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 28

Boolean operators
• You can combine Boolean expressions by using

Boolean operators
• There are three Boolean operators

binary and or

unary not

• Examples:
(a > 5) and (b > 10)
(a >= 5) or (b != 10)

• Parentheses have been added for readability but
you don’t need them because and as well as or have
lower precedence than the comparison operators

a > 5 and b > 10
a >= 5 or b != 10

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 29

Example code

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 30

• Code in boolean.py

• Let’s try or as well as not

• Quiz: What is not(b > 10) equivalent to?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 31

Truth Tables

Truth tables establish meaning of operators by
enumerating each combination of operands and
showing what the operation yields

Notation: T = True, F = False
A B A and B A or B not A

F F F F T
F T F T T

T F F T F

T T T T F

and – both True or – either True
not – complement

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 32

Examples

• You want to test whether the variable x is within the
interval [0.0,1.0)

• When is the following true? Can you replace it by a
single comparison?

• When is the following true? What can you use it for?

x >= 0.0 and x < 1.0

j < 0 or j > 0

a == b and b == c

De Morgan’s Laws

• De Morgan’s Laws are important because they help
us to make logical reasoning. There are two forms.

not (E1 and E2) is equivalent to (not E1) or (not E2)

not (E1 or E2) is equivalent to (not E1) and (not E2)

• You will find it useful when we learn to code using
the while-statement in a number of weeks’ time

• For example: In a game, if a player has got 15
points or more, then the game ends

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 33

De Morgan’s Laws: Example

• The game ends if

player_1_score >= 15 or player_2_score >= 15

• The game continues if

not(player_1_score >= 15 or player_2_score >= 15)

• By De Morgan’s Law, this is equivalent to:

not(player_1_score >= 15) and not(player_2_score >= 15)

player_1_score < 15 and player_2_score < 15

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 34

Remarks
• Sometimes, you need to be explicit.

– In English, you say x is not equal to 6, 7 or 8

– In Python (and many programming languages), you
need to write

(x != 6) or (x != 7) or (x != 8)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 35

a == b and b == c

• Python allows you to be implicit with and, e.g. the
expressions on the left can be shortened to those on
their right

a == b == c

x >= 0.0 and x < 1.0 0.0 <= x < 1.0

• Simpler form:

if boolean-expression:
statements

• boolean-expression is evaluated
– If it evaluates to True, statements are executed

– otherwise (i.e., it must be False) skip over statements
and continue with rest of program

• Also referred to as a conditional statement

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 36

Selection – if

indented!

flowchart

boolexpr

statements

False

True

Example using if

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 37

• Open the file if_demo.py

Nested if

• You can have a if/else inside another if/else

• For example: (nested_if.py)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 38

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 39

num ≥ 0
FalseTrue1 2

True
num > 5

False

3 4

num < 0

num ≥0

num ≥ 0 and num > 5

Equivalent to num > 5

num ≥ 0 and num ≤ 5

Equivalent to
0 ≤ num ≤ 5

3

4

2

Quiz

• Under what condition will statement_list_2 be
executed? Why?
a. boolean_exp_1 is true and boolean_exp_2 is true
b. boolean_exp_1 is true and boolean_exp_2 is false
c. boolean_exp_1 is false and boolean_exp_2 is true
d. boolean_exp_1 is false and boolean_exp_2 is false

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 40

if boolean_exp_1:
if boolean_exp_2:

statement_list_1
else:

statement_list_2
else:

if boolean_exp_3:
statement_list_3

else:
statement_list_4

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 41

More complex form

Chained form, symmetric form generalised to n:

if Boolean_expression1:

statement_list1
elif Boolean_expression2:

statement_list2

elif Boolean_expression3:

statement_list3
…

else:

statement_list_n

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 42

Chained Selection example: Classification

Often need to classify a value based on ranges, such
as deriving UNSW grade from mark:

Precondition (assumption): 0 <= mark <= 100

if mark >= 85:

grade = "HD"

elif mark >= 75: # (mark >= 85 is false) and (mark >= 75 is true)

grade = "DN"

elif mark >= 65:

grade = "CR"

elif mark >= 50:

grade = "PS"

else: # Not (mark >= 50), so mark < 50

grade = "FL"

Code in mark2grade.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 43

Selection If/elif/else
mark >= 85

grade =
“HD”

FalseTrue1 2

True
mark >= 75

grade =
“DN”

False3

4

grade =
“CR”

mark >= 65
True False5

6

1 mark >= 85

2 mark < 85

3 mark < 85 and
mark >=75

4 mark < 85 and not(mark >= 75)

≣ mark < 85 and mark < 75

≣ mark < 75

5 mark < 75 and mark >=65

6 mark < 65

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 44

Quiz

↓What we had earlier

Will the following code
work? Changes are inside
the dashed box. Why?

if mark >= 85:
grade = "HD"

elif mark >= 75:
grade = "DN"

elif mark >= 65:
grade = "CR"

elif mark >= 50:
grade = "PS"

else:
grade = "FL"

if mark >= 85:
grade = "HD"

elif mark >= 75:
grade = "DN"

elif mark >= 50:
grade = ”PS"

elif mark >= 65:
grade = ”CR"

else:
grade = "FL"

ENGG1811 © UNSW, CRICOS Provider No: 00098G W6 slide 45

Remark

if mark >= 85:
grade = "HD"

elif mark < 85 and mark >= 75:
grade = "DN"

if mark >= 85:
grade = "HD"

elif mark >= 75:
grade = "DN"

The following code works but the part within the orange box is
redundant.

Should be written as:

This week’s topics

• Selection structure
• Functions
• List
• Plotting

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 46

Functions

• We talked about functions in Week 1

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 47

• We will show you how to write your own functions

Your first function

• You know that when you use the function
math.cos(), you input a value and get an output

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 48

• You will now write a function which squares the input
value and then outputs it

math.cos()1.34 cosine of 1.34

my_square()

• Open the file my_square_prelim.py that comes with
this week’s lecture

• Type in Lines 12-14 as shown below
– Don’t forget the : at the end of Line 12
– The indentation in Lines 13-14 is important

• And then run the program

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 49

Anatomy of a function
• Line 12:

– def means you want to define a function
– The name of the function is my_square
– x is the identifier you give to the function input

• Lines 13 and 14 are indented relative to def so
they belong to the function definition

• Lines 16 and 17 are not indented, so they are not
part of the function

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 50

Mechanics of function evaluation (1)
• Line 17: The function my_square is called

– Terminology: Calling a function means executing the
code inside a function

• Because the variable a has the value of 5, the
identifier x in the function is assigned the value of
5

• The code inside the function is executed
sequentially

• Line 13: the identifier y is assigned the value of 25

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 51

Mechanics of function evaluation (2)

• return y in Line 14 means the value of y (which is
25) is to be put at the place where the function is
called

• The right-hand-side of Line 17 is now 25
• b is then assigned the value of 25

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 52

Multiple inputs

• Code in my_power.py
• You can have multiple inputs to a function

– For example, the function my_power has two inputs
(Line 12)

• When the function my_power is called in Lines 15 and
17, there are 2 values inside the parentheses
separated by a comma

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 53

Orderly assignment

x ← 5
n ← 2

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 54

x ← 2
n ← 5

Local scope
• The code is in local.py
• Note that there is a variable y in the function and

there is also a variable y outside the function
• Are they the same?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 55

def my_power(x,n):
y = x ** n
return y

y = 4
z = my_power(y,2)

print('y = ' ,y)
print('z = ' ,z)

We will copy the code to the
Python tutor website which
allows us to visualise the
execution of the code

http://pythontutor.com/visualize.html

http://pythontutor.com/visualize.html

Local variable scope
• The variables in the function are stored in a separate

memory space
– This applies to data types int, float, str, bool
– But not for all data types, will tell you more later

• We say the scope of the variable is local to the
function

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 56

def my_power(x,n):
y = x ** n
return y

y = 4
z = my_power(y,2)

print('y = ' ,y)
print('z = ' ,z)

Memory space for my_power

x

n

4

2

Base memory space

y 4

y 16

Multiple outputs

• Code in my_power3.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 57

x ← 5
n1 ← 2
n2 ← 3
n3 ← 4

Functions can call other functions
• The code is in my_power3_improved.py
• A function can call other functions

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 58

Function must be defined before they can be
called

• Python expects that you define the functions
before they are called

• The following code will not work because the
function my_square is called in Line 13 but its
definition is only found later in Line 16

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 59

DOESN’T
WORK

Function must be defined before they can be
called (cont’d)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 60

• Consider the code my_power3_improved.py where the function
my_power3() calls the function my_power()

• The function my_power3() is called the first time in Line 22. So
my_power3() and the function it calls must all be defined before this
line.

• However, my_power3() and the functions it calls can appear in any
order.

Can exchange the order
but both must be
defined before
my_power3() is called

This week’s topics

• Selection structure
• Functions
• List
• Plotting

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 61

List
• You have come across a number of data types:

– int, float, str, bool, etc.

• We will now introduce a new data type called list

• A list consists of a sequence of objects enclosed in [
] and separated by commas

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 62

List is useful
because you can
use them with
loops

Line continuation

• Sometimes you have a long line of code, it is best
that split it into multiple lines so that you don’t
have to scroll to the right to read

• Python uses two methods to say that code typed in
multiple lines of code is in fact one line of code
– Implicit continuation with brackets (), [], {}
– Explicit continuation with \

• Demo code in continuation.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 63

Tensile testing machine

• To understand how materials behave under tensile
force

• Pull the specimen and measure its length

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 64

Source: Holly Moore, Matlab for Engineers. p.197

Data from a test

Load [lbf] Length [inches]
0 2.000

1650 2.002
3400 2.004
5200 2.006
6850 2.008
7750 2.010
8650 2.020
9300 2.040

10100 2.080
10400 2.120

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 65

Source: Holly Moore, Matlab for Engineers. p.197

• Make two lists
– One for load
– The other for length

• Plot load on the
horizontal axis and
length on the vertical
axis

Plotting graph • The code is in plot_demo.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 66

Code for graph plotting

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 67

Short form Lines 11-15
Put the data in 2
lists

Lines 17-27
Plotting graphs

Import library

matplotlib

• matplotlib is a large library with many
functions

• You can do plots of many different styles
– Pie chart, histogram, log-log, log-linear, 3D and

even animation
• And also to customise them in many ways
• We will only show you the basic plot types
• The library is well documented and its website

has many examples
– https://matplotlib.org

ENGG1811 © UNSW, CRICOS Provider No: 00098G W9 slide 68

https://matplotlib.org/

Summary
• Control structures

– if, if/else, if/elif/else
• Boolean

– Relational operators: >, <, ==, !=, <=, >=
– Boolean operators: and, or, not

• Program development
– Incremental development
– Planning before writing
– Flowcharts and pseudocode

• Functions

• List

• Plotting

ENGG1811 © UNSW, CRICOS Provider No: 00098G W2 slide 69

ENGG1811 © UNSW, CRICOS Provider No: 00098G

End

Week 2: Selection Structures,
Functions, List, Plotting

ENGG1811 © UNSW, CRICOS Provider No: 00098G

