
ENGG1811 © UNSW, CRICOS Provider No: 00098GENGG1811 © UNSW, CRICOS Provider No: 00098G

Professor Aaron Quigley

Thanks to Chun Tung Chou

and Ashesh Mahidadia

Week 4b: Errors; Program testing and
debugging; Exception handling

Introduction

• By now, you have been writing programs for a number
of weeks, you probably have experienced:
– Getting programs to run J
– Getting error messages L
– Getting code to run but the code doesn’t do what you

intend it to do L

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 2

Error types

• There are two types of errors that stop your program
from running:
– Syntax error
– Runtime error

• Language analogy
– A syntax error is analogous to a grammatically incorrect

sentence, e.g. sentences with spelling and/or punctuation
error

– A runtime error is analogous to a grammatically correct
instruction that cannot be carried out. For example,

• Fly to the centre of the sun and come back

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 3

Syntax errors

• Syntax errors violate the rules of how Python
statements are written

• Some examples:
– Misspelling keywords
– Forget to use colon with if/else/elif/for/while/def
– Wrong usage of or missing (), [], {}
– Improper indentation

• The Spyder editor catches many of these errors

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 4

Quiz

• Can you tell what the syntax errors are?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 5

Print(Good day mate!)

i_am_a_list = [2 3 5]

Runtime errors

• Terminology: Runtime is the time from the beginning of
executing a program till the program terminates

• Runtime errors mean the computer is unable to execute
the instructions

• Examples:
– Forgot to import libraries
– Used the wrong data types
– Forgot to initialise a variable before using it

• Quiz: What are the errors in the following code?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 6

b = 21
b = a + b

c = [4, 10, 17]
d = c[2] + c[3]

More runtime errors

• You can also get run-time errors from doing operations
that are not permitted

• Let us look at an example in runtime_error_ex.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 7

Runtime error

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 8

• When you see an error message, don’t panic
• There are two important pieces of information

– Where the error occurs
– What the error is

Now your program runs ..

• A program that runs doesn’t mean that your program is
correct

• The instructions you give to the computer may not solve
the problem you intend it to solve

• A real-life analogy: The room is really hot and you want
to cool the room down. You issue the instructions

Turn the heater on
– The instruction is grammatically correct = No syntax errors
– The instruction can be executed = No runtime errors
– But the instruction does not solve your problem

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 9

Program testing

• This is to test whether your program is doing what you
intend the program to do

• We will first discuss a number of concepts
– Unit testing
– Black-box testing
– Glass-box testing

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 10

Unit testing

• This refers to testing of the various components of
a piece of software

• You may have written a program with a number of
different functions

• You want to test all these functions to ensure that
each function works properly

• Recall that we talk about incremental development
– You should develop, test, develop, test

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 11

An example testing procedure

• Let us assume that you have developed a function to
compute the maximum value in a Python list of numbers

• You can come out with a number of test cases and you
know the expected answers

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 12

Test cases Expected output
[2, 5, 8] 8
[3, 17, 19, 24] 24
[23, 1, 51, 19, 107, 123] 123

For each test case
Does the function output match the expected output?

• You can write a testing program

An example testing procedure (cont’d)

• The function to be tested is in my_max.py

• The testing program is in the file test_my_max.py

• Let us go through the testing program and run it
– We won’t open my_max.py

• A few remarks:
– You may be surprised to see that we are writing a program

to test another program. Yes, this is additional work but it is
absolutely necessary.

– If you write a test program, you can re-use the test cases
for the future versions of the software if needed

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 13

Different test methods

• The method that we were using is known as black-
box testing
– We didn’t look at the code
– We simply applied the test cases and compared the

expected output

• There is also glass-box testing where tests are
derived by looking at the code

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 14

Choosing test cases (1)

• It’s important that you choose test cases in a diverse
way to cover as many possibilities as possible

• What limitations do you see in the test cases we’ve
used? How can you improved it?

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 15

Test cases Expected output
[2, 5, 8] 8
[3, 17, 19, 24] 24
[23, 1, 51, 19, 107, 123] 123

Choosing test cases (1)

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 16

• Only positive integers
• The maximum always occurs in the last position
• List not empty
• Modifications:

– List with +/- float/int
– Rotate the positions of the maximum

Test cases Expected output
[2, 5, 8] 8
[3, 17, 19, 24] 24
[23, 1, 51, 19, 107, 123] 123

Choosing test cases (2)

• It is important that you choose tests as diverse as
possible

• In order to test how robust a software is, you may
also want to consider
– Empty list
– Lists with a mixture of numerals and non-numeral

types

• Many software companies test their software with
random inputs in addition to using the expected
inputs

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 17

Using different test cases
• Some new test cases are now included in the file

test_my_max_v2.py

• Let us run it and see

• It failed one test L

• There is a logic error in the code
– This example came from a past ENGG1811 assignment

submission

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 18

Debugging

• Now the test has revealed that the program does not do
what you intend it to do, you need to debug the program

• Sometimes you may be able to deduce the error by
looking at the test cases that the program passes and
fails

• Another way is to trace the program
– This is similar to the web visualisation tool that we have

been using
• Spyder has a debugging tool
• These buttons are for debugging

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 19

Start debugger Stop debugger

Spyder debugger

• The Spyder debugger allows you to step through your
program in a few different ways

• You can step through the program one line at a time
• If a line contains a function call, there are two options

– The “step into” option: Stepping through the lines of the
function

– The “step return” option: Execute the function without
stepping through the lines of the function

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 20

One line at a
time

Step into

Step return

Variable explorer

• The debugger is very often used in conjunction with
the variable explorer so that you can observe
changes in variables

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 21

• You may wish to clear
the variables so that the
existing variables won’t
confuse the debugging
process
– Right click on the blank

space in the console
– From the pop-up menu,

choose “Reset
Namespace”

Demonstration

• We will use the files debug_my_max.py and my_max.py
to demonstrate these functions

• We will try
– Stepping through one line at a time
– Step into
– Step return

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 22

Breakpoint

• Very often you want to skip a block of code instead of
running a line at a time

• You can set breakpoint and run the program until the
line before the breakpoint has been executed

• To set a breakpoint at a line, double click on the grey
space to the left of the line number
– A solid red circle indicates a breakpoint
– Double click on the red circle to remove the breakpoint

• Demonstration

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 23

Run till breakpoint

Error handling

• Let us consider the program for calculating the roots of
quadratic equation
– You did one in Week 1
– Code in quadratic_v1.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 24

Expected usage

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 25

Unexpected usage

• You can’t always expect the users to know the limitation
of your software

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 26

Avoiding errors

• You can try to avoid programs running into problem by
considering possible errors in your program

• The code is in quadratic_v2.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 27

Python try … except
• Instead of using if/elif/else to handle the special cases,

you can also use try … except
• The code under try will be run first, if it results in an

error, the code under except will be run

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 28

try:
Code under the try block

except:
Code under the except block

try … except
• Example: Modify quadratic_try_v1_prelim.py to:

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 29

Python try … except

• You can make the exception handling more precise by
handling each type of exception

• Code in quadratic_try_v2.py

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 30

Summary

• Running code does not mean correct code
• Test, test, test
• Writing test code
• Debugging

– Useful skills for your assignment
• Exception handling

ENGG1811 © UNSW, CRICOS Provider No: 00098G W4b slide 31

ENGG1811 © UNSW, CRICOS Provider No: 00098G

End

Week 4b: Errors; Program testing and
debugging; Exception handling

ENGG1811 © UNSW, CRICOS Provider No: 00098G

