
1

VBA Drawing with Microsoft Excel 2007

Geoff Whale,

School of Computer Science & Engineering,

The University of New South Wales

Abstract: The Excel 2007 Macro Recorder does not capture drawing actions,

making it difficult for a casual developer to see how to create shapes

programmatically. However, the VBA engine is capable of building and displaying

shapes, and will generally replay shape code from earlier versions. This paper

describes the common shapes and how to manipulate them using VBA.

1 Introduction

Microsoft developers omitted drawing actions from the Macro Recorder

implementation of Excel 2007, thus removing the primary learning tool for

programmers wanting to understand shapes. The Word 2007 recorder does capture

drawing actions, but the code is not compatible with Excel for several reasons,

including variations in the object model and, more importantly, differences in

implementation of some key methods such as AddLine and AddConnector, resulting in

discrepancies in both the appearance and position of some elements.

Accordingly, the only ways to learn about VBA drawing code involve access to an

earlier version such as Excel 2003, tedious trawling through the Help system or

reading tutorials such as the present document.

2 VBA Shapes and Coordinates

Drawings consist of a collection of Shape objects associated with a worksheet. Each

object has a position, along with many other properties. Positions and sizes are

expressed in points (a point is 1/72 of an inch) and are represented as single-

precision reals (Single type). For a typical display resolution of 96dpi, that means that

each unit is 4/3 pixels. For 120dpi (larger fonts), each unit is 5/3 pixels. To be safe,

drawings should generally be limited to about 600 x 400 units.

A screen position has an X and a Y coordinate, with X increasing to the right and Y

increasing downward. The origin (0,0) is the top left corner of the worksheet.

Figure 1.

Drawing

coordinate

system

Shape: Rectangle

Top left position: X = 50, Y = 75

Width = 200pt (= 267px @ 96dpi)

Height = 100

JR Screen Ruler shown is courtesy Spadix software www.spadixbd.com/freetools/jruler.htm

2

3 Creating Shapes

Shapes are created by applying a particular method to the ActiveSheet.Shapes

collection, depending on the kind of shape:

Shape Method Arguments

Lines AddLine Start and end coords

AutoShape AddShape Shape type, bounding box coords and dimensions

Freeform object

(polygon)

BuildfreeForm Node type and initial point; other points created

with AddNodes and finally ConvertToShape

Text box AddTextBox Text orientation, box coords and dimensions

All objects are given default attributes, which can later be changed using property

assignments. This includes the text in a textbox.

Autoshapes include rectangles, ellipses and circles, block arrows, callouts, flowchart

symbols and many other predefined symbols. Their bounding box is the smallest

rectangle that encloses the shape, and the positional coordinates are the coords of the

top left corner of the bounding box. For example, a circle is defined not using its

centre and radius as you may expect but as the square that just encloses it.

Polygons are created using three methods, as described in 3.4 below.

3.1 The Shape type and method calls

When the Macro Recorder is able to capture drawing code it will make use of the

Selection object to reference the last created shape to apply property changes. For

example, to create a dashed line along the major diagonal of the rectangle in Figure 1,

the following code would be captured:

ActiveSheet.Shapes.AddLine(50, 75, 250, 175).Select

Selection.ShapeRange.Line.DashStyle = msoLineDash

AddLine creates a new Shape object and adds it to the collection. Its name is the kind

of shape followed by a counter representing the number of such objects created since

the interpreter started. For example, if this was the fifth line of any kind, the entry in

the collection would be given the name "Line 5".

If the user later selects the line and makes changes to it, the generated code begins:

ActiveSheet.Shapes(“Line 5”).Select

Important note: this kind of shape code cannot be replayed reliably. Shapes retain

their names indefinitely, even when deleted. So if you were to delete the dashed line

and replay the code, you would get a new one with a new name. Any reference to

Line 5 generates an error because the collection element no longer exists.

As an alternative to using Select, each of the methods returns a Shape object

reference. Use Set to assign to a variable. For example,

DimDimDimDim shpDiagonal AAAAssss Shape

SSSSetetetet shpDiagonal = ActiveSheet.Shapes.AddLine(50, 75, 250, 175)

shpDiagonal.ShapeRange.Line.DashStyle = msoLineDash

Keeping track of many shapes using variables is tedious: as far as possible, apply

attributes as soon as the object is created.

3

3.2 Autoshapes

AddShape has five arguments: the kind of shape, which is a value from the

msoAutoShapeType enumeration, and the top-left coordinates and width and height.

This creates a dotted rectangle and overlays it with an ellipse with the same bounding

box:

SetSetSetSet shpRect = ActiveSheet.Shapes.AddShape(msoShapeRectangle, _
 50, 75, 250, 175)

shpRect.Line.DashStyle = msoLineSquareDot

shpRect.Line.Weight = 1.75

shpRect.Fill.Visible = msoFalse

SetSetSetSet shpEllipse = ActiveSheet.Shapes.AddShape(msoShapeOval, _

 50, 75, 250, 175)

The Line and Fill properties are explained in section 4.

The full list of shapes types is available by typing msoAutoShapeType into the VB

Editor’s help search. An excerpt is shown in Appendix A.

3.3 Text boxes

The AddText method requires a text orientation and box coordinates. This just gives

you a rectangle (with default outline and fill) to which you can add text using the

default font. Usually you’ll want to change the characteristics, see section 4.4.

DimDimDimDim shpText AsAsAsAs Shape

SetSetSetSet shpText = ActiveSheet.Shapes.AddTextbox(msoTextOrientationHorizontal, _

 122.5, 100, 140, 30)

 shpText.TextFrame.Characters.Text = "Power station"

Text box unselected

Text box selected

4

3.4 Polygons (Freeform objects)

Unlike the other shapes, a freeform element shape is defined by an arbitrary number

of points or nodes. The first point is supplied when the object is created, then each

other node is added in turn with another line of VBA. When all points have been

added one more call converts the object into a shape so that the appearance can be

customised. If the last point is very close to the first, the shape is closed and can be

filled.

The following example creates an equilateral triangle with specified bottom-left

vertex and given side, by calculating the location of the required nodes.

x = 50: y = 300: side = 120

WithWithWithWith ActiveSheet.Shapes.BuildFreeform(msoEditingAuto, x, y) ' first point

 .AddNodes msoSegmentLine, msoEditingAuto, x + side, y ' bottom right

 .AddNodes msoSegmentLine, msoEditingAuto, x + side / 2, _

 y - side * Sqr(3) / 2 ' top vertex

 .AddNodes msoSegmentLine, msoEditingAuto, x, y ' first point again

 SetSetSetSet shpTri = .ConvertToShape

End WithEnd WithEnd WithEnd With

The above example uses only straight lines, the other possibility is msoSegmentCurve,

which uses a quadratic Bézier curve instead. If the

second msoSegmentLine was changed to

msoSegmentCurve the figure would look like this:

Try replacing msoEditingAuto by msoEditingCorner

or msoEditingSmooth or msoEditingSymmetric to

see how this affects the shape of the outline at the

node. msoEditingAuto just says use the most

appropriate type given the adjacent segments.

5

4 Shape properties

The most important properties of a shape, besides its position on the screen, are the

those that describe its stroke (outline) and fill. Each of these includes a colour, so

we’ll start by discussing that characteristic.

4.1 Colour

Versions prior to 2007 used a palette of 56 fixed colours, each of which was assigned

a colour index, an integer between 1 and 56. An arbitrary colour using red, green and

blue component values could be used as well, though it would be converted to the

nearest standard colour. 2007 introduced the idea of themes, with a colour being

based on a standard one but with a saturation factor applied to get a related tint.

The best approach from a portable programming point of view is to assign an RGB

value and let Excel find the best way to store that internally, especially if the

document is to be saved in the compatibility format (Excel 97-2003).

There are two ways to create a composite RGB (red, green, blue) value:

� Define a hexadecimal (base-16) constant with components between 00 and FF

(255), expressed from the left as blue, green and red (not the other way). For

example, bright yellow has fully saturated blue and green components and no

red, so

ConstConstConstConst COLOUR_YELLOW = &HFFFF00

Note that &H prefixes a hexadecimal number.

� Use the built-in function RGB, which accepts three integers between 0 and 255

representing the red, green and blue components and returns the composite

colour. Unfortunately VBA doesn’t allow function calls in constant definitions,

even when the arguments are constants, so this way isn’t as readable.

... = RGB(255, 255, 0) ‘ Yellow

4.2 Outline properties

A shape’s outline has several main characteristics,

� Its colour

� Its weight (thickness) in points

� Its dash style (one of a set of values from the msoDashStyle enumeration)

� (For open shapes such as lines) line ending symbols such as arrows

The code overleaf creates this horizontal 2.5-point, dashed red line with a triangular

arrowhead at the end (the second point):

6

 SetSetSetSet shp = ActiveSheet.Shapes.AddLine(50, 100, 250, 100)

 WithWithWithWith shp.Line

 .DashStyle = msoLineDash

 .ForeColor.RGB = RGB(255, 0, 0)

 .EndArrowheadStyle = msoArrowheadTriangle

 .Weight = 1.5

 End WithEnd WithEnd WithEnd With

The default dash style is msoLineSolid, giving a continuous line. Defaults were

accepted for the properties EndArrowHeadLength and EndArrowHeadWidth but you

can set them too (see Excel VBA Help for options).

The same properties can be set for any shape object, except the arrowhead styles if

the object is closed.

To remove the outline entirely, say from a textbox where you want only the text to

appear, use

shp.Line.Visible = msoFalse

4.3 Fill properties

Only closed shapes have fill, which describes the interior of the figure. It can have a

solid or patterned appearance, or none, and it can be partly transparent. The

following generates a 50% green autoshape arrow over a textured rectangle:

 left = 50: top = 75: wid = 250: ht = 175

 SetSetSetSet shpBack = ActiveSheet.Shapes.AddShape(msoShapeRectangle, _

 left, top, wid, ht)

 shpBack.Fill.PresetTextured msoTextureGranite

 ' note: method not property asssignment

 SetSetSetSet shpFore = ActiveSheet.Shapes.AddShape(msoShapeRightArrow, _

 left, top, wid, ht)

 WithWithWithWith shpFore.Fill

 .ForeColor.RGB = RGB(0, 128, 0) ' Dark green

 .Transparency = 0.5

 EndEndEndEnd WithWithWithWith

To remove fill altogether, set the Visible property of the shape to msoFalse.

7

4.4 Text properties

Text boxes have additional properties relating to the text itself. You can change

various font characteristics, including typeface (family), style, size and colour.

 DimDimDimDim shpLabel AsAsAsAs Shape

 SetSetSetSet shpLabel = _

 ActiveSheet.Shapes.AddTextbox(msoTextOrientationHorizontal, _

 120, 155, BOX_WIDTH, BOX_HT)

 WithWithWithWith shpLabel.TextFrame.Characters ' applies to whole of text

 .Text = "Figure 1. Location of SS Titanic"

 .Font.Name = "Arial Narrow"

 .Font.Size = 12

 .Font.Bold = True

 .Font.Color = RGB(128, 0, 0) ' Dark red

 End WithEnd WithEnd WithEnd With

 ' change attributes of part of the text only

 WithWithWithWith shpLabel.TextFrame.Characters(Start:=23, Length:=10)

 .Font.Italic = True

 End WithEnd WithEnd WithEnd With

 shpLabel.Fill.Visible = False

 shpLabel.Line.Visible = False

Produces

The box width and height doesn’t matter much if you remove the outline and fill. In

general, you should write a function to generate a label with given text at a specified

location with the same, consistent style. It would return the shape so that specific

variations (such as the partial italic range above) could be applied.

Figure 1. Location of SS Titanic

