Justified Representation in Approval-Based Committee Voting

Hariz Aziz1, Markus Brill2, Vincent Conitzer2, Edith Elkind3, Rupert Freeman2, Toby Walsh1

1: University of New South Wales and NICTA
2: Duke University
3: University of Oxford
Voting with Approval Ballots

• A set of alternatives \(C \)

• \(n \) voters \(\{1, \ldots, n\} \)

• Each voter approves a subset of candidates \(A_i \subseteq C \)

• **Goal**: select \(k \) winners
Outline

• Approval-based multiwinner rules

• Justified Representation (JR)

• Which rules satisfy JR?

• Extended Justified Representation (EJR)
• Approval-based multiwinner rules

• Justified Representation (JR)

• Which rules satisfy JR?

• Extended Justified Representation (EJ)
Approval Voting (AV)

- Each candidate gets one point from each voter who approves her.
- k candidates with the highest score are selected.
 - Ties broken deterministically.

For k = 3, AV outputs \{c_1, c_2, c_3\}.
Satisfaction Approval Voting (SAV)

- Brams & Kilgour ’14

- Voter i scores committee W as $|A_i \cap W|/|A_i|$

- **Goal**: select a size-k committee with the maximum score

For $k=2$
- AV outputs $\{c_1, c_2\}$,
- SAV outputs $\{c_3, c_4\}$
Minimax Approval Voting (MAV)

- Brams, Kilgour & Sanver ’07

- **Distance** from ballot A_i to a committee W:
 \[d(A_i, W) = |A_i \setminus W| + |W \setminus A_i| \]

- **Goal**: select a size-k committee that minimizes $\max_i d(A_i, W)$
Proportional Approval Voting (PAV)

• Simmons ’01
• Voter i derives utility of 1 from her 1^{st} approved candidate, $1/2$ from 2^{nd}, $1/3$ from 3^{rd}, etc.
• $u_i(W) = 1 + 1/2 + ... + 1/|W \cap A_i|$ for $k=2$
• Goal: select a size-k committee W that maximizes $u(W) = \sum_i u_i(W)$ for AV outputs $\{c_1, c_2\}$, PAV outputs $\{c_1, c_3\}$ or $\{c_2, c_3\}$
Reweighted Approval Voting (RAV)

- Thiele, early 20th century
- Sequential version of PAV
- Initialize: \(\omega(i) = 1 \) for all \(i \), \(W = \emptyset \)
- Repeat \(k \) times:
 - add to \(W \) a candidate with max approval weight
 \(\omega(c) = \sum_{i \text{ approves } c} \omega(i) \)
 - update the weight of each voter to
 \(\omega(i) = 1/(1+|A_i \cap W|) \)

For \(k=2 \)
- PAV outputs \{\(c_2 \), \(c_3 \)\}
- RAV outputs \{\(c_1 \), \(c_2 \)\} or \{\(c_1 \), \(c_3 \)\}
Generalizing PAV and RAV: Arbitrary Weights

- PAV and RAV both use weight vector \((1, 1/2, 1/3, \ldots)\)
- We can use an arbitrary weight vector \((w_1, w_2, \ldots)\) with \(w_1 = 1\) , \(w_1 \geq w_2 \geq \ldots\) instead:
 \((w_1, w_2, \ldots)\)-PAV and \((w_1, w_2, \ldots)\)-RAV
- \((1, 0, \ldots)\)-RAV: choose candidates one by one to cover as many uncovered voters as possible at each step (Greedy Approval Voting (GAV))
Outline

- Approval-based multiwinner rules
- Justified Representation (JR)
- Which rules satisfy JR?
- Extended Justified Representation (EJR)
Representation

• 5 voters get 3 representatives, 4 voters get 0 representatives

• Intuition: each cohesive group of voters of size n/k “deserves” at least one representative

for $k=3$

AV outputs $\{c_1, c_2, c_3\}$
Justified Representation

• **Definition**: a committee W provides justified representation (JR) for a list of ballots (A_1, \ldots, A_n) and committee size k if for every set of voters X with $|X| \geq n/k$ and $\bigcap_{i \in X} A_i \neq \emptyset$ it holds that W contains at least one candidate from $\bigcup_{i \in X} A_i$.

• $k=1$: JR is satisfied unless there exists a candidate approved by all, but we pick a candidate not approved by anyone.
Can We Always Satisfy JR?

- **Claim**: GAV (aka $(1, 0, \ldots)$-RAV) always outputs a committee that provides JR.

- **Proof**:
 - Suppose after k steps we have $\frac{n}{k}$ uncovered voters who all approve a
 - a’s weight is $\geq \frac{n}{k}$
 - then at each step we chose a set that covered $\geq \frac{n}{k}$ uncovered voters
 - thus we should have covered all n voters
Outline

• Approval-based multiwinner rules

• Justified Representation (JR)

• Which rules satisfy JR?

• Extended Justified Representation (EJR)
Rules that fail JR

- AV fails JR for $k \geq 3$
- SAV fails JR for $k \geq 2$
- MAV fails JR for $k \geq 2$
 - except if each ballot is of size k and ties are broken in favour of JR

For $k=3$, AV outputs \{c_1, c_2, c_3\}
PAV, RAV and JR

• **Theorem:** PAV satisfies JR
• **Theorem:** \((w_1, w_2, \ldots)\)-PAV satisfies JR iff \(w_j \leq 1/j\) for all \(j\)
• **Theorem:** RAV satisfies JR for \(k = 2\) and fails JR for \(k \geq 10\)
 – \(k = 3, \ldots, 9\) is open!
• **Theorem:** \((w_1, w_2, \ldots)\)-RAV fails JR if \(w_2 > 0\)
 – \((1, 0, \ldots)\)-RAV is GAV and satisfies JR
Summary: JR

<table>
<thead>
<tr>
<th></th>
<th>Satisfies JR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV</td>
<td>No</td>
</tr>
<tr>
<td>SAV</td>
<td>No</td>
</tr>
<tr>
<td>MAV</td>
<td>No</td>
</tr>
<tr>
<td>PAV</td>
<td>Yes</td>
</tr>
<tr>
<td>RAV</td>
<td>No</td>
</tr>
<tr>
<td>GAV</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Outline

• Approval-based multiwinner rules

• Justified Representation (JR)

• Which rules satisfy JR?

• Extended Justified Representation (EJР)
Is JR Enough?

• Should we choose c_4 ???

• Perhaps a very large coherent group of voters “deserves” several representatives?

• **Idea**: if n/k voters who agree on a candidate “deserve” one representative, then maybe $\lfloor n/k \rfloor$ voters who agree on l candidates “deserve” l representatives?
Extended Justified Representation

• **Definition**: a committee \(W \) provides extended justified representation (EJR) for a list of ballots \((A_1, \ldots, A_n) \) and committee size \(k \) if for every \(l > 0 \), every set of voters \(X \) with \(|X| \geq l \cdot n/k \) and \(\bigcap_{i \in X} A_i \geq l \) it holds that \(|W \cap A_i| \geq l \) for at least one \(i \in X \).

• \(l = 1 \): justified representation
Satisfying EJR

• **Observation**: GAV fails EJR

• **Theorem**: PAV satisfies EJR, but is **NP-hard** to compute
 – do any other rules satisfy EJR?

• **Theorem**: \((w_1, w_2, \ldots)\)-PAV fails EJR if
 \((w_1, w_2, \ldots) \neq (1, 1/2, 1/3, \ldots)\)

• **Theorem**: checking if a committee provides EJR is **coNP-complete**

• **Open**: complexity of finding an EJR committee
Summary: EJR

<table>
<thead>
<tr>
<th></th>
<th>Satisfies JR</th>
<th>Satisfies EJR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SAV</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>MAV</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>PAV</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RAV</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>GAV</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Thank you!