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Abstract

Ranking alternatives is a natural way for humans to explain their preferences. It
is used in many settings, such as school choice, course allocations and residency
matches. Without having any information on the underlying cardinal utilities,
arguing about the fairness of allocations requires extending the ordinal item
ranking to ordinal bundle ranking. The most commonly used such extension is
stochastic dominance (SD), where a bundle X is preferred over a bundle Y if its
score is better according to all additive score functions. SD is a very conservative
extension, by which few allocations are necessarily fair while many allocations
are possibly fair. We propose to make a natural assumption on the underlying
cardinal utilities of the players, namely that the difference between two items
at the top is larger than the difference between two items at the bottom. This
assumption implies a preference extension which we call diminishing differences
(DD), where X is preferred over Y if its score is better according to all additive
score functions satisfying the DD assumption. We give a full characterization of
allocations that are necessarily-proportional or possibly-proportional according
to this assumption. Based on this characterization, we present a polynomial-
time algorithm for finding a necessarily-DD-proportional allocation whenever
it exists. Using simulations, we compare the various fairness criteria in terms
of their probability of existence, and their probability of being fair by the un-
derlying cardinal valuations. We find that necessary-DD-proportionality fares
good in both measures. We also consider envy-freeness and Pareto optimality
under diminishing-differences, as well as chore allocation under the analogous
condition — increasing-differences.
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1. Introduction

Algorithms for fair assignment of indivisible items differ in the kind of in-
formation they require from the users.

Some algorithms require the users to rank bundles of items, i.e., report a
total order among the bundles. Examples are the Decreasing Demand proce-
dure of Herreiner and Puppe [34], the Approximate-CEEI procedure of Budish
[24] and the two-agent Undercut procedure of Brams et al. [18], Aziz [4]. The
computational and communicational burden might be large, since the number
of bundles is exponential in the number of items.

Other algorithms require the users to evaluate individual items, i.e., supply
a numeric monetary value for each item. Such algorithms are often termed
cardinal. They often assume that the users’ valuations are additive, so that the
value of a bundle can be calculated by summing the values of the individual
items. Examples are the Adjusted Winner procedure of Brams and Taylor [20],
the approximate-maximin-share procedure of Procaccia and Wang [41] and the
Maximum Nash Welfare procedure of Caragiannis et al. [25]. In this setting,
the communication is linear in the number of items, but the mental burden may
still be large, since assigning an exact monetary value to individual items is not
easy. This is especially true when items are valued for personal reasons (such
as when dividing inheritance) and do not have a market price.

This paper focuses on a third class of algorithms, which only require the
users to rank individual items, i.e., report a total order among items. Such
algorithms are often termed ordinal.

Ordinal algorithms are ubiquitous in mechanism design. They are often used
in real-world applications, such as the National Residency Matching Program
[42, 3]), school choice applications [1], and university admittance [32, 33]. One
reason for this is that it is relatively easy for people to state ordinal preferences.
Another reason is that in some legacy systems, the input procedure asks for
ordinal preferences only. Often, the designer can change the allocation mecha-
nism, but cannot change the input procedure, as agents do not want to learn
new ways to enter their input into the system.

Ordinal algorithms are also common in AI and in fair division. Examples
are the AL two-agent procedure of Brams et al. [19], the optimal-proportional
procedure of Aziz et al. [6], picking-sequence procedures [17, 16] and the envy-
free procedures of Bouveret et al. [14]. Such algorithms often assume that the
agents’ preferences are implicitly represented by an additive utility function,
which is not known to the algorithm. This creates ambiguity in the agents’
bundle rankings. For example, if an agent ranks four items as w � x � y � z,
then, based on additivity, the algorithm can know that e.g. {w, x} � {y, z}
and {w, y} � {x, z}, but cannot know the relation between {w, z} and {x, y}.
Algorithms cope with this problem in several ways.

1. necessary-fairness criteria. An allocation is called necessarily-fair
if it is fair for all additive utility profiles consistent with the reported item-
rankings. Here, “fair” may be substituted by any fairness criterion, such as
envy-freeness or proportionality, as well as Pareto-efficiency. Necessary fairness
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is a strong requirement, which is not always satisfiable. For example, the AL
procedure finds a necessarily-envy-free allocation, but only for two agents, and
even then, it might need to discard some of the items.

2. possible-fairness criteria. An allocation is called possibly-fair if
it is fair for at least one additive utility profile consistent with the reported
item-rankings. Again, “fair” may be substituted by proportional or envy-free
or Pareto-efficient. Possible fairness is a weak criterion; algorithms that only
return possibly-fair allocations might be considered unfair by users whose actual
utility function is different.

3. Scoring rules. A scoring rule is a function that maps the rank of an item
to a numeric score. A common example is the Borda scoring rule [46], where
the least desired item has a score of 1, the next item has a score of 2, and so on.
The score of a bundle is the sum of the scores of its items. It is assumed that
all agents have the same scoring function. I.e., even though agents may rank
items differently, the mapping from the ranking to the numeric utility function
is the same for all agents [16, 35, 12, 27]. This strong assumption weakens the
fairness guarantee. The allocation may appear unfair to agents whose actual
scoring rule is different.

1.1. Contribution
The present paper suggests an alternative between the strong guarantee of

necessary-fairness and the weak guarantee of possible-fairness and scoring-rule-
fairness.

We assume that people are more sensitive about which of their high-valued
items they receive than about which of their low-valued items they receive.
Specifically, we assume that the utility-difference between the best item and
the second-best item is at least as large as the utility between the second-best
and the third-best, and so on. We call this assumption Diminishing Differences
(DD). The DD assumption is satisfied by the Borda scoring rule, as well as by
many other scoring rules, as well as by lexicographic preferences.

The DD assumption is supported by a survey that was recently reported by
Bronfman et al. [23] in the context of matching medical students to hospitals
for internships:

“The students were asked to fill surveys, to assert the difference
between the first and the second place, the second and the third
place and so on. Based on the surveys’ results, more weight was
given to the difference between first and second place than to the
difference between the ninth and the tenth.”

Based on the DD assumption, we formalize several fairness criteria. We
call an allocation necessarily-DD-fair (NDD-fair) if it is fair according to
all additive utility profiles satisfying the DD assumption, and possibly-DD-
fair (PDD-fair) if it is fair according to at least one additive utility profile
satisfying the DD assumption. Again, “fair” may be substituted by envy-free
or proportional or Pareto-efficient. The following implications are obvious for
any fairness criterion:
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necessarily-fair =⇒ NDD-fair =⇒ PDD-fair =⇒ Possibly-fair

In other words, the DD-fairness criteria are intermediate in strength between
necessary-fairness and possible-fairness. A formal definition of these criteria
appears in Section 3.

The first question of interest is to decide, given an item ranking and two bun-
dles, whether the NDD or the PDD relation holds between these bundles. We
prove characterizations of the NDD and PDD set relations that provide linear-
time algorithms for answering these questions. Using these algorithms, it can
be decided in polynomial time whether a given allocation is NDD-proportional
or NDD-envy-free (Section 4).

Next, we prove a necessary and sufficient condition for the existence of an
NDD-proportional (NDDPR) allocation. Essentially, an NDDPR allocation ex-
ists if and only if it is possible to:

(a) give all agents the same number of items, and
(b) give each agent his best item.

The proof is constructive and presents a simple linear-time algorithm for finding
an NDDPR allocation whenever it exists (Section 5).

To appreciate the difference between NDD-fairness and necessary-fairness,
contrast the above condition with the so-called “Condition D” of Brams et al.
[19], which is necessary and sufficient for the existence of a necessarily-propor-
tional (NecPR) allocation for two agents. For NecPR, it is required that for
every odd integer k ∈ {1, 3, . . . , 2l − 1} (where the number of items is 2l), the
agents have a different set of k best items; the condition for NDDPR is “Con-
dition D” limited to k = 1.

Intuitively, NDDPR allocations are more likely to exist than NecPR alloca-
tions. On the flip side, an NDDPR allocation is more likely to be considered
unfair by some agents (whose utility functions do not satisfy the DD assump-
tion) than a NecPR allocation. To assess the magnitude of these two opposing
effects, we conduct a simple simulation experiment. We find that the former
effect is substantial: with randomly-generated utility functions (with partially-
correlated utilities), NDDPR allocations exist in between 20% and 40% more
instances than NecPR allocations. In contrast, the latter effect is much less sub-
stantial: when there are sufficiently many items, our simple algorithm for finding
NDDPR allocations almost always yields an allocation that is proportional ac-
cording to the cardinal utilities. This indicates that NDDPR is appealing as a
normative fairness criterion (Section 6).

While our main interest is in NDD-proportionality, we briefly present several
extensions of our model.

First, instead of proportionality, we study the stronger property of envy-
freeness (EF). Since every EF allocation is PR, every NDDEF allocation is
NDDPR. Therefore, conditions (a) and (b) above are still necessary to NDDEF
existence. When there are n = 2 agents, EF is equivalent to PR, so NDDPR is
equivalent to NDDEF and conditions (a) and (b) are also sufficient, and when
they are satisfied, an NDDEF allocation can be found in linear time. EF and
PR diverge when there are three or more agents. When n = 3, we show that an
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NDDEF allocation might not exist even if conditions (a) and (b) hold. We then
study the computational problem of deciding whether an NDDEF allocation
exists. Since conditions (a) and (b) are necessary for NDDEF, the decision
problem is trivial whenever the number of items is not an integer multiple of
the number of agents, since then condition (a) is violated. It is also trivial if
the number of items equals the number of agents, since in this case condition
(b) is both necessary and sufficient. Therefore the first non-trivial case is when
the number of items is twice the number of agents. We prove that the decision
problem is NP-hard already in this case (Section 7).

Second, we study Pareto-efficiency (PE). The DD assumption has a sub-
stantial effect on fairness criteria: NDD-fair allocations are easier (in terms of
existence) than necessary-fair allocations and PDD-fair allocations are harder
than possibly-fair allocations. Interestingly, the DD assumption does not have
this effect on PE. We show that NDD-PE is equivalent to necessarily-PE and
PDD-PE is equivalent to possibly-PE. So the DD assumption does not lead to
a new efficiency criterion (Section 8).

Third, we study the allocation of chores — items with negative utilities. We
assume that people care more about not getting the worst chore than about
getting the best chore; this naturally leads to the condition of increasing dif-
ferences (ID). While the basic definitions and lemmas for the DD relations
have exact analogues for the ID relations, our characterization for existence of
NDDPR allocation of goods has no direct analogue for NIDPR allocation of
chores (Appendix A).

Finally, we compare the Diminishing-Differences assumption to another nat-
ural assumption which we call Binary. It is based on the assumption that each
agent only cares about getting as many as possible of his k best items, where
k is an integer that may be different for different agents. We show that, while
the number of utility functions that satisfy this assumption (for a given pref-
erence relation) is much smaller than the number of DD utility functions, it
does not lead to new fairness criteria: necessary-binary-fairness is equivalent to
necessary-fairness and possible-binary-fairness is equivalent to possible-fairness
(Appendix B).

1.2. Related Work
Extending preferences over individual items to sets of items is a natural and

principled way of succinctly encoding preferences [10]. One of the most common
set extensions is stochastic dominance (SD). It was developed for a different but
related problem — extending preferences over individual outcomes to lotteries
over outcomes. If X,Y are lotteries, then X %SD Y iff E[u(X)] ≥ E[u(Y )] for
every weakly-increasing utility function u [31, 21]. In the context of fair item
allocation, SD leads to the notions of necessary-fairness and possible-fairness
[6]. Other common extensions are downward-lexicographic (DL) and upward-
lexicographic (UL) [26, 14, 39].

The diminishing-differences extension, which is the focus of this paper, is
quite natural but has not been formalized in prior work. The most similar
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extension that we are aware of is the second-order stochastic dominance (SSD).
If X,Y are lotteries, then X %SSD Y iff E[u(X)] ≥ E[u(Y )] for every utility
function u which is weakly-increasing and weakly-concave [31]. In the context
of item assignment, weak concavity is equivalent to increasing differences —
agents care more about not getting the worst item than about getting the best
item. Increasing differences make sense in fair division of chores [8]. We analyze
this assumption in Appendix A.

Bronfman et al. [22, 23] present a mechanism for matching students to hos-
pitals for internships, where the students report rankings over the hospitals. Ini-
tially, using simulations of random-serial-dictatorship, each student is assigned a
vector of probabilities for each hospital. To improve the efficiency of the random
assignment, probabilities are traded between students with different rankings.
Ensuring that each trade is mutually beneficial requires an assumption on the
students’ cardinal utilities. Based on the survey quoted in the introduction, it
is assumed that the utility each student assigns to each hospital is the square
of its Borda score, which is a special case of a DD utility function.

Besides fair division, set extensions have been applied for committee vot-
ing [7] and social choice correspondences (see e.g., [11, 36]). Recently, set ex-
tensions have also been used in philosophic works on ethics. Suppose an ethical
agent has to choose between several actions. He/she is unsure between two
ethical theories, each of which ranks the actions differently. Due to this uncer-
tainty about theories, each action can be considered a lottery. Using the SD set
extension, Aboodi [2] and Tarsney [45] show that, in some cases, the agent can
choose an ethically-best action despite the ethical uncertainty.

In social choice theory, it is common to study restricted domains of prefer-
ence profiles, such as single-peaked, single-crossing or level-r-consensus [38, 40].
Many problems are much easier to solve in such restricted domains than in the
domain of all preferences [29, 30]. The present paper focuses on a restriction to
preferences satisfying the DD assumption, which has not been studied so far.

Many works on fair allocation of indivisible items look for allocations that are
only approximately-fair, for example, envy-free up to at most one item [37, 24].
In contrast, we are interested in allocations that are fair without approximations.
Naturally, such allocations do not always exist, so we are interested in finding
conditions under which they exist.

2. Preliminaries

There is a set N of agents with n = |N |. There is a set M of distinct items
with m = |M|. A bundle is a set of items. A multi-bundle is a multi-set of
items, i.e., it may contain several copies of the same item.2

An allocation X is a function that assigns to each agent i a bundle Xi, such
that M = X1 ∪ · · · ∪Xn and the Xi-s are pairwise-disjoint.

2Multi-bundles are used mainly as a technical tool during the proofs; our primary results
concern simple bundles, that contain (at most) a single copy of each item.
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Each agent i ∈ N has a strict ranking �i on items. Each agent may also
have a utility function ui on (multi-)bundles. When we deal with a single agent,
we often omit the subscript i and consider an agent with ranking � and utility-
function u.

All utility functions considered in this paper are strictly positive and addi-
tive, so the utility of a (multi-)bundle is the sum of the utilities of the items in
it. A utility function u is consistent with � if for every two items x, y:

u({x}) > u({y}) ⇐⇒ x � y

We denote by U(�) the set of additive utility functions consistent with �.
Given a vector of n rankings �1, . . . ,�n, we denote by U(�1, . . . ,�n) the set

of vectors of additive utility functions u = (u1, . . . , un) such that for all i ∈ N ,
ui is consistent with �i.

The following definition is well-known (see for example Aziz et al. [6]):

Definition 2.1. Given a ranking � and two (multi-)bundles X,Y :

X %Nec Y ⇐⇒ ∀u ∈ U(�): u(X) ≥ u(Y ).

X %Pos Y ⇐⇒ ∃u ∈ U(�): u(X) ≥ u(Y )

Given a strict ranking �, we assign to each item x ∈ M a level, denoted
Lev(x), such that the level of the best item is m, the level of the second-best
item is m − 1, etc. (this is also known as the Borda score of the item). We
define the level of a multi-bundle as the sum of the levels of the items in it:

Lev(X) :=
∑
x∈X

Lev(x)

where all copies of the same item have the same level.
In this work we assume that the agents truthfully report their rankings to

the algorithm; we leave the issue of strategic manipulations to future work.

3. The Diminishing-Differences Property

We define our new concept of diminishing differences (DD) in three steps:
first, we define the set of DD utility functions (Definition 3.1). Based on this,
we define the necessary-DD and possible-DD relations (Definition 3.3). Based
on this, we define the NDD-fairness and PDD-fairness criteria (Definition 3.5).

Definition 3.1. Let � be a preference relation and u a utility function consis-
tent with �. We say that u has the Diminishing Differences (DD) property if,
for every three items with consecutive levels x3 � x2 � x1 such that Lev(x3) =
Lev(x2) + 1 = Lev(x1) + 2, it holds that u(x3)− u(x2) ≥ u(x2)− u(x1).

We denote by UDD(�) the set of all DD utility functions consistent with �.
Given n rankings �1, . . . ,�n, We denote by UDD(�1, . . . ,�n) the set of all

vectors of DD utility functions u = (u1, . . . , un), such that for all i ∈ N , ui is
consistent with �i.
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The Borda utility function consistent with � is a member of UDD(�). An-
other member is the lexicographic utility function Lex(x) := 2Lev(x), by which
bundles are ordered by whether they contain the best item, then by whether
they contain the second-best item, etc.

An alternative characterization of UDD is given by the following lemma.

Lemma 3.2. u ∈ UDD(�) iff, for every four items x2, y2, x1, y1 with x2 % x1

and y2 % y1 and x2 6= y2 and x1 6= y1:

u(x2)− u(y2)

Lev(x2)− Lev(y2)
≥ u(x1)− u(y1)

Lev(x1)− Lev(y1)
(*)

Proof. DD =⇒ (*): Let k := |Lev(x2) − Lev(y2)|. Then there are k + 1
items whose level is between x2 and y2 (inclusive). Denote these items by zj for
j ∈ {0, . . . , k}, such that zk � zk−1 � . . . � z0, and either zk = x2, z0 = y2 (if
x2 � y2) or vice versa: zk = y2, z0 = x2 (if y2 � x2). Then, the left-hand side
of (*) can be written as:

u(zk)− u(z0)

k
=

∑k
j=1

[
u(zj)− u(zj−1)

]
k

This is an arithmetic mean of the k differences u(zj)−u(zj−1), for j ∈ {1, . . . , k}.
Similarly, let k′ := |Lev(x1) − Lev(y1)|. The right-hand side of (*) is an

arithmetic mean of k′ utility-differences of items with level between x1 and y1.
By assumption x2 % x1 and y2 % y1, so by DD, to each difference in the

left-hand side corresponds a weakly-smaller difference in the right-hand side.
Therefore, the arithmetic mean in the left-hand side is weakly larger.

(*) =⇒ DD: in (*), let y2 be the element ranked immediately below x2,
let x1 = y2, and let y1 be the element ranked immediately below x1. Then the
denominators both equal 1, and u satisfies the DD definition.

Definition 3.3. Given a ranking � and two (multi-)bundles X,Y :

X %NDD Y ⇐⇒ ∀u ∈ UDD(�): u(X) ≥ u(Y )

X %PDD Y ⇐⇒ ∃u ∈ UDD(�): u(X) ≥ u(Y )

Remark 3.4. Comparing Definitions 2.1 and 3.3, it is clear that:

X %Nec Y =⇒ X %NDD Y =⇒ X %PDD Y =⇒ X %Pos Y

We now define the main fairness criterion that we will investigate in this
paper — proportionality.

Definition 3.5. Given a vector u of utility functions, an allocation X is called
proportional for u if ∀i ∈ N : n · ui(Xi) ≥ ui(M).
Given item rankings �1, . . . ,�n, an allocation X is called:

• necessary-DD-proportional (NDDPR) if it is proportional for all u ∈ UDD(�1

, . . . ,�n).
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• possible-DD-proportional (PDDPR) if it is proportional for at least one
u ∈ UDD(�1, . . . ,�n).

For comparison, recall that an allocation X is called:

• necessarily-proportional (NecPR) if it is proportional for all u ∈ U(�1

, . . . ,�n).

• possibly-proportional (PosPR) if it is proportional for at least one u ∈
U(�1, . . . ,�n).

Like in Remark 3.4, it is clear that necessarily-proportionality implies NDD-
proportionality implies PDD-proportionality implies possibly-proportionality.

We now give alternative characterizations of NDDPR and PDDPR in terms
of the NDD and PDD relations. For every integer k and bundle Xi, define k ·Xi

as the multi-bundle in which each item of Xi is copied k times. Proportionality
can be defined by comparing, for each agent i, the bundle Xi copied n times, to
the bundle of all items M.

Lemma 3.6. Given item rankings �1, . . . ,�n:
(a) An allocation X is NDDPR iff ∀i ∈ N : n ·Xi %NDD

i M.
(b) An allocation X is PDDPR iff ∀i ∈ N : n ·Xi %PDD

i M.

Proof. Let P (i,u) be the proportionality predicate “n · ui(Xi) ≥ ui(M)”.
(a) The NDDPR definition is “For all DD utility profiles u, for all agents i,

P (i,u).” The right-hand side is “ For all agents i, for all DD utility profiles u,
P (i,u).” These statements are logically equivalent for any predicate P .

(b) The PDDPR definition is “There exists a DD utility profile u for which,
for all agents i, P (i,u).” The right-hand side is: “For all agents i, there exists
a DD utility profiles u such that P (i,u).”

The former definition logically implies the latter (for any predicate P ). It
remains to prove that the latter implies the former. Indeed, suppose that for
every agent i ∈ N , there exists ui ∈ UDD(�i) such that ui(n ·Xi) ≥ ui(M). By
additivity, ui(n·Xi) = n·ui(Xi), so for every i, n·ui(Xi) ≥ ui(M). Therefore the
allocation X is proportional by the profile (u1, . . . , un) ∈ UDD(�1, · · · ,�n).

4. Characterizing NDD and PDD Relations

As a first step in finding DD-fair allocations among many agents, we study
the NDD and PDD relations for a single agent. We are given a preference
relation � on items and two multi-bundles X,Y , and have to decide whether
X %NDD Y and/or X %PDD Y .

We begin by proving a convenient characterization of the NDD relation.
For the characterization, we order the items in each multi-bundle by decreasing
level, so X = {x−1, . . . , x−|X|} where x−1 % . . . % x−|X| (the order between
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different copies of the same item is arbitrary).3 For each k ≤ |X| we define X−k

as the k best items in X, i.e., X−k := {x−1, . . . , x−k}.

Theorem 4.1. Given a ranking � and two (multi-)bundles X,Y , X %NDD Y
if and only if both of the following conditions hold:

(i) |X| ≥ |Y | and

(ii) for each k ∈ {1, . . . , |Y |}: Lev(X−k) ≥ Lev(Y −k).

Theorem 4.1 implies that there is a polynomial-time algorithm to check
whether X %NDD Y ; see Algorithm 1.

Algorithm 1 Checking the %NDD relation

Input: X,Y ⊂M, and a ranking � of the items in M.
Output: Yes if X %NDD Y ; No otherwise.

if |X| < |Y | then
return No {condition (i) is violated}

end if
Order the items in X and Y by decreasing order of preference, such that
x−1 % · · · % x−|X| and y−1 % · · · % y−|Y |.
Initialize TotalLevelDiff:= 0.
for j = 1, . . . , |Y | do

LevelDiff := [Lev(x−j)− Lev(y−j)]
TotalLevelDiff += LevelDiff
if TotalLevelDiff < 0 then

return No {condition (ii) is violated}
end if

end for
return Yes

Remark 4.2. Contrast this characterization with the following characterization
of %Nec from Aziz et al. [6]. X %Nec Y iff:

(i) |X| ≥ |Y | and

(ii) for each k ∈ {1, . . . , |Y |}: Lev(x−k) ≥ Lev(y−k).

Before proving Theorem 4.1, we give some examples.

Example 4.3. Suppose the set of items is M = {1, . . . , 8} and we are given
a preference-relation 8 � · · · � 1, so that each item is represented by its level.
Consider the following two bundles:

X = {8, 4, 2} Y = {7, 6}

3We use negative indices so that the order of indices is the same as the order of levels.
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Note that |X| > |Y |, X is lexicographically-better than Y , and even the Borda
score of X is higher. However, the level of X−2 (the two best items in X) is only
12 while the level of Y −2 is 13. Hence, by Theorem 4.1, X 6%NDD Y . Indeed, X
is not better than Y according to the DD utility function usquare(x) := Lev(x)2,
since usquare(X) = 84 < 85 = usquare(Y ).

Example 4.4. Consider the following two bundles:

Z = {8, 5} Y = {7, 6}

Now the conditions of Theorem 4.1 are satisfied: |Z| ≥ |Y | and Lev(Z−1) ≥
Lev(Y −1) and Lev(Z−2) ≥ Lev(Y −2). Hence the theorem implies that Z %NDD

Y . In contrast, condition (ii) in Remark 4.2 is not satisfied since Lev(z−2) <
Lev(y−2). Therefore Z 6%Nec Y . Indeed, Z is worse than Y by some non-DD
utility functions, for example, by usqrt(x) :=

√
Lev(x), since usqrt(Z) ≈ 5.06 <

5.09 ≈ usqrt(Y ).

Proof of Theorem 4.1.
NDD =⇒ (i) and (ii): We assume that either (i) or (ii) is violated and

prove that X 6%NDD Y , i.e., there is a utility function u ∈ UDD(�) such that
u(X) < u(Y ).

(i) If (i) is violated then |Y | > |X|. Define u as:

u(z) := m|Y |+ Lev(z) for all z ∈M

It has diminishing-differences since the difference in utilities between items
with adjacent ranks is 1.

The term m|Y | is so large that the utility of a bundle is dominated by its
cardinality. Formally, for every item x, m|Y | < u(x) ≤ m + m|Y |, so:

u(X) ≤ |X| · (m + m|Y |)
< m|Y |+ |X| ·m|Y | since |X| < |Y |
= (|X|+ 1) ·m|Y |
≤ |Y | ·m|Y | since |X| < |Y |
< u(Y )

Hence X 6%NDD Y .

(ii) If (ii) is violated then for some k ≥ 1, Lev(Y −k) > Lev(X−k). Let k be
the smallest integer that satisfies this condition; hence y−k � x−k. Let
C := Lev(x−k)− 1 and define u as:

u(z) :=

{
Lev(z) for z ≺ x−k

[Lev(z)− C] ·m|X| for z % x−k

so the utilities of the items worse than x−k are 1, 2, . . . , C, and the utilities
of x−k and the items better than it are m|X|, 2m|X|, 3m|X|, . . ..
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This u has diminishing-differences, since the difference in utilities between
adjacent items ranked weakly above x−k is m|X|, the difference between
x−k and the next-worse item is less than m|X| and more than 1, and the
difference between adjacent items ranked below x−k is 1.

The term m|X| is so large that the utility of a bundle is dominated by
the level of its items that are weakly better than x−k. Formally:

u(X) = u({x−1, . . . , x−k}) + u({x−(k+1), . . . , x−|X|})
= m|X| · [Lev({x−1, . . . , x−k})− k · C] + Lev({x−(k+1), . . . , x−|X|})

The assumption Lev(Y −k) > Lev(X−k) implies that Lev(X−k) ≤ Lev(Y −k)−
1. Hence the leftmost term is at most m|X| · [Lev({y−1, . . . , y−k})− 1−
k · C]. Since the level of an item is at most m, the rightmost term is less
than m|X|. Hence:

u(X) < m|X| · [Lev({y−1, . . . , y−k})− 1− k · C] + m|X|
= m|X| · [Lev({y−1, . . . , y−k})− k · C]

= u(Y −k) since y−1, . . . , y−k � x−k

≤ u(Y ).

Hence X 6%NDD Y .

(i) and (ii) =⇒ NDD: We assume that |X| ≥ |Y | and that ∀k ∈
{1, . . . , |Y |} : Lev(X−k) ≥ Lev(Y −k). We consider an arbitrary utility function
u ∈ UDD(�) and prove that ∀k ∈ {1, . . . , |Y |} : u(X−k) ≥ u(Y −k). This will
imply that u(X) ≥ u(Y ), so that X %NDD Y .

During the proof, we assume that for every j ∈ {1, . . . , |Y |}: x−j 6= y−j .
This does not lose generality, since if for some j we have x−j = y−j , we can just
remove this item from both X and Y ; this changes neither the assumptions nor
the conclusion.

In the proof, we use the following notation.

• lk := Lev(x−k)− Lev(y−k).

• Lk := Lev(X−k)− Lev(Y −k) =
∑k

j=1 lk.

• uk := u(x−k)− u(y−k).

• rk := uk/lk.

• Uk := u(X−k)− u(Y −k) =
∑k

j=1 uk =
∑k

j=1 rklk.

In this notation, our assumptions are that ∀k ∈ {1, . . . , |Y |} : lk 6= 0 and Lk ≥ 0.
We have to prove that ∀k ∈ {1, . . . , |Y |} : Uk ≥ 0.

Suppose we walk on the graph of Lk (see Figure 1). When we move from
Lj−1 to Lj , we make lj steps (upwards if lj > 0 or downwards if lj < 0). By
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Figure 1: An illustration of the graphs of Lk and Uk in the proof of Theorem 4.1.

assumption, the graph is always above zero. Hence, an earlier upwards step
corresponds to every downwards step.

Suppose we walk simultaneously on the graph of Uk. When we move from
U j−1 to U j , we make a step of size uj = rj lj , or equivalently, lj steps of size rj
(upwards if lj > 0 or downwards if lj < 0). Hence, to every step of size 1 on the
graph of Lk corresponds a step of size rj on the graph of Uk (see Figure 1).

Now, we claim that rk is a weakly-decreasing function of k. Particularly, we
claim that i < j implies ri ≥ rj . To prove the claim we apply Lemma 3.2. Since
u ∈ UDD(�), the lemma is applicable to u. Since i < j, we have x−i % x−j and
y−i % y−j . By assumption, we have x−j 6= y−j and x−i 6= y−i. Therefore, the
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lemma implies:

u(x−i)− u(y−i)

Lev(x−i)− Lev(y−i)
≥ u(x−j)− u(y−j)

Lev(x−j)− Lev(y−j)

⇐⇒ ui/li ≥ uj/lj

⇐⇒ ri ≥ rj .

Hence, to every step downwards of size rj on the graph of Uk corresponds an
earlier step upwards, and its size is at least rj .

Therefore, the graph of Uk, too, always remains above 0.

Our next theorem gives an analogous characterization of the PDD relation.

Theorem 4.5. Given a ranking � and two (multi-)bundles X,Y , Y %PDD X
if and only if at least one of the following conditions hold:

(i) |Y | > |X|, or

(ii) for some k ∈ {1, . . . , |Y |}: Lev(Y −k) > Lev(X−k), or

(iii) Lev(Y ) ≥ Lev(X).

Proof.
(i) or (ii) or (iii) =⇒ PDD: If (i) holds, then u(Y ) ≥ u(X) by the

DD function u(z) in the proof of Theorem 4.1(i). Similarly, if (ii) holds, then
u(Y ) ≥ u(X) by the DD function u(z) in the proof of Theorem 4.1(ii).

If (iii) holds, then u(Y ) ≥ u(X) by the DD function u(z) := Lev(z).
PDD =⇒ (i) or (ii) or (iii): We assume that none of the three

conditions holds, and prove that Y 6%PDD X. So we have:

(̂i) |X| ≥ |Y |, and

(̂ii) ∀k ∈ {1, . . . , |Y |} : Lev(X−k) ≥ Lev(Y −k), and

(̂iii) Lev(X) > Lev(Y ).
We consider an arbitrary function u ∈ UDD(�), and show that u(X) > u(Y ).

During the proof, we denote K := |Y |.
We use the notation of the proof of Theorem 4.1. By conditions (̂i) and (̂ii),

the graph of Lk is always weakly above zero. Hence, to every step downwards
corresponds an earlier step upwards. As in the proof of Theorem 4.1, the graph
of Uk is always weakly above zero, so ∀k ∈ {1, . . . ,K} : u(X−k) ≥ u(Y −k).
Now we consider two cases.

Case #1 : the graph of Lk ends strictly above zero. Hence, there exists a
step upwards with no corresponding step downwards. Therefore the graph of
Uk, too, ends strictly above zero. Therefore, we have u(X−K) > u(Y −K). Since
u(X) ≥ u(X−K) and Y −K = Y , we get u(X) > u(Y ).

Case #2 : the graph of Lk ends at zero. So we have Lev(X−K) = Lev(Y −K) =

Lev(Y ). Now, (̂iii) says that Lev(X) > Lev(Y ); this means that X must
contain items that are not in X−K . We assume that utilities are strictly pos-
itive, so u(X) > u(X−K). Since u(X−K) ≥ u(Y −K) and Y −K = Y , we get
u(X) > u(Y ).
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The same is true for every u ∈ UDD(�). Hence Y 6%PDD X.

Theorem 4.5 implies that there is a polynomial-time algorithm to check
whether X %PDD Y ; the algorithm is similar to Algorithm 1 and we omit it.

Using Theorem 4.5, we illustrate the difference between PDD-fairness and
possible-fairness.

Example 4.6 (PDD-fairness vs. possible-fairness). There are m = 2l items,
for some l ≥ 3. Alice and Bob have the same preferences:

2l � 2l − 1 � ... � 4 � 3 � 2 � 1

Both Alice and Bob get l items: Alice gets 2l, 2l − 1, ...l + 3, l + 2, 1 and Bob
gets l + 1, l, ...3, 2. Intuitively this allocation seems very unfair since Alice gets
all the l− 1 best items. However, it is possibly-proportional, since Bob’s utility
function might assign the a value near 0 to item 1 and a value near 1 to all other
items.

In better accordance with our intuition, the above allocation is not PDD-
proportional: by Theorem 4.5, Bob’s bundle is not PDD-better than Alice’s
bundle, since it does not satisfy any of the conditions (i) to (iii).

Based on the two constructive theorems proved in this section, we have:

Corollary 4.7. The following problems can be decided in polynomial time:
(a) Given an allocation, decide whether it is NDDPR;
(b) Given an allocation, decide whether it is PDDPR.

5. Existence of NDD-Proportional Allocations

In this section, we prove a necessary and sufficient condition for the existence
of NDDPR allocations.

Theorem 5.1. An NDDPR allocation exists if and only if:

(a) The number of items is a multiple of the number of agents, i.e., m =
l · n, where l is an integer and n is the number of agents, and

(b) Each agent has a different best item.

In case it exists, it can be found in time O(m).

Proof.
NDDPR =⇒ (a) and (b): Let X1, . . . , Xn be an NDDPR allocation. So

for all i ∈ N , n ·Xi %NDD
i M. By the two conditions of Theorem 4.1:

(a) For all i ∈ N : |n · Xi| ≥ |M| =⇒ n · |Xi| ≥ m. But this must be an
equality since the total number of items in all n bundles is exactly m. Therefore,
the total number of items is n · |Xi| which is an integer multiple of n.
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Algorithm 2 Balanced round-robin allocation of items

while there are remaining items do
for i = 1, . . . , n do

Give agent i his best remaining item.
end for
for i = n, . . . , 1 do

Give agent i his best remaining item.
end for

end while

(b) For all i, the level of the best item in n ·Xi must be weakly larger than
the level of the best item inM. So for all i ∈ N , Xi must contain agent i’s best
item. So the best items of all agents must be different.

(a) and (b) =⇒ NDDPR: We show that, if (a) and (b) hold, then the
balanced round-robin algorithm (Algorithm 2) produces an NDDPR allocation.
Let Xi be the bundle allocated to agent i by balanced-round-robin. We prove
that n ·Xi %NDD

i M by the two conditions of Theorem 4.1.
Condition (i) is satisfied with equality, since by (a) each agent gets exactly

l items, so |n ·Xi| = nl = m = |M|.
Condition (ii) says that, for every k ∈ {1, . . . ,m}, the total level of the k best

items in the multi-bundle n·Xi should be at least as large as the total level of the
k best items inM. It is convenient to verify this condition following Algorithm
1: we have to prove that, when going over the items in both bundles from best
to worst, the total level-difference between them (the variable TotalLevelDiff in
the algorithm) remains at least 0.

We first prove that this is true after the first round. By condition (b), in the
first round, each agent receives his best item, so the level of the best n items
in n · Xi is m. The following table shows the levels and their differences for
k ∈ {1, . . . , n} (here, it is important that all items in M are distinct):

k = 1 k = 2 k = 3 . . . k = n
n ·Xi m m m . . . m
M m m− 1 m− 2 . . . m− n + 1
LevelDiff 0 1 2 . . . n− 1
TotalLevelDiff 0 1 3 . . . n(n− 1)/2

We now prove that, after each round r ≥ 1, the accumulated level-difference
TotalLevelDiff for agent i is at least n(n − 1)/2 when r is odd, and at least
n(i− 1) when r is even. We also prove that TotalLevelDiff is always at least 0.

The proof is by induction on r. We have just proved the base r = 1.
Suppose now that r > 1 and r is even. When agent i picks an item, the

number of items already taken is rn − i. Therefore, agent i’s best remaining
item has a level of at least m − (rn − i). Therefore, the level-differences for
k ∈ {(r−1)n+1, . . . , rn} are as in the following table (where the last row uses
the accumulated level-difference of n(n− 1)/2 from the induction assumption):
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n ·Xi ≥ m− rn + i ≥ m− rn + i . . . ≥ m− rn + i
M m− rn + n m− rn + n− 1 . . . m− rn + 1
LevelDiff ≥ i− n ≥ i− n + 1 . . . ≥ i− 1

TotalLevelDiff ≥ n(n−1)
2

+ i− n ≥ n(n−1)
2

+ 2i− 2n + 1 . . . ≥ n(i− 1)

The sum of terms in the LevelDiff row is n[(i−n)+(i−1)]
2 = n[−n−1]

2 + ni. Adding

the n(n−1)
2 from the induction assumption gives that, at the round end, Total-

LevelDiff is at least ni − n = n(i − 1) as claimed. We now show that Total-
LevelDiff is at least 0 throughout the round. LevelDiff is non-positive in the
first n− i + 1 columns of the table, and positive afterwards. So TotalLevelDiff
attains its smallest value at step n− i+ 1. The sum of LevelDiff from step 1 to
step n − i + 1 is (i − n)(n − i + 1)/2. Hence TotalLevelDiff at step n − i is at
least n(n− 1)/2− (n− i + 1)(n− i)/2. Since n ≥ n− i + 1 and n− 1 ≥ n− i,
this expression is at least 0.

Suppose now that r > 1 and r is odd. When agent i gets an item, the number
of items already taken is rn − (n − i + 1). Therefore, agent i’s best remaining
item has a level of at least m− rn+ (n− i+ 1). Therefore, the level-differences
for k ∈ {(r − 1)n + 1, . . . , rn} are as in the following table:

n ·Xi ≥ m− rn + n− i + 1 ≥ m− rn + n− i + 1 . . . ≥ m− rn + n− i + 1
M m− rn + n m− rn + n− 1 . . . m− rn + 1
LevelDiff ≥ 1− i ≥ 2− i . . . ≥ n− i
TotalLevelDiff ≥ n(i− 1) + 1− i ≥ n(i− 1) + 3− 2i . . . ≥ n(n− 1)/2

The sum of terms in the LevelDiff row is n[(1−i)+(n−i)]
2 = n[n+1]

2 − ni. Adding
the n(i− 1) from above gives that, at the round end, TotalLevelDiff is at least
n(n−1)/2 as claimed. We now show that TotalLevelDiff is at least 0 throughout
the round. LevelDiff is non-positive in the first i columns of the table, and
positive afterwards. So TotalLevelDiff attains its smallest value at step i. The
sum of LevelDiff from step 1 to step i is i(1− i)/2. Hence TotalLevelDiff at step
i is at least n(i− 1) + i(1− i)/2 = (i− 1)(n− i/2) ≥ 0.

Using Theorem 5.1, we illustrate the difference between NDD-fairness and
necessary-fairness.

Example 5.2 (NDD-fairness vs. necessary-fairness). Suppose the set of items
is M = {1, . . . , 2l}, for some l ≥ 2. Alice and Bob have almost opposite
preferences:

Alice: 2l � 2l − 1 � ... � 4 � 3 � 2 � 1

Bob: 2 � 3 � 4 � ... � 2l − 1 � 2l � 1

Intuitively we would expect that opposite preferences make it easy to attain
a fair division. However, in this case, no necessarily-proportional allocation
exists: By Remark 4.2, in a necessarily-fair allocation both agents must receive
the same number of items (l). But Alice and Bob have the same worst item (1),
so one of them must get it. Suppose it is Alice. So Alice has only l − 1 items
better than 1, while Bob has l items better than 1. Hence, the allocation is not
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necessarily-proportional for Alice (her utility function might assign a value near
0 to this item and a value near 1 to all other items).

In contrast, our Theorem 5.1 shows that an NDD-proportional allocation
exists. Intuitively, since it is possible to give each agent his/her best items, they
are willing to compromise on the less important items.

6. Simulation Experiments

Figure 2: Estimated “recall” — the fraction of preference-profiles that admit an allocation
satisfying each fairness criterion. Vertical bars denote sample standard error. Lines connecting
data-points are for eye-guidance only. The top line corresponds to both PosPR and PDDPR
— for both of them the estimated recall is 1, which means that all utility profiles we checked
admit such allocations. The lines below them correspond to NDDPR and NecPR respectively.

A mechanism designer who has to choose a fairness criterion faces a trade-
off: choosing a weak criterion (such as PosPR or PDDPR) makes it easier to
find an allocation that satisfies the criterion but also makes it more likely that
some agents will consider it unfair. In contrast, with a strong criterion (such as
NDDPR or NecPR), it is harder to find an allocation, but once an allocation is
found, it is more likely that agents will consider it fair. This tradeoff is anal-
ogous to the tradeoff between “recall” and “precision” in information retrieval
and binary classification.4 Given a fairness-criterion, we define its recall and
precision as follows:

4See the Wikipedia page “Precision and Recall” for a definition of these terms in informa-
tion retrieval and binary classification.
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Figure 3: Estimated “precision” — the fraction of allocations that are fair according to the
cardinal valuations, among those that are fair by the ordinal fairness criterion. Vertical
bars denote sample standard error. Lines connecting data-points are for eye-guidance only.
The lines, from top to bottom, correspond to: (a) NecPR — by definition it is necessarily
always 1 (the point at noise size 0.1 is missing since no profile with this noise admitted a
NecPR allocation); (b) The NDDPR allocations found by the balanced-round-robin protocol
(Algorithm 2); (c) An arbitrary NDDPR allocation; (d) An allocation found by a baseline
protocol in which the first round is like Algorithm 2 but the following items are allocated at
random; (e) An arbitrary PDDPR allocation; (f) An arbitrary PosPR allocation.

• The recall of the criterion is the probability that a random utility-profile
admits an allocation satisfying this criterion;

• the precision of a fairness-criterion is the probability that a random allo-
cation satisfying this criterion according to the ordinal rankings is indeed
fair according to the cardinal valuations.

We estimated the recall and precision of various fairness criteria as follows.

6.1. Randomly-generated instances
To simulate valuations with partial correlation, we determined for each item

a “market value” drawn uniformly at random from [1, 2]. We determined the
cardinal value of each item to each agent as the item’s market value plus noise
drawn uniformly at random from [−A,A], where A ∈ [0, 1] is a parameter.
Based on the cardinal values, we determined the agent’s ordinal ranking. Then,
for each such utility-profile, we checked various statistics:

• How many allocations are NecPR/NDDPR/PDDPR/PosPR according to
the ordinal rankings;
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• How many NecPR/NDDPR/PDDPR/PosPR allocations are indeed pro-
portional according to the underlying cardinal valuations;

• Whether the specific NDDPR allocation found by the procedure of Theo-
rem 5.1 is proportional according to the underlying cardinal valuations;

• As a baseline, we also checked the fairness of an allocation found (under
the conditions of Theorem 5.1) by giving each agent its favorite item and
dividing the remaining items randomly.

We did this experiment for n ∈ {2, 3} agents, for different values of A ∈
{0.1, . . . , 1}, and for different numbers l of items per agent — l ∈ {2, . . . , 8}
when n = 2 or l ∈ {2, . . . , 5} when n = 3. For each combination, we checked
1000 randomly-generated instances.5

Below we report the results for n = 2 agents; the results for n = 3 agents
are qualitatively similar and we omit them from the paper.6

6.2. Results — recall
Figure 2 presents the results for recall (probability of existence). As ex-

pected, the recall of the weak criteria — PosPR and PDDPR — is almost
always 1; the recall of NDDPR is lower, but it is still significantly higher than
that of NecPR. Thus, an NDDPR allocation is likely to exist in many cases in
which a NecPR allocation does not exist.

As expected, both kinds of allocations are more likely to exist when the
noise size A is larger, since larger noise corresponds to less correlated rankings.
Similarly, both kinds of allocations are more likely to exist when there are more
items to share; this finding resembles the results of Dickerson et al. [28] for
envy-free allocations with cardinal valuations.

6.3. Results — precision
Figure 3 presents the results for precision (probability of fairness). NecPR

allocations, when they exist, are always proportional by definition; hence the
precision of NecPR is always 1. The precision of NDDPR is lower than 1, but
it is much higher than that of the weaker criteria — PosPR and PDDPR.

Interestingly, the specific NDDPR allocation found by the round-robin proto-
col of Theorem 5.1 is very likely to be proportional — in most cases its precision
is very near 1.

Note that, since the randomization we used is completely uniform and does
not use the DD assumption, the probability that DD holds is very low.7 Never-
theless, the NDDPR allocation of Theorem 5.1 (when it exists) is almost always

5The Python code used for the experiments is available at GitHub:
https://github.com/erelsgl/fair-diminishing-differences

6All results and plots can be found online:
https://github.com/erelsgl/fair-diminishing-differences/blob/master/results/Readme.md

7There are nl items, so there are nl− 1 differences between utilities of adjacent items. DD
requires that, for each agent, these differences be ordered in a descending order. With high
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proportional when the number of items or the noise size is sufficiently large.
This further shows the robustness of our algorithm.

Comparing the two graphs, we see that the NecPR requirement is too strong,
and the PDDPR and PosPR requirements are too weak, while the NDDPR
requirement hits a sweet spot between recall and precision: it allows us to solve
a large fraction of the instances, and the solutions are likely to be considered
fair by the agents.

7. Envy-freeness

The following is an analogue of the definition of proportionality-related fair-
ness criteria (Definition 3.5):

Definition 7.1 (Envy-freeness). Given utility functions u1, . . . , un, an alloca-
tion X is called envy-free (EF) if ∀i, j ∈ N : ui(Xi) ≥ ui(Xj). Based
on this definition, necessary-DD-envy-free (NDDEF) and possible-DD-envy-free
(PDDEF) are defined analogously to NDDPR and PDDPR.

The following is a partial analogue of Lemma 3.6 and contains an alternative
characterization of NDDEF:

Lemma 7.2. Given item rankings �1, . . . ,�n:
(a) An allocation X is NDDEF iff ∀i, j ∈ N : Xi %NDD

i Xj.
(b) If an allocation X is PDDEF, then ∀i, j ∈ N : Xi %PDD

i Xj.

Proof. Let EF (i, j,u) be the no-envy predicate ui(Xi) ≥ ui(Xj).
(a) The NDDEF definition is “For all DD utility profiles u, for all i and

for all j, EF (i, j,u).” The right-hand side is “for all i, for all j, for all DD
utility profiles u, EF (i, j,u).” Switching the order of for-all quantifiers yields
logically-equivalent statements.

(b) The PDDEF definition is “there exists u for which, for all i and for all
j, EF (i, j,u).” The right-hand side is “for all i and for all j, there exists ui by
which EF (i, j,u)”. The former statement logically implies the latter.8

Based on Lemma 7.2(a), Corollary 4.7 extends to NDDEF: it is possible to
decide in polynomial time whether a given allocation is NDDEF. However, we

probability, all differences are distinct, so there are (nl− 1)! different orders, and only one of
them corresponds to a DD utility function. Therefore, the probability that DD holds for each
single agent is 1/(nl − 1)!, and for all n agents it is 1/((nl − 1)!)n.

8In contrast to Lemma 3.6, here the latter statement (which can be called “Weak-PDDEF”)
does not imply the former (PDDEF) when there are three or more agents. For example, if
X1 %PDD

1 X2 and X1 %PDD
1 X3, then it is possible that agent 1 does not envy agent 2 by

some DD function u1,2, and does not envy agent 3 by some other DD function u1,3, but there
is no single DD function by which agent 1 envies neither agent 2 nor agent 3.
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do not have a strongly-polynomial time algorithm for deciding whether a given
allocation is PDDEF.9 Below we focus on the NDDEF criterion.

Since every NDDEF allocation is NDDPR, the two conditions of Theorem
5.1 are necessary for the existence of NDDEF allocations for any number of
agents. In the special case of n = 2 agents, NDDPR is equivalent to NDDEF so
these conditions are also sufficient. But for n ≥ 3 they are no longer sufficient.

Example 7.3. There are six items {1, . . . , 6}. The preferences of the three
agents Alice Bob and Carl are:

Alice: 6 � 5 � 3 � 4 � 2 � 1

Bob: 5 � 4 � 3 � 6 � 2 � 1

Carl: 4 � 6 � 3 � 5 � 2 � 1

The conditions of Theorem 5.1 are clearly satisfied: the number of items is a
multiple of 3 and the best items are all different. However, no NDDEF alloca-
tion exists. To see this, note that the preferences are the same up to a cyclic
permutation between 6 5 and 4, so the agents are symmetric and it is without
loss of generality to assume that Alice receives item 1. Therefore, to ensure pro-
portionality, Alice’s bundle must be {6, 1} and her Borda score is 7. To ensure
that Alice is not envious, both Bob and Carl must get items with a Borda score
(for Alice) of 7. Thus there are two cases:

(a) Bob gets {5, 2} and Carl gets {3, 4}. This allocation is NDDPR but it is
not NDDEF, since Bob envies Carl according to the Borda score.

(b) Carl gets {5, 2} and Bob gets {3, 4}. This allocation is not even NDDPR
since Carl’s Borda score is 5 (and Carl necessarily envies Bob).

When the number of agents is not bounded, deciding the existence of NDDEF
allocations is computationally hard:

Theorem 7.4. When there are n ≥ 3 agents and at least 2n items, checking
the existence of NDDEF allocations is NP-complete (as a function of n).

Proof Sketch. By Lemma 7.2, to check whether an allocation is NDDEF, we
have to do at most n2 checks of the %NDD relation. Each such check can be
done in polynomial time by Theorem 4.1 and Algorithm 1. Hence the problem is
in NP. The proof of NP-hardness is similar to the proof of Bouveret et al. [14] for
the NP-hardness of checking the existence of necessarily-envy-free allocations.
The proof requires carefully checking that the reduction argument works for
NDDEF as well. The details are presented in Appendix C.

9The situation is similar for PosEF, see Aziz et al. [6]. For both fairness criteria, deciding
whether a given allocation is fair can be done using a linear program with mn variables
describing the “witness” utility profile. The constraints require that the allocation is fair, and
(for PDDEF) also that the utility profile satisfies the DD condition. This requires weakly-
polynomial time. As far as we know, it is an open question whether the decision problem can
be solved in strongly-polynomial time.
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When the number of agents is constant (at least 3) and the number of items
is variable, the runtime complexity of checking NDDEF existence is an open
question: is it polynomial in m like NDDPR, or NP-hard like necessary-EF [9]?

8. Pareto-efficiency

An allocation is called Pareto-efficient if every other allocation is either not
better for any agent, or worse for at least one agent:

Definition 8.1 (Pareto-efficiency). Given utility functions u1, . . . , un, an allo-
cation X is called Pareto-efficient (PE) if for every other allocation Y, either
∀i ∈ N : ui(Xi) ≥ ui(Yi), or ∃i ∈ N : ui(Xi) > ui(Yi). Based on this
definition, necessary-DD-Pareto-efficiency (NDDPE) and possible-DD-Pareto-
efficiency (PDDPE) are defined analogously to NDDPR and PDDPR.

The criteria of necessary-Pareto-efficiency (NecPE) and possible-Pareto-ef-
ficiency (PosPE) are defined analogously. It is clear from the definition that
NecPE implies NDDPE implies PDDPE implies PosPE. With the analogous
fairness criteria, these implications are strict, i.e., some possibly-fair allocations
are not PDD-fair, and some NDD-fair allocations are not necessarily-fair. But
with Pareto-efficiency the situation is different:

Theorem 8.2. An allocation is NecPE if and only if it is NDDPE.

Proof. The implication NecPE =⇒ NDDPE is obvious by the definition. We
now consider an allocation X that is not NecPE and prove X is not NDDPE.

By Aziz et al. [5] Theorem 9, if X is not NecPE then there are two options:
(i) X is not possibly-PE. Then, it is certainly not NDD-PE.
(ii) X admits a Pareto-improving one-for-two-swap. This means that there

are two agents, say Alice and Bob, such that XA contains an item x, XB contains
two items y, z, and Bob strictly prefers the one item over each of the two: x �B y
and x �B z. Then X is not NDD-PE, since it is not PE for the following utilities:

uA(x) = m2 + LevA(x) uB(x) = 2LevB(x)

Note that both utility functions have DD. Alice’s utility is dominated by the
number of items she has, so she always prefers two items to one. Bob’s utility is
lexicographic, so he always prefers one good item to any number of worse items.
Hence, by switching {x} and {y, z} we get a new allocation that is strictly better
for both Alice and Bob, and does not affect any other agent.

Theorem 8.3. An allocation is PosPE if and only if it is PDDPE.

Proof. The implication PDDPE =⇒ PosPE is obvious by definition. We now
consider an allocation X that is not PDDPE and prove X is not PosPE.

Consider the lexicographic utility profile, by which for each i ∈ N , ui(x) =
2Levi(x). Since these utilities have DD, X is not PE according to this profile.

23



So there exists an allocation Y by which for some agent, say Alice: uA(YA) >
uA(XA), and for all agents B: uB(YB) ≥ uB(XB).

Since Alice prefers YA to XA by a lexicographic utility function, there exists
some integer k ≥ 1 such that XA and YA contain the same k−1 best items, but
the k-th best item in YA (denoted by ya) is better for Alice than the k-th best
element in XA.

In allocation X, item ya belonged to some other agent, say Bob. But Bob
must be weakly better-off in Y than in X, so YB must contain a better item
that was not in XB ; let’s call this item yb.

In allocation X, item yb belonged to some other agent, say Carl. From
similar considerations, Carl must have in Y an item yc that he prefers to yb.
Continuing this way, we end with a cycle of agents, each of whom gave an item
to the previous agent and received a better item from the next agent.

Now consider the allocation Z which is identical to X except that the single-
item exchanges in the cycle take place (so ya is given to Alice, yb is given to
Bob and so on). Then Z is better than X for all agents in the cycle, and this is
true for any additive utility function. Hence, X is not possibly-PE.

So DD leads to new fairness criteria but not to new efficiency criteria.

9. Conclusions and Future Work

We formalized natural ways to compare sets of goods by using the DD (di-
minishing differences) assumption. In Appendix A we present the analogous
ID (increasing differences) assumption for chores. The relations lead to new
fairness criteria which we studied in detail. Two main open questions remain
for future work: one about envy-free allocation of goods (Section 7), and one
about fair allocation of chores (Appendix A). Below we present the smallest
cases in which these questions are open.

(i) There are three agents with different rankings over m goods. Can it be
decided in time polynomial in m, whether there exists a necessary-DD
envy-free allocation?

(ii) There are three agents with different rankings over m chores. Can it be
decided in time polynomial in m, whether there exists a necessary-ID
proportional allocation?

Besides these questions, it may be interesting to extend the results to the
case where agents may be indifferent between items.10

10Theorem 4.1 is proved for multi-bundles so it holds with indifferences too. But Theorem
5.1 fails. Consider an instance with m = 8 goods and n = 2 agents with the following rankings:

Alice : a � b � c � d = w = x = y � z

Bob : b � a � c � d = w = x = y � z
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Additionally, it may be interesting to identify other interesting set extensions
that correspond to classes of utility functions. For example, suppose that agents
care both about getting a best item and about not getting a worst item, but
do not care much about intermediate items (so the differences in utilities are
decreasing at first and then increasing). What can be said of fair allocations
under this assumption?

Acknowledgments

We acknowledge the Dagstuhl Seminar 16232 on Fair Division where this
project was initiated. We are grateful to four anonymous IJCAI reviewers and
three anonymous JAIR reviewers for their very helpful comments.

Haris Aziz is supported by a Scientia Fellowship. Erel Segal-Halevi was
supported by the ISF grant 1083/13, the Doctoral Fellowships of Excellence
Program and the Mordecai and Monique Katz Graduate Fellowship Program at
Bar-Ilan University. Avinatan Hassidim is supported by ISF grant 1394/16.

The agents have different best goods, so we might think that balanced-round-robin might yield
an NDDPR allocation. However, when goods are picked in the order ABBAABBA, Alice’s
bundle is {a, d, x, z}; it is not NDDPR for her, since it is not proportional by Borda scores
(the total Borda score is 5 + 4 + 3 + 2 + 2 + 2 + 2 + 1 = 21, while Alice’s Borda score is
5 + 2 + 2 + 1 = 10).
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A. Chores and Increasing Differences

In this section, we assume that we have to divide indivisible chores, defined
as items with negative utilities. Therefore, all the utility functions we consider
in this section assign strictly negative values to all items.

With chores, the Diminishing Differences condition means that the difference
between the easiest to the second-easiest chore is larger than the difference be-
tween the second-hardest to the hardest chore. But usually, with chores, people
care more about not getting the hardest chores than about getting the easiest
chores. Therefore, we introduce the condition of increasing differences (ID).
In many aspects, the ID condition for chores is analogous to the DD condition
for goods (subsection A.1). However, finding necessarily-ID-fair allocation for
chores is more difficult than necessarily-DD-fair allocation for goods (subsec-
tions A.2, A.3, A.4).

A.1. Increasing differences: basic definitions
The following definition is analogous to Definition 3.1:

Definition A.1. Let � be a preference relation and u a utility function con-
sistent with �. We say that u has the Increasing Differences (ID) property if,
for every three items with consecutive levels x3 � x2 � x1 such that Lev(x3) =
Lev(x2) + 1 = Lev(x1) + 2, it holds that u(x3)− u(x2) ≤ u(x2)− u(x1).

We denote by UID(�) the set of all ID utility functions consistent with �.
Given n rankings �1, . . . ,�n, We denote by UID(�1, . . . ,�n) the set of all

vectors of ID utility functions, u1, . . . , un, such that ui is consistent with �i.

There is a one-to-one correspondence between DD utilities and ID utilities.
Given a strict ranking �, define its reverse ranking �rev as:

∀x, y ∈M : y �rev x ⇐⇒ x � y

Given a utility function u, define its reverse function urev as:

∀x ∈M : urev(x) := −u(x)

Lemma A.2. For every ranking � and utility function u:

urev ∈ UID(�rev) ⇐⇒ u ∈ UDD(�).

The proof is technical and we omit it.
The negative-Borda utility function, u−Borda(x) := Lev(x) − m − 1, is

a member of UID(�), as well as the negative-lexicographic utility function,
u−Lex(x) := −2m−Lev(x). By the latter function, the bundles are first ranked
by whether they contain the worst chore, then by whether they contain the
next-worst chore, etc.

An alternative characterization of UID is given by the following lemma. It
is analogous to Lemma 3.2 and proved in a similar way, so we omit the proof:
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Lemma A.3. u ∈ UID(�) iff, for every four items x2, y2, x1, y1 with x2 % x1

and y2 % y1 and x2 6= y2 and x1 6= y1:

u(x2)− u(y2)

Lev(x2)− Lev(y2)
≤ u(x1)− u(y1)

Lev(x1)− Lev(y1)

Analogously to Definition 3.3 we define the relations X %NID Y and X %PID

Y . These are closely related to their DD counterparts:

Lemma A.4. Let � be a ranking and �rev its inverse ranking. Then, for every
two multi-bundles X,Y :

X %NID Y ⇐⇒ Y %NDD
rev X

X %PID Y ⇐⇒ Y %PDD
rev X

Again the proof is technical and we omit it.
Thus, to check whether X %NID Y / X %PID Y with regards to some

ranking �, we can simply use Algorithm 1 with the inverse ranking �rev.
We now want to prove an analogue of Theorem 4.1 for chores. For this, we

order the chores in each multi-bundle by increasing level, so X = {x1, . . . , x|X|}
where x1 �i . . . �i x|X| For each k ≤ |X| we define Xk as the k worst chores in

X, Xk := {x1, . . . , xk}.

Theorem A.5. Given a ranking � and two (multi-)bundles X,Y of chores,
X %NID Y if and only if both of the following conditions hold:

(i) |X| ≤ |Y |;

(ii) For each k ∈ {1, . . . , |Y |}: Lev(Xk) ≥ Lev(Y k).

Note that condition (i) is the opposite of condition (i) in Theorem 4.1: X
must have weakly less chores than Y . However, condition (ii) is identical to
condition (ii) in Theorem 4.1.

Proof. Define the inverse-level of an item/bundle as its level under the inverse-
ranking %rev. So the inverse-level of the hardest chore is m and of the easiest
chore is 1.

By Lemma A.4, X %NID Y iff Y %NDD
rev X. By Theorem 4.1, this holds iff

both the following conditions hold:

(i) |Y | ≥ |X|;

(ii) For each k ∈ {1, . . . , |Y |}, the inverse-level of the k chores in Y that are
best by �rev (i.e., worst by �), is at least as high as the inverse-level of
the k chores in X that are worst by �.

The first condition is equivalent to |X| ≤ |Y | and the second condition is equiv-
alent to Lev(Xk) ≥ Lev(Y k).
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A.2. Increasing differences: fairness criteria
Analogously to Definition 3.5, we define the fairness criteria NIDPR (neces-

sary-ID-proportional) and PIDPR (possible-ID-proportional). Analogously to
Lemma 3.6 and Corollary 4.7, and with similar proofs that we omit, we have:

Lemma A.6. Given item rankings �1, . . . ,�n:

• An allocation X is NIDPR iff ∀i ∈ N : n ·Xi %NID
i M.

• An allocation X is PIDPR iff ∀i ∈ N : n ·Xi %PID
i M.

Corollary A.7. The following problems can be decided in polynomial time:
(a) Given an allocation, decide whether it is NIDPR;
(b) Given an allocation, decide whether it is PIDPR.

In Section 5 we proved that an NDD-proportional allocation exists whenever
the number of items is an integer multiple of the number of agents, and all agents
have different best items. At first glance, the natural extension of this condition
to chores is that all agents should have different worst chores. The following
two examples show that this condition is neither sufficient nor necessary.

Example A.8. There are eight chores and four agents with rankings:

A : a � b � c � d � w � x � y � z

B : b � c � d � a � w � x � z � y

C : c � d � a � b � w � z � y � x

D : d � a � b � c � x � z � y � w

Each agent has a different best chore and each agent has a different worst chore.
However, at least one agent (the one who receives y) has a second-worst chore.
This implies that an NIDPR allocation does not exist. To see this, suppose that
all agents have the same ID scoring function:

−996,−997,−998,−999,−1000,−2000,−3000,−4000

The utility of the agent who receives y is at most −3996. However, the total
value is −13990 and the fair share is −13990/4 = −3497.5.

Example A.9. There are three chores and three agents with rankings:

A : x � y � z

B : x � z � y

C : x � z � y

All agents have the same best chore, and two agents have the same worst chore.
However, the following allocation is NIDPR:

A : {y} B : {x} C : {z}
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This is obvious for Bob since he receives his best (easiest) chore. To see that it is
also true for Alice, we show that 3·XA %NID

A M using Theorem A.5. Condition
(i) clearly holds since both multi-bundles have 3 chores. For Condition (ii),
compare the levels of the k worst chores, for k = 1, 2, 3:

k = 1 k = 2 k = 3
3 ·XA 2 2 2
M 1 2 3
Difference +1 0 −1
Accumulated difference +1 +1 0

The accumulated difference is always at least 0, so 3·XA %NID
A M. By a similar

calculation, 3 ·XC %NID
C M. Hence the allocation is NIDPR.

Below we present a different condition that is necessary for the existence of
NIDPR allocations. It is analogous to the “only-if” part of Theorem 5.1. To
state this condition, for each agent i, let Wi be the set of i’s dn−1

2 e worst chores.

Theorem A.10. If there exists a NIDPR allocation of chores among n agents,
then both the following conditions must hold:

(a) The number of chores is m = l · n, for some integer l.
(b) It is possible to allocate to each agent i, l chores that are not from Wi.

(Hence, the intersection of all dn−1
2 e-worst-chores sets is empty: ∩i∈NWi = ∅).

Proof. Let (X1, . . . , Xn) be an NIDPR allocation. Then for every agent i,
n ·Xi %NID

i M. By Theorem A.5.
(a) For every i ∈ N : |n ·Xi| ≤ |M| =⇒ n · |Xi| ≤ m. But this must be an

equality since the total number of items in all n bundles is exactly m. So the
total number of items is n · |Xi| which is an integer multiple of n.

(b) For every i ∈ N , the level of the n worst chores in n ·Xi must be weakly
larger than the level of the n worst chores inM. The n worst chores inM have

levels 1, . . . , n, so their total level is n(n+1)
2 . The n worst chores in n · Xi are

just n copies of the worst chore in Xi. Thus, the level of this chore must be at

least n(n+1)
2 /n = n+1

2 . Since levels are integers, the smallest level in Xi must
be at least dn+1

2 e. So the agent must not get any of his dn−1
2 e worst chores. In

other words, agent i must not get any chore from the set Wi. Since all chores
must be allocated, no chore may be in the intersection of all Wi.

In Example A.8, dn−1
2 e = 2, and the intersection of the 2-worst-chores sets

is not empty (it contains chore y), so a NIDPR allocation does not exist. In
Example A.9, dn−1

2 e = 1, the intersection of the worst-chore sets is empty (not
all three agents have the same worst chore), and a NIDPR allocation exists.

We do not know if the condition of Theorem A.10 is sufficient for the exis-
tence of NIDPR allocations in general. Below we prove that they are sufficient in
two special cases: two agents, and three agents with “almost” identical rankings.

29



A.3. NIDPR allocation for two agents
With two agents, for each i ∈ {1, 2}, the set Wi contains just the worst

chore of agent i, so the necessary condition of Theorem A.10 simply says that
each agent has a different worst chore. This condition is also sufficient for the
existence of NIDPR allocations. The following theorem is analogous to the “if”
part of Theorem 5.1 for n = 2.

Theorem A.11. There exists a NIDPR allocation of chores among n = 2
agents whenever the following conditions both hold:

(a) The number of chores is m = l · n, for some integer l.
(b) The worst chores of the agents are different.
In case it exists, it can be found in time O(m).

Theorem A.11 can be proved directly by analyzing the outcome of the
balanced round-robin protocol (Algorithm 2), similarly to the proof of Theorem
5.1. This analysis is technical and we omit it.

Intuitively, when there are two agents, allocating chores is equivalent to
allocating exemptions from chores. An exemption from chore is a good; hence,
chore allocation is equivalent to good allocation.11 An exemption from the worst
chore is the best good; hence, Theorem 5.1 implies Theorem A.11.12

A.4. NIDPR allocations for three agents

The analogy between goods and chores does not extend to n ≥ 3 agents.13

This is because for each chore, there are n − 1 identical exemptions to share,
and each agent must get at most one such exemption; this constraint does not
exist in the problem of allocating goods.

Hence, Theorem A.11 does not generalize to three or more agents. The
balanced-round-robin protocol does not necessarily find a NIDPR allocation,
even if it exists. In Example A.9, the rankings satisfy the necessary condition
of Theorem A.10, and a NIDPR allocation exists, but the round-robin protocol
(in the order A B C) yields the allocation:

A : {x} B : {z} C : {y}

which is not NIDPR since it gives Carl his worst chore.
For three agents, we consider the following special case:

• All agents have the same n worst chores;

• All agents have the same m− n best chores, and rank them identically.

11This observation was already made by Bogomolnaia et al. [13] for divisible resources, and
proved formally by Segal-Halevi [43] for competitive equilibrium with indivisible objects.

12The round-robin protocol would be slightly different in case of chores: each agent should
pick an exemption from a chore, rather than a chore. In other words, each agent in turn
should pick a chore and give it to the other agent.

13as already noted by Bogomolnaia et al. [13] for divisible resources.
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In some sense this is a “worst case” of fair allocations, since the agents’ prefer-
ences are as similar as they can be without violating the necessary condition.

We prove that, in this “worst case”, the necessary condition of Theorem
A.10 is also sufficient.

Theorem A.12. There exists a NIDPR allocation of chores among n = 3
agents whenever the following conditions hold:

(a) The number of chores is m = l · n, for some integer l.
(b) Not all agents have the same worst chore;
(c) All agents have the same n worst chores;
(d) All agents have the same m− n worst chores and rank them identically.
In this case, it can be found in time O(m).

Proof. We first allocate the n worst chores. By condition (b), it is possible to
give each agent a chore with a level of at least 2. Moreover, by simple case
analysis it is possible to see that it is always possible to give at least one agent a
chore with a level of at least 3. Hence, after this step, the total level-differences
of all agents are at least 0:

k = 1 k = 2 k = 3
n ·Xi 2 2 2
M 1 2 3
LevelDiff 1 0 −1
TotalLevelDiff 1 1 0

and the total level-difference of at least one agent is 3:

k = 1 k = 2 k = 3
n ·Xi 3 3 3
M 1 2 3
LevelDiff 2 1 0
TotalLevelDiff 2 3 3

We now have m−n remaining chores. By condition (d), the levels of these chores
are the same for all agents, namely, 4, . . . ,m. We allocate them from worst (4)
to best (m), using a round-robin protocol. There are l − 1 allocation rounds;
in each round, the first (worst) chore is given to an agent whose TotalLevelDiff
is at least 3. We prove by induction that, indeed, when each round ends, there
is at least one agent with TotalLevelDiff at least 3, while all other agents have
TotalLevelDiff at least 0.

The induction base (r = 1) was already proved above. Assume the claim is
true until the beginning of some round r. The level of the next chore to allocate
is 3r − 2. It is given to an agent with TotalLevelDiff at least 3, so his levels
change as follows:

k = 3r − 2 k = 3r − 1 k = 3r
n ·Xi 3r − 2 3r − 2 3r − 2
M 3r − 2 3r − 1 3r
LevelDiff 0 −1 −2
TotalLevelDiff ≥ 3 ≥ 2 ≥ 0
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The next chore is 3r − 1. It is given to an agent with TotalLevelDiff at least 0,
so his levels change as follows:

k = 3r − 2 k = 3r − 1 k = 3r
n ·Xi 3r − 1 3r − 1 3r − 1
M 3r − 2 3r − 1 3r
LevelDiff 1 0 −1
TotalLevelDiff ≥ 1 ≥ 1 ≥ 0

The next chore is 3r. It is given to an agent with TotalLevelDiff at least 0, so
his levels change as follows:

k = 3r − 2 k = 3r − 1 k = 3r
n ·Xi 3r 3r 3r
M 3r − 2 3r − 1 3r
LevelDiff 2 1 0
TotalLevelDiff ≥ 2 ≥ 3 ≥ 3

As claimed, after round r ends, all agents have TotalLevelDiff at least 0, and
one agent has TotalLevelDiff at least 3.

Hence, the resulting allocation is NIDPR.

Theorem A.12 can be extended to more than 3 agents. Whenever the worst
n chores can be allocated such that the total level-difference of all agents is
at least 0 and the total level-difference of some agents is sufficiently high, it is
possible to allocated the other chores such that the total level-difference of all
agents remains at least 0. Moreover, instead of requiring that all agents have
exactly the same ranking to their m − n best chores, it is sufficient that all
agents have the same worst n chores (levels 1, . . . , n), the same next-worst n
chores (levels n + 1, . . . , 2n), etc. We omit these results since we believe that
the main interesting challenge is generalizing the theorem to arbitrary rankings.
Finding a general sufficient condition and protocol for NIDPR allocation of
chores remains an interesting open problem.

B. Binary Utilities

In this section, we compare the diminishing/increasing differences assump-
tions to another natural assumption, which we call Binary. It is based on the
assumption that each agent only cares about getting as many as possible of his k
best items, where k is an integer that may be different for different agents. The
binary assumption was also studied by Bouveret and Lang [15, Proposition 21],
who proved that finding an efficient envy-free allocations with such preferences
is NP-complete.

The following definition is analogous to Definitions 3.1 and A.1:
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Definition B.1. Let � be a preference relation and u a utility function con-
sistent with �. We say that u is Binary if, for some integer k ≥ 1:

u(x) =

{
1 when Lev(x) ≥ k

0 when Lev(x) < k

We denote by UBIN (�) the set of all binary utility functions consistent with �.

Analogously to Definition 3.3 we define the relations X %NBIN Y and
X %PBIN Y ; analogously to Definition 3.5 we define NBIN-fairness and PBIN-
fairness.

At first glance, the Binary assumption seems much more restrictive than the
DD assumption. For every �, the set UBIN (�) contains only m utility functions
— much less than UDD(�). Therefore, one could expect NBIN-fairness to be
easier to satisfy than NDD-fairness. But this is not the case: NBIN-fairness
is equivalent to necessary fairness and PBIN-fairness is equivalent to possible
fairness. This follows from the following theorem.

Theorem B.2. For every item-ranking � and every multi-bundles X,Y :
(a) X %Nec Y if and only if X %NBIN Y and
(b) X %Pos Y if and only if X %PBIN Y .

Proof. It is sufficient to prove the following directions:
(a) If X %NBIN Y then X %Nec Y ;
(b) If not X %PBIN Y then not X %Pos Y .
For the proof, we use the following notation.

• The m items are denoted by their level, so the best item is m and the
worst is 1.

• For a multi-bundle X and an item j, the number of copies of j in X is
denoted X[j].

• The m utility functions in UBIN (�) are denoted by Uk, for k ∈ {1, . . . ,m}.

In this notation, for every k ∈ {1, . . . ,m} and multi-bundle X:

Uk(X) =

m∑
j=k

X[j] (B.1)

so Um(X) = X[m] (the agent cares only about the best item), Um−1(X) =
X[m] + X[m− 1] (the agent cares only about the two best items), etc.

Moreover, for every function u ∈ U(�) and multi-bundle X:

u(X) =

m∑
j=1

u(j) ·X[j] (B.2)
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Substituting the X[j] in (B.2) using (B.1) gives:

u(X) = u(m) · Um(X) +

m∑
j=2

u(j − 1) ·
(
Uj−1(X)− Uj(X)

)

=

m∑
j=2

(
u(j)− u(j − 1)

)
· Uj(X) + u(1) · U1(X)

so every additive function u is a linear combination of the functions Uk. Note
that all coefficients in this linear combination are non-negative. Hence:

• If ∀k ∈ {1, . . . ,m}: Uk(X) ≥ Uk(Y ), then ∀u ∈ U(�) : u(X) ≥ u(Y ).
This implies (a).

• If ∀k ∈ {1, . . . ,m}: Uk(X) < Uk(Y ), then ∀u ∈ U(�) : u(X) < u(Y ).
This implies (b).

C. NP-hardness of NDDEF

Theorem 7.4. When there are n ≥ 3 agents and at least 2n items, checking
the existence of NDDEF allocations is NP-hard (as a function of n).

Proof. The proof is similar to the proof of Bouveret et al. [14] for the NP-
hardness of checking existence of NecEF allocations. We now present their
reduction and show that it works for NDDEF as well.

The proof is by reduction from the exact-3-cover problem, whose inputs are:

• A base set of 3q elements;

• A set-family containing n ≥ q triplets, C1, . . . , Cn, each of which contains
exactly 3 elements from the base-set.

The question is whether there exist q pairwise-disjoint triplets whose union is the
base-set. Given an instance of exact-3-cover, an instance of fair item allocation
is constructed as follows:

• To the 3q base elements correspond 3q main items, denoted by Main. To
each triplet Ci corresponds a set of three main items, denoted by Maini,
such that ∀i ∈ {1, . . . , n} : Maini ⊆ Main. The sets Maini, like the
triplets Ci, are not necessarily disjoint. We denote by Main−i the main
items not in Maini.

• There are also 3n dummy items denoted by Dummy. To each triplet
Ci corresponds a set of three dummy items, denoted by Dummyi :=
{di, di′ , di′′}. All such sets are pairwise disjoint. We denote by Dummy−i
the dummy items not in Dummyi.
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• There are 3(n− q) auxiliary items, denoted by Aux. They are partitioned
to n − q pairwise-disjoint triplets, denoted by Auxj := {xj , xj′ , xj′′}, for
j ∈ {q + 1, . . . , n}. All in all, there are 6n items.

• To each triplet Ci corresponds a set of three agents, Agentsi = {i, i′, i′′}.
The sets Agentsi are pairwise disjoint. All in all, there are 3n agents.

• The preferences of the three agents in Agentsi are, in general:

Dummyi �Maini � Auxq+1 � · · · � Auxn � Dummy−i �Main−i

Their preferences over the three items in Dummyi are “cyclic”, i.e., for
agent i it is di � di′ � di′′ , for agent i′ it is di′ � di′′ � di, and for agent
i′′ it is di′′ � di � di′ . Their preferences over the three items in Maini are
cyclic in a similar way. Their preferences over the three items in Auxj ,
for each j ∈ {q + 1, . . . , n}, are cyclic in a similar way. Their preferences
over Dummy−i and Main−i are arbitrary.

Bouveret et al. [14] prove that there exists a NecEF allocation iff there exists
an exact-3-cover. The proof involves three arguments:

(i) In a NecEF allocation, each agent must receive the same number of items.
Here there are 6n items and 3n agents so each agent must get exactly two
items. One of these items must be its top dummy item, which is easy to
do since the top dummy items of all agents are different. So, it remains
to prove that there is an exact-3-cover, if and only if the second items can
be allocated in a NecEF way, i.e., such that each agent prefers the worst
item in his bundle to the worst item in any other bundle.

(ii) Cover =⇒ allocation: Suppose there is an exact-3-cover, e.g, with
the triplets C1, . . . , Cq. Then, the sets of main items Main1, . . . ,Mainq

are pairwise-disjoint and their union is exactly Main. Then, for each
j ∈ {1, . . . , q}, it is possible to allocate the three items in Mainj to
the three agents in Agentsj , giving each agent his favorite main item.
Let’s call these 3q agents in the triplets Agents1, . . . , Agentsq, the “lucky
agents”. The allocation is NecEF for the lucky agents since their worst
item is their 4th-best item while the worst item in any other bundle is at
most their 5th-best item (since their three best items are the dummy items
and they are already allocated). It remains to determine an allocation
for the 3(n − q) “unlucky” agents, Agentsq+1, · · · , Agentsn. For each
j ∈ {q + 1, . . . , n}, give to the three agents in Agentsj , the three items
in Auxj , giving each agent his favorite item from that triplet. This item
is better for them than the worst items in the other bundles, which are
from Main−i or Dummy−i, so the allocation is NecEF for them too.

(iii) Allocation =⇒ cover: Suppose there is a NecEF allocation. For each
i ∈ {1, . . . , n}, consider the three agents in Agentsi. We claim that either
all of them receive a main item from Maini, or none of them does. Proof:
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suppose e.g. that agent i receives item mi ∈Maini but agent i′ does not
receive any item from Maini. Then, the allocation of i is {di,mi} and
the best possible allocation for i′ is {di′ , xi′}, where xi′ is the auxiliary
item preferred by agent i′. But for agent i′, both items allocated to agent
i are better than xi′ . Therefore agent i′ might envy i, so the division is
not NecEF. Since each main item must be allocated to exactly one agent,
there exists an exact-3-cover: the triplet Ci is in the cover if and only if
the agents in Agentsi receive the items in Maini.

We now show that the reduction also works for NDDEF. Claim (i) works for
NDDEF by Theorem 4.1. Claim (ii) clearly works for NDDEF since every NEF
allocation is NDDEF. It remains to prove claim (iii). Suppose there exists an
NDDEF allocation. This allocation is, in particular, envy-free according to the
Borda score. We claim that, for each i ∈ {1, . . . , n}, either all three agents in
Agentsi receive an item from Maini, or none of them does. Proof: consider the
following two cases:

• One agent, say i, receives his main item mi, but the other agents i′, i′′ do
not receive their main items. The dummy items give agent i′′ a Borda-
advantage of 1 over i. The best second item that can be allocated to i′′ is
his best auxiliary item, but this leaves him with a Borda-disadvantage of
2 relative to i, so i′′ Borda-envies i.

• Two agents, say i′, i′′, receive their main items mi′ ,mi′′ , but agent i does
not receive his main item. The dummy items give agent i a Borda-
advantage of 1 over i′. The best second item that can be allocated to
i is his best auxiliary item, but this leaves him with a Borda-disadvantage
of 2 relative to i′, so i Borda-envies i′.

Therefore the reduction is valid for NDDEF too, and the theorem is proved.
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