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Abstract

We consider a multi-agent resource allocation set-
ting in which an agent’s utility may decrease or in-
crease when an item is allocated. We take the group
envy-freeness concept that is well-established in
the literature and present stronger and relaxed ver-
sions that are especially suitable for the alloca-
tion of indivisible items. Of particular interest is a
concept called group envy-freeness up to one item
(GEF1). We then present a clear taxonomy of the
fairness concepts. We study which fairness con-
cepts guarantee the existence of a fair allocation
under which preference domain. For two natural
classes of additive utilities, we design polynomial-
time algorithms to compute a GEF1 allocation. We
also prove that checking whether a given allocation
satisfies GEF1 is coNP-complete when there are ei-
ther only goods, only chores or both.

1 Introduction
Fair division deals with the problem of assigning items to
agents in the fairest way. Many fairness concepts have been
proposed, and envy-freeness (EF) is viewed as the gold stan-
dard one. It stipulates that no agent should prefer what some-
one else got. However, the concept does not provide any
fairness guarantees for groups of agents and also has a well-
known tension with efficiency [Caragiannis et al., 2012].

Berliant et al. [1992] introduced group envy-freeness
(GEF). It generalizes envy-freeness for equal-sized groups
of agents instead but with divisible items. Remarkably, it
implies both envy-freeness and Pareto-optimality, the central
concepts for fairness and efficiency respectively.

Recently, Conitzer et al. [2019] generalized GEF for in-
divisible items and groups of different size by introduc-
ing group-fairness (GF). Because guaranteeing GF alloca-
tions is impossible, they proposed two relaxations of group-
fairness, similar in spirit to the well-studied weakening of
envy-freeness called envy-freeness up to one good (EF1). Al-
locations satisfying the relaxations of group-fairness can al-
ways be computed in pseudo-polynomial time.
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In their paper, Conitzer et al. [2019] assumed that the items
allocated are “goods” for which agents have positive utility.
Therefore the concepts and results do not apply to scenarios
in which tasks or chores are to be allocated. Although the
definition of group-fairness and group-envy freeness can be
extended seamlessly in this case, their relaxations do not. In
this paper, we take inspiration from the GF and GEF concepts
and define several variants and relaxations of them that are
well-defined for the more general setting of goods and chores.
Our approach is similar to the work of Aziz et al. [2019] who
introduced envy-freeness and proportionality in this context.

Contributions. Our first conceptual contribution is to for-
malize relaxations of GEF for the case of goods and chores,
called GEF1 (Section 3). We give general definitions which
apply seamlessly to non-additive preference or even ordinal
preferences (relation over subsets of items). We clarify the
logical relations between these concepts through a clear tax-
onomy depicted in Figure 1.

We present two key existence and algorithmic results (Sec-
tions 4 and 5). First, we present a polynomial-time algorithm
that computes a GEF1 allocation for the case of identical util-
ities. The proof relies on connections with two-sided match-
ing and Hall’s marriage theorem. We then focus on a natural
class of mixed utilities called ternary symmetric utilities and
design a polynomial-time algorithm for finding GEF1 alloca-
tions. The algorithm involves network flows and makes use
of several transformations of the utility functions. The results
also provide additional insights on the connection between
Nash social welfare and leximin-optimality .

We prove that checking whether a given allocation satisfies
GEF1 is coNP-complete for the cases of only goods, only
chores and both (Section 6).

We finally present several negative existence results on the
way to extend GEF1 for groups of different size (Section 7).

Related Work. Fair division is a dynamic field in eco-
nomics and computer science [Aziz, 2020; Moulin, 2004;
Brandt et al., 2016]. The prominent fairness concept is envy-
freeness (EF) [Foley, 1967] which cannot be guaranteed with
indivisible items. Several relaxations have been considered to
overcome this, envy-freeness up to one good (EF1) [Budish,
2011] —which always exists [Lipton et al., 2004] and is com-
patible with Pareto-optimality [Caragiannis et al., 2016]— or
envy-freeness up to any good (EFX).



Berliant et al. [1992] generalized envy-freeness to groups
of agents by introducing group envy-freeness (GEF) when
items are divisible, extending the idea of coalition fairness
[Schmeidler and Vind, 1972]. They proved existence of GEF
allocations under monotonicity assumptions and showed the
equivalence between EF and GEF. Husseinov [2011] ex-
tended it to weak group envy-freeness.

Similar generalizations have been proposed with indivis-
ible items. Todo et al. [2011] introduced envy-freeness of
a group toward a group when monetary transfers between
agents are allowed. Aleksandrov and Walsh [2018] pre-
sented another definition of GEF with groups of different
sizes but which relies on interpersonal comparisons. Conitzer
et al. [2019] defined group-fairness, a definition similar to
that of Berliant et al. [1992] but considering indivisible goods
and groups of different size. They also introduced two “up to
one” relaxations of group-fairness for which they proved ex-
istence by using some variant of the Nash social welfare. An-
other line of work, similar in spirit but conceptually very dif-
ferent, is to consider pre-existing groups of agents taken as in-
puts of the procedures [Segal-Halevi and Suksompong, 2019;
Kyropoulou et al., 2019; Benabbou et al., 2019]

The chore division problem [Gardner, 1978], extends the
classical fair division setting for items that are considered as
chores for some agents. Brams and Taylor [1996] and Segal-
Halevi [2018] investigated the cake-cutting problem in this
setting. Bogomolnaia et al. [2017] studied mixture of di-
visible goods and chores. Indivisible chores have also been
considered [Aziz et al., 2017]. Aziz et al. [2019] presented
a general framework for indivisible goods and chores with a
focus on generalizing EF1 and designing algorithms for it.

2 Preliminaries
Let N be a set of n agents and O a set of m items. Agent
i ∈ N has preferences over sets of items represented by a
utility function ui : 2O → R. Note that utility can be either
positive or negative. For o ∈ O, we use ui(o) for ui({o}).
Preferences are said to be additive if for every O ⊆ O, we
have ui(O) =

∑
o∈O ui(o). We assume additive preferences

throughout the paper but our definitions apply to non-additive
preferences and ordinal preferences as well. An item o ∈ O
is a good for i if ui(o) ≥ 0 and chore for i if ui(o) ≤ 0.

An allocation π =
〈
π1, . . . , π|N |

〉
over O ⊆ O and N ⊆

N is a vector of sets of items πi ⊆ O for i ∈ N such that
πi ∩ πj = ∅ for every distinct i, j ∈ N , and

⋃
i∈N πi = O.

We denote by πN =
⋃
i∈N πi the set of items held by agents

in N ⊆ N . Let π+
i = {o ∈ πi | ui(πi) − ui(πi\{o}) > 0}

and π−i = {o ∈ πi | ui(πi) − ui(πi\{o}) < 0} respectively
be the sets of strict goods and strict chores in πi. We write
Π(O,N) for the set of all the allocations over O ⊆ O and
N ⊆ N . A triplet I = 〈N ,O, (ui)i∈N 〉 is an instance and I,
I+, I− are respectively the sets of all instances, those with
only goods and those with only chores.

Let us now introduce some properties of an allocation. We
say that an allocation π′ Pareto-dominates another one π if
all agents are better off in π′ and one is strictly better off:
∀i ∈ N , ui(π′i) ≥ ui(πi) and ∃i ∈ N , ui(π′i) > ui(πi).

If no other allocation Pareto-dominates π, it is said to be
Pareto-optimal. The Nash social welfare of π is defined as∏
i∈N |ui(πi)|. Next, we introduce envy-freeness and its re-

laxations with goods and chores [Aziz et al., 2019].
Definition 1 (Envy-freeness). An allocation π ∈ Π(O,N ) is
envy-free if for every i, j ∈ N , ui(πi) ≥ ui(πj).

It is well known that for some instances, no allocation is
envy-free. Two different relaxation of envy-freeness can then
be considered. We say that an allocation π is envy-free up to
one item (EF1) if for every i, j ∈ N , we have:

∃O ⊆ πi ∪ πj , |O| ≤ 1, s.t. ui(πi\O) ≥ ui(πj\O).

Moreover, an allocation π ∈ Π(O,N ) is envy-free up to
any item (EFX) if for every i, j ∈ N , we have:{

∀o ∈ π−i , ui(πi\{o}) ≥ ui(πj)
∀o ∈ π+

j , ui(πi) ≥ ui(πj\{o}).

3 Fairness for Groups with Goods and Chores
We now present our first contribution: group envy-freeness
(GEF) and its relaxations with goods and chores.
Definition 2 (GEF). An allocation π ∈ Π(O,N ) is group
envy-free (GEF) if for every non-empty groups S, T ⊆ N ,
|S| = |T |, there is no reallocation π′ ∈ Π (πT , S), such that
for every i ∈ S, ui (π′i) ≥ ui(πi), with one strict inequality.
In words, GEF states that there is no reallocation of πT to the
agents in S that is a Pareto improvement for them. Note that
group-fairness (GF)1 [Conitzer et al., 2019] is equivalent to
GEF if equal sized groups of agents are compared. The name
group envy-freeness is from Berliant et al. [1992].

In the same spirit of EF1 and EFX, we introduce “up to
one” and “up to any” relaxations for group envy-freeness.
Definition 3 (GEF1). An allocation π ∈ Π(O,N ) is GEF
up to one item (GEF1) if for every non-empty groups S, T ⊆
N , |S| = |T |, every reallocation π′ ∈ Π (πT , S), and every
agent i ∈ S, there exists Oi ⊆ π−i ∪ π

′+
i , |Oi| ≤ 1, such that

〈ui(π′i\Oi)〉i∈S does not Pareto-dominate 〈ui(πi\Oi)〉i∈S .

Definition 4 (GEFX). An allocation π ∈ Π(O,N ) is GEF up
to any item (GEFX) if for every non-empty groups S, T ⊆ N ,
|S| = |T |, for every reallocation π′ ∈ Π (πT , S), for ev-
ery agent i ∈ S, and for every item o ∈ π−i ∪ π′+i ,
〈ui(π′i\{o})〉i∈S does not Pareto-dominate 〈ui(πi\{o})〉i∈S .

Observe that for positive additive utility functions, GEF1
is equivalent to group fairness up to one good after (GF1A)2

[Conitzer et al., 2019] restricted to same sized groups, and
with the additional conditions for GEF1 that agents should
get non-zero utility after reallocation. Conitzer et al. [2019]
also proposed group fairness up to one good before (GF1B)3

1π is GF if for every non-empty S, T ⊆ N , π′ ∈ Π(πT , S),
〈|S|/|T |ui(π

′
i)〉i∈S does not Pareto-dominate 〈ui(πi)〉i∈S .

2π is GF1A if for every non-empty S, T ⊆ N , π′ ∈ Π(πT , S)
s.t. ui(π

′
i) > 0 for all i ∈ S, there exists oi ∈ π′i for each i ∈ S s.t.

〈|S|/|T |(ui(π
′
i)〉i∈S does not Pareto-dominate 〈ui(πi ∪ {oi})〉i∈S .

3π is GF1B if for every non-empty S, T ⊆ N s.t. there exists
π′′ ∈ Π(πT , S) with ui(π

′′
i ) > 0 for all i ∈ S, there exists oj ∈ πj

for each j ∈ T with πj 6= ∅ s.t. for every π′ ∈ Π(πt\
⋃

j∈T oj , S),
〈|S|/|T |(ui(π

′
i)〉i∈S does not Pareto-dominate 〈ui(πi ∪ {oi})〉i∈S .
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Figure 1: Logical relationship between fairness criteria. Allocations
satisfying concepts in dotted (resp. plain) are not (resp. are) guaran-
teed to exist. No existence result is known for concepts in dashed.

Algorithm 1 The Egal-Sequential Algorithm
Input: I = 〈N ,O, (ui)i∈N )〉 with identical utility function u
Output: π ∈ Π(O,N ) an allocation satisfying EFX and GEF1
Set π to the empty allocation
Order items o1, . . . , om in O in decreasing order of |u(o)|
for j = 1 to m do

if u(oj) ≥ 0 then
Choose i∗ ∈ arg mini∈N u(πi)

else
Choose i∗ ∈ arg maxi∈N u(πi)

Give oj to i∗: πi∗ ← πi∗ ∪ {oj}
return π

which is no longer relevant when there are chores since re-
moving items cannot be done “before”. GEF1 can be seen as
an argument in favour of the GF1A. It is however only reason-
able when agents have positive utilities. GEF1 with groups of
different size is discussed in Section 7.

To conclude this section, we present in Figure 1 a taxon-
omy of the different criteria discussed above.

4 The Egal-Sequential Algorithm for
Identical Utilities

In this section, we present the Egal-Sequential Algorithm
that returns a GEF1 allocation when preferences are identi-
cal. Identical preferences constitute an important and natural
class of preferences especially if the item’s values are objec-
tive or publicly known. The algorithm allocates sequentially
the items in decreasing order of absolute utility. The item to
be allocated is given to the worse off agent if it is a good and
to the better off agent otherwise. This is a natural extension of
a standard approach for achieving EFX when there are only
goods. We prove in two steps that this ensures GEF1. We
first show that the Egal-Sequential Algorithm returns an EFX
allocation and then that every EFX allocation is also GEF1
when preferences are identical, that is, when there exists a
common utility function u such that for every i ∈ N , ui = u.

Lemma 1. For identical utilities, the Egal-Sequential Algo-
rithm returns an EFX allocation in O(max{m logm,mn}).

Lemma 2. Under identical utilities, any allocation satisfying
EFX also satisfies GEF1.

Proof. Consider an EFX allocation π that is not GEF1. Since
preferences are identical, assume w.l.o.g. that no item gives
zero utility. If such items exist, they can be allocated to any

agent without changing anything. As π is not GEF1, there
exist S ⊆ N , T ⊆ N , |S| = |T | and π′ ∈ Π(πT , S) such
that ∀i ∈ S, ∀o ∈ π−i ∪ π

′+
i , u(π′i\{o}) ≥ u(πi\{o}) with

one strict inequality. For i ∈ S, we introduce si defined as:

si = max{max
o∈π′+i

u(o), max
o∈π−i

−u(o), 0}.

Violating GEF1 then implies: ∀i ∈ S, u(π′i) − u(πi) ≥ si
with one inequality being strict. The 0 component in the defi-
nition of si is meant to tackle the case when πi = π′+i = ∅, in
which case we should have π−i = ∅ to get a GEF1 violation,
hence we have u(πi) = u(π′i) and si = 0 is a suitable bound.

By summing the inequalities of the violation of GEF1 over
i ∈ S, we obtain

∑
i∈S u(π′i) −

∑
i∈S u(πi) >

∑
i∈S si.

Since utilities are identical and additive this implies:

u(πT )− u(πS) >
∑
i∈S

si. (1)

Moreover, as π is EFX, we have ∀i, j ∈ N ,∀o ∈ π−i ∪
π+
j , u(πi\{o}) ≥ u(πj\{o}). For i, j ∈ N , we introduce
si,j defined by:

si,j = −min{min
o∈π+

j

−u(o), min
o∈π−i

u(o), 0}.

The 0 component is once again here to take care of the case
when π−i ∪ π

+
j = ∅. We have thus:

∀i, j ∈ N , si,j ≥ u(πj)− u(πi). (2)

Our goal is now to sum up inequalities (2) to obtain a con-
tradiction with (1). We are looking for a set of pairs (i, j),
called M∗, such that each i ∈ S and each j ∈ T appear once
and only once, and such that

∑
(i,j)∈M∗ ≤

∑
i∈S si. To do

so, we find a suitable matching in a bipartite graph.

Let us consider the bipartite graph G = 〈S ∪ T,E〉 where
nodes represent agents in S and in T . There is an edge (i, j) ∈
E between agents i ∈ S and j ∈ T if and only if π′+i ∩πj 6= ∅,
that is, i receives some of j’s goods in π′. We consider a
partition S+ ∪ S− of S where:

S+ = {i ∈ S | u(πi) ≥ 0}
S− = {i ∈ S | u(πi) < 0}.

For X ⊆ S, we write N(X) its neighbourhood in the graph
G: N(X) = {j ∈ T | ∃i ∈ X, (i, j) ∈ E}. A symmetric
definition holds for N(Y ) where Y ⊆ T .

We claim that there always exists a matching M ⊆ S ×
T in G that matches all the agents in S+. Suppose for the
sake of contradiction that suchM does not exist. From Hall’s
theorem [Hall, 1935], there must exist X ⊆ S+ and Y ⊆ T
such that Y = N(X) and |Y | < |X|. Let us assume that X
is a smallest Hall’s violater in G, and consider M ′ ⊆ X × Y
a maximum matching between agents in X and in Y . By
invoking Hall’s theorem, we can then show in the following
that M ′ always matches all the agents in Y .

We now turn back to showing thatM matches all the agents
in S+. As M ′ matches all the agents in Y and u is additive,



we have
∑

(i,j)∈M ′ u(πj) = u(πY ). Hence, by summing
inequalities (2) for (i, j) ∈M ′, we obtain:

u(πY )−
∑

(i,j)∈M ′
si,j ≤

∑
(i,j)∈M ′

u(πi) (3)

Moreover summing inequalities yielded by the violation of
GEF1 over i ∈ S in a similar manner as inequalities (1) brings
u(πY )−

∑
i∈X si ≥ u(πX). Together with (3), this leads to:∑

(i,j)∈M ′
u(πi) +

∑
(i,j)∈M ′

si,j ≥ u(πY ) ≥ u(πX) +
∑
i∈X

si.

(4)

Observe that for any pair of agents (i, j) such that there is an
edge between i and j in G, we have:

si ≥ max
o∈π′+i

u(o) ≥ max
o∈π′+i ∩πj

u(o) ≥ min
o∈π+

j

u(o) ≥ si,j . (5)

As |M ′| < |X|, it is clear that
∑

(i,j)∈M ′ u(πi) < u(πX).
Overall, we have:∑

(i,j)∈M ′
u(πi) +

∑
(i,j)∈M ′

si,j < u(πX) +
∑
i∈X

si,

which contradicts (4). Therefore, no Hall’s violator exists and
the matching M does match all the agents in S+.

Next we show that the existence of this matching M leads
to a contradiction on the fact that π is not GEF1. We extend
the matching M to match all the agents in S by arbitrarily
pairing each agent i ∈ S− with an unmatched agent in T . Let
the extended matching be called M∗. Observe that for any
new pair of agents (i, k) ∈ M∗\M , we have i ∈ S−, that is
π−i 6= ∅. Hence, for any agent j ∈ T , we have:

si,j ≤ min
o∈π−i

u(o) ≤ max
o∈π−i

u(o) ≤ si. (6)

By summing (2) over (i, j) ∈ M∗ we obtain∑
(i,j)∈M∗ si,j ≥ u(πT ) − u(πS). From (5) and (6)

we get that
∑

(i,j)∈M∗ si,j ≤
∑
i∈S si, hence summing (2)

over (i, j) ∈ M∗ leads to a contradiction with (1). We have
thus proved that π satisfies both EFX and GEF1.

A direct consequence of these two lemmas is that the Egal-
Sequential Algorithm computes GEF1 allocations.
Theorem 1. For identical utilities, an allocation sat-
isfying GEF1 always exists and can be computed in
O(max{m logm,mn}) time by the Egal-Sequential Algo-
rithm.

Conitzer et al. [2019] showed that for identical preferences
their relaxation of group-fairness is implied by EFX. We ex-
tend their result in different ways. Firstly, our result applies in
the case of mixed utilities. Secondly, we provide a linear time
algorithm to compute GEF1 allocation with identical prefer-
ences. Finally, our proof does not involve the Nash social
welfare which is not a suitable solution concept with chores.4

4When considering only chores, either maximizing or minimiz-
ing the absolute Nash social welfare does not imply EF1.

5 The Ternary Flow Algorithm
In this section, we focus on another restriction of the pref-
erences, namely ternary symmetric preferences. We say that
agent ai has ternary symmetric preferences if her preferences
are additive and the utilities of the singletons are taken from
the set {−αi, 0, αi} for a given αi > 0.

We provide an algorithm that computes GEF1 allocations
for ternary symmetric preferences. We do so by proving that
any leximin-optimal allocation is also GEF1 and by provid-
ing an algorithm returning a leximin-optimal allocation in
polynomial time. Similar links between leximin-optimality
and envy-freeness concepts have been observed by Plaut and
Roughgarden [2020] for the case of goods.

We first provide a characterization of Pareto-optimality for
ternary symmetric utilities.

Lemma 3. Let I = 〈N ,O, (ui)i∈N 〉 be an instance with
ternary symmetric utility functions. An allocation π ∈
Π(N ,O) is Pareto-optimal iff for every item o ∈ O we have:{

o ∈ πi with ui(o) > 0, iff maxj∈N uj(o) > 0,
o ∈ πi with ui(o) = 0, iff maxj∈N uj(o) = 0,
o ∈ πi with ui(o) < 0, iff maxj∈N uj(o) < 0.

For a profile of ternary symmetric preferences (ui)i∈N , we
introduce the normalized profile(uNorm

i )i∈N that corresponds
to (ui)i∈N but such that every αi has been set to 1. For a
normalized profile, every singleton has utility in {−1, 0, 1}.

This preference domain models statements such as “I like”,
“I am indifferent” and “I do not like”. It is close to the idea of
approval and disapproval voting [Brams and Fishburn, 1978;
Felsenthal, 1989]. In fair division, it is also known as dichoto-
mous preferences [Bogomolnaia et al., 2005].

Next we introduce leximin optimality. For an allocation π
we denote by ~u(π) ∈ Rn the vector of the utilities in π sorted
in increasing order. For two vectors ~u,~v ∈ Rk, we say that
~u leximin-dominates ~v, written ~u �lex ~v, if there exists an
i ≤ k such that ~uj = ~vj ,∀j < i, and ~ui > ~vi. Finally, π is
leximin-optimal if there is no π′ such that ~u(π′) �lex ~u(π).

Our algorithm uses the Nash Flow Algorithm [Darmann
and Schauer, 2015]. It computes in polynomial time an allo-
cation maximizing the Nash social welfare for binary prefer-
ences, i.e. the singletons’ utilities are in {0, 1}, by finding a
minimum integer flow in a specific cost flow network. The
algorithm is not described here and we refer the interested
reader to the paper. We first extend this result by showing
that it returns leximin-optimal allocations.

Lemma 4. Let I = 〈N ,O, (ui)i∈N 〉 ∈ I+ be an instance
with only goods and binary preferences. An allocation π is
leximin-optimal iff it corresponds to a minimum cost integer
flow in the network defined by the Nash Flow Algorithm.

This equivalence implies that any leximin-optimal alloca-
tion also maximizes the Nash social welfare. It also im-
plies that any leximin-optimal allocation is equivalent to the
Maximal Nash Welfare (MNW) solution of Caragiannis et
al. [2016] in which the number of agent with strictly posi-
tive utility is maximized and then for those agents, their Nash
social welfare is maximized.



Algorithm 2 The Ternary Flow Algorithm
Input: I = 〈N ,O, (ui)i∈N )〉 with ternary symmetric utilities
Output: π ∈ Π(O,N ) a GEF1 allocation
Set O+ = {o ∈ O : maxi∈N ui(o) > 0}.
Set O0 = {o ∈ O : maxi∈N ui(o) = 0}.
Set O− = {o ∈ O : maxi∈N ui(o) < 0}.
Consider the utility functions (u′i)i∈N such that ∀i ∈ N , ∀o ∈ O+,

we have u′i(o) =

{
1 if uNorm

i (o) = 1,
0 otherwise

Let π be the Nash Flow Algorithm’s result on
〈
N , O+, (u′i)i∈N

〉
.

for o ∈ O− do
Allocate o to i∗ ∈ arg maxi∈N u

Norm
i (πi).

for o ∈ O0 do
Allocate o to i∗ ∈ arg mini∈N ,uNorm

i (o)=0 u
Norm
i (πi).

return π

Corollary 1. For binary preferences, any leximin-optimal al-
location π maximizes the Nash social welfare and a leximin-
optimal allocation is equivalent to the MNW solution of Cara-
giannis et al. [2016].

Using the Nash flow algorithm, we propose the Ternary
Flow Algorithm (Algorithm 2). It computes a leximin-
optimal allocation on the normalized utilities which is a GEF1
allocation w.r.t. the original preferences. Note that thanks to
Corollary 1, any algorithm maximizing the Nash welfare (or,
equivalently, being leximin-opimal) for binary preferences
can be used instead of the Nash flow algorithm.
Lemma 5. For ternary symmetric preferences, the Ternary
Flow Algorithm returns allocations that are leximin-optimal
for the normalized preferences.

Sketch of the proof. From Lemma 4 we know that the Nash
Flow Algorithm’s outcome is leximin-optimal. We claim that
allocating the chores in o ∈ O− to the best off agent main-
tains leximin-optimality. The same hold for giving items in
O0 to agents who value them 0.

Lemma 6. If the preferences are normalised ternary symmet-
ric, any leximin-optimal allocation also satisfies GEF1.

Proof. In the following we consider a leximin-optimal alloca-
tion π. We can show that the agents’ utility can not be too dif-
ferent because of leximin-optimality and that if one agent has
negative utility, then all agents’ utility is at most one more.
The proofs of these two claims are omitted for space reason.

Claim 1. For every i, j ∈ N , if uj(πj) − ui(πi) ≥ 2 then
{o ∈ πj | ui(o) = 1} ∪ {o ∈ πi | uj(o) = −1} = ∅.

Claim 2. If mini∈Nui(πi) < 0, then ∀i ∈ N , 0 ≤ ui(πi)−
mini∈Nui(πi) ≤ 1.

For the sake of contradiction, assume that π is not GEF1.
There exist then S, T ⊆ N , and π′ ∈ Π(πT , S) such that ∀i ∈
S, ∀o ∈ π−i ∪ π

′+
i , u(π′i\{o}) ≥ u(πi\{o}) with one strict

inequality. Suppose w.l.o.g. that the utilities of the agents
in S (resp. T ), written s1, . . . , s|S| (resp. t1, . . . , t|S|), are
ordered increasingly. From Lemma 3 we know that for every
agent j ∈ T and i ∈ S, ui(πj) ≤ uj(πj). Hence, tj is an
upper bound on the utility i can receive from j.

To get a GEF1 violation, a reallocation of the items in πT
should give utility at least si + 1 to every agent i ∈ S with
one agent receiving strictly more. Let us denote by j∗ ∈ T
the index of the first tj such that tj > sj + 1. From Claim 2,
it cannot be the case that sj∗ < 0. From Claim 1, we know
that if sj∗ ≥ 0, tj∗ does not have any item considered as
goods for the agent i∗, corresponding to sj∗ . Since utilities
are ordered increasingly, it also holds for every j > j∗. Hence
i∗ can only receive goods from agents j < j∗. However, for
every j < j∗, we have sj = tj + 1. These agents can thus
not provide enough goods to all agents i ≤ i∗ to get GEF1
violation. This proves that π is GEF1.

From Lemma 5 and 6, we derive the statement for GEF1.

Theorem 2. Let I = 〈N ,O, (ui)i∈N 〉 ∈ I be an instance
with ternary symmetric utility functions. The Ternary Flow
Algorithm computes in polynomial time a GEF1 allocation.

6 Testing GEF1 is coNP-complete
We prove in this section that testing GEF1 is coNP-complete
when there are only goods, only chores and both of them.
The decision problem IS-GEF1 takes an instance I ∈ I and
an allocation π as input and answers the question whether
π is GEF1. We use IS-GEF1+ and IS-GEF1− to refer to
the same decision problem when there are respectively only
goods (I ∈ I+) and only chores (I ∈ I−).

Theorem 3. The problems IS-GEF1, IS-GEF1+ and IS-
GEF1− are strongly coNP-complete.

Proof. We only present the reduction for the IS-GEF1−
problem. By reducing the 3-PARTITION problem [Garey and
Johnson, 1975], we show that checking if π violates GEF1
when there are only chores is strongly NP-complete. Given
a multi-set of 3m numbers X = {x1, . . . , x3m} such that:
∀x ∈ X, 1/4 < x < 1/2 and

∑
x∈X x = m, the 3-

PARTITION answers whether there is a partition (Xi)i∈J1,mK
of X such that ∀i,

∑
x∈Xi

= 1.
Let X = {x1, . . . , x3m} be an instance of the 3-

PARTITION problem. We present the instance (I, π) of the IS-
GEF1− problem. The set of chores is O = {g1, . . . , gm} ∪
{h1, . . . , hm}∪ {l1, . . . , l3m}∪ {o1, . . . , o2m} and the set of
agents N = {a1, . . . , am} ∪ {b1, . . . , bm}. The utilities of
the singletons are indicated in the table above where ε > 0 is
a constant small enough, M is a constant greater than m+ 1
and the xi are ordered in a decreasing order.

The initial allocation π ∈ Π(O,N ), given as a entry of
the IS-GEF1− problem and represented by the boxed items
in the previous table, is defined as follow:

πai = {gi} ∪ {hi} ∪ {oi},∀i ∈ J1,mK,
πbi = {l3i−2, l3i−1, l3i} ∪ {om+i},∀i ∈ J1,mK.

We can show (omitted) that if there is a GEF1 violation,
then it should be the case that S = T = N .

We now prove that for S = T = N , there exists a re-
allocation π′ that is a GEF1 violation iff there exists a par-
tition (Xi)i∈J1,mK of X satisfying the conditions of the 3-
PARTITION problem.



g1 . . . gm h1 . . . hm l1 l2 l3 . . . l3m−2 l3m−1 l3m o1 . . . om om+1 . . . o2m
a1 −m− ε −M −M −1− ε −M 0 −x1 −x2 −x3 · · · −x3m−2 −x3m−1 −x3m 0 −M −M −M −M −M
... −M

. . . −M −M
. . . −M −x1 −x2 −x3 · · · −x3m−2 −x3m−1 −x3m −M

. . . −M −M −M −M
am −M −M −m− ε −M −M −1− ε −x1 −x2 −x3 · · · −x3m−2 −x3m−1 −x3m −M −M 0 −M −M −M
b1 −x2 − x3 −M −M −M −M −M −x1 −x2 −x3 −M −M −M −M −M −M −M 0 −M −M
... −M

. . . −M −M −M −M −M −M −M
. . . −M −M −M −M −M −M −M

. . . −M
bm −M −M −x3m−1 − x3m −M −M −M −M −M −M −M −x3m−2 −x3m−1 −x3m −M −M −M −M −M 0

Note that each gi chore should be allocated to bi in π′,
hence all “l” chores should be divided among “a” agents. “h”
chores are allocated to “a” agents receiving 0 utility for it,
similar reallocation is done for “o” chores. Hence one gets a
violation iff it is possible to divide the “l” items into m parts
of sum smaller than 1 + ε, that is of sum 1. For a suitable ε
this is equivalent to the existence of a partition ofX satisfying
the conditions of the 3-PARTITION problem. This reduction
is done in polynomial-time which concludes the proof.

In this proof, the only possible violations of GEF1 are such
that S = T = N . Hence, checking whether an allocation
satisfies the Pareto-optimality relaxation derived from GEF1,
is also coNP-complete.

7 GEF with Groups of Different Sizes
In this section, we investigate the issue of extending GEF1 to
groups of different size. We first introduce strong-GEF1.

Definition 5 (s-GEF1). An allocation π is strongly-GEF1 (s-
GEF1) if for every non-empty groups S, T ⊆ N , every real-
location π′ ∈ Π (πT , S), and every agent i ∈ S, there exists

Oi ⊆ π−i ∪ π
′+
i with |Oi| ≤ 1, such that

〈
|S|
|T |ui(π

′
i\Oi)

〉
i∈S

does not Pareto-dominate 〈ui(πi\Oi)〉i∈S .

Strong-GEF1 is the most natural way of extending GEF1 to
groups of different sizes, however s-GEF1 allocations are not
guaranteed to exist even when there are only goods. Consider
an instance with three goods, o1, o2 and o3 and three agents
a1, a2 and a3 with identical preferences: u(o1) = u(o2) = 1
and u(o3) = ε for 0 < ε < 1/3. First, note first that to
be EF1, and thus potentially s-GEF1, an allocation should
gives one good to each agent as otherwise there would be an
envious agent. Consider then w.l.o.g. π in which ai gets oi. In
this case, it can be checked that S = {a3}, T = {a1, a2, a3},
and π′ = 〈{o1, o2, o3}〉 is a witness of a s-GEF1 violation.
Hence, no allocation can satisfy s-GEF1 in this instance.

This negative result has been observed by Conitzer et
al. [2019] (see their discussion on page 1856) and motivated
them to change the definition as follow to obtain positive exis-
tence results. In the following definition, note the way the set
Oi is added instead of being removed, compared to s-GEF1.

Definition 6 (s-GEF1’). An allocation π is strongly-GEF1’
(s-GEF1’) if for every non-empty groups S, T ⊆ N , every re-
allocation π′ ∈ Π (πT , S), and every agent i ∈ S, there exists

Oi ⊆ π−i ∪π
′+
i with |Oi| ≤ 1, such that

〈
|S|
|T |ui(π

′
i ∪Oi)

〉
i∈S

does not Pareto-dominate 〈ui(πi ∪Oi)〉i∈S .

This definition is conceptually very different from that of
s-GEF1 or EF1. Indeed, the underlying assumption is made

that some items can be “duplicated” so that envy can be elim-
inated by giving these extra items. This assumption is not
always reasonable and is not required by EF1 or s-GEF1.

Moreover, just as EF, GEF1 is an ordinal concept in the
sense that it applies seamlessly to ordinal preferences. Com-
paring groups of unequal sizes requires appropriate scaling
of utilities which does not seem appropriate if the utilities
are not additive and especially so if the preference relation
is ordinal. Even though many papers in fair division focus
on cardinal utilities, the most popular concepts such as envy-
freeness and Pareto optimality are more universal.

Although these drawbacks seem quite reasonable, one can
still look for positive result with s-GEF1’. However, in the
presence of chores, this is no longer possible. Consider three
agents (a1, a2, a3) and three chores (o1, o2, o3) where every
agent has utility −1 for o1 and o2 and −3 for o3. It is clear
that for an allocation to be EF1, and thus s-GEF1’, no agent
should receive more than one chore. W.l.o.g., consider then π
in which ai gets oi. We claim that S = {a3}, T = {a1, a2},
and π′ = 〈{o1, o2}〉 is a witness of a s-GEF1’ violation and
let the computations to the reader. This implies that no allo-
cation is s-GEF1’ in this instance.

Overall, none of the natural generalizations of GEF1 are
suitable for comparing groups of different size with chores.
It can still be argued that comparisons between same-sized
groups implicitly captures comparisons between different
sized groups: for k ∈ N, one can compare the best subgroup
in S of size k with the worst subgroup of T of size k.

8 Conclusion
Inspired by the group envy-freeness concept, we formalized
several relaxations for indivisible goods and chores. The con-
cepts have both fairness and efficiency flavours. Our defini-
tions are general and work well for ordinal and cardinal pref-
erences involving goods and chores. We clarified the relation
of GEF1 with other concepts and presented several positive
computational results. In the paper, we focussed on additive
utilities. For monotonic utility functions, even for two agents
a GEF1 allocation is not guaranteed to exist. Several interest-
ing questions arise as a result of our study. The main ques-
tion left open is the existence of GEF1 allocations when there
are goods and chores for additive preferences. The question
has been answered positively in the case of goods. However
the proof involves the Nash social welfare which cannot be
used with chores (it, for instance, no longer implies EF1 when
there are chores). Moreover, it is not clear how one should ex-
tend GEF1 for groups of different size in our context. Consid-
ering that protection of groups is one of the central concerns
in new research on algorithmic fairness, we envisage GEF1
and its variants to spur further interesting work in the area.
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