
Computational Complexity of Necessary Envy-freeness
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Abstract

We consider the fundamental problem of fairly allocating indivisible items when
agents have strict ordinal preferences over individual items. We focus on the
well-studied fairness criterion of necessary envy-freeness. For a constant number
of agents, the computational complexity of the deciding whether there exists an
allocation that satisfies necessary envy-freeness has been open for several years.
We settle this question by showing that the problem is NP-complete even for
three agents. Considering that the problem is polynomial-time solvable for the
case of two agents, we provide a clear understanding of the complexity of the
problem with respect to the number of agents.
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1. Introduction

When allocating items among agents, a natural and fundamental concern
is fairness [2, 5, 9, 12]. We consider the setting in which agents have strict
ordinal preferences over the items. The fairness concept we focus on is neces-
sary envy-freeness [3, 6]. An allocation satisfies necessary envy-freeness if for
any two agents i and j with allocations Ii and Ij , there exists an injection f
from Ij to Ii such that for each item x ∈ Ij , agent i prefers the item f(x)
over x. This requirement has been referred to by different terms in the litera-
ture including responsive-set (RS) envy-freeness [3], stochastic-dominance (sd)
envy-freeness [3], not possible envy-freeness [7] and itemwise envy-freeness [8].

Bouveret et al. [6] considered the computational complexity of checking
whether a complete necessary envy-free allocation exists or not; we will call
this problem ExistsNEF (precise definitions follow in Section 2). Bouveret
et al. [6] proved that ExistsNEF is NP-complete even if the number of items
is twice as much as the number of agents. They also showed that the problem
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is polynomial-time solvable when the number of agents is two. Since the work
of Bouveret et al. [6] in 2010, the complexity of the problem has been open
for constant number of agents [3, 6], even though scenarios where the task is
to find a fair allocation of items among a small, fixed number of agents is of
high practical interest, and has been the focus of considerable research in the
area (see, e.g., [1, 8, 10, 11]).

In this paper, we resolve this open problem by showing that ExistsNEF is
NP-complete if the number of agents is a constant at least three. This completes
our understanding of the computational complexity of ExistsNEF as a function
of the number of agents involved; see Table 1. We remark that our result for the
case where the number of agents is exactly three was announced in conference
paper [4].

n = 2 fixed n ≥ 3 unbounded n

ExistsNEF in P [6] NP-complete (Thm. 2) NP-complete [6]

Table 1: Complexity of ExistsNEF. Our result is in bold font.

2. Preliminaries

Formally, an instance of our problem is a triple (N, I, L), where N is a set of
n agents, I a set of indivisible items, and L is a collection of preference lists LA

for each agent A ∈ N . Each preference list LA is a strict linear ordering over
the set I of items.

An assignment π of items to agents is an allocation, and π is complete if it
assigns each item of I to some agent. A complete allocation can be viewed as
a partitioning of he items into n bundles with each bundle corresponding to an
agent’s allocation.

When reasoning about preferences over bundles of items, an agent may be re-
quired to express preferences over an exponential number of bundles. A compact
way of expressing preferences over bundles is for agents to express preferences
over individual items and then extend them over bundles of items with respect
to the responsive set extension. In this notion, we say that an agent A prefers a
set I1 of items over a set I2 of items if there exists an injection f from I2 to I1
such that for each item x ∈ I2, agent A prefers the item f(x) over x. An allo-
cation is necessarily envy-free (NEF) if each agent prefers its own set of items
over any set of items allocated to some other agent. Note that a NEF allocation
is envy-free for all additive valuations consistent with the ordinal preferences.

Example 1. Suppose we have four items 1, 2, 3, and 4, and two agents A and B
with the following preferences over the items.

A : 1 � 2 � 3 � 4

B : 2 � 1 � 4 � 3
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In that case, the unique NEF allocation is one in which A gets 1 and 3, while
agent B gets 2 and 4.

The central problem we consider in the paper is the ExistsNEF problem.
In this problem, the task is to find a complete NEF allocation if it exists, or
return ‘no’ if no such allocation exists.

ExistsNEF

Input: A triple (N, I, L) where N is a set of agents, I a set of items,
and L is a collection of preference lists for each agent in N .

Question: Does a complete NEF allocation exist for (N, I, L)?

The complexity of ExistsNEF for a constant number of agents has been
an open problem [6, 3]. We prove its NP-completeness first for the case of three
agents in Section 3, and then for the case when the number of agents is a fixed
integer at least three in Section 4.

Notation. We let [h] = {1, 2 . . . , h} for any positive integer h. For a linear
ordering L = (s1, . . . , sm) over a set S = ∪i∈[m]si of items, we define L(i : j) =
(si, si+1, . . . , sj) for any i and j with 1 ≤ i ≤ j ≤ m. For X ⊆ S, we let L|X be
the restriction of L to X, and we write [L|X ] for the set of elements in L|X .

The definition of necessary envy-freeness can be reformulated using Hall’s
theorem into the following equivalent form, which we will use throughout the
paper.

Proposition 1. For a given set N of agents, a set I of items, and a preference
list LA for each agent A ∈ N , an allocation π : I → N is NEF if and only if for
each pair of agents A and B (where A 6= B) and index i ∈ [|I|] we have:∣∣[LA(1 : i)] ∩ π−1(A)

∣∣ ≥ ∣∣[LA(1 : i)] ∩ π−1(B)
∣∣ .

3. Result for exactly three agents

We start by determining the computational complexity of ExistsNEF in
the case when there are exactly three agents.

Before stating and proving our main result, Theorem 1, let us first give
some intuition why a complete NEF allocation may be hard to find. By Propo-
sition 1, each agent must be allocated its top-choice item in any complete NEF
allocation. Hence, a natural approach would be to consider the requirements
of Proposition 1 in an iterative manner, starting with the top-choice items and
considering longer and longer prefixes of the preference lists at each step, main-
taining throughout a “representative” set of allocations of the items appearing
in the current prefixes. If we could keep the size of such a representative set
small and, simultaneously, guarantee that at least one allocation in our repre-
sentative set can be completed into a complete NEF allocation (assuming that
such an allocation exists), then such an incremental algorithm would yield a
possibility for solving ExistsNEF efficiently.
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Theorem 1 shows, however, that ExistsNEF is unlikely to be polynomial-
time solvable even for three agents. The intuition behind our NP-hardness
proof builds on the flaw in the approach described in the above paragraph.
First, there may be several partial allocations that respect the requirements
of Proposition 1 for some index i, and in fact, it is not hard to see that the
number of such allocations can grow exponentially in i. Second, as our reduction
shows, selecting a relatively small subset of partial solutions among those that
satisfy the requirements of Proposition 1 for some index i, so that we can safely
disregard the remaining ones when considering larger indices, is not possible. It
turns out that were such an approach viable, it could be used for determining
the value of certain variables in a given Boolean formula (or to narrow down the
set of possible truth assignments on them) without even knowing the formula
itself. So the hardness of the problem lies in deciding how to allocate those
items that appear early in the agents’ preference lists in a way that we will not
regret our choices later on, when we allocate the less-desired items.

Theorem 1. ExistsNEF, the problem of deciding whether a complete NEF
allocation exists, is NP-complete for instances with three agents.

Proof. Containment in NP is trivial due to Proposition 1. We will show the
NP-hardness of our problem by a reduction from the NP-complete Not-All-
Equal 3SAT problem [13]. The input for Not-All-Equal 3SAT is a Boolean
formula ϕ = c1 ∧ · · · ∧ cm in conjunctive normal form with variables x1, . . . , xn,
where each clause contains three literals. The task is to find a truth assignment
for ϕ such that each clause contains at least one true literal and at least one
false literal; such an assignment is valid.

Not-All-Equal 3SAT

Input: A Boolean formula ϕ = c1 ∧ · · · ∧ cm in conjunctive normal
form with variables x1, . . . , xn, where each clause contains
three literals.

Question: Does there exist a truth assignment for ϕ such that each
clause contains at least one true literal and at least one false
literal?

We construct an instance (N, I, L) of ExistsNEF with N = {A,B,C} such
that (N, I, L) admits a complete NEF allocation if and only if ϕ has a valid
assignment.

Construction. Let µi denote the number of occurrences of variable xi in ϕ as
a positive or negative literal; note

∑n
i=1 µi = 3m. W.l.o.g. we may assume that

each µi is an even number; this can be achieved by adding the clause (xi∨xi∨xi)
for each variable xi with an odd number of occurrences.
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The set I of items is defined as follows; note that |I| = 66m+ 3.

I =
(
{a31,0, b31,0, c31,0

}
∪
⋃
k∈[m]

{
sk, t

1
k, t

2
k

}
∪

⋃
i∈[n],j∈[µi]

(
{αi,j , βi,j , γi,j} ∪

{
[ab]hi,j , [bc]

h
i,j , [ca]hi,j : h ∈ {0, 1, 2}

}
∪
{
ahi,j , b

h
i,j , c

h
i,j : h ∈ {1, 2, 3}

})
We will define the preferences of agents through several types of “building

blocks”. A block is a triple of lists where each list is a linearly ordered subset
of I. Given two blocks L = (L1, L2, L3) and L′ = (L′1, L

′
2, L
′
3) such that Li

and L′i are disjoint for any i ∈ [3], we define their concatenation as L + L′ =
(L1 +L′1, L2 +L′2, L3 +L′3), where Li+L′i denotes the (standard) concatenation
of lists.

Preference lists: a high-level view. We begin with a single initial block I0.
Then, for each variable xi, i ∈ [n], we define the following blocks. For each
occurrence of xi in ϕ, we construct a literal block : for some j ∈ [µi], we denote
the literal block corresponding to the j-th occurrence of variable xi by Xi,j .
Then we construct µi/2 equivalence blocks Ei,2j where j ∈ [µi/2]. We denote
the concatenation Xi,1 + · · ·+Xi,µi + Ei,2 + · · ·+ Ei,µi by Yi.

Each literal block will represent the choice of a truth assignment for the
given occurrence of a variable, as there will be two possible ways to allocate the
items appearing in a given literal block to the agents. The equivalence blocks
will ensure that these choices are consistent for a given variable xi. Thus,
the blocks in Yi together represent the choice of a truth assignment for the
variable xi. Next, for each clause ck of ϕ, we define a validity block Vk; this
block will make sure that any complete NEF allocation corresponds to a truth
assignment that is valid for the clauses ck. Finally, we define a closing block
Z whose sole function is to ensure that each preference list contains all items
in I. The full preference lists of the agents are obtained by the concatenation
I0 + Y1 + · · ·+ Yn + V1 + · · ·+ Vm + Z.

Details of the blocks. We give the definitions of the building blocks below.
For better readability, we give each block as subsequences of the preference lists
of the agents in N = {A,B,C}. Moreover, we define a triad as a group of
three items contained in LX [3k + 2 : 3k + 4] for some k ∈ Z and X ∈ N . In
the arguments below, it will be crucial to view the list contained in some block
(other than the short blocks I0 and Z) as sequences of triads.

Initial block I0:

A: a31,0
B: b31,0
C: c31,0
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Literal block Xi,j :

A: b3i,j−1, c
3
i,j−1, a

1
i,j , b1i,j , [ca]1i,j , [ca]2i,j , c

1
i,j , βi,j , a

2
i,j ,

c2i,j , [ab]
1
i,j , [ab]

2
i,j , b2i,j , γi,j , a

3
i,j , [bc]2i,j , [ab]

0
i,j , [ca]0i,j

B: a3i,j−1, [bc]
1
i,j , [bc]

2
i,j , c

3
i,j−1, αi,j , b

1
i,j , a1i,j , c

1
i,j , b

2
i,j ,

c2i,j , [ab]
1
i,j , [ab]

2
i,j , a2i,j , γi,j , b

3
i,j , [ca]2i,j , [ab]

0
i,j , [bc]

0
i,j

C: a3i,j−1, [bc]
1
i,j , [bc]

2
i,j , b

3
i,j−1, αi,j , c

1
i,j , b1i,j , [ca]1i,j , [ca]2i,j ,

a1i,j , βi,j , c
2
i,j , a2i,j , b

2
i,j , c

3
i,j , [ab]2i,j , [ca]0i,j , [bc]

0
i,j

To “attach” the blocks of some variable xi to the blocks of the previous
variable xi−1, we let a3i,0 = a3i−1,µi−1

, b3i,0 = b3i−1,µi−1
, and c3i,0 = c3i−1,µi−1

whenever i ≥ 2; we only have duplicate names for these items to ease the
formalization. For similar reasons, we let [ab]0i,µi+1 = [ab]0i,1, [ab]1i,µi+1 = [ab]1i,1,
and γi,µi+1 = γi,1 in the definition of Ei,2j below (so indices are taken modulo
µi for these items).

Equivalence block Ei,2j :

A: −
B: [ca]1i,2j−1, [ca]0i,2j , βi,2j−1, [ca]0i,2j−1, [ca]1i,2j , βi,2j

C: [ab]1i,2j , [ab]
0
i,2j+1, γi,2j , [ab]0i,2j , [ab]

1
i,2j+1, γi,2j+1

For defining the validity block Vk for some k ∈ [m], let us assume that clause
ck contains the ju-th, jv-th, and jz-th occurrence of the variables xu, xv, xz,
respectively, in the formula ϕ. If xu appears in ck as a positive literal, then we
define the item `u as `u = [bc]1u,ju , otherwise we set `u = [bc]0u,ju . We define `v
and `z analogously, and we denote the items corresponding to the negated form
of these literals by `u, `v, and `z (thus, if `u = [bc]1u,ju , then `u = [bc]0u,ju , and
vice versa). Now we are ready to describe the validity block Vk.

Validity block Vk:

A: αu,ju , sk, `u, `v, `z, t
1
k, αv,jv , αz,jz , `u, `v, `z, t

2
k

B: sk, t
1
k, t

2
k

C: sk, t
1
k, t

2
k

Closing block Z:

A: b3n,µn
, c3n,µn

B: a3n,µn
, c3n,µn

C: a3n,µn
, b3n,µn

Well-formed instance. It is clear that the construction takes polynomial time.
It is, however, not so obvious to see that the concatenation of the constructed
blocks yields a well-formed instance: one has to check that each preference list
contains each item exactly once.

Items of the form ahi,j , b
h
i,j and chi,j with h ∈ [3] appear in the literal

block Xi,j , with two exceptions for each agent: in agent A’s preference list,
items b3i,j and c3i,j only appear in the literal block following Xi,j (or, for i = n

6



and j = µn, in the closing block Z); the same happens in the preference list of
agents B and C regarding the items of {a3i,j , c3i,j} and {a3i,j , b3i,j}, respectively.

Items of {[bc]0i,j , [bc]1i,j , αi,j} for some i ∈ [n], j ∈ [µi] appear in the pref-
erences of agents B and C within the literal block Xi,j , and they appear in
LA within the validity block Vk corresponding to the clause ck containing the
j-th occurrence of variable xi in ϕ. Items of {[ca]0i,j , [ca]1i,j , βi,j} appear within
the literal block Xi,j for agents A and C, and in the equivalent block Ei,j′

for agent B, where j′ = 2dj/2e. Similarly, items of {[ab]0i,j , [ab]1i,j , γi,j} appear
within Xi,j for agents A and B, and in Ei,j′ for agent C, where j′ = 2bj/2c if
j > 1, and j′ = µi if j = 1. For any agent, all remaining items of the form [ab]hi,j ,

[bc]hi,j , or [ca]hi,j for some h ∈ {0, 1, 2} can be found within Xi,j . This leaves us

with the items of {sk, t1k, t2k}, appearing in the validity block Vk for each k ∈ [m],
and the items of the initial block I0, also appearing in X1,1.

We can thus conclude that each constructed preference list is indeed a strict
linear order over I.

To verify the correctness of our reduction, we need the following crucial
lemma that proves certain key properties of the constructed instance.

Lemma 1. Suppose π is a complete NEF allocation for (N, I, L).

(i) For all indices i ∈ [n], j ∈ [µi] and h ∈ [3] (and also for the case i = 1,
j = 0 and h = 3) we have

π(ahi,j) = A, π(αi,j) = A,
π(bhi,j) = B, π(βi,j) = B,
π(chi,j) = C, π(γi,j) = C.

(ii) In any literal block Xi,j, one of the followings hold:
(C1) Xi,j is of type 1, meaning

π([bc]1i,j) = C, π([bc]2i,j) = B, π([bc]0i,j) = B,
π([ca]1i,j) = A, π([ca]2i,j) = C, π([ca]0i,j) = C,
π([ab]1i,j) = B, π([ab]2i,j) = A, π([ab]0i,j) = A,

(C2) Xi,j is of type 2, meaning

π([bc]1i,j) = B, π([bc]2i,j) = C, π([bc]0i,j) = C,
π([ca]1i,j) = C, π([ca]2i,j) = A, π([ca]0i,j) = A,
π([ab]1i,j) = A, π([ab]2i,j) = B, π([ab]0i,j) = B.

(iii) Let S be the list LX [1 : 3k+ 1] for some k ∈ N and agent X, where either
X = A and k ∈ [18m], or X ∈ {B,C} and k ∈ [22m]. Then [S] contains
exactly k + 1 items allocated to X by π, and exactly k items allocated to
each of the other two agents.

(iv) Let S be the list LA[1 : 54m+6k+1] for some k ∈ [2m]. Then [S] contains
exactly 18m+2k+1 items allocated to A by π, and exactly 18m+2k items
allocated to each of the agents B and C.
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(v) For any i ∈ [n], all literal blocks in Yi are of the same type; we call this
the type of Yi.

Proof. We prove statements (i)–(iv) of the lemma in an inductive manner, block
by block. Within a block, however, we will move from triad to triad. Let us
consider such prefixes SA, SB , and SC of the preference lists LA, LB , and LC ,
respectively, for which B = (SA, SB , SC) is the concatenation of the first few
blocks in our constructed instance, and let Bnext be the next block. We prove
the lemma by induction, so we assume that the statements of (i) hold for all
items appearing in B, statement (ii) holds for all literal block contained in B,
and that (iii) and (iv) hold for all lists S contained in B.1 We refer to these
claims as the induction statements, to distinguish them from the statements of
the lemma.

First observe that the induction statements indeed hold if B = I0. To see
this, observe that in a complete NEF allocation each agent must get its most
preferred item.

We are going to prove that the induction statements also hold for B+Bnext.
We distinguish between the following cases, depending on Bnext.

Case for a literal block: Bnext = Xi,j for some i and j.
By the induction, we know π(a3i,j−1) = A, π(b3i,j−1) = B and π(c3i,j−1) = C,

since these items already appear in the previous block. Induction statement (iii)
for SA, SB , and SC imply by Proposition 1 that each of the agents has to obtain
at least one item from his or her three most preferred items in Xi,j to ensure
necessary envy-freeness. Therefore, the first triad for A shows that π must
allocate a1i,j to A. With the same reasoning, the first triads for agents B and C

show that one of [bc]1i,j and [bc]2i,j must be allocated to B, and the other to C.
Looking at the second triads for B and C in Xi,j , we get that αi,j can only

be allocated to A, so as not to create too many items in the preference list of B
allocated to C, or vice versa. This yields also π(b1i,j) = B and π(c1i,j) = C.
Now, considering agents A and C and their second and third triads in Xi,j ,
respectively, we get that one of [ca]1i,j and [ca]2i,j must be allocated to A, and

the other to C. Considering the third triad for agent B, π(b2i,j) = B follows.
Next, looking at the third triad for A and the fourth triad for C, we can

observe that βi,j must be allocated to B to ensure necessary envy-freeness,
and π(a2i,j) = A and π(c2i,j) = C follow as well. By the fourth triads for A

and B, one of [ab]1i,j and [ab]2i,j must be allocated to A, and the other to B.

Considering the fifth triads, arguing as above we get π(a3i,j) = A, π(b3i,j) = B

and π(c3i,j) = π(γi,j) = C. This shows that the induction statement (i) holds
for B +Bnext.

Now, consider the last triads of Xi,j . Clearly, each agent has to be allocated

1More precisely, we assume that (iii) and (iv) hold for all lists S that are of the form
specified by the corresponding statement, and which, additionally, are contained in one of SA,
SB , or SC . Note that the statement of (iv) is empty if |SA| ≤ 54m+ 1, that is, if B does not
contain any validity blocks.
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at least one item from his or her triad, and there are exactly three items ([bc]0i,j ,

[ca]0i,j , and [ab]0i,j) that they can get. Supposing that π allocates both [bc]2i,j
and [ca]2i,j to C, one can see that neither [bc]0i,j , nor [ca]0i,j can be allocated
to C, as that would create too many items allocated by π to C in the list of
either A or B. Analogously, we obtain that neither π([bc]2i,j) = π([ab]2i,j) = B,

nor π([ca]2i,j) = π([ab]2i,j) = A is possible. Hence, we must have that either

π([bc]2i,j) = C, π([ca]2i,j) = A and π([ab]2i,j) = B, or π([bc]2i,j) = B, π([ca]2i,j) = C

and π([ab]2i,j) = A. In the former case, we quickly get that A cannot have [ab]0i,j
(as then B would have two items in his last triad of Xi,j allocated to A), yielding
π([ab]0i,j) = B. Similarly, we get π([bc]0i,j) = C and π([ca]0i,j) = A as well. In the

latter case, the analogous arguments prove π([bc]0i,j) = B, π([ca]0i,j) = C and

π([ab]0i,j) = A. Recalling our observations in the previous paragraph on [ab]1i,j ,

[bc]1i,j and [ca]1i,j , we get that Xi,j is either of type 0 or of type 1. Hence, the
induction statement for (ii) holds as well.

It remains to observe that π allocates exactly one item to each of the agents
from every triad, showing that (iii) holds for B + Bnext. Since (iv) holds vacu-
ously, we can conclude that all the induction statements hold for B +Bnext.

Case for an equivalence block: Bnext = Ei,2j for some i and j.
First, statements (i), (ii), and (iv) automatically remain true for B + Bnext

by the induction statements. Since the induction statements for claims (ii) and
(iii) hold for SB , and both [ca]1i,2j−1 and [ca]0i,2j appear in the first triad of LB

within Ei,2j , we obtain that either π([ca]1i,2j−1) = A and π([ca]0i,2j) = C, or vice
versa. Hence, Xi,2j−1 and Xi,2j must be of the same type, implying also that
each agent obtains exactly one item from both triads of LB within the block
(here we used π(βi,2j) = π(βi,2j−1) = B by induction statement (i)). Similarly,
the triads of LC within Ei,2j show that Xi,2j and Xi,2j+1 have the same type2,
and that π allocates an item from each triad to each agent. This proves that
induction statement (iii) holds for B +Bnext.

Case for a validity block: Bnext = Vk for some k.
Induction statements (i) and (ii) again remain true for B +Bnext automati-

cally. By induction statement (iii), the triads for B and C imply that π allocates
exactly one item from {sk, t1k, t2k} to each of the agents; this proves induction
statement (iii) for B + Bnext. By induction statement (ii), we also know that
each of the items `u, `v, and `z is allocated to one of B or C by π. This means
that π can allocate at most two items to A from {αu,ju , sk, `u, `v, `z, t1k}. Thus,
by induction statement (iv), π must allocate exactly two items to each of the
agents from the first two triads for A. Similarly, each agent gets two items from
the last two triads for A. This proves that induction statement (iv) remains
true for B +Bnext.

Case for the closing block: Bnext = Z.
Notice that all induction statements remain true for B +Bnext trivially.

2Recall that indices within the equivalence block Ei,2j are taken modulo µi, so for j = µi/2
we obtain that Xi,µ(i) and Xi,1 have the same type.
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Using the induction statements for the whole instance, claims (i)–(iv) fol-
low immediately. Finally, our arguments for the case of an equivalence block
also prove that all literal blocks contained in some Yi are of the same type, so
claim (v) holds as well.

Correctness of our reduction. We now prove that there exists a valid allo-
cation for the input formula ϕ if and only if the constructed instance (N, I, L)
admits a complete NEF allocation.

Direction “⇒”: Let us first suppose that π : I → N is a complete NEF
allocation. Using Lemma 1 we construct a valid truth assignment for ϕ based
on the allocation π. Namely, we set xi to true if and only if the literal blocks
in Yi are of type 1; by claim (v) of Lemma 1 π is well-defined.

Consider the validity block Vk for some k ∈ [m], involving the ju-th, jv-th,
and jz-th occurrence of the variables xu, xv, and xz, respectively. Observe that
there are exactly 54m+ 12(k−1) + 1 items preceding block Vk in the preference
list LA of agent A. By claim (iv) of Lemma 1, we know that among these items
exactly 18m+ 4(k− 1) + 1 are allocated to A by π, and exactly 18m+ 4(k− 1)
are allocated to each of the other two agents.

Thus, using again claim (iv), we get that π allocates exactly two items
from {αu,ju , sk, `u, `v, `z, t1k} to each agent. By claim (i) of Lemma 1, we know
π(αu,ju) = A, and from claim (ii) we get that each of `u, `v, and `z is allocated
to one of the agents B or C. Thus, either sk or t1k is allocated to A. Therefore
we obtain that π allocates either 1 or 2 among the items `u, `v, and `z to C.

Using now the definition of these items, and that condition (C1) holds for
the variables set to true, we get that the number of true literals in the clause ck
equals the number of items in {`u, `v, `z} allocated to C by π. Since this value
must be either 1 or 2 (as argued above), we get that ck contains at least 1 but
at most 2 true literals. Hence, our truth assignment is indeed valid for ϕ.

Direction “⇐”: For the converse direction, suppose that we are given a valid
truth assignment σ for ϕ. We construct an allocation π as follows. First, we
allocate all items appearing in claim (i) of Lemma 1 as required there. Next,
for each variable xi, we let Yi have type 1 exactly if σ sets xi to true, and we
let Yi have type 2 otherwise (yielding the allocations as given in claim (ii) of
Lemma 1). We also set π(sk) = A for each clause ck. Finally, we set π(t1k) = B
and π(t2k) = C if there are 2 true literals in the clause ck according to σ, and
we set π(t1k) = C and π(t2k) = B otherwise.

It is clear that π is complete. To verify that it is NEF, we use the char-
acterization given in Proposition 1: it suffices to check that π assigns exactly
one item to each agent from each triad of any preference list, except for the
triads of LA contained in a validity block. There, π always assigns two items to
agent A first, followed by four items distributed among B and C evenly, thus
fulfilling the requirements of Proposition 1.
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4. Result for at least three agents

In this section we generalize Theorem 1 to the case where the number of
agents is a constant integer at least three.

Theorem 2. For any fixed integer q ≥ 3, ExistsNEF (deciding whether a
complete NEF allocation exists) for instances with q agents is NP-complete.

Proof. ExistsNEF is clearly in NP, so we need to show its NP-hardness. To
this end, we are going to modify the reduction given in the proof of Theorem 1,
so we will re-use most of the notation. The reduction is from the same variant of
Not-All-Equal 3SAT as in the proof of Theorem 1, meaning that we again
assume that µi, the number of occurrences of variable xi, is an even integer for
each i ∈ [n].

Dummy agents and items. We construct an instance (Ñ , Ĩ, L̃) of Ex-
istsNEF that contains agents A, B, C and q − 3 additional dummy agents
D1, . . . , Dq−3. We will keep the set I of items used in the proof of Theorem 1,
and we define our current set of items as

Ĩ = I ∪ {drτ | r ∈ [q − 3], 0 ≤ τ ≤ |I|/3− 1}.

The dummy item drτ will appear at the (τq+1)-st position in the preference list
of agent Dr; we will make sure that any NEF allocation assigns drτ to Dr. For
brevity, we let 〈dτ 〉 denote the sequence d1τ , . . . , d

q−3
τ , and we let 〈dτ 〉−r denote

the sequence obtained from 〈dτ 〉 by removing the item drτ .

Preferences. We define preferences using the preference lists LA, LB , and LC

defined in the proof of Theorem 1 for agents A, B, and C. Instead of considering
triads (i.e., sequences of three items in the preference lists) we now decompose
each preference list within a block (except for the initial and closing blocks) into
sequences of q items which we will call q-ads.

First, to construct the new preference list L̃X for some agent X ∈ {A,B,C},
for each τ ∈ [22m], we insert 〈dτ−1〉 at the beginning of the τ -th triad in LX ,
that is, the triad LX [3τ − 1 : 3τ + 1]. This way, the τ -th triad of LX becomes

the τ -th q-ad of L̃X . Second, for each r ∈ [q − 3] we construct the preference

list L̃D
r

of dummy agent Dr based on LC as follows: for each τ ∈ [22m], we
insert 〈dτ−1〉−r at the beginning and drτ at the end of the τ -th triad of LC ,
thus obtaining the τ -th q-ad for agent Dr. In addition, we insert the item dr0 as
the most preferred item for Dr. To construct the closing block for some agent
X ∈ {A,B,C}, we append 〈d22m〉−r to the end of the preference list. Similarly,
for each dummy agent Dr we append 〈d22m〉−r and also the item c31,0 to the end
of the preference list.

The preferences thus defined are shown below. For each block Borig of the

instance constructed in the proof of Theorem 1 we let B̃orig denote the block we
obtain by modifying Borig as described above. Each block comprises q lists, one
for each agent, so index r in the definitions below takes on each value in [q− 3].
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Modified initial block Ĩ0:

A: a31,0
B: b31,0
C: c31,0
Dr: dr0

For each of the following blocks, we set integers τ and ρ such that the original
block starts with the τ -th triad in agent A’s preference list, and starts with the
ρ-th triad in agent B’s preference list. For a literal block τ = ρ holds, since a
literal block comprises lists of the same length, but τ and ρ differ in case of an
equivalence or a validity block (except for the first equivalence block).

Modified literal block X̃i,j :

A: 〈dτ−1〉, b3i,j−1, c3i,j−1, a1i,j , 〈dτ 〉, b1i,j , [ca]1i,j , [ca]2i,j ,

〈dτ+1〉, c1i,j , βi,j , a2i,j , 〈dτ+2〉, c2i,j , [ab]1i,j , [ab]2i,j ,
〈dτ+3〉, b2i,j , γi,j , a3i,j , 〈dτ+4〉, [bc]2i,j , [ab]0i,j , [ca]0i,j

B: 〈dτ−1〉, a3i,j−1, [bc]1i,j , [bc]2i,j , 〈dτ 〉, c3i,j−1, αi,j , b1i,j ,
〈dτ+1〉, a1i,j , c1i,j , b2i,j , 〈dτ+2〉, c2i,j , [ab]1i,j , [ab]2i,j ,
〈dτ+3〉, a2i,j , γi,j , b3i,j , 〈dτ+4〉, [ca]2i,j , [ab]

0
i,j , [bc]

0
i,j

C: 〈dτ−1〉, a3i,j−1, [bc]1i,j , [bc]2i,j , 〈dτ 〉, b3i,j−1, αi,j , c1i,j ,
〈dτ+1〉, b1i,j , [ca]1i,j , [ca]2i,j , 〈dτ+2〉, a1i,j , βi,j , c2i,j ,
〈dτ+3〉, a2i,j , b2i,j , c3i,j , 〈dτ+4〉, [ab]2i,j , [ca]0i,j , [bc]

0
i,j

Dr: 〈dτ−1〉−r, a3i,j−1, [bc]1i,j , [bc]2i,j , drτ , 〈dτ 〉−r, b3i,j−1, αi,j , c1i,j , drτ+1,

〈dτ+1〉−r, b1i,j , [ca]1i,j , [ca]2i,j , d
r
τ+2, 〈dτ+2〉−r, a1i,j , βi,j , c2i,j , drτ+3,

〈dτ+3〉−r, a2i,j , b2i,j , c3i,j , drτ+4, 〈dτ+4〉−r, [ab]2i,j , [ca]0i,j , [bc]
0
i,j , d

r
τ+5

Modified equivalence block Ẽi,2j :

A: −
B: 〈dρ−1〉, [ca]1i,2j−1, [ca]0i,2j , βi,2j−1, 〈dρ〉, [ca]0i,2j−1, [ca]1i,2j , βi,2j

C: 〈dρ−1〉, [ab]1i,2j , [ab]0i,2j+1, γi,2j , 〈dρ〉, [ab]0i,2j , [ab]1i,2j+1, γi,2j+1

Dr: 〈dρ−1〉−r, [ab]1i,2j , [ab]0i,2j+1, γi,2j , d
r
ρ, 〈dρ〉−r, [ab]0i,2j , [ab]1i,2j+1, γi,2j+1, d

r
ρ+1

Modified validity block Ṽk:

A: 〈dτ−1〉, αu,ju , sk, `u, 〈dτ 〉, `v, `z, t1k,
〈dτ+1〉, αv,jv , αz,jz , `u, 〈dτ+2〉, `v, `z, t2k

B: 〈dρ−1〉, sk, t1k, t2k
C: 〈dρ−1〉, sk, t1k, t2k
Dr: 〈dρ−1〉−r, sk, t1k, t2k, drρ
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Modified closing block Z̃:

A: b3n,µn
, c3n,µn

, 〈d22m〉
B: a3n,µn

, c3n,µn
, 〈d22m〉

C: a3n,µn
, b3n,µn

, 〈d22m〉
Dr: a3n,µn

, b3n,µn
, 〈d22m〉−r, c31,0

It is not hard to verify that the above modified preferences are well-formed,
i.e., each preference list is a linear ordering of the set of items.

Proving the correctness of our construction can be done along the same lines
as in the proof of Theorem 1, by showing the following key lemma, an analog
of Lemma 1 that also deals with dummies.

Lemma 2. Let π be a complete NEF allocation for the instance of ExistsNEF
created above. Then the statements (i), (ii), and (v) of Lemma 1 hold, and
additionally:

(i’) For each r ∈ [q − 3] and for each 0 ≤ τ ≤ |I|/3− 1 we have π(drτ ) = Dr.

(iii’) Let S contain the top qk + 1 items for some k ∈ N in the preference list
of agent X, where either X = A and k ≤ 18m, or X 6= A and k ≤ 22m.
Then S contains exactly k + 1 items allocated to X by π, and exactly k
items allocated to each of the other agents.

(iv’) Let S contain the top 18qm + 2qk + 1 items for some k ∈ [2m] in the
preference list of agent A. Then S contains exactly 18m + 2k + 1 items
allocated to A by π, and exactly 18m + 2k items allocated to each of the
other agents.

Proof. The proof is a direct analog of the proof of Lemma 1. Again we use
induction to prove each claim, except for claim (v) of Lemma 1 whose proof
remains unchanged. We prove the induction statements, modified according to
the claims of the current lemma in the straightforward way, block by block using
essentially the same arguments as in the proof of Lemma 1. Nevertheless, we
clearly have to take into account the presence of dummy agents and dummy
items, and show that our arguments can be applied in the modified instance as
well.

So let B denote the concatenation of the first few blocks of our modified
instance (Ñ , Ĩ, L̃), and let Bnext be the next block. Assuming that the induction
statements hold for B, we now prove that they prove for B +Bnext.

Case for the initial block: Bnext = Ĩ0.
Note that since dr0 is the top choice of Dr, it is clear that π must assign it

to Dr. Therefore all induction statements hold for the base case.

Case for a literal block: Bnext = X̃i,j for some i and j.

Suppose that the preference list of some agent A, B, or C within X̃i,j starts
with the series 〈dτ−1〉 for some τ ∈ [22m]. Since each item of 〈dτ−1〉 has already
appeared in the previous block within the dummy agents’ preference lists, that
is, in the last block of B, by induction statement (i’) we know that all of these
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items are allocated to dummy agents; namely π(drτ−1) = Dr for each r. Thus,
we can argue about the remaining three items within the first q-ads of LA, LB ,
and LC exactly as we did for the corresponding triads in the proof of Lemma 1
to obtain that π(a1i,j) = A and {π([bc]1i,j), π([bc]2i,j)} = {B,C}.

Considering now the first q-ad of the preference list of the dummy agent Dr

within X̃i,j , this means that π assigns exactly one item from this q-ad to each
agent other than Dr. Hence, by induction statement (iii’) we know that π must
assign the single remaining item, namely drτ , to Dr.

We can proceed this way, q-ad by q-ad, using the arguments of Lemma 1
combined with the above reasoning about dummy items to show that each
induction statement remains true for B + X̃i,j . For details, see Table 2 that
gives a short description of the chain of our reasoning for proving induction
statements (i), (i’), (ii), and consequently (iii’) as well. Statement (iv’) remains
true vacuously.

step q-ads considered in Xi,j consequence

0. ind. statements (i), (i’) π(a3i,j−1) = A, π(b3i,j−1) = B, π(c3i,j−1) = C,
π(drτ ) = Dr

1. 1st in L̃A π(a1i,j) = A

2. 1st in L̃B and L̃C {π([bc]1i,j), π([bc]2i,j)} = {B,C}
3. 1st in L̃D

r

π(drτ ) = Dr

4. 2nd in L̃B and L̃C π(αi,j) = A, π(b1i,j) = B, π(c1i,j) = C

5. 2nd in L̃D
r

π(drτ+1) = Dr

6. 2nd in L̃A, 3rd in L̃C {π([ca]1i,j), π([ca]2i,j)} = {A,C}
7. 3rd in L̃B π(b2i,j) = B

8. 3rd in L̃D
r

π(drτ+2) = Dr

9. 3rd in L̃A, 4th in L̃C π(βi,j) = B, π(a2i,j) = A, π(c2i,j) = C

10. 4th in L̃A and L̃B {π([ab]1i,j), π([ab]2i,j)} = {A,B}
11. 4th in L̃D

r

π(drτ+3) = Dr

12. 5th in L̃C π(c3i,j) = C

13. 5th in L̃A and L̃B π(γi,j) = B, π(a3i,j) = A, π(b3i,j) = B

14. 5th in L̃D
r

π(drτ+4) = Dr

15. 6th in L̃A, L̃B , and L̃C {π([ab]2i,j), π([bc]2i,j), π([ca]2i,j)} = {A,B,C},
Xi,j is of type 1 or type 2

Table 2: Chain of reasoning for proving induction statements (i), (i’) and (ii) for the modified

literal block X̃i,j . We also use induction statement (iii’) repeatedly to argue that each agent

has to obtain at least one item from each q-ad of its preference list within X̃i,j .

Case for an equivalence block: Bnext = Ẽi,2j .
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Suppose that the preference list of some agent A, B, or C within the
block Ẽi,2j starts with the series 〈dρ〉 for some ρ ∈ [22m]. Induction state-
ments (i), (i’) and (ii) for B imply that the single item that π can assign to Dr

from its first q-ad within the block is drρ, so by induction statement (iii’) we
know π(drρ) = Dr. Repeating this argument again we obtain π(drρ+1) = Dr

as well, proving (i’) for B + Bnext. Statements (i), (ii), and (iv’) remain true
trivially.

Considering the first q-ad of L̃B within the block, induction statement (iii’)
implies that the literal blocks Xi,2j and Xi,2j−1 must be of the same type,
as otherwise π would assign too many items to either A or to C from the
prefix of L̃B ending with this q-ad. Similarly, considering the first q-ad of L̃C

within Ẽi,2j yields that Xi,2j and Xi,2j+1 must be of the same type (when
taking indices modulo µi). Observe that this proves not only the induction
statement (iii’) for B +Bnext, but also claim (v).

Case for a validity block: Bnext = Ṽk for some k.
Suppose that the preference lists of agents A and B within the block start

with the series 〈dτ−1〉 and 〈dρ−1〉. Note that if k = m, then τ + 2 = ρ − 1,
otherwise (i.e., if k ∈ [m−1]) we know τ+2 < ρ−1. Therefore, all four items in
{drτ−1, drτ , drτ+1, d

r
ρ−1} for some r ∈ [q−3] have already appeared in B, and hence

by induction statement (i’) π assigns them to Dr. As in the proof of Theorem 1,

by observing the q-ads of L̃B and L̃C within Ṽk we obtain {π(sk), π(t1k), π(t2k)} =
{A,B,C}; this shows statement (iii) for B+Bnext. Taking into account the q-ad

of L̃D
r

this implies π(drρ) = Dr as well, proving (i’).
Observe that since π can assign at most one item from {sk, t1k, t2k} to agent A,

we also obtain that π must assign exactly two items from the first two q-ads
of L̃A within the block to each agent. Repeating this argument again for the
third and fourth q-ads, statement (iv’) for B + Bnext follows. All remaining
induction statements remain true vacuously.

Case for the closing block: Bnext = Z̃.
Again, in this case, all induction statements remain true for B +Bnext triv-

ially.

It is straightforward to verify that using Lemma 2 the same arguments we
applied in the proof for Theorem 1 also imply Theorem 2; we leave the details
to the reader.

5. Conclusion

In this paper, we examined a fundamental fair division problem under ordinal
preferences. We resolved an outstanding open problem and proved that checking
whether a necessary envy-free allocation exists is NP-complete when the number
of agents is at least 3. It will be interesting to identify conditions under which the
problem is polynomial-time solvable. For example, does it help if the preferences
are single-peaked or if there are only two types of preferences?
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