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Abstract. We present a new model of collective decision making that
captures important crowd-funding and donor coordination scenarios. In
the setting, there is a set of projects (each with its own cost) and a
set of agents (that have their budgets as well as preferences over the
projects). An outcome is a set of projects that are funded along with
the specific contributions made by the agents. For the model, we identify
meaningful axioms that capture concerns including fairness, efficiency,
and participation incentives. We then propose desirable rules for the
model and study, which sets of axioms can be satisfied simultaneously.
An experimental study indicates the relative performance of different
rules as well as the price of enforcing fairness axioms.

Keywords: Social choice · participatory budgeting · fairness · crowd-
funding.

1 Introduction

Consider a scenario in which a group of residents want to pitch in money to
buy some common items for the house but not every item is of interest or use to
everyone. Each of the items (e.g. TV, video game console, music system, etc.) has
its price. The residents each have a maximum amount they can spend towards
the common items. Residents would like to have as much money as possible
used toward items that are useful to them. It is a scenario that is encountered
regularly in shared houses or apartments.

As a second scenario, hundreds of donors want to fund charitable projects.
Each of the projects (e.g. building a well, enabling a surgery, funding a scholar-
ship, etc.) has a cost requirement. Donors have upper caps on their individual
budgets and care about the amount of money that is used towards projects of
which they approve. The question of how to coordinate the funding in a prin-
cipled and effective way is a fundamental problem in crowdfunding and donor
coordination. The model that we propose is especially suitable for coordinating
donations from alumni at various universities.

Both of the settings above are coordination problems in which agents con-
tribute money, and they have preferences over the social outcomes. A collective
outcome specifies which projects are funded and how much agents are charged.
For these problems, we consider the following question. What is a desirable and
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principled way of aggregating the preferences and financial contributions of the
agents?

Contributions. We propose a formal model that we refer to as Participatory
Funding Coordination (PFC) that captures many important donor coordination
scenarios. In this model, agents have an upper budget limit. The outcome for
the problem is a set of projects that are funded and the respective monetary
contributions of the agents for the funded projects. The utility of the agents is
the amount of money used for projects that are approved by them. It reflects
the approved investment from the perspective of an individual agent. We lay the
groundwork for work on the model by formulating new axioms for the model. The
logical relations between the axioms are established and the following question
is studied: which sets of axioms are simultaneously achievable? We propose and
study rules for the problems that are inspired by welfarist concerns but satisfy
participation constraints. In addition to an axiomatic study of the rules, we also
undertake an experimental comparison of the rules. The experiment sheds light
on the impact that various fairness or participation constraints can have on the
social welfare. This impact has been referred to as the price of fairness in other
contexts. In particular, we investigate the effects of enforcing fairness properties
on instances that model real-world applications of PFC, including crowdfunding.

2 Related Work

Our model generally falls under the umbrella of a collective decision making set-
ting in which agents’ donations and preferences are aggregated to make funding
decisions. It is a concrete model within the broad agenda of achieving effective
altruism [18, 19, 20].

The model we propose is related to the discrete participatory budgeting
model [5, 4, 3, 14, 16, 21]. In discrete participatory budgeting, agents do not
make personal donations towards the projects. They only express preferences
over which projects should be funded. We present several axioms that are only
meaningful for our model and not for discrete participatory budgeting. Algo-
rithms for discrete participatory budgeting cannot directly be applied to our
setting because they do not take into account individual rationality type re-
quirements.

Another related setting is multi-winner voting [13]. Multi-winner voting can
be viewed as a restricted version of discrete participatory budgeting. The Par-
ticipatory Funding Coordination (PFC) setting differs from multi-winner voting
in some key respects: in our model, each project (winner) has an associated cost,
and we select projects subject to a knapsack constraint as opposed to having a
fixed number of winners.

Our PFC model relies on approval ballots in order to elicit agents’ preferences.
Dichotomous preferences have been considered in several important setting in-
cluding committee voting [2, 17] and discrete participatory budgeting [4, 15].

Another related model that takes into account the contributions of agents
was studied by Brandl et al. [8]. Just like in our model, an agent’s utilities are
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based on how much money is spent on projects approved by the agent. However,
their model does not have any costs and agents can spread their money over
projects in any way. Our model has significant differences from the model of
[7, 8]: (1) in our setting, the projects are indivisible and have a minimum cost to
complete; and (2) agents may not be charged the full amount of their budgets.
The combination of these features leads to challenges in even defining simple
individual rationality requirements. Furthermore, it creates difficulties in find-
ing polynomial-time algorithms for some natural aggregation rules (utilitarian,
egalitarian, Nash product, etc.). Our model is more appropriate for coordinat-
ing donations where projects have short-term deadlines and a target level of
funding which must be reached for the project to be successfully completed. We
show that the same welfarist rules that satisfy some desirable properties in the
model [7, 8], fail to do so in our model. Just as the work of Brandl et al. [7, 8],
Buterin et al. [9] consider donor coordination for the divisible model in which
the projects do not have costs and agents do not have budget limits. They also
assume quasi-linear utilities, whereas we model charitable donors who are not
interested in profit but want their money being used as effectively as possible
towards causes that matter to them.

The features of our PFC model enable the model to translate smoothly to a
number of natural settings. Crowdfunding, in particular, is a scenario in which we
would like to capitalise upon commonalities in donors’ charitable preferences [11].
Furthermore, crowdfunding projects (e.g. building a well, funding a scholarship,
etc.) often have provision points (see e.g. Agrawal et al. [1], Chandra et al.
[10], Damle et al. [12]), and it can be critical for these targets to be met. For
example, a project to raise funds for a crowdfunding recipient to pay for a medical
procedure would have to raise a minimum amount of money to be successful,
otherwise all donations are effectively wasted.

Crowdfunding projects have been discussed in a broader context with various
economic factors and incentive issues presented [1]. Bagnoli and Lipman [6] dis-
cuss additional fairness and economic considerations for the related topic of the
division of public goods. The discrete model that we explore, where projects have
finite caps, has the potential to coordinate donors and increase the effectiveness
of a crowdfunding system.

3 Participatory Funding Coordination

A Participatory Funding Coordination (PFC) setting is a tuple (N,C,A, b, w)
where N is the set of agents/voters, C is the set of projects (also generally
referred to as candidates). The function w : C → R+ specifies the cost w(c) of
each project c ∈ C. The function b : N → R≥0 specifies the budget bi of each
agent i ∈ C. The budget bi can be viewed as the maximum amount of money that
agent i is willing to spend. For any set of agents M ⊆ N , we will denote

∑
i∈M bi

by b(M). The approval profile A = (A1, . . . , An) specifies for each agent, her set
of acceptable projects Ai. An outcome is a pair (S, x) where S ⊆ C is the set
of funded projects and x is a vector of payments that specify for each i ∈ N ,
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the payment xi that is charged from agent i. We will restrict our attention to
feasible outcomes in which xi ≤ bi for all i ∈ N and only those projects get
financial contributions that receive their required amount. Also, note that the
projects that are funded are only those that receive the entirety of their price in
payments from the agents. For any given PFC instance, a mechanism F returns
an outcome. We will denote the set of projects selected by F as FC and the
payments by Fx. For any outcome (S, x), since xi ≤ bi, the money bi − xi can
either be kept by the agent i or it can be viewed as going into some common
pool. The main focus of our problem is to fund a maximal set of projects while
satisfying participation constraints.

We suppose that an agent’s preferences are approval-based. For any set of
funded projects S, any agent i’s utility is

ui(S) =
∑

c∈S∩Ai

w(c).

That is, an agent cares about how many dollars are usefully used on his/her
approved projects. Our preferences domain is similar to the one used by Brandl
et al. [8] who considered a continuous model in which projects do not have target
costs. In their model, agents also care about how much money is used for their
liked projects.

4 Axiom design

In this section, we design axioms for outcomes of the PFC setting. We consider
an outcome (S, x). For any axiom Ax for outcomes, we say that a mechanism
satisfies Ax if it always returns an outcome that satisfies Ax.

We first present three axioms for our setting that are based on the principle
of participation:

– Minimal Return (MR): each agent’s utility is at least as much as the
money put in by the agent: ui(S) ≥ xi. In other words, the societal decision
is as good for each agent i as i’s best use of the money xi that she is asked to
contribute. We will use this as a minimal condition for all feasible outcomes.

– Implementability (IMP) : There exists a payment function y : N ×C →
R≥0 such that

∑
c∈C y(i, c) = xi for all i ∈ N ,

∑
i∈N y(i, c) ∈ {0, w(c)}

for all c ∈ C and there exists no i ∈ N and c /∈ Ai such that y(i, c) > 0.
Here y(i, c) represents the money paid by i to project c. IMP captures the
requirement that an agent’s contribution should only be used on projects
that are approved by the agent.

– Individual Rationality (IR): the utility of an agent is at least as much as
an agent can get by funding alone: ui(S) ≥ maxS′⊆Ai,w(S′)≤bi(w(S′)). Note
that IR is easily achieved if the project costs are high enough: if for i ∈ N
and c ∈ C, w(c) > bi, then every outcome is IR.

We note that MR is specified with respect to the amount xi charged to the
agent. It can be viewed as a participation property: an agent would only want



Participatory Funding Coordination: Model, Axioms and Rules 5

to participate in the market if she gets at least as much utility as the money
she spent. We will show IMP is stronger than MR. IMP can also be viewed as
a fairness property: agents are made to coordinate but they only spend their
money on the projects they like.

Remark 1. If (S, x) is an IMP outcome with associated payment function y,
then for any subset of projects S′ ⊆ S, there is an IMP outcome that funds
only the set of projects S′. In particular, the payment function y′ for one such
implementable outcome is obtained by setting (for each agent i) y′(i, c) = y(i, c)
for all c ∈ S′ and y′(i, c) = 0 for all c ∈ S \ S′.

Next, we present axioms that are based on the idea of efficiency.

– Exhaustive (EXH): An outcome (S, x) satisfies EXH if there exists no set
of agents N ′ ⊆ N and unfunded project c ∈ C \ S such that c ∈ ∩i∈N ′Ai

with w(c) ≤
∑

i∈N ′(bi − xi). In words, agents in N ′ cannot pool in their
unspent money and fund another project liked by all of them.

– Pareto optimality (PO)-X: An outcome (S, x) is Pareto optimal within
the set of outcomes satisfying property X if there exists no outcome (S′, x′)
satisfying X such that ui(S

′) ≥ ui(S) for all i ∈ N and ui(S
′) > ui(S) for

some i ∈ N . Note that Pareto optimality is a property of the set of funded
projects S irrespective of the payments.

• PO is Pareto optimal among the set of all outcomes.
• PO-IMP: Pareto optimal among the set of IMP outcomes.
• PO-MR: Pareto optimal among the set of MR outcomes.

– Payment constrained Pareto optimality (PO-Pay): An outcome is
PO-Pay if it is not Pareto dominated by any outcome of at most the same
price. Formally, there exists no (S′, x′) such that

∑
i∈N x′i ≤

∑
i∈N xi,

ui(S
′) ≥ ui(S) for all i ∈ N and ui(S

′) > ui(S) for some i ∈ N .
– Weak Payment constrained Pareto optimality (weak PO-Pay): An

outcome is weakly PO-Pay if it is not Pareto dominated by any outcome
that charges at most the same cost from each agent. Formally, there exists no
(S′, x′) such that x′i ≤ xi and ui(S

′) ≥ ui(S) for all i ∈ N and ui(S
′) > ui(S)

for some i ∈ N .

A concept that can be viewed in terms of participation, efficiency, and fairness
is the adaptation of the principle of core stability for our setting.

– Core stability (CORE): There exists no set of agents who can pool in
their budget and each gets a strictly better outcome. In other words, an
outcome (S, x) is CORE if for every subset of agents N ′ ⊆ N , for every
subset of projects C ′ ⊆ C such that w(C ′) ≤

∑
i∈N ′ bi, the following holds

for some agent i ∈ N ′: ui(S) ≥ w(C ′ ∩Ai).

We also describe a basic fairness axiom for outcomes and rules based on the
idea of proportionality.
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– Proportionality (PROP): Suppose a set of agents N ′ ⊆ N each have
approval set that is exactly some (common) set of projects C ′ ⊆ C such that∑

i∈N ′ bi ≥ w(C ′). In that case, all the projects in C ′ are selected.

Finally, we consider an axiom that is defined for mechanisms rather than
outcomes. We say that a mechanism satisfies strategyproofness if there exists
no instance under which some agent has an incentive to misreport her preference
relation.

We conclude this section with some remarks on computation. The following
proposition follows via a reduction from the Subset Sum problem.

Proposition 1. Even for one agent, computing an IR, PO, PO-MR, or PO-
IMP outcome is NP-hard.

Note that IMP is a property of an outcome rather than a set of projects. We
say that a set of projects S is IMP if there exists a feasible vector of charges to
agents x such that the outcome (S, x) is IMP. The property IMP can be tested
in polynomial time via reduction to network flows.

Proposition 2. For a given set of projects S, checking whether there exists a
vector of charges x such that (S, x) is implementable can be done in polynomial
time.

5 Axioms: Compatibility and Logical Relations

In this section, we study the compatibility and relations between the axioms
formulated.

Remark 2. Note that IR and MR are incomparable. Any outcome in which every
agent is not charged any money trivially satisfies MR. However, it will not satisfy
IR if any agent could afford one of their approved projects by themselves. On
the other hand, an IR outcome may not be MR. Consider a profile with one
agent and one project. Say the agent has budget greater than the cost of the
project, but does not approve of the project. Then, the outcome where the agent
is forced to fund the project is IR but not MR.

Next, we point out that that PO-Pay is equivalent to weak PO-Pay.

Proposition 3. PO-Pay is equivalent to weak PO-Pay.

Proof. Suppose an outcome (S, x) is not weakly PO-Pay. Then, it is trivially not
PO-Pay. Now suppose (S, x) is not PO-Pay. Then, there exists another outcome
(S′, x′) such that

∑
i∈N x′i ≤

∑
i∈N xi and ui(S

′) ≥ ui(S) for all i ∈ N and
ui(S

′) > ui(S) for some i ∈ N . Note that S′ can be funded with total amount∑
i∈N x′i irrespective of who paid what. So S′ is still affordable if x′i ≤ xi for

each agent i.

The next proposition establishes further logical relations between the axioms.
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Proposition 4. The following logical relations hold between the properties.

1. IMP implies MR.
2. PO implies PO-Pay.
3. PO-X implies PO-Y if Y implies X.
4. PO-IMP implies EXH.
5. PO-IR implies EXH.
6. CORE implies IR.
7. The combination of PO-IMP and IMP imply PROP.

Next, we show that MR is compatible with PO-Pay.

Proposition 5. Suppose an outcome is MR and there is no other MR outcome
that Pareto dominates it. Then, it is PO-Pay.

Proof. Suppose the outcome (S, x) is MR and PO-MR. We claim that (S, x) is
PO-Pay. Suppose it is not PO-Pay. Then there exists another outcome (S′, x′)
such that

∑
i∈N x′i ≤

∑
i∈N xi, ui(S

′) ≥ ui(S) for all i ∈ N and ui(S
′) > ui(S)

for some i ∈ N . Note that S′ is affordable with total amount
∑

i∈N x′i irrespective
of who paid what. So S′ is still affordable if x′i ≤ xi. Therefore, we can assume
that x′i ≤ xi for all i ∈ N . Note that since S′ Pareto dominates S and since
(S, x) is MR, ui(S

′) ≥ ui(S) ≥ xi ≥ x′i for all i ∈ N . Hence (S′, x′) also satisfies
MR. Since (S′, x′) is MR and since S′ Pareto dominates S, it contradicts the
fact that (S, x) is PO-MR.

Proposition 6. There always exists an outcome that satisfies IMP, IR, PO-
IMP and hence also MR and EXH.

Proof. For each i ∈ N compute Si = arg maxS′⊆Ai,w(S′)≤bi w(S′), i.e. a max-
imum total weight set of approved projects that has weight at most bi. Then,
observe that any outcome that funds all of S =

⋃
i∈N Si is necessarily IR. Thus,

in order to construct an IMP and IR outcome, we can construct a payment func-
tion y : N × C → R≥0 that funds S. For each project c ∈ C, let nc denote the
number of agents i with c ∈ Si. Note that if c ∈ S, then nc ≥ 1. Then, for each

i ∈ N let y(i, c) = w(c)
nc

if c ∈ Si ⊆ S and y(i, c) = 0 if c /∈ Si. It is then simple to
check that each agent’s total cost is affordable to them, each project in S is fully
paid for, and each agent i only pays for projects in Si ⊆ Ai (i.e. projects that
they approve of). Therefore, we can let x = (

∑
c∈C y(1, c), . . . ,

∑
c∈C y(n, c)) and

see that the outcome (S, x) is IR and IMP.

Now, observe that if any IMP outcome (S′, x′) Pareto dominates (S, x), then
it must be also be IR because the utility of each agent is at least as high as
before. There can only be a finite number of Pareto improvements to (S, x) since
the number of possible subsets of projects to be funded is finite, and Pareto
dominance depends only on the projects funded, not the costs to the agents.
Hence, there must exist such a Pareto improvement which is IR, IMP and PO-
IMP. Finally, Proposition 4 gives that this outcome must be MR and EXH.
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Note that PO-Pay and IMP are both satisfied by an empty outcome with zero
charges. PO-IMP and IMP are easily satisfied by computing a PO outcome from
the set of IMP outcomes. PO-Pay and PO-IMP are easily satisfied by computing
a PO outcome which may not necessarily satisfy IMP.

Proposition 7. There always exists an outcome that satisfies MR, IR, PO-MR
and hence also EXH.

Proof. Existence of an outcome that satisfies MR, IR, PO-MR: From the proof
of Proposition 6, we know that an IMP and IR outcome always exists. Also, from
Proposition 4, we know that every IMP outcome is MR, so there always exists an
MR and IR outcome. Now suppose the outcome satisfying MR and IR does not
satisfy PO-MR. Then there exists another outcome satisfying MR that Pareto
dominates the original outcome, which is still IR. There cannot exist an infinite
number of Pareto improvements because there are only finitely many possible
subsets of projects that can be funded. Hence we can reach a PO-MR outcome
that is also IR and MR. Proposition 4 gives that this outcome is EXH.

We note that if no agent can individually fund a project, then every out-
come is IR. In crowdfunding settings in which projects have high costs, the IR
requirement is often easily satisfied.

6 Aggregation Rules

In this section, we take a direct welfarist view to formalize rules that maxi-
mize some notion of welfare. We consider three notions of welfare: utilitarian,
egalitarian, and Nash welfare; and we define the following rules.

– UTIL: define the utilitarian welfare derived from an outcome (S, x) as
∑

i∈N ui(S).
Then, UTIL returns an outcome that maximises the utilitarian welfare.

– EGAL: given some outcome (S, x), write the sequence of agents’ utilities
from that outcome as a tuple u(S) = (ui(S))i∈N , where u is sorted in non-
decreasing order. Then, EGAL returns an outcome (S, x) such that u(S) is
lexicographically maximal among the outcomes.

– NASH: maximises the Nash welfare derived from an output (S, x), i.e.
∏

i∈N ui(S).

Proposition 8. UTIL, EGAL, and NASH satisfy PO and hence PO-MR, PO-
IMP, PO-Pay, and EXH.

One notes that the rules UTIL, EGAL, and NASH do not satisfy minimal
guarantees such as MR. The reason is that an agent may donate her budget to
a widely approved project even though she may not approve any of such projects.

Given that the existing aggregation rules do not provide us with guarantees
that the outcomes they produce will satisfy our axioms, we can instead define
rules that optimize social welfare within certain subsets of feasible outcomes.
For a property X, we can define UTIL-X, EGAL-X, and NASH-X as rules that
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maximise the utilitarian, egalitarian and Nash welfare respectively among only
those outcomes that satisfy property X.

Next, we analyse the properties satisfied by rules EGAL/UTIL/NASH con-
strained to the set of MR or IMP outcomes. In the continuous model introduced
by Brandl et al. [8], there is no need to consider the rule NASH-IMP, as the
NASH rule in the case where projects can be funded to an arbitrary degree
(given there is sufficient budget) already satisfies IMP.

Before we study the axiomatic properties, we note that most meaningful
axioms and rules are NP-hard to achieve or compute. The following result follows
from Proposition 1.

Proposition 9. Even for one agent, computing an UTIL, UTIL-MR, UTIL-
MR, EGAL, EGAL-MR, EGAL-IMP, NASH, NASH-MR, NASH-IMP outcome
is NP-hard.

Similarly, the next result follows from Proposition 5.

Proposition 10. UTIL-MR, EGAL-MR, and NASH-MR satisfy PO-Pay.

From Proposition 5, it follows that UTIL-MR, EGAL-MR, and NASH-MR
satisfy PO-Pay. In contrast, we show that UTIL-IMP, EGAL-IMP, and NASH-
IMP do not satisfy PO-Pay. In order to show this, we prove that it is possible in
some instances for the set of jointly IMP and PO-IMP outcomes to be disjoint
from the set of PO-Pay outcomes.

Proposition 11. UTIL-IMP, EGAL-IMP and NASH-IMP do not satisfy PO-
Pay. In fact it is possible that no IMP and PO-IMP outcome satisfies PO-Pay.

Similarly, the following also holds.

Proposition 12. EGAL, EGAL-MR and EGAL-IMP are not strategyproof.

Table 1 shows the axioms that are satisfied by restricting the aggregation
rules to optimising within the space of MR or IMP outcomes.

7 Experiment

In addition to the axiomatic study of the welfare-based rules, we undertake a
simulation-based experiment to gauge the performance of different rules with
respect to utilitarian and egalitarian welfare. Our study shows the impact of
fairness axioms such as MR and IMP on welfare.

We generate random samples of profiles in order to simulate two potential
real-world applications of PFC.
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UTIL-MR EGAL-MR NASH-MR UTIL-IMP EGAL-IMP NASH-IMP

MR X X X X X X
IMP – – – X X X
PROP – – – X X X
IR – – – – – –
PO – – – – – –
PO-MR X X X – – –
PO-IMP X X X X X X
PO-Pay X X X – – –
EXH X X X X X X
CORE – – – – – –
SP – – – – – –

Table 1: Properties satisfied by UTIL-MR, EGAL-MR, NASH-MR, UTIL-IMP,
EGAL-IMP and NASH-IMP.

1. Share-house setting: In this example, we can imagine a group of house-mates
pooling their resources to fund communal items for their house. We operate
under the following assumptions:
– Number of agents from 3-6: this represents a reasonable number of house-

mates in a share-house.
– Number of projects from 5-12: projects may include buying items such

as tables, chairs, sofas, televisions, lights, kitchen appliances, washing
machines, dryers, etc.

– Agent budgets are from 300-600 and project costs are from 50-1000. We
base these costs on typical rent and furniture costs in Australia as well
as costs of the above items in first and second-hand retailers. We expect
that each agent brings some money to the communal budget, and would
spend around one or two weeks’ worth of rent on one-time communal
expenses.

2. Crowdfunding setting: In this example, we imagine a relatively small number
of expensive projects to be funded, and a large number of philanthropic
donors, and make the following assumptions.
– Number of agents from 20-50: A review of crowdfunding websites such as

Kickstarter and GoFundMe shows that the most promoted projects are
typically funded by thousands of donors, and smaller projects can attract
tens of donors. For the purposes of our simulation, we use between 20-50
donors, which is still relatively large compared to the number of available
projects.

– Number of projects from 3-8: In crowdfunding, there are far more projects
available than a donor actually sees. However, we can estimate that in a
browsing session, a donor might view the top 3-8 promoted projects.

– Agent budgets from 0-400 and project costs from 1000-10000: Projects in
real-life crowdfunding can have vastly varying costs. For our simulation,
we want for the agents with all their money combined to be able to afford
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some, but not all of the available projects in order to create instances
that are not trivially resolved by funding all or none of the projects.

The results of the experiments are shown in Figures 1, 2, 3, 4, 5, 6, 7 and 8.

Fig. 1: Average performance of rules with respect to utilitarian welfare in share-
house simulations as a percentage of the maximum achievable utilitarian welfare.

Fig. 2: Average performance of rules with respect to utilitarian welfare in crowd-
funding simulations as a percentage of the maximum achievable utilitarian wel-
fare.

Imposing MR on a rule seems to have a significant impact on both utilitarian
and egalitarian welfare on average. Of course, since IMP implies MR, we expect
that imposing IMP as a constraint will have an even greater cost on welfare,
but from our experiment, this cost is a relatively small increase on top of the
cost of imposing MR. It is worth noting that in worst-case scenarios, it is always
possible that there are no non-trivial outcomes that satisfy the constraints, and
so there is a risk that a rule subject to a constraint could produce an outcome
that gives all agents zero utility.

When considering average performance, rules are more resilient to the impo-
sition of fairness constraints for instances that simulate crowdfunding scenarios
compared to share-house scenarios. When the number of agents is high and
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Fig. 3: Worst-case performance of rules with respect to utilitarian welfare in
share-house simulations as a percentage of the maximum achievable utilitarian
welfare.

Fig. 4: Worst-case performance of rules with respect to utilitarian welfare in
crowdfunding simulations as a percentage of the maximum achievable utilitarian
welfare.

Fig. 5: Average performance of rules with respect to egalitarian welfare in share-
house simulations as a percentage of the maximum achievable egalitarian welfare.

the number of projects is small, and project costs are high compared to agent
budgets, it seems to be easier to achieve fairness properties.

We typically expect the NASH rule to be a compromise between UTIL and
EGAL. This manifests in the results, where the performance losses for NASH
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Fig. 6: Average performance of rules with respect to egalitarian welfare in crowd-
funding simulations as a percentage of the maximum achievable egalitarian wel-
fare.

Fig. 7: Worst-case performance of rules with respect to egalitarian welfare in
share-house simulations as a percentage of the maximum achievable egalitarian
welfare.

Fig. 8: Worst-case performance of rules with respect to egalitarian welfare in
crowdfunding simulations as a percentage of the maximum achievable egalitarian
welfare.

with respect to utilitarian welfare are considerably less than those for EGAL.
NASH loses considerably less with respect to egalitarian welfare than UTIL.
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8 Conclusions

We proposed a concrete model for coordinating funding for projects. A formal
approach is important to understand the fairness, participation, and efficiency
requirements a system designer may pursue. We present a detailed taxonomy
of such requirements and clarify their properties and relations. We also analyse
natural welfarist rules both axiomatically and experimentally.

In practical applications of PFC, it is important to balance welfare demands
with fairness conditions. Our experiment investigated the cost of fairness when
imposing MR or IMP on UTIL, EGAL and NASH rules over instances that
model crowdfunding and share-house scenarios. We find that imposing MR alone
significantly reduces welfare on average, but imposing IMP as well produces a
relatively small additional cost on welfare. The costs of imposing any fairness
condition are much more pronounced on instances that model a share-house
setting than a crowdfunding setting, suggesting that for a large number of agents
and large project costs, fairness conditions are more easily met.

Our model is not just a rich setting to study collective decision making. We
feel that the approaches considered in the paper go beyond academic study and
can be incorporated in portals that aggregate funding for charitable projects.
We envisage future work on online versions of the problem. We studied a utility
model in which agents want as much money spent on their approved projects. It
will be interesting to examine utility models in which agents care about which
unapproved projects are funded or factor in the payments they have been made.
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