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a b s t r a c t

Bankruptcy problems are a fundamental class of fair division problems in microeconomics. Among the
various solution concepts proposed for the problem, the random arrival rule is one of themost prominent.
In this paper, we conduct a computational analysis of the rule. It is shown that the allocation returned
by the rule is #P-complete to compute. The general complexity result is complemented by a pseudo-
polynomial-time dynamic programming algorithm for the random arrival rule.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

A bankruptcy problem arises when a divisible good is to be di-
vided among a set of agents, each agent has a claim to a part of
the good, but the good is not enough to satisfy each claim. The goal
is to divide the good among the agents in the fairest possible way.
Themotivating example of the problem is that a firmgoes bankrupt
and the firm’s liquidation value needs to be divided fairly among its
creditors. The problem is ubiquitous and arises for example during
inheritance disputes, divorce settlements, estate division, electric-
ity load-shedding and any situation where one needs to ration an
over-demanded divisible good. Let us define bankruptcy problems
formally.

Definition 1 (Bankruptcy Problem). Consider the situation where
an endowment amount E ∈ R+ needs to be divided among a set of
agents N = {1, . . . , n} such that each agent i ∈ N has a claim ci ∈
R+. A bankruptcy problem is a triple (N, c, E) such that c ∈ R|N|+ ,
E ∈ R+ and


i∈N ci ≥ E. A bankruptcy problem can be summa-

rized as ⟨E, (c1, . . . , cn)⟩.

If


i∈N ci = E, then the bankruptcy problem can easily be
solved by allocating to each agent his claim. The bankruptcy prob-
lem becomes non-trivial only when


i∈N ci > E. In that case,

agents need to agree on a mutually agreeable and fair way of di-
viding E.

Bankruptcy and inheritance issues have arisen since Biblical
times (see e.g., [17,3]). However, a formal study of bankruptcy
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problems startedwith the classic paper of O’Neill [17]. Economists,
philosophers, and mathematicians have been pondering over
questions of fair allocation for decades and have proposed a num-
ber of rules for bankruptcy problems. A rule specifies for each agent
his allocation such that the sum of the allocations of the agents
equal the total endowment value. Research in this area has led to
a number of desirable bankruptcy rules, each of which satisfies a
different set of axioms (see e.g., [3,19,12,20,16,7,15,14,6,5]). For a
comprehensive overview of the literature, the excellent survey by
Thomson [19] is recommended.

Among the prominent rules, one of the most natural and well-
studied rule is the random arrival rule. It works as follows. For a
given permutation of the agents, the first agent in the permutation
takes the minimum of his claim and the endowment value. Each
subsequent agent in the permutation takes the minimum of his
claim andwhatever is left of the endowment value. The allocations
are then averaged uniformly over all permutations of the agents.
Let us state the random arrival rule formally. Let ΠN be the set
of all permutations over N . A permutation π ∈ ΠN is written as
π = π(1) . . . π(n).

Definition 2 (Random Arrival Rule). The random arrival rule ϕ
specifies for each bankruptcy problem (N, c, E) and agent i ∈ N ,
allocation

ϕi(N, c, E) = 1/n!


π∈ΠN

min

ci,max

0, E −

j∈N:

π(j)<π(i)

cj


 .

Example 1. Consider a bankruptcy problem in which E = 2, c1 =
1, c2 = 2, and c3 = 3. The problem can be summarized as ⟨2,
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(1, 2, 3)⟩. Then let us consider how much each agent gets in each
permutation. The example is elaborated upon in Table 1. The ex-
ample is a scaled version of the Talmudic estates division problem
described in (p. 196, [3]).

The random arrival rule coincides with many desirable rules
for the case of two agents and satisfies a number of desirable
properties (see e.g., [13,1]). Young [20] called the random arrival
rule the ‘‘run on the bank’’ solution in which we compute the ex-
pected payment that each claimant would receive if they ran to
the bank or courts assuming that all lineups are equally likely.
O’Neill [17] pointed out that the random arrival rule is equivalent
to the Shapley value of a natural coalitional game corresponding
to the bankruptcy problem. In view of this connection, the random
arrival rule is also termed as the Shapley value in the literature.
The random arrival rule has been extended to more general claims
settings [10].
Contributions: In this paper, the computational analysis of the
random arrival rule for bankruptcy problems is conducted. We
show that the allocation returned by the random arrival rule is
#P-complete to compute. The complexity contrasts sharply with
the fact that other well-known rules such as prenucleolus can be
computed in polynomial time. We also identify conditions when
the random arrival rule can be implemented in polynomial time.
To be more precise, we present a polynomial-time algorithm for
the case when the bankruptcy problem is represented by integers
that are polynomial in the number of agents.
Related work: As mentioned earlier, bankruptcy problems have a
close relation with cooperative games (see e.g., [9,17]). The ran-
dom arrival rule is equivalent to the Shapley value of the ‘opti-
mistic bankruptcy’ coalitional game (N, v) where v(S) = min(E,

i∈S ci). The value v(S) is the maximal amount which the coali-
tion S can gain by acting together. The corresponding dual game is
(N, vD) where vD(S) = max(0, E −


i∈N\S ci). The dual game is

referred to as the ‘pessimistic bankruptcy’ coalitional game. Since
the Shapley value is invariant in the dual of a coalitional game, the
random arrival rule is also equivalent to the Shapley of the pes-
simistic coalitional game. The pessimistic coalitional game is con-
vex so that the core is non-empty and the Shapley value lies in
the core. Bankruptcy gameshave some resemblancewithweighted
voting games (see e.g., [8]) in that the game can be represented by a
vector of integers. However, in contrast to weighted voting games,
bankruptcy games are not simple games and the Shapley value of
an agent in the bankruptcy game is generally non-zero unless the
claim is zero.

In the next two sections, the main results are presented. We
will assume familiarity with fundamental concepts regarding al-
gorithms and computational complexity. For a brief overview, the
reader is referred to [18].

2. An algorithm

In this section, we present an algorithm to compute the allo-
cation returned by the random arrival rule. The algorithm utilizes
dynamic programming and does not require enumeration of all the
permutations.We first establish somenotation.Wedenote byαk

s (i)
the number of subsets of N \ {i} such that the size of each subset is
s and the sum of claims of agents in each subset is k.

αk
s (i) =


S ⊆ N \ {i} : |S| = s and


j∈S

cj = k


.

Then the number of permutations in which i gets payoff
min(max(0, E−k), ci) is

n−1
s=0 αk

s (i)s!(n−s−1)!. Our first result is
that if a bankruptcy problem is represented by integers which are
polynomial in n, then the random arrival rule can be implemented
in polynomial time.
Table 1
Implementing the random arrival rule on a bankruptcy problem in which E =
2, c1 = 1, c2 = 2, and c3 = 3. We indicate how much allocation each agent gets in
each permutation.

Permutation Agent 1 Agent 2 Agent 3

123 1 1 0
132 1 0 1
213 0 2 0
231 0 2 0
312 0 0 2
321 0 0 2

Average over permutations 2/6 5/6 5/6

Theorem 1. If E, c1, . . . , cn are integers which are polynomial in
n, then the allocation returned by the random arrival rule can be
computed in polynomial time.

Proof. The main assumption is that c1, . . . , cn and E are integers
which are polynomial in n. Without loss of generality, one can
assume that we want to compute ϕn the random arrival rule
allocation of agent n.

Firstly, it is clear from the definition, that ϕn is as follows.

ϕn = 1/n!
n−1
s=0

E
k=0

αk
s (n)s!(n− s− 1)!

× (min(max(E − k, 0), cn)). (1)

Algorithm 1 Algorithm to compute the random arrival rule
allocation
Input: (N, c, E).
Output: ϕn(N, c, E) — random arrival rule allocation of the n-th

agent.
1 x←− 0
2 for s = 0 to n− 1 do
3 for k = 0 to E do
4 x ←− x + (

n−1
i=0 f (s, k, i))s!(n − s − 1!)(min(max(E −

k, 0), cn))
5 end for
6 end for
7 return x/n!

Algorithm 2 Computing the number of subsets of agents with
cardinality s and total claim k.
Input: (N, c, E).
Output: {f (s, k, i) : s ∈ {0, . . . , n − 1}, k ∈ {0, . . . , E}, i ∈
{1, . . . , n − 1}}: number of subsets of agents with cardinality s
and total claim k in which the agent with the largest index is i.
1 f (0, 0, 0)←− 1 and f (s, j, k)←− 0 for all other f (s, j, k).
2 for i = 1 to n− 1 do
3 for j = 0 to i− 1 do
4 for k = 0 to E do
5 for s = 0 to n− 2 do
6 f (s+ 1, k+ ci, i)←− f (s+ 1, k+ ci, i)+ f (s, k, j)
7 end for
8 end for
9 end for

10 end for

To compute ϕn, we need to compute and add nE terms of the
form αk

s (n)s!(n − s − 1)!(min(E − k, ci)) each containing a dif-
ferent αk

s (n). In order to compute each of these terms, we need
to compute the corresponding αk

s (n) for s ∈ {0, . . . , n − 1} and
k ∈ {0, . . . , E}. Each αk

s (n) is equivalent to
n−1

i=0 f (s, k, i) where
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f (s, k, i) is the number of subsets of agents with cardinality s and
total claim k in which the agent with the largest index is i.

αk
s (n) =

n−1
i=0

f (s, k, i).

We will term all these subsets as sets corresponding to f (s, k, i).
Based on Eq. (1), one can formulate an algorithm (Algorithm 1)
to compute the random arrival rule allocation of the n-th agent.
The algorithm’s outer for-loop iterates at most n times and the
inner for-loop iterates at most E + 1 times. Therefore the run-
ning time of Algorithm 1 is O(nE) × O(n) + O(time required to
compute all terms f (s, k, i)).

We now present a O(n3E) algorithm which computes each
f (s, k, i) value for s ∈ {0, . . . , n − 1}, k ∈ {0, . . . , E}, and i ∈ {1,
. . . , n − 1}. The algorithm uses a bottom-up dynamic program-
ming approach in which each entry f (s, k, i) is initialized to 0
except f (0, 0, 0) which is initialized to 1. The entry f (0, 0, 0) cor-
responds to the empty set. Subsequently, for particular values of
i, j, k and s, where j < i, f (s+1, k+ ci, i) is updated to f (s+1, k+
ci, i)+ f (s, k, j).

f (s+ 1, k+ ci, i)←− f (s+ 1, k+ ci, i)+ f (s, k, j).

By the definition of f (s, k, j), among the sets corresponding to
f (s, k, j), the largest index of an agent in each set is j. Since j < i,
we know that claim ci cannot be in any of the sets considered for
f (s, k, j). Thus, when iwith claim ci is added to any of the sets cor-
responding to f (s, k, j), then we get as many sets in which the car-
dinality is s+1, sum of claims is k+ci, the largest index of an agent
is i, and the second largest index of an agent is j. The algorithm is
summarized as Algorithm 2.

The total running time to compute the allocation of one agent is
O(n2E)+ O(n3E) = O(n3E). Therefore if E is polynomial in n, then
the total running time is polynomial in n. �

Example 2. Let us simulate the algorithm outlined in the proof of
Theorem 1 to compute ϕ3 of the bankruptcy problem ⟨2, (1, 2, 3)⟩
introduced in Example 1.

ϕ3 = 1/3!
2

s=0

2
k=0

(αk
s (3))s!(n− s− 1)!(min(max(2− k, 0), 3))

= 1/3!((α0
0(3))2!min(2, 3)+ (α1

1(3))1!1!min(1, 3)

+ (α2
1(3))2!0!min(0, 3)+ (α3

2(3))2!0!min(0, 3))

= 1/3!((α0
0(3))2(2)+ (α1

1(3))(1)+ 0+ 0).

The values α0
0(3) and α1

1(3) are computed by first computing
via Algorithm 2 the entries f (s, j, i) for s ∈ {0, . . . , 2}, k ∈ {0, . . . ,
6}, i ∈ {1, . . . , 2}. f (0, 0, 0) is initialized to 1 and is not updated.
f (0, 0, 1), f (0, 0, 2), (1, 1, 0) and f (1, 1, 2) are initialized to 0 and
not updated. f (1, 1, 1) is initialized to 0 but when i = 1, and j = k
= s = 0, then f (1, 1, 1) is updated to f (1, 1, 1) + f (0, 0, 0) =
0 + 1 = 1. Now that we have all the necessary f (s, k, i) entries,
we can compute the required αk

s (3) values. Recall that αk
s (n) =n−1

i=0 f (s, k, i). Thus,

α0
0(3) = f (0, 0, 0)+ f (0, 0, 1)+ f (0, 0, 2) = 1+ 0+ 0 = 1,

and

α1
1(3) = f (1, 1, 0)+ f (1, 1, 1)+ f (1, 1, 2) = 0+ 1+ 0 = 1.

Therefore,

ϕ3 = 1/3!(1(2)(2)+ 1(1)) = 5/6.
3. An intractability result

In this section, we consider the general setting in which the en-
dowment value and the claims are not necessarily small integers.
We prove that whereas the random arrival rule satisfies many de-
sirable axiomatic properties, it is #P-complete to implement. In-
formally, our result indicates that computing the random arrival
rule is at least as hard as the computationally hardest counting
problems. The complexity class #P is a class of counting problems
which includes for instance the problem of finding the number of
solutions of the Boolean satisfiability problem (Sat). Of course if
one can count the number of solutions of Sat in polynomial time,
then one can also check whether there exists a solution or not. For
an introduction to the computational complexity class #P , we rec-
ommend the excellent overview in (Chapter 17, [2]). Our finding
greatly contrasts with the fact that other well-known rules such
as prenucleolus can be implemented in polynomial time. Before
we proceed we will establish some additional notation. Recall that
αk
s (i) = {S ⊆ N \ {i} : |S| = s and


j∈S cj = k}. We will denote by

αs(i) as


k≤E−ci
αk
s .

Lemma 1. Computing αs(i) is #P-complete.

Proof. Counting the number of subsets of sum less than or equal
to E − ci is #P-complete because if it is equivalent to counting
the number of solutions of the well-known knapsack problem
(see e.g., [11]). It then follows that computing that αs(i) is #P-
complete. If there exists a polynomial-time algorithm to compute
αs(i), then n − 1 runs of the algorithm will return each αs(i) for
s ∈ {0, . . . , n− 1}. Then,

n−1
s=1 αs(i) would yield the total number

of subsets of N \ {i} with total sum of claims less than or equal
to E − ci. This implies a polynomial-time algorithm to count the
number of solutions of the knapsack problem. �

Theorem 2. The problem of computing the random arrival rule allo-
cation is #P-complete.

Proof. We present a polynomial-time reduction from computing
αs(i) to computing the random arrival rule for bankruptcy prob-
lems. From Lemma 1, it is already established that computing αs(i)
is #P-complete.

Consider a bankruptcy problem G0 = ⟨E, (c1, . . . , cn)⟩ in which
ci = 1, and E and each cj for j ∈ N\{i} is an integer greater than one.
Then, we know that in each permutation, either i gets exactly zero
or exactly one inG0. For a permutationπ overN , agent i gets exactly
one if and only if


π(j)<π(i) cj < E−1 and zero otherwise. In eachGj

for j > 0, j new agents are added each of which have a claim of E:

Gj = ⟨E, (c1, . . . , cn, E, . . . , E  
j

)⟩.

This means that in any permutation π if agent i were to get his
claim of 1, then the new agents must come after agent i in π .

ϕi(G0) =

n−1
s=0

αs(i)s!(n− s− 1)!/n!

ϕi(G1) =

n−1
s=0

αs(i)s!(n− s− 1+ 1)!/(n+ 1)!

ϕi(Gj) =

n−1
s=0

αs(i)s!(n− s− 1+ j)!/(n+ j)!

ϕi(Gn−1) =

n−1
s=0

αs(i)s!(n− s− 1+ n− 1)!(n+ n− 1)!.
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The system of equations can be represented as in (2). If there
exists a polynomial-time algorithm to compute each ϕi(Gj), then
the column vector of constants on the right hand side can be com-
puted in polynomial time. The system of linear equations can be
represented in space which is polynomial in n. The biggest possi-
ble number in the equation is less than (2n)!. Such a number can be
represented efficiently since it requires log2(2n!) < log2((2n)2n)
= 2n(1+ log2 n) bits.

(n− 1)!0! (n− 2)!1! · · · 0!(n− 1)!
(n− 1)!1! · · · 0!(n)!

...
...

. . .
...

(n− 1)!(n− 1)! · · · 0!(2n− 2)!



×


αn−1(i)
αn−2(i)

...
α0(i)

 =


ϕi(G0)× n!
ϕi(G1)× (n+ 1)!

...
ϕi(Gn−1)× (2n− 1)!

 . (2)

Recall that a scalar multiplication of a column by a constant c
multiplies the determinant by c .

Therefore, the system of equations has a unique non-trivial so-
lution if and only if the determinant of the following matrix Bn,n is
non-zero:

0! 1! · · · (n− 1)!
1! · · · (n)!
...

...
. . .

...
(n− 1)! · · · (n− 1+ n− 1)!

 .

It is known that the determinant for a matrix of size (n) × (n)
where aij = (i+ j)! for 0 ≤ i, j ≤ n−1 is equal to

n−1
i=0 i!2 ≠ 0 [4].

Therefore, it follows that the determinant of Bn,n is non-zero and
hence the system of equations is linearly independent. We can use
Gaussian elimination to solve the set of linear equations in O(n3)
time. Solving the linear equations yields us a polynomial-time al-
gorithm to compute αs(i) for each s ∈ {0, . . . , n−1}. Thuswe have
shown that if the random arrival rule allocation can be computed
in polynomial time, then a #P-complete problem can be computed
in polynomial time. Hence computing the random arrival rule al-
location is #P-complete. �
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