
A Bounded and Envy-Free Cake Cutting Algorithm

[Extended Abstract]

Haris Aziz
UNSW Sydney and Data61 CSIRO

Sydney, Australia
haris.aziz@unsw.edu.au

Simon Mackenzie
Data61 CSIRO

Sydney, Australia
simon.mackenzie@data61.csiro.au

ABSTRACT
We consider the well-studied cake cutting problem in which
the goal is to find an envy-free allocation of a divisible re-
source based on queries from agents. The problem has re-
ceived attention in mathematics, economics and computer
science. It has been a major open problem whether there
exists a discrete and bounded envy-free protocol. We report
on our algorithm that resolved the open problem.

1. INTRODUCTION
The cake cutting problem is a fundamental mathemati-

cal problem in which the ‘cake’ is a metaphor for a hetero-
geneous divisible resource represented by the unit interval
[0, 1] [Brams and Taylor, 1996]. The resource could repre-
sent time, land, or some computational resources. The goal
is to allocate the cake among n entities who are referred to
as ‘agents.’ Each agent’s allocation consists of a collection of
subintervals. Each of the agents is assumed to have additive
and non-negative valuations over segments of the interval.
A cake-cutting algorithm/protocol interacts with the agents
in order to identify a fair allocation.

One of the most important criteria for fairness is envy-
freeness. An agent envies another if she would have preferred
to receive the other’s piece rather than hers. A cake cutting
protocol/algorithm is called envy-free if each agent is guar-
anteed to be non-envious if she reports her real valuations.
If a protocol is envy-free, then an honest agent will not be
envious even if other agents misreport their valuations.

The interaction of the protocol with the agent uses two
types of queries Evaluate and Cut. Evaluate asks an
agent i to report her value for the subinterval between two
points x and y. Cut asks an agent i to choose a point y
such that the interval between a given x and y is worth a
given value t. This natural query model was popularized by
Robertson and Webb [1998].

How does an envy-free protocol look like? This is perhaps
best illustrated with the most famous envy-free cake cutting
protocol. It is the Cut and Choose Protocol for two agents.
One agent is asked to divide the cake into two equally pre-
ferred pieces. The other agent is then asked to pick her
most preferred piece whereas the cutter gets the remaining
piece. The protocol is explained pictorially in Figure 1. It

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2020 ACM 0001-0782/08/0X00 ...$5.00.

is formally is specified as Algorithm 1. For a piece of cake
D (which is just a subset of the cake), we write Vi(D) to de-
note the agent i’s value for the piece D. The proof that the
Cut and Choose Protocol is envy-free is as follows. Agent 1
gets one of the equally preferred pieces so she is not envious.
Agent 2 gets the piece that she prefers at least as much as
the other piece so she is also not envious.

1. Agent 1 cuts the
cake into 2 equally

preferred pieces

 2

2. Agent 2 chooses
her more preferred

piece

1 2
3. Agent 1 gets the

remaining piece

Figure 1: Cut and Choose Protocol

Algorithm 1 Cut and Choose Protocol

Input Cake R = [0, 1] and two agents 1 and 2.
Output An envy-free allocation of R.

1: Ask agent 1 for her value V1(R). Then ask agent 1 to
place a mark x on the cake so that V1(0, x) = V1(x, 1).
Divide the cake into two pieces [0, x] and [x, 1].

2: Ask agent 2 for her value V2(0, x) and V2(x, 1). If
V2(0, x) ≥ V2(x, 1), give agent 2 piece [0, x]. Otherwise,
give piece [x, 1] to agent 2.

3: Give agent 1 the remaining piece.

Is there a cake cutting algorithm that is envy-free for
three, four, or more number of agents? The question has
been the topic of intense study in the past decades. It dates
back to the work of mathematician Hugo Steinhaus who pre-
sented the cake cutting problem in the 1940s [Robertson and
Webb, 1998, Steinhaus, 1948]. For an enjoyable overview of
the history of the cake cutting problem, we refer to the Com-
munications of the ACM article by Procaccia [2013] or the
popular book by Brams and Taylor [1996]. For the case of
three agents, an elegant protocol was independently discov-
ered by John L. Selfridge and John H. Conway around 1960.
Before our work, a general envy-free cake cutting algorithm
using a finite number of steps and cuts was proposed by
Brams and Taylor [1995]. However, it can require an arbi-

trarily large number of steps, even for four agents. This led
to the question of whether there exists a bounded envy-free
algorithm. In other words, does there exist an envy-free al-
gorithm that has a provable bound on the number of steps
which is only dependent on a function of n (the number of
agents)?

In this article, we report on the first bounded and envy-
free cake cutting algorithms [Aziz and Mackenzie, 2016a,b].
Next, we present the ideas behind the general algorithm.

2. THE PROTOCOL: AN OVERVIEW
At a high level, our protocol (which is referred to as the

Main Protocol) allocates a large enough portion of the cake
in an envy-free manner. After that, it tries to add some
small portions of the unallocated cake to the allocated part
in a structured and envy-free manner with the goal to reduce
the problem to envy-free allocation for a smaller number of
agents. Throughout the protocol, there is a partial allo-
cation of the cake that is maintained to be envy-free. By
partial we mean, that the whole cake may not be allocated.

Main Protocol
Goal: Find an envy-free allocation of the whole cake.

1. Call the Core Protocol (that finds an envy-free partial allocation)
several times to get a larger and larger envy-free allocation.

2. Decompose the problem into one with a smaller number of agents
via two possible ways:

a) Call the Discrepancy Protocol (that exploits how agents value
different parts of the unallocated cake): we get two smaller
subproblems.

b) If there is no discrepancy, call the GoLeft Protocol (implements
exchanges of some pieces to enable one set of agents to dominate
the other agents). We get one smaller subproblem (with less
number of agents).

Figure 2: A bird’s eye view of our protocol.

The Main Protocol makes calls to other protocols (in par-
ticular the Core Protocol, Discrepancy Protocol, and the
GoLeft Protocol) in order to find an envy-free allocation.
The Core Protocol is used to obtain an envy-free partial al-
location. The Main Protocol applies it many times on the
unallocated cake to make the unallocated cake smaller and
smaller.

After finding a large enough envy-free partial allocation,
the Main Protocol uses two possible ways to decompose our
problem into one involving a smaller number of agents. The
first case is when we find a situation where some agents are
mainly interested in one part of the unallocated cake and
other agents are mainly interested in the remaining part.
This discrepancy in valuations of the agents is exploited by
the Discrepancy Protocol. If the first case does not arise,
we use the GoLeft Protocol to exchange sub-allocations of
agents to enable one set of agents to ‘dominate’ the other
agents. The dominating agents think they will not be en-
vious of the dominated agents even if one of the dominated
agents gets all the unallocated cake. In that case, we reduce
our problem to that involving the remaining cake and the
dominated agents. Domination is a key idea on which our
protocol is based and which helps us reduce our problem to
a smaller problem. See Figure 2 for an overview of the Main
Protocol.

Figure 3 presents a realizable sequence of steps that cap-
ture some of the key ideas of our protocol.

3. THE PROTOCOL: MORE DETAILS
In this section, we give more details of each of the com-

ponents of the Main Protocol.

3.1 Core Protocol
A crucial building block of our protocol is the Core Pro-

tocol which finds a partial allocation that is envy-free.
The Core Protocol asks one of the n agents—the“cutter”—

to divide the cake into n equally preferred pieces. Recall
that this step is similar to the first step of the Cut and
Choose Protocol. It then finds a possibly partial allocation
in which each agent’s allocation is a contiguous piece of the
cake. Each agent receives one of the pieces defined by the
“cutter”. The agents may get the pieces in trimmed form.
We guarantee the cutter as well as at least one other agent
to get a full piece, and that no agent envies another agent.
Another feature of the allocation is that for each piece that
is partially allocated, the exact point at which it has been
cut off corresponds to the mark by another agent to ensure
she is not envious of that piece. When we first designed
the Core Protocol, it was designed to establish the existence
of an allocation that satisfies the properties discussed above.
Once the existence of such an allocation is established, there
is a simpler way to define a protocol which achieves such an
allocation. The general idea for the simplified version was
made explicit in an interesting and detailed followup paper
which solved the sister problem for the case of chores or
burnt cake (agents have non-positive valuations) [Dehghani
et al., 2018]. Here we present a simplified version of the
Core Protocol (Algorithm 2) for cake cutting. The protocol
requires at most (n!)2n queries.

Algorithm 2 (Simplified) Core Protocol

Input Agent set N , a cutter i ∈ N and cake R.
Output An envy-free allocation of cake R′⊆ R for agents
in N and an updated unallocated cake R \R′.
1: Ask agent i to cut the cake R into n equally preferred

pieces (p1, . . . , pn).
2: for each permutation (a′2, . . . , a

′
n) of N \ {i} do

3: for each permutation (p′1, . . . , p
′
n) of the n pieces

(p1, . . . , pn) do
4: Give p′1 to i
5: for j = 2 to n do
6: Give p′j to a′j . Ask a′j to trim any of the pieces

p′j+1, . . . , p
′
n if needed so the value of the pieces does not

exceed the value a′j has for her allocation p′j .

7: if the allocation p corresponding to the permutation
of agents and pieces is envy-free then

8: return the allocation p (which is called a Core
allocation)

9: else
10: Reattach the trimmed parts to regain the original

pieces.

In the Core Protocol, the cutter agent gets a full piece.
Another agent also gets a full piece. So from the cutter’s
perspective, at least 2/n of the cake is allocated by one call
of the Core Protocol. Equivalently, the cutter thinks that
her value of the remaining cake is at most (n− 2)/n of her
value of the full cake.

If we call the Core Protocol with a different cutter each
time to further allocate the unallocated cake, we just need n

1. We are dividing the cake among four agents.
Agent 2 cuts the cake into 4 equally preferred

pieces.

1 2 3 4

2. An envy-free partial allocation is achieved via
the Core Protocol. Two of the agents (agents 3
and 4) get full pieces in the allocation. We find

out that agent 2 and 4 dominate agent 1.

1 2 3 4

4. Agent 4 has zero value for the unallocated
cake so it does not need to be allocated any

further cake. Agent 2 cuts the unallocated cake
into 3 equally preferred pieces.

1 2 3 4

3. The unallocated cake is reassembled for
further allocation.

1 2 3 4

1 3 2

5. An envy-free partial allocation is achieved in
the second row. We find out that even for the
second envy-free allocation, agent 2 dominates

agent 1 (even if all the unallocated cake is given
to agent 1, agent 2 will not be envious).

1 2 3 4

1 3 2

1,3 2

6’. If agents 1 and 3 only like one part of the
unallocated cake and agent 2 only likes the other
part of the unallocated cake, we can fairly divide
the respective parts to the agents who like them.

These types of situations are handled by the
Discrepancy Protocol.

1 2 3 4

3

1 3 2

6. We suppose here that there is no discrepancy
(see 6’. for the other case). For the first envy-free
allocation in the top row, we ask agent 3 to cut
out a piece from the unallocated cake to reflect

her advantage over agent 1.

1 2 3 43

1
2

1 3 2

7. The cut out ‘extracted’ piece is placed along
with the corresponding allocation. For the first

envy-free allocation in the top row, we ask agents
1 and 2 to cut out a piece from the unallocated

cake to reflect their advantage over agent 3.

1 2 3 43 1
2

1 3 2

8. The cut out ‘extracted’ pieces are placed along
with the corresponding allocation.

3 2 1 4

1 3 2

9. Agents 1 and 3 are made to swap their
allocations in the top row. When they swap, they
get the additional extracted piece placed next to
the new piece they get. These types of exchanges

happen in the GoLeft Protocol. After the
exchange, agent 2 dominates both agents 1 and 3.

3 2 1 4

1 3 2

1 3

10. The unallocated cake is divided among
agents 1 and 3 in an envy-free way.

Figure 3: Illustration of some of the ideas of the protocol. The terminal states are 6’ and 10.

Algorithm 3 An envy-free and proportional protocol

Input Agent set N and cake R.
Output An envy-free and proportional allocation of the
cake that may not allocate the whole cake.

1: for i = 1 to n do
2: if there is unallocated cake then run the Core Proto-

col on the unallocated cake with i as the specified cutter.

3: return the allocation.

calls of the Core Protocol to obtain an envy-free partial allo-
cation which also satisfies proportionality (gives each agent
value at least 1/n of the whole cake). Algorithm 3 does ex-
actly that and in n!2n2 queries finds a partial allocation that
satisfies envy-freeness and proportionality—two of the most
important fairness concepts.1 The remainder of the paper
describes what to do when we do want to allocate the whole
cake.

3.2 Domination and Significant Advantage
Since the Core Protocol by itself is not powerful enough

to allocate all the cake in bounded time, we rely on the idea
of domination with the goal to decompose our problem into
one involving a fewer number of agents. In this section, we
denote an agent i’s allocation by Xi

Recall that in an envy-free allocation, each agent i thinks
she has an advantage (even if it is zero advantage) over each
other agent j:

Vi(Xi)− Vi(Xj) ≥ 0.

Domination is an extreme form of advantage. An agent i
dominates another agent j if she is not envious of j even if
the unallocated cake R is given to j:

Vi(Xi)− Vi(Xj) ≥ Vi(R).

The other protocols are used with the following objective
in mind: find a set of agents A ⊂ N such that each agent in
N \ A dominates each agent in A. In order to ensure that
each agent in some set N \ A dominates each agent in A,
it requires changing the current allocations of the agents as
well as the unallocated cake. While doing these changes, we
ensure that the current partial allocation remains envy-free.
By identifying such a set N \ A, we reduce the problem to
envy-free allocation for a smaller number of agents. The
agents in N \ A are not envious whatever the unallocated
cake is allocated among agents in A. This crucial idea is
illustrated in Figure 4.

Dominance of an agent i over another agent j has a close
relation with agent i considering herself as having a ‘signif-
icant advantage’ over j. In order to define significance, we
consider a suitable large constant bounded by some func-
tion over n For a partially allocated cake, and piece a, an
agent i finds value Vi(a) significant if the value is at least
Vi(R)(n−2

n
) where R is the unallocated cake

Significance of a piece is with respect to the residue so
if the residue becomes smaller, a significant value remains
significant. The rationale for defining significant value is
that if an agent i thinks she has a significantly higher value
for her allocation than she has for agent j’s allocation, then
this significant advantage can be changed into domination

1Note that finding an envy-free allocation that may be par-
tial is a trivial problem: allocate nothing!

1 3

2 4

Figure 4: In the figure, an agent points to another
agent if the former dominates the latter. Suppose
we find an envy-free partial allocation among four
agents such that each agent in {2, 4} dominates each
agent in {1, 3}. Then we can simply allocate the
remaining cake among agents in {1, 3} in an envy-
free way.

by calling the Core Protocol a bounded number of times
with i as the cutter. We explain this idea below.

Suppose we partially allocate the cake and agent i gets
allocation Xi while agent j gets allocation Xj . Suppose that
agent i thinks she has a significant advantage over agent j:

Vi(Xi)− Vi(Xj) ≥ Vi(R)

(
n− 2

n

)B

.

Consider the situation where we run the Core Protocol over
the unallocated cake R with agent i as the specified cutter
and we do it B times so that the eventual unallocated cake
is R∗. Then

Vi(R
∗) ≤ (

n− 2

n
)
B

Vi(R).

Thus after B calls of the Core Protocol, agent i who pre-
viously had a significant advantage over agent j now domi-
nates her:

Vi(Xi)− Vi(Xj) ≥ Vi(R)

(
n− 2

n

)B

≥ Vi(R
∗).

When we get a Core Protocol outcome, the cutter already
has a significant advantage over the agent who got the least
cake in the cutter’s estimation. This significant advantage
can easily be converted into domination by calling the Core
Protocol. The main challenge is to obtain domination rela-
tions between more pairs of agents. Throughout the main
protocol, the tentative partial allocation remains envy-free.
Secondly, if an agent dominates another agent, the domina-
tion is maintained despite updates to the allocation.

3.3 Extraction
After we have called the Core Protocol on the updated

unallocated cake, a sufficient but bounded number of times,
we are in a position to extract from the residue. In each
of the calls of the Core Protocol, there was a corresponding
envy-free allocation. By envy-freeness, in each such alloca-
tion, each agent j has a non-negative advantage over an-
other agent i. For each of the Core allocations and for each
i, j ∈ N , agent i is asked to extract a piece from the unal-
located cake of value of the advantage over j in that Core
allocation.

The extracted piece e will be in consideration to be at-
tached to i’s corresponding allocated piece so that j is in-
different between her allocation and i’s allocation. If j’s
intended extraction has significant value, we do not extract
because we only want to extract pieces from the remainder
which are not significant for all the agents. If the intended

extraction is not significant, we put it on a side for consid-
eration for attachment. If it cannot be made unanimously
insignificant, then we say that the piece is discrepant and
we call the Discrepancy protocol which either exploits or
‘eliminates’ this discrepancy.

Figure 5 shows how agents extract pieces from the unal-
located cake R. In the figure, we consider extractions by
agents 2, 3, and 4 based on their advantage over agent 1.
Agent 2 thinks that her advantage over agent 1 is of the same
value as her value for the leftmost extracted piece. Agent 4
thinks that her advantage over agent 1 is of the same value
as the sum of her values for two leftmost extracted pieces.

1 2 3 4

2 4 3

Figure 5: Agents extracting pieces from the remain-
ing cake up to their advantage over agent 1.

The extracted pieces will be attempted to be attached to
agent 1’s piece as indicated in Figure 6.

1 2 3 4

Figure 6: Extracted pieces placed next to agent 1’s
allocation for the purpose of attachment.

Suppose we have a set of Core Protocol allocations and
the corresponding extracted pieces placed in the appropriate
order. We call a set of Core Protocol allocations isomorphic
to each other if for each piece ci in agent i’s allocation, the
agents who extracted cake from the residue and associated
to ci are the same and did so in the same order. Later,
we will identify a subset of Core Protocol allocations that
are isomorphic to each other. Isomorphic allocations will be
considered later by the GoLeft Protocol.

3.4 Discrepancy Protocol
When pieces are being extracted from the residue, it may

be the case that one of the pieces e in consideration for
extraction is significant for some agent. In that case, the
piece is not extracted and the Discrepancy Protocol is called
that either eliminates or exploits this discrepancy. The dis-
crepant piece e is kept aside from the residue. If the piece is
“almost significant”, we can make it significant by reducing
the residue by calling the Core Protocol a bounded number
of times.

By doing this either the discrepant piece becomes unani-
mously significant or we still have the case that some agents
consider e significant and others do not. The first case
is helpful because there is no discrepancy in terms of sig-
nificance and our protocol makes use of this consistency.
In the second case, if there exists some i ∈ N such that
Vi(R)/n < Vi(e) < Vi(R)n, we continue running the Core
Protocol with agent i as the cutter. By doing so, we achieve

Algorithm 4 Main Protocol—High-Level Sketch

Input: Cake R and a set of agents N .
Output: An envy-free allocation.

1: Core Allocations: Generate core allocations by re-
peatedly dividing the unallocated cake via the Core Pro-
tocol a bounded number of times.

2: Extraction: Extract pieces from the residue corre-
sponding to the core allocation pieces as long as the
pieces are not significant for any agent as explained in
Section 3.3. While extracting pieces, if some piece a
is significant for at least one agent, call the Discrepancy
Protocol as explained in Section 3.4. It ensures that now
either all agents consider the piece significant (in which
case it is not attached) or we decompose the main prob-
lem into two subproblems for Main Protocol where some
agents are to be given a and the others are to be given
the remaining unallocated cake.

3: GoLeft: Call the GoLeft Protocol to attach extracted
pieces to the corresponding Core allocations. The
GoLeft protocol returns a subset of agents A ⊂ N such
that each agent in N \ A dominates each agent in A.
The central idea of GoLeft is to facilitate exchanges of
sub-allocations of agents.

4: Call the Main Protocol to allocate the remaining cake
to agents in A.

5: return allocation of the cake to the agents.

in a bounded number of calls of the Core Protocol the sit-
uation where for each agent i, either Vi(e) ≥ Vi(R)n or
Vi(e) ≤ Vi(R)/n. This situation is explained in Figure 7.

A N \ A
Figure 7: Discrepancy. Agents in A think that the
left part has n times more value than the right part.
Agents in N \A think that the right part has n times
more value than the left part. In that case, if we
allocate the left part to A in an envy-free way and
the right part to N \A in an envy-free way, we obtain
an overall envy-free allocation for N .

If Vi(e) ≥ Vi(R)n then i is predominantly interested in e
rather than the residue. If Vi(e) ≤ Vi(R)/n, then i is pre-
dominantly interested in R. Because the piece that agents
are predominantly interested in have n times more value
than the other piece, any agent who gets an envy-free (and
hence proportional) allocation of the preferred piece also gets
at last 1/n value of the preferred piece. The value is at least
as much as the value of the piece that is less preferred.

3.5 Main Protocol
Continuing to call the Core Protocol on the updated re-

maining cake gives no guarantee that the cake will be allo-
cated fully even in finite time. Hence, we need to use other
protocols which are called by the Main Protocol. We gave
an intuitive idea of the Main Protocol in Figure 2. We give
a more detailed high-level sketch of the protocol in the form
of Algorithm 4.

The first two stages of the Main Protocol are making calls
to the Core Protocol to further allocate the cake and then

1 2 3 4

1 2 3 4234 314 1 231

Figure 8: Initial state of the permutation graph
along with the corresponding state of an allocation
representative of the working set of isomorphic allo-
cations.

to implement the extraction as explained in the previous
sections. While pieces are being extracted, we may have
to call the Discrepancy Protocol. Throughout the steps of
the Main Protocol, we maintain an envy-free allocation as
well as keep track of the updated unallocated cake. After
that, the Main Protocol calls the GoLeft Protocol. In the
subsequent section, we give further details of the GoLeft
Protocol.

3.6 GoLeft Protocol
In this section, we give an overview of the GoLeft Proto-

col (Algorithm 5). When the GoLeft Protocol is called, we
already have a bounded number of envy-free allocations due
to the calls to the Core Protocol. We also have extracted
pieces from the residue that will be considered for attach-
ments to the corresponding Core allocations of the agents.

The purpose of extracting pieces from the residue is that
we can attach them to the corresponding Core allocation
piece of i so that j is indifferent between her allocated piece
and i’s piece. This makes it easier for j to switch one of
her pieces if she gets the additional insignificant extraction.
Making agents exchange their allocations while additionally
giving them additional extracted pieces is useful to diversify
the relations of agents having a significant advantage over
others.

We elaborate on why attachment is helpful to obtain ad-
ditional significant advantages. Let us say that in a number
of Core allocations, agent k has a significant advantage over
agent i’s allocation and agent j has an insignificant advan-
tage over i’s allocation. In order for k to have a significant
advantage over j rather than i, we want to make some local
envy-free preserving operations so that j gets i’s allocated
piece along with j’s insignificant extraction corresponding
to j’s advantage over that piece of i’s.

Permutation Graph
When the GoLeft Protocol starts, it first identifies a working
set S of C Core allocations from out of the C′ Core alloca-
tions that we focus on. Since C′ is chosen to be large enough,
we can find C Core allocations that are isomorphic. The pro-
tocol then constructs a permutation graph corresponding to
the working set of isomorphic allocations.

In the permutation graph, each node i corresponds to an
agent i who holds a set of isomorphic pieces along with their
attached extracted pieces in the working set of isomorphic
allocations S. Agent i points to agent j if j holds isomorphic
pieces in S that have had all attachments up till i’s extracted
pieces. Each node has an indegree of one. Initially, the
permutation graph consists of all nodes having self-loops

(See Figure 8).
We divide the nodes of the permutation graph into sets

T and T ′. Set T is the set of nodes/agents such that the
isomorphic pieces held by them in S have not had n − 1
attachments). T ′ is the set of nodes/agents such that the
isomorphic pieces held by them in S have had n− 1 attach-
ments.

The protocol identifies a cycle in the permutation graph
that includes at least one node i from T . Such a cycle al-
ways exists. In each of the working set S of isomorphic allo-
cations, we implement an exchange of pieces held by agents
in the cycle: each agent in the cycle is given the piece corre-
sponding to the node that the agent points to in the cycle.
After implementing the exchange, the permutation graph
is updated to reflect the exchange. In the exchange, if an
agent gets an inferior piece, she always gets the additional
extracted pieces associated with it up till the agent’s ex-
tractions. Hence each agent’s value from her allocation is
preserved in each allocation in S even if she gets a different
piece than in the original Core allocation. For any agent i,
as long as no agent gets extracted pieces beyond i’s extrac-
tion, i will not be envious. In the GoLeft protocol, it can be
the case that some agent j gets extracted pieces beyond i’s
extracted pieces but before any such attachments in the last
part of the GoLeft protocol, we ensure that no envy arises.

After implementing the cycle, we focus on a node i ∈ T
that was in the cycle. For agent/node i, we know that for all
allocations in the working set S, agent i has been allocated
the original isomorphic pieces ck as well as all associated
pieces up till i’s extracted piece. If the piece of cake agent
i is currently allocated in the allocations S has no more ex-
tracted pieces left to attach to it, but it has not had n − 1
attachments, this means that all agents who have not had
their corresponding piece extracted/attached have a signifi-
cant advantage over agents who have had an extracted piece
attached. In this case, the GoLeft Protocol returns the set of
dominated agents to the Main Protocol and we are left with
a smaller envy-free allocation problem because it involves a
fewer number of agents.

In case node i does not lead to an exit from the GoLeft
Protocol, we know that there are associated pieces that can
still be attached to the isomorphic pieces held by i in the
working set of Core allocations S. We focus on the next
set of associated pieces ek(l+1) that we are interested to at-
tach to the pieces ck that have already had associated pieces
ek2, ek3 , . . . , ekl attached in their corresponding main pieces
ck (See Figure 9). Additionally attaching pieces ek(l+1) to
pieces ck is useful in making the agent who extracted them,
interested in the pieces ck because of the additional ek(l+1)

as well as the previous attachments.

Avoiding envy when attaching extracted pieces
Naively attaching the pieces can be problematic and spoil
the envy-freeness of the allocation that we maintain. We
deal with the issue as follows.

– The agents who did not extract pieces associated with
the ck pieces as well as agents who extracted pieces
that have not been attached are asked to ‘reserve’ a
big enough subset S′ ⊂ S of allocations in which they
value the difference between their bonus value for ck
and the extracted pieces currently attached to ck the
most. These allocations S′ are removed from S and
their remaining unattached associated pieces sent back

Piece allocated to Agent 1.
...

...
...

123l

ek(l+1)

l + 1l + 2k + 1k + 2n− 1n

N \A A

Figure 9: Illustration of the GoLeft protocol on a particular piece of cake that is originally allocated to agent
1. Agents k + 2 to n will not go left and are the prospective dominators because they find the shaded space
between the trims of k + 2 and k + 1 significant. Agents 2 to k + 1 are the agents that go left.

Algorithm 5 GoLeft Protocol—High-Level Sketch

Input: Set of C′ allocations, extracted pieces corresponding
to the C′ Core allocations, and residue R.
Output: A set of agents A ⊂ N such that agents in N \ A
dominate agents in A.

1: Select C isomorphic allocations (set S); Build the per-
mutation graph.

– T , the set of nodes with pieces for which n − 1
extracted pieces have not been attached.

– T ′, the set of nodes with pieces for which n − 1
extracted pieces have been attached.

2: while there is a node in T do
3: Find a cycle that includes a node that is from T (such

a cycle always exists).
4: In the cycle identified, let each agent in the cycle get

the allocation she points to up till her extractions.
5: if there is a piece p corresponding that is not from T ′

but has no more associated pieces to be attached then
6: Consider the set of agents A whose either owned the

original piece p or whose extracted pieces have already
been attached to p. Return the dominated set of agents
A.

7: Attachment: Consider the set of isomorphic Core
allocation pieces {ck} that have already had associated
pieces {ek2}, {ek3}, . . . , {ekl} attached to them but some
extracted piecesp have not been attached. Attach in
a subset of the allocations in C′ the set of extracted
pieces {ek(l+1)} to the set of pieces {ck}, thus making
{ck} desirable to the agent who extracted {ek(l+1)}. In
order to attach the pieces without creating envy, a subset
S′, S′′ ⊂ S of Core allocations are removed from the
working S of Core allocations. The Core allocations in
S′ ∪S′′ do not undergo attachments or further changes.
Update the permutation graph to reflect the attachment.
If the piece has had all n− 1 extracted pieces attached,
add the corresponding node to T ′ and make every node
point to it.

to the residue. By maintaining the advantages in the
Core allocations S′, such agents will not be envious
even if some agent in {1, . . . , l} additionally gets all
other extracted pieces ek(l+1) in the remaining Core
allocations in S.

– The agents indexed from 1 to l who have all already
had their extracted pieces attached to ck are asked to

choose a high enough fraction of the Core allocations
in S in which they value the ek(l+1) pieces. We call
these allocations S′′. The ek(l+1) pieces from S′′ are
bunched together and the Main Protocol is called to
divide this cake in an envy-free way among the agents
indexed from 1 to l where l is strictly less than n.
Since envy-freeness implies proportionality, they derive
enough value that they will not be envious if the agent
indexed l + 1 gets all other pieces in set ek(l+1). The
corresponding set of allocations S′′ are then removed
from consideration for updates.

Hence each time we attach isomorphic extracted pieces
ek(l+1) to isomorphic pieces ck, we ‘freeze’ allocations S′∪S′′
from the working set S and still maintain an envy-free al-
location. Note that in the allocations that remain in S,
agents may currently hold a different isomorphic piece than
they previously did, but since they also hold the correspond-
ing attachments associated with the isomorphic piece, each
agent’s total value in each isomorphic allocation in S stays
the same. In Figure 10, we show the states of the permuta-
tion graph and the corresponding representative Core allo-
cation as well as the corresponding extracted pieces.

When the protocol attaches extracted pieces ek(l+1) to
allocated pieces ck currently held by agent l, it deletes the
incoming edge of node/agent l and replaces it by an edge
coming from agent l + 1 who extracted pieces in ek(l+1).
Intuitively, l + 1 is now willing to be allocated c and its
attached pieces instead of her current pieces in S. We delete
previous edges to ensure that until termination, nodes in T
have in-degree exactly 1 which guarantees that no matter the
cycle involving a node in T found by the protocol, we will
make progress towards termination. The following example
shows how progress is made in attaching extracted pieces to
the working set of isomorphic Core allocations.

Example 1. In Figure 10, we demonstrate how the per-
mutation graph along with the working set of isomorphic al-
locations changes in the GoLeft Protocol. Note that even
when the representative allocation changes, there still exist
allocations isomorphic to the previous representative alloca-
tions but these allocations have been removed from considera-
tion from the working set of allocations. The coloured/shaded
pieces represent the pieces given by the Core Protocol to each
agent. The small pieces on the left of the coloured pieces are
extracted pieces, each labelled by the agent who extracted it.
At first, the extracted pieces are associated with a specific al-
located piece. Then they are attached to it (represented by the

1 2 3 4

1 2 3 4234 314 1 231

1 2 3 4

1 2 3 4234 314 1 231

1 2 3 4

1 2 3 4234 314 1 231

1 2 3 4

1 2 3 4234 314 1 231

1 2 3 4

1 2 3 41 234 314 231

Figure 10: Permutation graph along with the corre-
sponding state of an allocation representative of the
working set of isomorphic allocations.

dotted lines). Finally, when a coloured/shaded piece is real-
located to a new agent, the extracted pieces attached to it are
also allocated to the new agent (in the diagram we now ag-
gregate the extracted piece to the main piece). In the second
state of the isomorphic allocation, agent 2 points to agent 1
because the piece extracted by agent 2 has been attached to
1’s held piece. In the third state of the isomorphic alloca-
tion, agent 3 points to agent 2 because the piece extracted
by agent 3 has been attached to 2’s held piece. In the fourth
state of the isomorphic allocation, agent 1 points to agent 3
because the piece extracted by agent 1 has been attached to
3’s held piece. In the fifth state, the agents 1, 2, 3 exchange
their currently held piece and are allocated cake up to their
extracted piece. In the fifth (last) state of the isomorphic
allocation, agent 1 holds a piece up till her extraction but
neither agent 2 or 4 extracted pieces for the piece that agent
1 holds. This means that agents 2 and 4 have a significant
advantage over agent 1. Initially, the piece was held by 3
and still is in discarded isomorphic allocations. This implies
a significant advantage of 2 and 4 over 3. Therefore agent
2 and 4 can be made to dominate 1 and 3.

By attaching enough extracted pieces in the appropriate
order, the GoLeft Protocol finally arrives at a point, where
there is some isomorphic set of pieces ck in the set S for
which all possible associated pieces have been attached but
there is some set of agents N \A who do not have associated
pieces. The reason agents in N \ A could not extract such
pieces is because they had a unanimous significant advan-
tage over the agent indexed 1 who got the pieces ck. By
gradually attaching (unanimously insignificant) associated
piece to pieces ck and ensuring that all agents who did ex-
tract corresponding pieces do get some isomorphic piece in
ck (along with the associated insignificant attachments), we
make sure that agents in N \ A now dominate agents in
A. At this point, we can return from the GoLeft Protocol.
We have successfully reduced our envy-free allocation prob-
lem to that involving less number of agents. By recursively
calling the Main Protocol to allocate the remaining cake to
agents in the smaller set A, we eventually allocate the whole
cake.

4. CONCLUSIONS
We presented a high-level overview of our bounded envy-

free protocol. The protocol has an upper bound that is a
power tower of six n’s. In the other direction, any envy-free
protocol requires at least Ω(n2) queries [Procaccia, 2009].

We additionally show that even if we do not run our pro-
tocol to completion, it can find in at most n calls of the
Core Protocol a partial allocation of the cake that achieves
proportionality (each agent gets at least 1/n of the value of
the whole cake) and envy-freeness. If we allow for partial al-
locations, an interesting open problem is the following one:
can envy-freeness and proportionality be achieved in a poly-
nomial number of steps?

Acknowledgments
Haris Aziz is supported by a UNSW Scientia Fellowship.
He thanks Xin Huang, Sven Koenig, Omer Lev, Bo Li and
Simon Rey for helpful feedback. He also thanks Simon Rey
for his help in making some of the figures.

References
H. Aziz and S. Mackenzie. A discrete and bounded envy-free

cake cutting protocol for four agents. In Proceedings of the
48th Annual ACM Symposium on Theory of Computing
(STOC), pages 454–464. ACM Press, 2016a.

H. Aziz and S. Mackenzie. A discrete and bounded envy-free
cake cutting protocol for any number of agents. In Pro-
ceedings of the 57th Symposium on Foundations of Com-
puter Science (FOCS), pages 416–427, 2016b.

S. J. Brams and A. D. Taylor. An envy-free cake division
protocol. The American Mathematical Monthly, 102(1):
9–18, 1995.

S. J. Brams and A. D. Taylor. Fair Division: From Cake-
Cutting to Dispute Resolution. Cambridge University
Press, 1996.

S. Dehghani, A. Farhadi, M. Taghi Hajiaghayi, and H. Yami.
Envy-free chore division for an arbitrary number of agents.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Or-
leans, LA, USA, January 7-10, 2018, pages 2564–2583,
2018.

A. D. Procaccia. Thou shalt covet thy neighbor’s cake.
In Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI), pages 239–244. AAAI
Press, 2009.

A. D. Procaccia. Cake cutting: Not just child’s play. Com-
munications of the ACM, 56(7):78–87, 2013.

J. M. Robertson and W. A. Webb. Cake Cutting Algorithms:
Be Fair If You Can. A. K. Peters, 1998.

H. Steinhaus. The problem of fair division. Econometrica,
16:101–104, 1948.

