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Abstract Selecting a set of alternatives based on the preferences of agents is an im-
portant problem in committee selection and beyond. Among the various criteria put
forth for desirability of a committee, Pareto optimality is a minimal and important
requirement. As asking agents to specify their preferences over exponentially many
subsets of alternatives is practically infeasible, we assume that each agent specifies
a weak order on single alternatives, from which a preference relation over subsets is
derived using some preference extension. We consider five prominent extensions (re-
sponsive, downward lexicographic, upward lexicographic, best, and worst). For each
of them, we consider the corresponding Pareto optimality notion, and we study the
complexity of computing and verifying Pareto optimal outcomes. We also consider
strategic issues: for four of the set extensions, we present a linear-time, Pareto optimal
and strategyproof algorithm that even works for weak preferences.

Keywords committee selection · multiwinner voting · Pareto optimality · algorithms
and complexity · set extensions.
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1 Introduction

Pareto optimality is a central concept in economics and has been termed the “single
most important tool of normative economic analysis” (Moulin, 2003). An outcome
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is Pareto optimal if there does not exist another outcome that all agents like at least
as much and at least one agent strictly prefers. Although Pareto optimality has been
considered extensively in single-winner voting and other social choice settings such
as fair division or hedonic games, it has received only little attention in multiwinner
voting, in which the outcomes are sets of alternatives. Multiwinner voting applies to
selecting a set of plans or a committee, hiring team members, movie recommenda-
tions, and more. For convenience, we use the terminology “committee” even if our
results have an impact far beyond committee elections (Faliszewski et al., 2017; Aziz
et al., 2017).

In single-winner voting setting, agents express preferences over alternatives and
a single alternative is selected. Pareto optimality in this context is straightforward to
define, achieve, and verify. In multiwinner voting, a well-known difficulty is that it
is unrealistic to assume that agents will report preferences over all possible commit-
tees, since there is an exponential number of them. For this reason, most approaches
assume that they only report a small part of their preferences, and that some exten-
sion principle is used to induce a preference over all possible subsets from this ‘small
input’ over single alternatives (Barberà et al., 2004). Such preference extensions are
also widely used in other social choice settings such as fair division or matching. The
most two widely used choices of ‘small inputs’ in multiwinner voting are rankings
(linear orders) over alternatives and sets of approved alternatives. In this paper we
make a choice that generalizes both of them: agents report weak orders over single
alternatives. Then we consider five prominent preference extension principles: the
responsive extension, where a set of alternatives S is at least as preferred as a set of
alternatives T if S is obtained from T by repeated replacements of an alternative by
another alternative which is at least as preferred; the optimistic, or ‘best’ (respectively
pessimistic, or ‘worst’) extension, which orders subsets of alternatives according to
their most (respectively, least) preferred element; the downward lexicographic exten-
sion, a lexicographic refinement of the optimistic extension, and the upward lexico-
graphic extension, a lexicographic refinement of the pessimistic (worst) extension.

The responsive extension (Barberà et al., 2004; Roth and Sotomayor, 1990) can
be seen as the ordinal counterpart of additivity. The downward lexicographic exten-
sion has been considered in various papers (Bossert, 1995; Lang et al., 2012; Klamler
et al., 2012). The ‘best’ set extension has been considered in a number of approaches
such as full proportional representation (Chamberlin and Courant, 1983; Monroe,
1995) and other committee voting settings Elkind et al. (2015). The ‘worst’ set exten-
sion, also used by Klamler et al. (2012) and Skowron et al. (2015b), captures settings
where the impact of a bad alternative in the selection overwhelms the benefits of good
alternatives: for instance, when the decision about a crucial issue will be made by one
of the members of the committee but the agent ignores which one and is risk-averse;
or the case of a parent’s preferences over a set of movies to be watched by a child.
The ‘best’ and ‘worst’ set extensions have been used in coalition formation (Aziz and
Savani, 2016; Cechlárová, 2008).

Although set extensions have been implicitly or explicitly considered in multi-
winner voting, most of the computational work has dealt with specific voting rules
(see the related work section). Instead, we concentrate on Pareto optimality, consider
the computation and verification of Pareto optimal committees, as well as the exis-
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Computation Verification
Set Extension

Responsive (RS) in PIC (Th. 2) coNP-C (Th. 3 and 6), W[2]-hard

Downward Lexicographic (DL) in PIC (Th. 2) coNP-C (Cor. 1), W[2]-hard

Upward Lexicographic (UL) in PIC (Th. 2) coNP-C (Cor. 2), W[2]-hard

Best (B) NP-hard (Th. 11) coNP-C, W[2]-hard (Th. 9)in P for strict prefs (Th. 12)

Worst (W) in PIC (Th. 15) in P (Th. 14)

Table 1 Complexity of computing and verifying Pareto optimal committees for general partial prefer-
ences. PIC (coined by Christos Papadimitriou in a seminar at Simons Institute in 2015) indicates a class of
problems in which agents provide the input and the problems admit a strategyproof and polynomial-time
algorithm.

tence of a polynomial-time and strategyproof algorithm that returns Pareto optimal
outcomes.

Contributions We consider Pareto optimality with respect to the five aforementioned
preference set extensions. We present various connections between the Pareto opti-
mality notions. For each of the notions, we undertake a detailed study of complex-
ity of computing and verifying Pareto optimal outcomes. Table 1 summarizes the
complexity results for partial ordering and Table 2 proposes dichotomy complexity
results, that is coNP-complete (coNP-C in short) versus polynomial (P in short) for
dichotomous preferences depending on the size of top equivalence class or for linear
preferences.

We show that there exist linear-time Pareto optimal and strategyproof algorithms
for committee voting even for weak preferences for four of the five set extensions.
The algorithms can be considered as careful adaptations of serial dictatorship for
committee voting.

For responsive, downward lexicographic, upward lexicographic, best and worst
extensions, we give a complete characterization of the complexity of testing Pareto
optimality when preferences are dichotomous or linear. More precisely, we prove that
for the three first extensions (i.e., RS , DL and UL) the size of top equivalence class
parameter, i.e., topwidth (tw in short) is two: unless P = NP, Pareto optimality can
be tested in polynomial time if and only if the size of the first equivalence classes is
at most two. For the ‘best’ extension, unless P = NP, Pareto optimality can be tested
in polynomial time if and only if the size of the first equivalence classes is at most
one. In contrast to the other extensions, for the ‘worst’ extension, both problems of
computing and verifying Pareto optimal outcomes admit polynomial-time algorithms
for every partial ordering. These results are summarized in Table 2.

Note for the ‘best’ extension, we also show that even computing a Pareto optimal
outcome is NP-hard. An important take-home message of the results is that testing
Pareto optimality or obtaining Pareto improvements over status-quo committees can
be computationally hard even when computing some Pareto optimal committee is
easy.
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Dichotomous Preferences Linear Preferences
Set Extension
Responsive (RS) coNP-C if tw ≥ 3 (Th. 3) and P if tw ≤ 2 (Th. 5) coNP-C (Th. 6)

Downward Lexicographic (DL) coNP-C if tw ≥ 3 (Th. 3) and P if tw ≤ 2 (Th. 5) coNP-C (Th. 7)

Upward Lexicographic (UL) coNP-C if tw ≥ 3 (Th. 3) and P if tw ≤ 2 (Th. 5) coNP-C (Th. 8)

Best (B) coNP-C if tw ≥ 2 (Th. 9) and P if tw = 1 (Th. 10) coNP-C (Th. 13)

Worst (W) P (Th. 14) P (Th. 14)

Table 2 Complexity of testing Pareto optimality: complete characterization for dichotomous preferences
according to topwidth = tw parameter and for linear preferences.

2 Related Work

A first related stream of work involves studying specific committee elections rules
from a computational point of view (generally with little or no focus on Pareto opti-
mality). Our focus on determining whether a committee is Pareto optimal or on find-
ing a Pareto optimal committee, is in some sense orthogonal to the study of committee
election rules. The simplest (and most widely used) rules for electing a committee,
called best-k rules, compute a score for each alternative based on the ranks, and the
alternatives with the best k scores are elected Elkind et al. (2014); Faliszewski et al.
(2016). Scoring-based extension principles have also been used by Darmann (2013).
Note that the output of a best-k rule is obviously Pareto-optimal for the preferences
induced by this scoring function, but not necessarily with respect to other set exten-
sions.

Klamler et al. Klamler et al. (2012) compute optimal committees under a weight
constraint for a single agent (therefore optimality is equivalent to Pareto optimality),
using several preference extensions including ‘worst’, ‘best’, and downward lexico-
graphic.

The ‘best’ (B) extension principle has been used in a number of papers on com-
mittee elections by full proportional representation, starting with (Chamberlin and
Courant, 1983) and studied from a computational point of view in a long series of
papers (e.g., (Procaccia et al., 2008; Lu and Boutilier, 2011; Betzler et al., 2013;
Skowron et al., 2015a; Elkind and Ismaili, 2015). These rules obviously output Pareto
optimal committees for B, but not necessarily for other extensions.

Some of the set extensions considered in this paper have corresponding analogues
when extending preferences over alternatives to preferences over ‘lotteries over alter-
natives.’ In particular, the RS set extension corresponds to SD (stochastic dominance)
lottery extension. Also the DL and UL set extensions considered in this paper cor-
respond to DL and UL lottery extensions considered in works in probabilistic social
choice (Brandl, 2013; Aziz et al., 2013b; Cho, 2016).

Some works are based on the Hamming extension. Each agent specifies his ideal
committee and he prefers committees with less Hamming distance from the ideal
committee. The Hamming distance notion can be used to define specific rules such as
minimax approval voting (Brams et al., 2007), which selects the committee minimiz-
ing the maximum Hamming distance for the agents. Although the output of minimax
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approval voting is not always Pareto-optimal for the Hamming extension, there are
good Pareto-optimal approximations of it Caragiannis et al. (2010). Note that for di-
chotomous preferences, the Hamming extension coincides with the responsive and
the downward lexicographic extensions, therefore our computational results for re-
sponsive set extension for dichotomous preferences also hold for the Hamming and
downward lexicographic extensions.

A second line of work concerns understanding the classes of rules that result
in Pareto optimal outcomes. Most works along this line bear on a different type of
committee elections, called designated-seat voting, where candidates must declare
the seat they contest (Benoı̂t and Kornhauser, 2010).1 Results about the existence or
non-existence of Pareto optimal rules have been presented Özkal-Sanver and Sanver
(2006); Benoı̂t and Kornhauser (2010); Cuhadaroǧlu and Lainé (2012).

3 Setup

We consider a set of agents N = {1, . . . , n}, a set of alternatives A = {a1, . . . , am} and
a preference profile %= (%1, . . . ,%n) such that each %i is a complete and transitive
relation over A. We write a %i b to denote that agent i values a at least as much as b
and use �i for the strict part of %i, i.e., a �i b iff a %i b but not b %i a. Finally, ∼i

denotes i’s indifference relation, i.e., a ∼i b iff both a %i b and b %i a.
The relation %i results in equivalence classes E1

i , E
2
i , . . . , E

ki
i for some ki such that

a �i a′ if a ∈ El
i and a′ ∈ El′

i for some l < l′. We will use these equivalence classes
to represent the preference relation of an agent as a preference list i : E1

i , E
2
i , . . . , E

ki
i .

For example, we will denote the preferences a ∼i b �i c by the list i : {a, b}, {c}.
An agent i’s preferences are strict if the size of each equivalence class is 1. When all
agent preferences are strict we also refer to them as linear preferences. An agent i’s
preferences are dichotomous if he partitions the alternatives into just two equivalence
classes, i.e., ki = 2. Let Topwidth(%) be the maximum size of the most preferred
equivalence class, i.e., Topwidth(%) = maxi≤n |E1

i |. For any S ⊆ A, we will denote
by max%i (S ) and min%i (S ) the alternatives in S that are maximally and minimally
preferred by i respectively. Thus, if q and r are respectively the smallest and the
largest indices such that Eq

i ∩ S , ∅ and Er
i ∩ S , ∅, then max%i (S ) = Eq

i ∩ S and
min%i (S ) = Er

i ∩ S . For k ≤ m, let S k(A) = {W ⊆ A : |W | = k}.

4 Set Extensions and Pareto Optimality

Set Extensions Set extensions are used for reasoning about the preferences of an
agent over sets of alternatives given their preferences over single alternatives. For
fixed-size committee voting, the responsive extension (RS ) is very natural and has
been applied in various matching settings as well (Barberà et al., 2004; Roth and So-
tomayor, 1990). For all V,W ∈ S k(A), we say that W %RS

i V if and only if there is an

1 If there are exactly two candidates per seat, then designated voting is equivalent to multiple referenda,
where a decision has to be taken on each of a series of yes-no issues.
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injection f from V to W such that for each a ∈ V , agent i weakly prefers f (a) to a,
i.e. f (a) %i a.

We define the best set extension and the worst set extension which are denoted
B and W respectively. For all W,V ∈ S k(A), W %Bi V if and only if w %i v for
w ∈ max%i (W) and v ∈ max%i (V). On the other side, W %Wi V if and only if w %i v
for w ∈ min%i(W) and v ∈ min%i (V).

In the downward lexicographic (DL) extension, an agent prefers a committee
that selects more alternatives from his most preferred equivalence class, in case of
equality, the one with more alternatives for the second most preferred equivalence
class, and so on. Formally, W �DL

i V iff for the smallest (if any) l with |W ∩ El
i | ,

|V ∩ El
i | we have |W ∩ El

i | > |V ∩ El
i |.

In the upward lexicographic (UL) extension, an agent prefers a committee that
selects less alternatives from his least preferred equivalence class, in case of equality,
the one with less alternatives for the second least preferred equivalence class, and so
on. Formally, W �UL

i V iff for the largest (if any) l with |W ∩ El
i | , |V ∩ El

i | we have
|W ∩ El

i | < |V ∩ El
i |.

Remark 1 Consider an agent i with preferences %i over A. Let S ,T ⊂ W such that
|S | = |T | = k. Then,

– S %RS
i T =⇒ S %DL

i T =⇒ S %Bi T
– S %RS

i T =⇒ S %UL
i T =⇒ S %Wi T

– S �RS
i T =⇒ S �DL

i T
– S �RS

i T =⇒ S �UL
i T

The relations follow from the definitions.

Efficiency based on Set Extensions With each set extension E, we can define Pareto
optimality with respect to E. For two committees W,W ′ ∈ S k(A), we write W ′ %E W
if ∀i ∈ N, W ′ %Ei W and W ′ �E W if ∃ j ∈ N, W ′ �Ej W and ∀i ∈ N \ { j}, W ′ %Ei W.
A committee W ∈ S k(A) is Pareto optimal with respect to E, or simply E-efficient, if
there exists no committee W ′ ∈ S k(A) such that W ′ �E W. Note that for each of our
set extensions, E-efficiency coincides with standard Pareto optimality when k = 1.
An outcome is a Pareto improvement over another if each agent weakly improves
and at least one agent strictly improves.

Example 1 Consider the preference profile:

1 : a, b, c, d

2 : d, c, b, a

Suppose k = 2. Then,

– The unique B-efficient committee is {a, d}
– The unique W-efficient committee is {b, c}.
– The DL-efficient committees are {a, d}, {a, b}, and {d, c}.
– The UL-efficient committees are {b, c}, {a, b}, and {d, c}.
– The RS -efficient committees are {a, d}, {b, c}, {a, b}, and {d, c},
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Remark 2 Consider a committee S .

– If S is DL-efficient, then S is RS -efficient
– If S is UL-efficient, then S is RS -efficient

The argument is as follows. By contraposed, suppose S is not RS -efficient, then
there exists some other outcome T such that T %RS

i S for all i ∈ N and T �RS
i S for

some i ∈ N. In that case T %DL
i S for all i ∈ N and T �DL

i S for some i ∈ N. Also
T %UL

i S for all i ∈ N and T �UL
i S for some i ∈ N. Hence S is neither DL-efficient

not UL-efficient.

Remark 3 There always exists a B-efficient committee that is also DL-efficient: DL
Pareto improvements over a B-efficient does not harm any agent with respect to the
B relation.

Remark 4 There always exists a W-efficient committee that is also UL-efficient: UL
Pareto improvements over a W-efficient does not harm any agent with respect to the
W relation.

In Figure 1, we illustrate the relations between the different efficiency notions.
Later on in the paper we will present an algorithm that returns a committee that is
UL-efficient and DL-efficient, and hence RS -efficient.

B-efficiency W-efficiency

RS -efficiency

DL-efficiency UL-efficiency

Fig. 1 Relations between the five notions of efficiency. An arrow from E1-efficiency to E2-efficiency means
that E1-efficiency implies E2-efficiency; a dashed line means there always exists a committee that is both
E1- and E2-efficient; absence of arrow or line means that the sets of E1- and E2-efficient committees can
be disjoint.

We also make the following general observation.

Lemma 1 If there is a polynomial-time algorithm to compute a Pareto improvement
over a committee, then there exists a polynomial-time algorithm to compute an E-
efficient committee under set extensions E ∈ {RS ,DL,UL,W,B}.
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Proof. Here, we start from any committee and we recursively apply Pareto improve-
ment until we reach a Pareto optimal committee. For the ‘best’ and ‘worst’ exten-
sions, there can be at most mn Pareto improvements because for one agent there can
be at most m improvements. Since an RS -improvement implies an DL-improvement,
let us bound the number of Pareto-improvements with respect to DL. In each Pareto-
improvement, for the agent who strictly improves, the most preferred equivalence
class that has different number of alternative in the outcome increases by at least one.
Therefore the most preferred equivalence class can be the improving class in at most
m of the Pareto improvements. Similarly, the number of Pareto improvements in the
subsequent less preferred equivalence class improves in a Pareto improvement can
be at most m of the Pareto improvements. Therefore the total number of DL Pareto-
improvements is bounded by m2n. A similar argument holds for UL as well. ut

We end this section by observing that, under any of the set extensions we consider,
a set of Pareto optimal alternatives may be Pareto dominated. Consider the following
example.

Example 2

1 : a, c, b, d 2 : a, d, b, c

3 : b, c, a, d 4 : b, d, a, c

The set {c, d} consists of Pareto optimal alternatives but is Pareto dominated by {a, b}
under any of our set extensions.

5 A general algorithm to compute a DL/UL/RS-efficient committee

There is a trivial way to achieve Pareto optimality under the responsive set extension
by taking any decreasing scoring vector consistent with the ordinal preferences, find-
ing the total score of each alternative and returning the set of k alternatives with the
maximum scores. For instance, on Example 2, the outcome of the rule that outputs
the alternatives with the best k Borda scores is {a, b}.

Theorem 1 A Pareto optimal committee under the responsive set extension commit-
tee can be computed in linear time.

Next, we present a general polynomial-time and strategyproof algorithm that re-
turns a DL-efficient and UL-efficient and hence RS-efficient committee. A mecha-
nism f is strategyproof if reporting truthful preferences is a dominant strategy with
respect to the responsive set extension: f (%) %RS

i f (%′i ,%−i) for all preference profiles
% and (%′i ,%−i). Note that defining strategyproofness in this way with respect to the
RS extension is stronger than defining it for any of the other four extensions consid-
ered in this paper. Nonetheless, we will present some positive results with respect to
strategyproofness.

A naive way of achieving RS -efficiency and Pareto optimality is to enumerate
the list of possible winning sets and implement serial dictatorship over the possible
outcomes as is done in voting (Aziz et al., 2013b). However, the number of possible
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outcomes is exponential and responsive preferences result in a partial order over the
possible winning sets and not a complete and transitive order. This problem is solved
by Algorithm 1 which can be viewed as a computationally efficient serial dictatorship.

Algorithm 1 Committee Voting Serial Dictatorship
Input: (N, A,%, k, permutation π of N)
Output: W ∈ S k(A).

1 L (last set to be refined)←− A
2 r (number of alternatives yet to be fixed)←− k; W ←− ∅
3 i′ (index of the permutation π)←− 1
4 while r , 0 or i′ , n do
5 Agent i = π(i′) selects first t equivalence classes such that |

⋃t
j=1 E j

i ∩ L| ≥ r and |
⋃t−1

j=1 E j
i ∩ L| < r.

6 W ←− W ∪ (
⋃t−1

j=1 E j
i ∩ L) (we say agent i fixes the alternatives in

⋃t−1
j=1 E j

i );

7 r←− |
⋃t

j=1 E j
i ∩ L| − |

⋃t−1
j=1 E j

i ∩ L|
8 L←− Et

i ; ri′ ←− r
9 Increment i′ by one

10 end while
11 if r > 0 then
12 pick any r alternatives from L and add them to W
13 end if
14 return W

Theorem 2 There exists a linear-time and strategyproof algorithm that returns a
committee that is Pareto optimal under RS , DL, and UL set extensions.

Proof. Consider Algorithm 1. We show that at each stage i′, agent π(i′), implicitly
refines the set of feasible committees to the maximal set of most preferred outcomes
from the set by providing additional constraints. This is true for the base case i′ = 1.
Now assume it holds from 1 to i′. Note that L contains all those alternatives that are
strictly less preferred by agents in {π(1), . . . , π(i′)} than the ones they respectively
fixed. Moreover, each agent in {1, . . . , π(i′)} is indifferent between the alternatives
in L. As for π(i′ + 1), he fixes the best |

⋃t−1
j=1 E j

π(i′+1) ∩ L| alternatives in L where

t is the value such that |(
⋃t

j=1 E j
π(i′+1)) ∩ L| ≥ ri′ and |

⋃t−1
j=1 E j

π(i′+1) ∩ L| < ri′ . For

Et
π(i′+1), the agent only requires that ri′+1 = |(

⋃t−1
j=1 E j

π(i′+1)) ∩ L| − |(
⋃t−1

j=1 E j
π(i′+1)) ∩ L|

alternatives are selected from his equivalence class Et
π(i′+1) which is ensured by the

definition of the algorithm. Thus, each agent in her turn refines the set of possible
outcomes to her most preferred subset of outcomes. Each committee is the refined set
is at least as preferred with respect to RS (and hence with respect to DL and UL) to
all committees in the set of possible outcomes. Thus the outcome is DL-efficient and
UL-efficient and hence RS -efficient.

For strategyproofness, when an agent π(i′) turn comes, it only has a choice over
fixing the alternatives in L and requiring ri′ alternatives from his equivalence class
Et
π(i′). In this case the algorithm already chooses one of the best possible committees

for the agent. ut
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Note that for k = 1, the algorithm is equivalent to serial dictatorship as formal-
ized by Aziz et al. (2013a). Note that a committee that is Pareto optimal under the
responsive set extension may not be a result of serial dictatorship. This holds even for
k = 1 and the basic voting setting.

The problem with the serial dictatorship algorithm formalized is that it overly
favours the agent that is the first in the permutation. One way to limit his power
is to let him choose only dk/ne alternatives. We note that this attempt at having a
fairer extension of serial dictatorship comes at an expense because strategyproofness
is compromised. Consider the profile in which 1 has preferences a, b, c and 2 has
preferences a, c, b. For k = 2, and permutation 12, the outcome is {a, c}. But if agent
1 reports b, a, c, then the outcome is {a, b}.

6 Testing Pareto optimality under RS/UL/DL Extension

In many situations, one may already have a status-quo committee and one may want
to find a Pareto improvement over it. This problem of testing Pareto optimality and
finding a Pareto improvement under the responsive set extension turns out to be a
much harder task. Note that if there exists a polynomial-time algorithm to compute a
Pareto improvement, then it means that testing Pareto optimality is also polynomial-
time solvable.

6.1 Dichotomous Preferences

First, we consider the case of dichotomous preferences. The nice aspect of dichoto-
mous preferences is that RS -efficiency, DL-efficiency, and UL-efficiency coincide
under them. Hence, our results in this section apply to all the three concepts. Our
central result in the section is a characterization of the conditions under which testing
Pareto optimality in coNP-complete. The condition identified is based on the size of
the topwdith.

Theorem 3 Checking whether a committee is Pareto optimal under the responsive
set extension is coNP-complete even for dichotomous preferences and Topwidth(%
) ≥ 3.

Proof. We only present the case where Topwidth(%) = 3. The reduction is from the
NP-complete problem vertex coverGarey and Johnson (1979). Given a simple graph
G = (V, E), the minimum vertex cover problem consists in finding a subset C ⊆ V of
minimum size such that every edge e ∈ E is incident to some node of C. Its decision
version vertex cover takes as input a simple graph G = (V, E) and an integer k and
problem is deciding if there exists a vertex cover C ⊆ V of G with |C| ≤ k.

Let 〈(V, E), k〉 be an instance of vertex cover, with [x, y] being one arbitrary edge
in E. We build the following instance of Pareto optimality under RS :

• N = ∪e∈E Ne ∪ {a}, where for each edge e ∈ E, Ne is a set of k agents, and a is a
special agent.
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• A = V ∪ D, where D = {d1, . . . , dk}.
• For each e = [u, v] ∈ E, the preferences of agent ei, for i = 1, . . . , k, and of agent

a, are
ei : {u, v, di}, (D − di) ∪ (V \ {u, v})
a : {x, y},D ∪ (V \ {x, y})

The reduction is clearly done within polynomial time and preferences are dichoto-
mous. We claim that that committee D (of size k) is not Pareto optimal under RS if
and only if there exists a vertex cover of G of size at most k.

The condition is sufficient. Let C ⊆ V be a vertex cover of G with a size exactly
k (if it is strictly less, then we add arbitrarily vertices). Then set C Pareto dominates
D because there is an improvement for agent a because edge e0 is covered by C and
indifference for the others agents.

Conversely, let D′ be a Pareto improvement of D. Because, D′ , D, then, agent
a has strictly improved its preferences. Then, D′ = C ∪ D′ where C ⊆ V , C , ∅ and
D′ ⊂ D. Let N i

E be the agents defined by: N i
E = {ei : e ∈ E}. For any agent ei ∈ N i

E
with i < D′, he is indifferent between alternatives di and one vertex of C. This means
that C is a vertex cover of G with a size at most k. ut

We point out that for dichotomous preferences, the responsive set extension co-
incides with the downward lexicographic set extension. Hence we get a corollary of
our results for responsive preferences:

Corollary 1 Checking whether a committee is DL-efficient is coNP-complete, even
for dichotomous preferences and Topwidth(%) ≥ 3.

We point out that for dichotomous preferences, the responsive set extension co-
incides with the upward lexicographic set extension. Hence we get a corollary of our
results for responsive preferences:

Corollary 2 Checking whether a committee is UL-efficient is coNP-complete, even
for dichotomous preferences and Topwidth(%) ≥ 3.

Using a similar reduction from the Hitting Set problem, we can also prove The-
orem 4 that concerns a parametrized complexity intractability result Downey and
Fellows (2013). Hitting Set is defined as follows: given a ground set X of elements,
and a collection C = {C1, . . . ,C`} of subsets of X, does there exist a H ⊂ X such that
|H| ≤ k and H ∩C , ∅ for all C ∈ C?

Theorem 4 Checking whether a committee is Pareto optimal under the responsive
set extension is W[2]-complete under parameter k, even for dichotomous preferences.

For dichotomous preferences we present a complete characterization of the com-
plexity according to the Topwidth(%) parameter. If Topwidth(%) = 1, then in any
Pareto improvement over committee D, any alternative in D that is most preferred
by some agent needs to be kept selected, and therefore the problem of checking RS -
efficiency is easy. If Topwidth(%) ≥ 3, from Theorem 3, the problem is hard. The
only case remaining is Topwidth(%) = 2.
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Theorem 5 For dichotomous preferences, a Pareto improvement over a committee
with respect to the responsive set extension (or DL or UL set extension) can be com-
puted in polynomial time when Topwidth(%) ≤ 2.

Proof. Consider a preference profile %= (%1, . . . ,%n) where each %i is dichotomous
and verifies Topwidth(%) = 2, and let D ∈ S k(A). For each i ∈ N, let (E1

i , E
2
i ) be the

partition associated with %i.
First, if for all i ∈ N, E1

i ⊆ D, then D is obviously RS -efficient. Assume it is not
the case, that is, (1) for some i ∈ N, E1

i \ D , ∅. Let

– N′ = {i ∈ N : E1
i ∩ D = E1

i }, W ′ = ∪i∈N′E1
i (by construction, W ′ ⊆ D), and

k′ = |W ′|.
– N′′ = {i ∈ N \ N′ : E1

i ∩ (D \W ′) , ∅} and A′′ = ∪i∈N′′E1
i .

Now, we build a graph G = (V, E) with V = {v1, . . . , vr} isomorphic to A′′, and
[vp, vq] ∈ E iff E1

i = {ap, aq} for some i ∈ N′′: each edge of G corresponds to the top
two alternatives of some agent, provided one of them is in D \ W ′. Let τ(G) be the
size of an optimal vertex cover of G.

We first claim that there is a Pareto improvement over D if and only if one of
follows two conditions is satisfied:

(i) τ(G) < k − k′, or
(ii) τ(G) = k − k′, and there is an optimal vertex cover of G containing either at least

an element of E1
i for some i < N′ ∪ N′′, or two elements of E1

i for some i ∈ N′′.

We first show that (i) and (ii) are sufficient. If (i) holds then take a committee
corresponding to a minimum vertex cover of G, add to it the k′ alternatives of W ′, and
add (k−k′)−τ(G) alternatives, with at least one in ∪i(E1

i \D); this is possible because
of (1). If (ii) holds, then take a committee corresponding to a minimum vertex cover
of G, and add to it the k′ alternatives of W ′. In both cases, the obtained committee
contains E1

i for all i ∈ N′, contains at least one element of E1
i for all i ∈ N′, and

contains either two elements of E1
i for some i ∈ N′′, or an element of E1

i for some
i < N ∪ N′′. Therefore it is a Pareto-improvement over D.

Now, we show that (i) and (ii) are necessary. Let W ∈ S k(A) be a Pareto im-
provement of D containing a maximum number of alternatives from D. We have the
following two properties: W ′ ⊆ W and W \W ′ is a vertex cover of G. W ′ ⊆ W holds,
since otherwise there would be an i ∈ N′ such that W ′ %RS

i W does not hold. For
similar reasons, C′ = (W \W ′)∩A′′ is a vertex cover of G. If |(W \W ′)∩A′′| < τ(G),
then by adding to it any set of D \ C′ of size k − k′ − τ(G) we obtain a set of size k
which constitutes a Pareto improvement of D because now, E1

i ⊆ W for some i ∈ N′′.
If |(W \ W ′) ∩ A′′| = τ(G), then (W \ W ′) ∩ A′′ = W \ W ′ and necessarily either
E1

i ∩C , ∅ for some i < (N′ ∪ N′′) or E1
i ⊆ C for some i ∈ N′′.

It remains to be shown that (i) and (ii) can be checked in polynomial time. (i)
can be done in polynomial-time because G is bipartite: indeed, by construction, G
is two-colorable with color sets A′′ ∩ D and A′′ \ D, and by König’s theorem, for
bipartite graphs, the problem of finding the minimum vertex cover is equivalent to
computing a maximum matching, hence solvable in polynomial time. As for (ii), if
τ(G) = k− k′, we have to check whether for some optimal vertex cover C of G, either
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(ii.1) E1
i ∩ C , ∅ holds for some i < (N′ ∪ N′′), or (ii.2) E1

i ⊆ C for some i ∈ N′′.
In order to check (ii.1), for each i < (N′ ∪ N′′) such that there exists x ∈ E1

i ∩ A′′,
we transform G into a new bipartite graph G{x} where we add a new vertex x′ and an
edge [x, x′]. In order to check (ii.2), for each i < N′′, let E1

i = {x, y}; we transform
G into a new bipartite graph G{x,y} where we add two new vertices x′ and y′, and two
edges [x, x′] and [y, y′]. Finally, we test if τ(G) = τ(G{x}) or if τ(G) = τ(G{x,y}) for one
of these graphs, because all optimal vertex covers of G{x} (respectively G{x,y}) must
contain x (respectively {x, y}). ut

Example 3 We illustrate the algorithm in the proof of Theorem 5. Let k = 2 and
consider the dichotomous profile, where we specify only the top equivalence class of
each agent:

1 : {a, c} 2 : {b, c} 3 : {b, d}
4 : {d, e} 5 : {e, f }

Let D = {a, b}. We have N′ = W ′ = ∅, k′ = 0, D \ W ′ = {a, b}, N′′ = {1, 2, 3},
and A′′ = {a, b, c, d}. We construct the graph G = (V, E): V = {va, vb, vc, vd} and
E = {{va, vc}, {vb, vc}, {vb, vd}}. We have τ(G) = 2 = k − k′. Now we consider the four
graphs G{d}, resulting from the addition to G of a new vertex vd′ and edge [vd, vd′ ], and
G{a,c}, G{b,c} and G{b,d}: G{a,c} results from the addition to G of two new vertices va′ , vc′

and edges [va, va′ ] and [vc, vc′ ], etc. Two of these graphs have an optimal cover of size
2: G{d}, with optimal cover {vc, vd}, and G{b,c}, with optimal cover {vb, vc}. Therefore,
{c, d} and {b, c} are RS -Pareto-improvements over {a, b}, and {a, b} is not RS -efficient.

va vb

vdvc

va vb

vd vd′vc vc′

va vb vb′

vdvc

G G{d} G{b,c}

Fig. 2 Graphs corresponding to Example 3

Note that finding an algorithm that computes a Pareto improvement over a com-
mittee can be used to decide whether a given a committee D of size k, is Pareto
optimal under the responsive set extension.

6.2 Linear preferences

Now, we deal with the case of linear preferences.

Theorem 6 Checking whether a committee is Pareto optimal under the responsive
set extension is coNP-complete for linear preferences.
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Proof. The proof is an adaptation of Theorem 3. The reduction from vertex cover is
almost the same, except we do not consider agent a. For any edge e = [u, v] ∈ E and
for i = 1, . . . , k, the strict preferences for agent ei are given by:

ei : {u, v}, di, (V \ {u, v}), (D − di)

where strict preferences over a subset Z are arbitrary given (for instance, {u, v}, d
means either u > v > d or v > u > d).

As previously, we claim that committee D (of size k) is not Pareto optimal under
RS if and only if there exists a vertex cover of G of size at most k.

Let C ⊆ V be a vertex cover of G with |C| = k, where ve ∈ C is a vertex covering
edge e ∈ E. Consider an arbitrary agent ei for some i ∈ {1, . . . , k} and e = [u, v] ∈ E.
By construction, ve �

RS
ei di and (C \ {ve}) %RS

ei (D \ {di}) since D \ {di} are the least
preferred candidates for agent ei. Hence, C �RS D. Conversely, the proof is similar to
the one given in Theorem 3. Let D′ be a Pareto improvement of D, that is D′ �RS D;
then, there is di ∈ D \ D′ since |D′| = |D| = k. We will prove that C = D′ \ D is a
vertex cover of G. Consider any agents ei for e = [u, v] ∈ E. Since C �RS

ei D\D′, then
f (di) �ei di, or equivalently f (di) ∈ {u, v}. ut

Theorem 7 Checking whether a committee is Pareto optimal under DL is coNP-
complete for linear preferences.

Proof. The proof is exactly the same as that of Theorem 6 because in that reduction
for any D′ ∈ S k(A), we have D′ �RS D if and only if D′ �DL D. ut

We end the subsection with the case of upward lexicographic set extension.

Theorem 8 Checking whether a committee is Pareto optimal under UL is coNP-
complete for linear preferences.

Proof. The reduction is given from vertex cover. Let 〈G = (V, E), k〉 be an instance
of vertex cover where |V | = n and |E| = m. We build the following instance of
Pareto optimality under UL where the size of committee is n. There is m(n − k)
agents ei for e ∈ E and i ∈ {1, . . . , n − k} and a set of 2n − k alternatives A = V ∪ D
where D = {d1, . . . , dn−k}. The strict preferences of agent ei for e = [u, v] ∈ E and
i = 1, . . . , n − k are given by:

ei : (D \ {di}), (V \ {u, v}), di, {u, v}

where strict preferences over a subset Z are arbitrary given as explained in Theorem
6. The reduction is clearly done within polynomial time and the set of preferences
are strict. We claim that G has a vertex cover of size k iff committee V of size n is not
Pareto optimal under UL.

Let C ⊆ V be a vertex cover of G with |C| = k, where f (e) ∈ {u, v} ⊆ C is a vertex
incident to edge e = [u, v] ∈ E. The committee C∪D of size n satisfies (C∪D) �UL V .
Actually, it is the case (C ∪ D) �UL

ei V for every agent ei with e ∈ E since alternative
f (e) is missing in the committee. Conversely, let V ′ be a Pareto improvement of V
under UL, ie., V ′ �UL V; then, there is di ∈ V ′ for some i ∈ {1, . . . , n − k}. We
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will prove C = V \ V ′ is a vertex cover of G. By contradiction, assume C is not a
vertex cover of G; then some edge e = [u, v] ∈ E is not covered by C, or equivalently
{di, u, v} ⊆ V ′. In this case V �UL

ei V ′ (because di < V) which is a contradiction. In
conclusion, C is a vertex cover and the proof is complete. ut

7 ‘Best’ Set Extension

Next, we consider Pareto optimality with respect to B, which has been used for defin-
ing many rules (see Section 2).

Theorem 9 Checking whether a committee is B-efficient is coNP-complete, even for
dichotomous preferences and Topwidth(%) ≥ 2.

Proof. We only present the case where Topwidth(%) = 2. and as previously the
reduction is from vertex cover. Let 〈G = (V, E), k〉 be an instance of vertex cover
where |V | = n and |E| = m. We build the following instance of Pareto optimality
under B where the size of committee is n. We construct the following profile P:

• The set of m + (n + 1)(n − k) agents is N = E ∪ {vi, i : v ∈ V , i = 1, . . . , n − k}.
• The set of 2n − k alternatives is A = V ∪ D where D = {d1, . . . , dn−k}.
• Let e = [u, v] ∈ E be an edge of G; the preferences of agent e for e ∈ E are:

e : {u, v},D ∪ (V \ {u, v}).

• The preferences of the n(n − k) agents vi are given by: for i = 1, . . . , n − k, v ∈ V ,

vi : {v, di}, (V \ {v}) ∪ (D \ {di}).

• The preferences of the last n − k agents i are given by: for i = 1, . . . , n − k,

i : di,V ∪ (D \ {di}).

The reduction is clearly done within polynomial time and the set of preferences
given by % are dichotomous with Topwidth(%) = 2. We claim that G has a vertex
cover of size k iff committee V of size n is not Pareto optimal under B.

Let C ⊆ V be a vertex cover of G with |C| = k, where ve ∈ C is a vertex covering
edge e ∈ E. The committee C ∪ D of size n satisfies (C ∪ D) %B V . Actually, for
agent e ∈ E or agent vi i ≤ n − k, and v ∈ V , there is an indifference between both
committees V and C∪D while (C∪D) is strictly preferred to V under B for all agents
i = 1, . . . , n−k,. Conversely, let V ′ be a Pareto improvement of V under B; then, there
is v ∈ V \ V ′ since |V ′| = |V | = n. We will prove C = V \ V ′ is a vertex cover of G.
Consider, the n − k agents vi for i = 1, . . . , n − k. Since V ′ %Bvi V , then di ∈ V ′ for
every i ≤ n − k; Hence, D ⊆ V ′. Now, V ′ %Be V implies edge e is covered by V ′ \ D
and the proof is complete. ut

The problem becomes easy to solve if the topwidth is less than or equal to 1.

Theorem 10 Checking whether a committee is B-efficient is polynomial-time solv-
able for dichotomous preferences and Topwidth(%) ≤ 1.
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Proof. Under the conditions, a given committee W is B-efficient, if either (1) each
agent has a most preferred candidate in W or (2) each candidate in W is a most pre-
ferred candidate of some agent. We prove as follows. If (1) holds, then W is clearly
B-efficient. If (2) holds, then no candidate from W can be replaced without making
at least one agent less happy. Hence W is B-efficient. Now suppose that neither (1)
nor (2) hold. Then this means that there exists some candidate that is not the most
preferred of any agent. Such a candidate can be replaced by the most preferred can-
didate of that agent who has no top candidate in W. Such a replacement leads to a
Pareto improvement with respect to the ‘best’ set extension. ut

Theorem 11 Computing a B-efficient committee is NP-hard, even for dichotomous
preferences.

Proof. We give a reduction from Hitting Set. Let N = {1, . . . , `}, A = X and for each
i ∈ N, i’s dichotomous preferences are i : Ci, (X \ Ci). If there exists a polynomial-
time algorithm to compute a B-efficient committee, it will return a committee in
which each agent gets a most preferred alternative if such a committee exists. But
such a committee corresponds to a hitting set of size k. ut

Dealing with linear preferences, in contrast to Theorem 11, a B-efficient commit-
tee can be computed in polynomial time.

Theorem 12 Under linear preferences, there is a linear-time algorithm to compute
a B-efficient committee.

Proof. The algorithm works as follows. We go agent by agent and let her pick her
most preferred candidate if it has not already been chosen. We stop when k candidates
have been selected or all agents have been exhausted. If all the agents have been
exhausted but k candidates have not been selected, we can fill the remaining slots by
choosing arbitrary candidates. The algorithm chooses a most preferred committee for
the agents who have their most preferred candidate in the committee. For other other
agents, there simply is not enough space to get an improvement for them without
affecting the agents who who have their most preferred candidate in the committee.
Hence the outcome is ut

Finally, note the same proof as the one given in Theorem 6 allow to conclude the
following.

Theorem 13 Checking whether a committee is Pareto optimal under B is coNP-
complete for linear preferences.

Proof. The proof is completely similar to Theorem 6 because in that reduction for
any D′ ∈ S k(A), we have D′ �RS D if and only if D′ �B D. ut

8 ‘Worst’ Set Extension

In contrast to all the other set extensions considered in the paper, Pareto optimality
with respect to the ‘worst’ set extension can be checked in polynomial time.
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Theorem 14 There exists a polynomial-time algorithm that checks whether a com-
mittee is W-efficient and computes a Pareto improvement over it if possible.

Proof. Let W ∈ S k(A). For each i ∈ N, let Eti
i be the least preferred equivalence class

such that Eti
i ∩ W , ∅. We want to check whether there is a k-set D of alternatives

in which at least some agent i ∈ N gets a strictly better outcome and all the other
agents get at least as preferred an outcome. We check this as follows. For i ∈ N,
let Bi = A \ ((

⋃ki
`=ti

E`
i ) ∪
⋃

j∈N\{i}
⋃k j

`=t j+1 E`
j)). We check whether |Bi| ≥ k or not.

If |Bi| ≥ k, we know that there exists a subset of Bi, that is strictly more preferred
by i ∈ N and at least as preferred by each agent. The reason is that Bi contains a
more preferred worst alternative for agent i than D and contains at least as preferred
worst alternative for other agents j than D. If |Bi| < k, then this means that a Pareto
improvement with i strictly improving is only possible if the size of the winning set
is less than k which is not feasible. ut

We now consider strategyproofness together with W-efficiency. We first note that
Algorithm 1 may not return a W-efficient outcome. However, we construct a suit-
able strategyproof and W-efficient by formalising an appropriate serial dictatorship
algorithm for the worst set extension.

Theorem 15 There exists a linear-time and strategyproof algorithm that returns a
W-efficient committee.

Proof. Consider the agents in a permutation π. The set of alternatives A′ is initialized
to A. We reduce the set A′ while ensuring that it of size at least k. The next agent i
in the permutation comes and deletes the maximum number of least preferred equiv-
alence classes from his preferences and the corresponding alternatives in A′ while
ensuring that |A′| ≥ k. Each successive agent in the permutation gets a most preferred
outcome while ensuring that agents before him in the permutation get at least as pre-
ferred an outcome as before. Thus the algorithm is strategyproof and Pareto optimal
with respect to the ‘worst’ set extension. ut

9 Conclusions

We considered Pareto optimality in multi-winner voting with respect to a number of
prominent set extensions. We presented results on the relations between the notions
as well as complexity of computing and verifying Pareto optimal outcomes. Another
direction is consider the compatibility of Pareto optimality concepts with other ax-
ioms. Finally, we remark that our serial dictatorship algorithm can be used to define a
multiwinner generalization of random serial dictatorship, which is worth investigat-
ing and raises interesting computational problems.

Acknowledgments

This is the extended version of the IJCAI conference paper (Aziz et al., 2016). We
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