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We consider a setting in which agents vote to choose a fair mixture of public outcomes. The agents have

dichotomous preferences: each outcome is liked or disliked by an agent. We discuss three outstanding voting

rules. The Conditional Utilitarian rule, a variant of the random dictator, is strategyproof and guarantees to any

group of like-minded agents an influence proportional to its size. It is easier to compute and more efficient than

the familiar Random Priority rule. We show, both formally and by numerical experiments, that its inefficiency

is low when the number of agents is low. The efficient Egalitarian rule protects individual agents but not

coalitions. It is excludable strategyproof : an agent does not want to lie if she cannot consume outcomes she

claims to dislike. The efficient Max Nash Product rule offers the strongest welfare guarantees to coalitions,

which can force any outcome with a probability proportional to their size. But it even fails the excludable

form of strategyproofness.

CCS Concepts: • Computing methodologies → Multi-agent systems; Cooperation and coordination; •
Applied computing→ Economics.

Additional Key Words and Phrases: participatory budgeting, proportional representation, time-sharing, por-

tioning, approval voting, strategyproofness

ACM Reference Format:
Haris Aziz, Anna Bogomolnaia, and Hervé Moulin. 2019. Fair Mixing: the Case of Dichotomous Preferences.

In The 20th ACM conference on Economics and Computation (EC ’19), June 24–28, 2019, Phoenix, AZ, USA. ACM,

New York, NY, USA, 27 pages. https://doi.org/10.1145/3328526.3329552

1 INTRODUCTION
In participatory budgeting [20] the stake-holders (citizens, employees of a firm, club members) vote

to decide which subset of public projects and in what proportions the community, firm, or club

should implement. We discuss a version of this process in the probabilistic voting model [26, 29].

The guiding principle of our analysis is that the selection of a single (deterministic) public outcome

is prima facie unfair: fairness requires compromise, we must select a mixture of several mutually

exclusive outcomes. This mixed outcome can be interpreted in a variety of ways, depending on

the specific problem. It may be an actual randomization between outcomes, or an allocation of

fractions of time each outcome is in place (“time-shares”), or a distribution of a fixed amount of

some resource (e.g., money) over these outcomes. Some typical examples follow.

In the participatory budgeting problem [20], the city authority must divide funds or staff between

several projects (library, sports center, concert hall) taking into account the citizens’ wishes. The

scheduling of one or several weekly club meetings (gym classes, chess club, study group) must

accommodate the time constraints reported by the club members. The local public TV must divide
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broadcasting time between different languages. In the fair knapsack problem (see, for example, [28]),

the server schedules jobs of different reported or observed sizes under a capacity constraint, and

must pick a (random) serving protocol. In all these examples, fairness requires to give some share of

the public resources to everyone: each club member should have access to some meetings; everyone

should enjoy at least some TV programs, etc. This contrasts with traditional high-stakes/low-

frequency voting contexts, where the first best is to select a single (deterministic) outcome, and

randomization over outcomes is only second best.
1

We run into the familiar conflict between protecting minorities and submitting to the will of the

majority (as in the discussion of cumulative voting [47]). On the one hand, the larger the support for

a public outcome, the bigger should be its share in the final compromise: numbers matter. On the

other hand, we must protect minorities with their idiosyncratic preferences for outcomes disliked

by the majority. So the club meetings will be more frequent when many members can attend, but

nobody will be entirely excluded; the knapsack server will favor short jobs because this increases

the number of satisfied customers, but it cannot ignore long jobs entirely; and so on.

We analyze this tradeoff when preferences can be represented in a very simple dichotomous form,

as is used in approval ballots: each agent likes or dislikes each outcome,
2
and her utility is simply

the total share of her likes. Agents in the knapsack problem care only about their expected service

time, and in the club example, about the number of meetings they can attend. Though less natural

in the public TV and the library funding examples, where they rule out any complementarities

between outcomes, dichotomous preferences are still of practical interest because they are easy to

elicit.

We discuss the fairness and incentive compatibility properties of three well-known social choice

rules.

Our results. The fair share guarantee principle is central to the fair division literature since the

earliest cake division papers [43]. In our model, this is the Individual Fair Share (IFS) axiom: each

one of the n agents “owns” a 1/n-th share of decision power, so she can ensure an outcome she

likes at least 1/n-th of the time (or with probability at least 1/n). To capture more subtle ideas that

minorities should be protected, and numbers should matter as well, we strengthen IFS to Unanimous
Fair Share (UFS), giving to any group of like-minded agents an influence proportional to its size: so

if 10% of the agents have identical preferences, they should like the outcome at least 10% of the

time.

Our starting point is the impossibility result in [16], where our model and the two fairness

properties IFS and UFS first appear: no mixing rule can be efficient (ex-ante), incentive compatible
in the prior-free sense of strategyproofness (SP), and meet Unanimous, or even Individual, Fair Share
(Proposition 6, [16]). One of our first results is that the impossibility disappears under the natural

analogue for single-peaked preferences: outcomes can be ordered in such a way that the approval

set of every agent is an interval. For such structured preferences, the random priority rule satisfies

all the conditions. We then introduce new fairness and incentives properties and offer instead

possibility results even when there is no structure on the dichotomous preferences. In particular, a

natural and attractive incentive requirement we consider is excludable strategyproofness (EXSP).

If public outcomes are non-rival but excludable, and we can force agents to consume only those

outcomes they claim to like, so it becomes more costly to fake a dislike, and the strategyproofness

is correspondingly weakened. A meeting of the club is such an excludable public outcome: it is easy

1
It is used to break ties, or to play the role of an absent deterministic Condorcet winner: for instance [5, 19, 33] identify a

lottery that, in a certain sense, wins the majority tournament.

2
This is different from the situations where each agent likes, dislikes or does not care about items, which should be described

using trichotomous preferences.



to exclude from the meeting those who reported they could not attend; broadcasting via cable TV

is similarly excludable, not so via aerial broadcasting.

Three remarkable mixing rules (two of them well known) meet IFS and achieve, loosely speaking,

two out of the three goals of efficiency, group fairness (in the sense of UFS or other more demanding

properties), and incentive compatibility.

We start with the Egalitarian (EGAL) rule, adapting to our model a celebrated principle of

distributive justice. Taking the probability that the selected outcome is liked by agent i as her
canonical utility, the rule maximizes first the utility level we can guarantee to all agents; among

the corresponding mixtures, it maximizes the utility we can guarantee to all agents but one; and so

on. It is efficient and satisfies IFS. Therefore it is not strategyproof, by the above-mentioned result.

The Egalitarian rule is, however, excludable strategyproof: misreporting one’s preferences does not

pay, provided an agent is excluded from consuming those public outcomes she reportedly dislikes

(Theorem 1). Thus weakening SP to EXSP resolves the impossibility result. But numbers do not

matter to the egalitarian rule: it treats a unanimous group of agents exactly as if it contained a

single agent, so the UFS property obviously fails. A related problem is that if an agent has a clone

(another agent with preferences identical to hers), she can simply stay home and nothing will

change. The Strict Participation (PART
∗
) axiom takes care of this disenfranchisement problem by

insisting that casting her vote is strictly beneficial to each voter. So the EGAL rule is only appealing

if we focus on individual guarantees and are comfortable treating a homogenous group as a single

person. This makes sense if the club must offer some important training to its members. But in the

participatory budgeting or the broadcasting examples, numbers should matter.

The Conditional Utilitarian (CUT) rule is a simple variant of the classic “random dictator”. Each

agent identifies, among the outcomes she likes, those with the largest support from the other

agents: then she spreads the probability (time share) of 1/n uniformly over these outcomes. So the

utilitarian concern is conditional upon guaranteeing one’s full utility first. The CUT rule is related

to but much simpler than, the Random Priority (RP) rule which is discussed in [16] and which

averages outcomes of all deterministic priority rules. Both rules are SP, meet PART
∗
and guarantee

UFS. It follows from the impossibility result in [16], that they are inefficient. But we show that

CUT is strictly more efficient than RP. In numerical simulations (Section 9) and for relatively small

values of n, its inefficiency is consistently low.

The third rule that we analyse is the familiar Max Nash Product (MNP) rule that picks the

mixture that maximizes the product of individual utilities. It is efficient and offers much stronger

welfare guarantees to groups than UFS. We introduce two requirements, each one a considerable

strengthening of UFS. The Core Fair Share (CFS) property has an incentive flavor in the spirit

of cumulative voting [30, 42], where a minority can enforce at least a fraction of outcomes by

concentrating their votes on those. Any group of agents can pool their shares of decision power and

object to the proposed mixture z by enforcing another mixture z ′ with a probability proportional

to the group size. CFS requires that no such objection can benefit all members of the objecting

group. Finally, Average Fair Share (AFS) applies to any coalition with a common liked outcome: the

average utility in such a group cannot be smaller than its relative size. In simple examples, AFS

limits the set of acceptable efficient mixtures very effectively. Theorem 3 shows that the efficient

MNP rule meets PART
∗
, CFS and AFS but even fails EXSP.

Our results suggest several challenging open questions about the impossibility frontiers of our

model (see Conclusion). An overview of the properties satisfied by the rules discussed is given in

Table 1.

The paper is organized as follows. We discuss related literature in Section 2. The model is

specified in Section 3. Section 4 introduces the notions of Individual Fair Share (IFS) and excludable

strategyproofness, and presents the efficient Egalitarian rule, which satisfies both. In Section 5 we



RP CUT UTIL EGAL MNP

Properties

Anonymity (ANON) and Neutrality (NEUT) + + + + +

EFF (Efficiency) – – + + +

MIX-PO (Mix over Pareto optimal outcomes) + + + + +

EXSP (Excludable SP) + + + +⃝ –⃝

SP (strategyproofness) + + + – –

IFS (Individual Fair Share) + + – + +

UFS (Unanimous Fair Share) + + – – +⃝

GFS (Group Fair Share) + + – – +⃝

AFS (Avg. Fair Share) –⃝ –⃝ –⃝ –⃝ +⃝

CFS (Core Fair Share) –⃝ –⃝ –⃝ –⃝ +⃝

PART (Participation) + + + + +⃝

PART
∗
(Strict participation) + +⃝ – – +⃝

DEC (Decentralisation) +⃝ +⃝ –⃝ –⃝ +⃝

Table 1. Properties satisfied by rules. Key results from this paper are circled.

define fair share notions that go beyond IFS, which the Egalitarian rule fails. Section 6 discusses

two strategyproof rules which meet the conditions from Section 5, and compares them. Section 7

discusses the Maximal Nash Product rule. Section 8 is devoted to numerical examples, Section 9 to

the Decentralization axiom, and Section 10 concludes. More technical proofs and data on numerical

examples are relegated to the appendix.

2 RELATED LITERATURE
Participatory budgeting is an important new aspect of participative democracy, reviewed in [20].

Our model casts this process as a probabilistic voting problem, introduced first by Gibbard [29]

as a way to design non-dictatorial strategyproof decision rules. The literature he inspired viewed

randomization as a way around the defects of deterministic rules, mostly to allow anonymous

and neutral rules, or to circumvent the absence of Condorcet winners [see e.g, 5, 9, 18, 26, 33].

But recent work turns its attention to mixtures of outcomes with time-sharing or compromise in

mind [see, e.g., 3, 4, 9, 10, 16, 24].

Our work takes direct inspiration from the original paper of Bogomolnaia et al. [15, 16] who intro-

duced the model of randomised voting under dichotomous preferences. For the same mathematical

model, we present several new results about new normative requirements such as participation

incentives, weaker forms of strategyproofness, and stronger forms of fairness.

Two of our rules, EGAL and MNP, maximize a familiar social welfare ordering and a classic

collective utility function, respectively. The egalitarian rule is the lead mechanism in the related

assignment model with dichotomous preferences in [13]. In probabilistic voting, the Egalitarian

Simultaneous Reservation rule of Aziz and Stursberg [9] can be seen as an extension of EGAL (see

also [11]).

Recent literature emphasizes that the MNP rule is central to the competitive approach of the

fair division of private commodities, whether divisible or indivisible [14, 21]. See in particular, the

discussion of Moulin [39]. We find here a new application of this rule in the public decision making



context, closer in spirit to Nash’s original bargaining model [40]. Our results are related to those of

Fain et al. [24], who also propose the MNP rule for participatory budgeting, reinterpret this rule

as a Lindahl equilibrium, and discuss its computational complexity. They allow for more general

preferences than ours (in particular, full-fledged vNM utilities), and show the Core Fair Share

property (Corollary 1 Section 2.3 in [24]) on larger domain than in statement i ) of our Theorem 3.

They do not discuss incentives properties or any alternative rule.

The rules CUT and RP are non-welfarist, in that they do not maximize any social welfare ordering.

The RP rule is well known (and was discussed by Bogomolnaia et al. [16]), and CUT is a fairly simple

twist on the random dictator first introduced by Duddy [23] who noted that it is strategyproof but

did not develop its normative appeal.

Fair share is an early design constraint of decision mechanisms: see the mathematical literature

on cake cutting [43], and on fair division of microeconomic commodities [38, 44, 45]. The group

version of fair share captures the ubiquitous “protection of minorities” principle that is formally

related to cooperative stability in standard voting. It is also related to the proportional veto principle

[35, 36] and motivates practical twists in the rules such as cumulative voting, especially concerned

with the protection of ethnic minorities in political elections [42], or minority stockholders in

corporate governance [30, 41, 47]. See also the same concerns for EU enlargement [32].

Our fairness notions are intuitively related to proportional representation axioms in multi-winner

voting with dichotomous preferences. The Justified Representation (JR) axiom [7] says: if a large

enough group of voters agree in supporting the same candidate, then at least one voter in this group

has an approved candidate in the winning committee. The Proportional Justified Representation

(PJR) axiom [8] requires that if a group of voters of size ℓk agree to at least like a set of candidates

of size ℓ, then the total utility of the group should be at least ℓ. JR can be viewed as an analogue of

the IFS axiom adapted to the discrete setting of multi-winner voting with dichotomous preferences.

Similarly, PJR can be viewed as a suitable analogue of a strengthening of the UFS axiom adapted to

the setting of multi-winner voting with dichotomous preferences.

Strict Participation has been considered in the deterministic voting model, leading mostly to

negative results. Our results complement those of Brandl et al. [17] who analyse participation

incentives in probabilistic voting.

3 THE MODEL
Let N be a finite set of agents and let A be a finite set of outcomes. A generic agent is i ∈ N , and

n = |N |. A pure public outcome is a ∈ A, and a mixture of public outcomes is a vector z, an element

of the simplex ∆(A), interpreted as a lottery over A, or as a vector of time shares (or shares of other

types of resources) allocated to the outcomes in A. A utility function (preference) ui = (uia )a∈A is

an element of {0, 1} |A | . Agents who dislike all outcomes play no role in any of the rules we discuss,

thus we exclude them at once: the domain of preferences is Ω = {0, 1} |A |⧹{0}, where 0 = 0
|A |

; and

u ∈ Ω |N | is an instance of utility functions. In the examples, we always represent u as a |N | × |A|
matrix

3
filled with 0-s and 1-s, and we use the notation: uS =

∑
i ∈S ui and uSB =

∑
i ∈S
∑

a∈B uia for

S ⊆ N and B ⊆ A. A problemM is a tripleM = (N ,A,u) whereu ∈ Ω |N | . Actual utilities (welfare) at
a given mixed outcome z ∈ ∆(A) are writtenUi = ui ·z, and the corresponding realized utility profile
is writtenU = u · z ∈ [0, 1] |N | . The set of feasible utility profiles is Φ(M ) = {U = u · z | z ∈ ∆(A)}.
GivenU ∈ Φ(M ) we set φ−1 (U ) = {z ∈ ∆(A) |U = u · z}.

Throughout, efficiency is taken in the ex-ante sense. In problemM = (N ,A,u) a feasible utility
profile U ∈ Φ(M ) is efficient if there is no profile U ′ ∈ Φ(M ) such that U ≤ U ′ and at least one

3
We often refer to outcomes as “columns”; for example, when two outcomes are liked by exactly the same set of agents, we

speak of “two identical columns”.



inequality Ui ≤ U ′i is strict. A mixture z ∈ ∆(A) is efficient inM if the profile u · z is efficient. Fix

ε ∈ [0, 1]; the profile U ∈ Φ(M ) is (1 − ε )-inefficient if there exists U ′ ∈ Φ(M ) such that U ≤ εU ′.
This inequality reads that, even if we multiply vector U by

1

ε ≥ 1, it is still Pareto dominated by

another feasible vector U ′ of utilities. Note that a utility profile is more (1 − ε )-inefficient if ε is
smaller.

A rule F picks one U ∈ Φ(M ) for each problem M ; the mapping f picks the corresponding

mixtures: f (M ) = φ−1 (F (M )), so that F (M ) = u · f (M ). We only consider F and f which are

anonymous (treat agents symmetrically) and neutral (treat outcomes symmetrically). The rule F is

efficient if it selects an efficient profile in every problem. For any n, the rule is (1−ε (n))-inefficient if

a) there exists a problemM of size n and a profileU ∈ Φ(M ) such that F (M ) is (1− ε (n))-inefficient,

and b) no smaller number ε ′(n) meets this property.

A rule is “welfarist” by design, in the sense that it does not distinguish between mixtures resulting

in the same utility profile. For instance if two outcomes a,b are “clones” in problemM (liked by

exactly the same agents), a rule is oblivious to shifting some weight from a to b.
The efficient pure outcomes in A are easy to recognize: a is efficient if and only if there is no

b such that the set of agents liking b is strict superset of the set of agents liking a. We call such

outcomes undominated. Consider the following example.

Example 3.1.
A a b c d e

N
1 0 0 0 1 1

2 0 0 1 1 0

3 1 1 0 0 0

4 1 0 1 0 0

5 0 1 0 1 1

(1)

Outcome e is dominated by d , and the four other outcomes are undominated. However, convex

combinations of undominated outcomes may well be inefficient. In the example, any mixture

z = (za , zb , zc , zs , ze ) such that zb , zc are both positive, say zb , zc ≥ α > 0, can be improved

by redistributing the weight α to a and to d . That is, z is Pareto inferior to the mixture z ′ =
(za + α , zb − α , zc − α , zd + α , ze ).
Of special interest are those problems where any mixture of undominated pure outcomes is

efficient: in the probabilistic interpretation of our model this means that ex post efficiency implies

ex ante efficiency. Indeed the four rules we discuss below mix only undominated outcomes, so in

such problems their efficiency is guaranteed.

Our first (minor) result presents two examples where it is the case. Here, the set of outcomes

liked by an agent is called her approval set.
Lemma 1

i ) There exists an instance of preferences for which a mixture of undominated outcomes is dominated,
if and only if |A| > 3 and |N | > 4

ii ) If A can be ordered in such a way that the approval set of every agent is an interval, then any
mixture of undominated (pure) outcomes is efficient.

Proof. “Only if” part of statement i ) is proven by Duddy [23]; “If” part follows from Example

3.1 (once we eliminate e), which has the smallest sizes of A and N for which a combination of

undominated outcomes is inefficient. We provide the argument for statement ii).
Fix a problemM as in statement ii ). If some outcomes are “clones” (liked by exactly the same set

of agents), a class of clones is an interval as well, and it is clearly enough to prove the statement for



the “decloned” problem where each interval of clones has shrunk to a single outcome. Thus we

can assume that our problem has no clones.

Let A∗ denote the subset of undominated pure outcomes. We fix a mixture z with support in A∗

(z ∈ ∆(A∗)) and assume some other mixture y ∈ ∆(A∗) makes everyone weakly better off than z:
we will show y = z, which implies the statement.

We keep in mind that for any two a,b in A∗ there is some agent i who likes a but not b, because
a and b are not clones. Write the ordered set A∗as {1, · · · ,K } and apply this remark to the first two

agents: some agent i likes 1 but not 2, hence i likes only 1 and ui · z ≤ ui · y implies z1 ≤ y1. Some

agent j likes 2 but not 3, hence j likes 1, 2 or just 2, so uj ·z ≤ uj ·y is either z12 ≤ y12 or z2 ≤ y2 and
either way we deduce z12 ≤ y12. Similarly there is some k who likes 3 but not 4, so uk · z ≤ uk · y
means that at least one of z3, z23, and z123 increases weakly and inequality z123 ≤ y123 follows in
each case. An induction argument gives

z12· · ·k ≤ y12· · ·k for all k, 1 ≤ k ≤ K .

The symmetric argument starting from outcome K gives

zk (k+1) · · ·K ≤ yk (k+1) · · ·K for all k, 1 ≤ k ≤ K

and the desired conclusion y = z follows. □

Since RP mixes over Pareto optimal outcomes [16], it is efficient if the agent preferences satisfy

condition (ii). Hence, under the condition (ii), the impossibility result from [16] disappears.

4 EXCLUDABLE STRATEGYPROOFNESS AND THE EGALITARIAN RULE
We start with the familiar prior-free incentive compatibility requirement that misreporting one’s

preferences is never profitable if no agent can coordinate this move with other agents.
4
Notation:

upon replacing in the profile u the coordinate ui by another u ′i ∈ Ω, the resulting profile is (u |iu ′i ).

Strategyproofness (SP): ui · f (M ) ≥ max

z′∈f (N ,A, (u |iu′i ))
ui · z

′
for allM , i and u ′i .

The simplest strategyproof rule adapts approval voting to our model: it selects only those out-

comes liked by the largest number of agents. Write Φp (M ) for the set of utility profiles implemented

by pure outcomes in A: Φp (M ) = {U ∈ [0, 1]N |∃a ∈ A∀i ∈ N ,Ui = uia }. We use avд(Y ) to denote
the average of the elements from the setY of utility profiles, i.e. avд(Y ) = 1

|Y |
∑
y∈Y y. The utilitarian

rule is defined as follows.

Utilitarian rule (UTIL): Fut (M ) = avд{arg max

U ∈Φp (M )
UN }.

UTIL admits a linear-time algorithm. It finds all the different utility vectors which result from pure

outcomes liked by the largest number of agents, and returns the uniform lottery on this set of

utility profiles. Note that this rule deliberately treats a problem with two identical columns exactly

as the reduced problem where only one column remains.

The careful reader can check that this defines a rule as defined before (welfare-wise singleton,

anonymous and neutral), one that is efficient and strategyproof. However, UTIL ignores minority

opinions entirely so it fails to address the normative concerns described in the introduction.

If an agent gets a fair 1/n-th share of total decision power, she will use it on an outcome she

likes. We take the following lower bound on individual welfare as the first test that mixing is fair:

Individual Fair Share (IFS):U = F (M ) =⇒ Ui ≥
1

n
for allM and all i .

4
Propositions 2 and 3 in [16] show that in our model group versions of SP are not compatible with efficiency, even in the ex

post sense.



The main result of Bogomolnaia et al. [16] is that a rule cannot be together efficient, strategyproof,

and satisfy IFS. Our first result is that this impossibility disappears if we weaken SP as explained

below. To motivate this weakening, we adapt to our model the standard idea of equalizing individual

utilities while respecting efficiency.

The lexicographic ordering in [0, 1]{1, · · · ,n } maximizes the first coordinate, and when this is not

decisive, the second one, and so on. For a utility profileU ∈ [0, 1]N the vectorU ∗ ∈ [0, 1]{1, · · · ,n } is
obtained by rearranging its coordinates increasingly. Then the leximin ordering ≻leximin compares

U 1
andU 2

in [0, 1]N exactly as the lexicographic ordering comparesU 1∗
andU 2∗

in [0, 1]{1, · · · ,n } .

Egalitarian rule (EGAL): F eд (M ) = arg max

U ∈Φ(M )
≻leximin .

This maximization yields a unique and efficient utility profile (see e. g., Lemma 1.1 in [37]).

Anonymity and neutrality are clear. To check Individual Fair Share, pick for each agent i a pure
outcome ai she likes, and observe that the uniform average of the ai -s ensures utility at least

1/n to each agent: therefore the egalitarian profile U eд
must have U

eд∗
1
≥ 1/n. For EGAL, the

outcome can be computed in polynomial-time by solving at most n + 1 linear programs each with

|A| variables [9].
Here is the simplest problem where the rule EGAL is vulnerable to a misreport of preferences:

true profile u =

A a b c
N
1 1 1 0

2 0 1 0

3 0 0 1

→ misreport ũ =

A a b c
N

1 1 0̃ 0

2 0 1 0

3 0 0 1

.

At the true profile u outcome a is dominated and EGAL mixes b and c , z = (0, 1
2
, 1
2
). After the

misreport by agent 1, outcome a no longer appears dominated and EGAL mixes equally the three

outcomes, z̃ = ( 1
3
, 1
3
, 1
3
). Agent 1’s utility raises from 1/2 at z to 2/3 at z̃, because she can enjoy

outcome b despite pretending not to. The latter is avoidable if the public outcomes are excludable:

based on reported preferences, the mechanism excludes agents from consuming outcomes they

claim to dislike. Recall the discussion of this possibility in the examples of Section 1.

We use the notation ui ∧ u
′
i for the coordinate-wise minimum of the two utility functions. For

our setting, for any outcome a, uia ∧ u
′
ia = uia · u

′
ia . The following incentives property captures

the resulting weaker incentive compatibility requirement. Below, we interpret ui as the true utility
and u ′i as a contemplated misreport.

Excludable Strategyproofness (EXSP)
ui · f (M ) ≥ max

z′∈f (N ,A, (u |iu′i ))
(ui ∧ u

′
i ) · z

′
for allM , i and u ′i .

To make the definition more explicit, we identify the true utility ui by its approval set Li = {a ∈
A | uia = 1}. Assume agent i’s misreport is L′i . Let L

0

i = Li ∩ L
′
i be the approval set of ui ∧u

′
i . Define

also L−i = Li⧹L0i and L
+
i = L′i⧹L0i , so that agent i pretends to like L+i and to dislike L−i .

In this notation, EXSP reads:

zL0i∪L−i ≥ z ′L0i
for all z ∈ f (M ), z ′ ∈ f (N ,A, (u |iu ′i )).

It is useful to decompose EXSP in two properties. Both assume excludable setting (so an agent

cannot consume goods she claims to dislike). In the first one agent i misreports only by inflating

her approval set (Li = L0i ):

SP+: ui · f (M ) ≥ max

z′∈f (N ,A, (u |iu′i ))
ui · z

′
for allM , i and u ′i s.t. ui ≤ u ′i .



Note that in this case ui ∧ u
′
i = ui . In the second one, only by decreasing this set (L+i = ∅):

SP−: ui · f (M ) ≥ max

z′∈f (N ,A, (u |iu′i ))
u ′i · z

′
for allM , i and u ′i s.t. u

′
i ≤ ui .

Note that in this case ui ∧ u
′
i = u

′
i .

EXSP (“in excludable setting, no manipulation u ′i is profitable under given ui ”) equals the combi-

nation of SP
+
and SP

−
. This is clear by applying first SP

−
under true ui and manipulation ui ∧ u

′
i ,

and then SP
+
under true ui ∧ u

′
i and manipulation u ′i (remember that an agent cannot consume

goods she pretends to dislike).

However, SP not just implies SP
−
and SP

+
but also SP

∗
:

SP∗: ui · f (M ) ≥ max

z′∈f (N ,A, (u |iu′i ))
ui · z

′
for allM , i and u ′i s.t. u

′
i ≤ ui .

This is the requirement that agent cannot manipulate by pretending she does not like some

outcomes (shrinking her approval set), provided that she still can consume outcomes she pretends

to dislike. The example above shows that EGAL violates SP
∗
.

Theorem 1 The Egalitarian rule is efficient, excludable strategyproof, and guarantees Individual
Fair Share.

Proof
Efficiency and IFS are immediate, and are left to the reader. We will prove EXP.

Preliminary notation and remarks:
Let Q ⊆ N and U ∈ [0, 1] |Q | , U = (U1, . . . ,U |Q | ). We define U ∗ = (U ∗1, âĂę,U ∗r ) as the vector

of distinct coordinates U ∗k of U arranged increasingly; soU ∗ may be of lower dimension then Q
(i.e., r ≤ |Q |), andU ∗1 < · · · < U ∗r .

Fix a problemM = (N ,A,u). For anyQ ⊆ N and convex compactC ⊆ ∆(A) the linear projection
on Q of the set of feasible utility profiles Φ(C ) = {U = u · z | z ∈ C} is convex and compact, so it

admits a unique leximin optimal element that we write F eд (Q,C,u) ∈ [0, 1] |Q | . This extends the
domain of the mapping F eд to the cases where the set of feasible mixed outcomes is restricted to C .
Note that we abuse notation by keeping u instead of its restriction to Q ×A.
Recall the procedure definingU = F eд (N ,C,u). Start withU ∗1 = maxz∈C minj ∈N {uj · z}.Write

N 1
for the set of agents achieving this minimum,

5 P1 = N⧹N 1
, and C1 = {z ∈ C | uj · z = U ∗1

for all j ∈ N 1}. We stop if N 1 = N , otherwise we setU ∗2 = maxz∈C1 minj ∈P 1 {uj · z}. We let N 2
be

the set of agents achievingU ∗2, P2 = N⧹(N 1 ∪ N 2), and C2
the subset of C1

achievingU ∗2 in N 2
;

we stop if P2 = ∅, otherwise we set U ∗3 = maxz∈C2 minj ∈P 2 {uj · z}, and so on. We end up with a

partition N = ∪Kk=1N
k
such thatUi equalsU

∗k
whenever i ∈ N k

.

Now, to prove EXSP it is enough to show separately SP
−
and SP

+
. Fix an arbitraryM = (N ,A,u).

An agent who likes all outcomes, ui = 1, cannot benefit from any misreport; pick now i ∈ N such

that uia = 0 for at least one a, and a profile ũ identical to u for all j ∈ N⧹i and such that ui ≨ ũi (so

at least one 0 in ui is changed to a 1). Let U = F eд (N ,A,u) and Ũ = F eд (N ,A, ũ) be implemented

respectively by some lotteries z and z̃. We prove successively:

Ũi ≥ Ui (2)

Ui = ui · z ≥ ui · z̃ (3)

The first inequality implies SP
−
(when i with true Ũi reportsUi ), the second gives SP

+
(when i with

trueUi reports Ũi ).

5
The sets Nk are uniquely defined, by convexity of Φ(C ).



We clearly have Ũ ⪰leximin U , in particular Ũ ∗1 ≥ U ∗1: this proves (2) if Ui = U ∗1. Assume

for the rest of the proof Ui = U ∗ℓ where ℓ ≥ 2. We check first Ũ ∗1 = U ∗1. If Ũ ∗1 > U ∗1 we pick
ε ∈ (0, 1], and note that the mixture z ′ = εz̃ + (1 − ε )z ensures uj · z

′ > U ∗1 for all j ∈ N⧹i .

Indeed, ui · z̃ ≥ Ũ ∗1 > U ∗1 and uj · z ≥ U ∗1. For ε small enough we also have ui · z
′ > U ∗1 because

ui · z > U ∗1. This contradicts the definition ofU ∗1.
Set N 1 = {j | Uj = U ∗1} and Ñ 1 = {j | Ũj = U ∗1}. We use a similar argument to show next

N 1 ⊆ Ñ 1
. If j ∈ N 1

and uj · z̃ > U ∗1, then for any ε ∈ (0, 1] the mixture z ′ = εz̃ + (1 − ε )z gives
uk · z

′ ≥ U ∗1 for all k ∈ N⧹{j, i} and uj · z ′ > U ∗1; for ε small enough we also have ui · z
′ > U ∗1

(because Ui = U
∗ℓ > U ∗1) and then z ′ guarantees exactly U ∗1 to a smaller set of agents than z, and

strictly more to all others. This implies that u · z ′ leximin-dominates u · z, a contradiction.

Similarly, the strict inclusion N 1 ⊊ Ñ 1
would imply that the vector Ũ is strictly leximin-

dominated byU , which we saw is not true.

So far we have shown that the maxi-minimization of feasible utilities – the first step in the

algorithm defining the leximin solution– gives atu and ũ identical valuesU ∗1 and Ũ ∗1, and identical

sets N 1
and Ñ 1

. Now the second step of the algorithms, delivering U ∗2, Ũ ∗2, and N 2
, Ñ 2

, is the

same maxi-minimization problem applied in both cases to C1 = {z ∈ ∆(A) | uj · z = U ∗1 for all

j ∈ N 1} and P1 = N⧹N 1
. Mimicking the above proof, we deduce that, if Ui = U ∗2 then Ũi ≥ Ui ,

and if Ui = U ∗ℓ for some ℓ ≥ 3, then U ∗2 = Ũ ∗2, N 2 = Ñ 2
. The induction argument establishing

U ∗k = Ũ ∗k , N k = Ñ k
up to k = ℓ − 1, and finally, (2) is now clear.

To prove (3) we compare the profiles u · z and u · z̃. We just saw that they coincide on N⧹P ℓ−1 =

∪ℓ−1k=1N
k
, and that if a mixture guarantees utility U ∗k to all agents in N k

for k = 1, · · · , ℓ − 1, it

cannot guarantee (at u) more than U ∗ℓ to all agents in P ℓ−1
: z and z̃ are two such lotteries, so if

ui · z̃ > ui · z = U ∗ℓ , there is some j ∈ P ℓ−1
for whom uj · z̃ < U ∗ℓ . But Ũ ∗ℓ ≥ U ∗ℓ (because Ũ

weakly leximin-dominatesU ) and ũj · z̃ = uj · z̃ ≥ Ũ ∗ℓ , thus we reach a contradiction. ■

5 STRICT PARTICIPATION AND UNANIMOUS FAIR SHARE
A striking feature of the Egalitarian rule is Clone Invariance: if at least one voter who shares agent’s
i preferences does vote, adding her own vote will not change the resulting mixture. Indeed, for any

vector V , let Ṽ be obtained from it by adding an (n + 1)-th coordinate repeating Vi . Fixing an agent

i , the leximin ordering compares two utility profilesU andU ′ in the same way as Ũ and Ũ ′. Thus
the Egalitarian rule is oblivious to the size of support for a particular preference, an unpalatable

feature in all the examples discussed in the introduction.

We now define two requirements capturing, each in a different way, the concern that numbers

should matter. The first one is an incentive property.

Given a problemM and agent i , defineM (−i ) = (N⧹i,A,u−i ) and

Ui (−i ) = max

z∈f (M (−i ))
ui · z.

InM (−i ), agent i does not vote, so the requirement for the outcome to be a singleton utility-wise

does not apply, and she can have different utility from different outcomes in f (M (−i )). Thus,Ui (−i )
is the best she can hope for if she does not vote.

Participation (PART): Fi (M ) ≥ Ui (−i ) for allM and i .

The violation of Participation is commonly called the No Show Paradox [27]: a voter is better

off abstaining from going to the polls. In the context of participatory budgeting, we want more:

everyone should have a strict incentive to show up. Otherwise, many agents may stay home or put



a blank ballot, and the result of the vote will not give an accurate picture of the opinion profile.

Strict Participation (PART
∗
):

Fi (M ) ≥ Ui (−i ) and {Ui (−i ) < 1 =⇒ Fi (M ) > Ui (−i )} for allM and i .

Under dichotomous preferences that we consider, strong SD-participation and SD-participation

as studied by Brandl et al. [17] coincide with PART and very strong SD-participation coincides

with PART
∗
. A consequence of PART

∗
is Clone Responsiveness: An agent is strictly better off if one

or more agents with preferences identical to hers cast their vote. Thus the Egalitarian rule violates

PART
∗
, although it satisfies PART.

6

The second axiom, in the spirit of cumulative voting (which gives minorities control over part

of joint outcome by letting them concentrate vote on a few issues), allows groups of agents with

identical preferences to pool their respective shares of decision power. This leads to the following

strengthening of IFS, where we set againU = F (M ):

Unanimous Fair Share (UFS) :

for all S ⊆ N : {ui = uj for all i, j ∈ S } =⇒ Ui ≥
|S |

n
for all i ∈ S .

In the statement of UFS the unanimous group S can be a minority or a majority. However,

unanimous preferences are much more likely in small than large groups, so this property will be

more relevant in practice to minorities.

All three rules discussed in the next two sections meet Strict Participation and Unanimous Fair

Share. Thus they cannot be both efficient and strategyproof. We start with two strategyproof rules.

6 INCENTIVE COMPATIBILITY AND FAIRNESS; THE CONDITIONAL UTILITARIAN
RULE

We introduce two rules adapting to our model the familiar random dictator mechanism (see [29]).

The difficulty is the treatment of indifferences: if an agent can dictate the outcome for a 1/n-th
share of the time, what should she choose inside her approval set?

The first rule, introduced by Duddy [23], allocates to each agent
1

n -th of the decision power.

She then uses it to pick the outcomes from her approval set which maximise utilitarian benefit of

others. Recall that Φp (M ) is the set of utility profiles implemented by pure outcomes. Consider the

set Φp (M ; i ) = {U ∈ Φp (M ) | Ui = 1} of all the utility profiles corresponding to the approval set of

agent i . Each agent spreads her share
1

n -th of the decision power equally between the profiles in

Φp (M ; i ) with maximal support:

Conditional Utilitarian (CUT) rule: F cut (M ) =
1

n

∑
i ∈N

avд{U | U ∈ arg max

U ′∈Φp (M ;i )
U ′N }.

Note that the CUT utility profile will not change if we remove “duplicated” pure outcomes. That

is, without loss of generality, we can assume that no two pure outcomes are approved by the same

set of agents. In this case, effectively, under CUT an agent spreads her decision power uniformly

over outcomes in her approval set with the largest utilitarian support. We say that she “loads” those

outcomes. CUT admits a linear-time algorithm to compute the outcome. In the approval set of each

agent, we simply need to identify those liked by the largest number of other agents.

Remark 1. Our definition of the domain Ω allows for agents who like all outcomes, ui = 1
A. The

presence of such agents is of no consequence for the rules UTIL, EGAL, RP and MNP, but it does impact

6
To show that EGAL satisfies PART, assume agent 1 does not vote. Define U ∗ = argmaxU ∈Φ(M ) ≻leximin ; U −1 =
argmaxU ∈Φ(M (−1)) ≻leximin and U 1 = U1 (−1). Suppose U 1 > U ∗

1
, then we have U = (U 1, U −1) ⪰leximin (U 1, U ∗)

and (U 1, U ∗) ≻leximin U ∗, contradiction to maximality of U ∗.



the mixture selected by the CUT rule, as such agents put their weight on the utilitarian outcomes (those
with the largest support). Suppose we choose to exclude those agents in the definition of the CUT rule.
This new rule will share the incentives and fairness properties discussed below.

The next rule uses a familiar hierarchical rule to resolve indifferences, that plays a critical role in

probabilistic voting [6], as well as for assigning indivisible private goods ([1], [12]). Let Θ(N ) be
the set of strict orderings σ of N . For any σ ∈ Θ(N ) the σ -Priority rule Fσ guarantees full utility

to agent σ (1); next to agent σ (2) as well if 1 and 2 like a common outcome, else σ (2) is deemed

irrelevant; next to agent σ (3) if she likes an outcome that all relevant agents before her like, else

she is irrelevant; and so on.

Random Priority rule (RP)

F rp (M ) =
1

n!

∑
σ ∈Θ(N )

Fσ (M ) where Fσ (M ) = arg max

U ∈Φ(M )
≻lexico(σ ) .

If mixtures in ∆(A) represent lotteries, the RP rule picks an ordering σ with uniform probability

and computesU σ
. But in other interpretations, time shares or the distribution of other resources,

this simple implementation is not available. We retain nevertheless the intuitive probabilistic

terminology. The RP outcome is #P-complete to compute even under dichotomous preferences [6].

Therefore unless P=NP, it is unlikely that there exists an efficient algorithm for computing the

exact RP outcome. For RP, it is even open whether there exists an FPRAS (Fully Polynomial-time

Approximation Scheme) for computing the outcome shares/probabilities.

After checking that both rules are incentive compatible and fair, we compare them from the

efficiency angle, and recap our discussion in Theorem 2. RP is strategyproof [12] and satisfies

PART
∗
[17]. For UFS, it is enough to observe that a member of coalition S is first in σ with probability

|S |
n . We check now that CUT meets the same three properties. UFS is clear. We now show that

CUT satisfies SP. Consider an agent i who has a like set Li = L0i ∪ L
−
i where L−i is possibly empty.

Suppose she now reports her like set as L′i = L0i ∪L
+
i where L+i ⊆ A \Li . Agent i’s own contribution

of 1/n to Li can only decrease if she report L′i . We now focus on the effect of i reporting L′i on
to any other agent j , i . Note that j’s contribution to Li either remains the same or decreases.

Therefore agent i gets no benefit by reporting L′i .
Next, we verify that CUT satisfies PART

∗
. Fix a problemM , an agent i , and for every j ∈ N⧹i

let Bj be the set of outcomes agent j loads in problem M (−i ). Set N + = {j ∈ N⧹i | Bj ∩ Li , ∅}
and N − = N⧹(N + ∪ i ). Before participating agent i’s utility was

1

n − 1

∑
j ∈N +

λj where λj =
|Bj ∩ Li |

|Bj |
.

After i shows up every j in N + loads only Bj ∩ Li , and agents in N − may give some of their load to

Li therefore i’s utility is at least
1

n (1 + |N
+ |). The inequality

1

n − 1

∑
j ∈N +

λj ≤
|N + |

n − 1
≤

1

n
(1 + |N + |).

proves PART. And both inequalities are equalities if and only if each λj = 1 and |N + | = n − 1⇔
N + = N⧹i; the latter implies that i’s utility is already 1 inM (−i ).
Example (3.1) in Section 3 shows that both RP and CUT are inefficient. Under the CUT rule

agents 1, 2 and 5 load only d , while agent 3 spreads her load between a and b, and agent 4 between

a and c , resulting in the mixture zcut = ( 1
5
, 1

10
, 1

10
, 3
5
, 0). Under RP we get zrp = ( 1

5
, 1
6
, 1
6
, 7

15
, 0); for

instance b is selected in two cases only: if 3 is first, and 5 comes before 4 (probability
1

10
), or 5 is



first and 3 is first among 1, 2, 3 (probability 1

15
). As noted at the end of Section 3, shifting the weight

of b and c to a and d is a Pareto improvement. Clearly, then, zrp is more inefficient than zcut .
In our next example, with n = 6 and |A| = 5,

A a b c d e
N
1 1 0 0 1 0

2 1 0 0 0 1

3 0 1 0 1 0

4 0 1 0 0 1

5 0 0 1 1 0

6 0 0 1 0 1

(4)

the CUT rule selects the efficient mixture zcut = (0, 0, 0, 1
2
, 1
2
) and U cut

i = 0.5 for all i , while RP

picks zrp = ( 1
9
, 1
9
, 1
9
, 1
3
, 1
3
) andU

rp
i = 0.44 for all i: thus zcut is strictly Pareto superior to zrp . The

reverse situation cannot happen: the RP mixture never Pareto dominates the CUT one. This follows

because in all problems, total utility under RP is at most that under CUT:U
rp
N ≤ U cut

N . IndeedU cut

is the uniform average of profilesU (i ) maximizing total utility in Φp (M ; i ), and for each ordering σ
where i is first, the corresponding profileU σ

is in Φp (M ; i ) as well.7

We finally prove that the CUT rule is efficient more often than RP : whenever RP picks an efficient

mixture, so does CUT. Observe first that both rules only give weight to undominated pure outcomes.

In the case of RP every such outcome a has a positive weight, because it is selected whenever the

set of agents who like a has the highest priority. Thus the support of the RP mixture is exactly the

set of all undominated columns. Therefore RP selects an efficient mixture if and only if all mixtures

with support in this set are efficient as well.
8
The claim follows because the CUT rule is also a

combination of undominated columns.

The next theorem reinforces the advantage of CUT over RP in terms of efficiency.

Theorem 2
i ) Both rules CUT and RP are strategyproof and meet Strict Participation and Unanimous Fair Share.
ii ) Total utility at the CUT mixture is never below that at the RP mixture, and the former may Pareto
dominate the latter. If RP picks an efficient mixture at some problem M , so does CUT.
iii ) The CUT rule is (1 − εcut (n))-inefficient with εcut (n) = O (n−

1

3 ) and for all n ≥ 5 we have

εcut (n) ≥
1

n
+ (1 −

1

n
1

3

)
3

n
1

3

. (5)

The RP rule is (1 − εrp (n))-inefficient with εrp (n) ≤ O ( ln(n)n ).
Recall from the lemma in Section 3 that both CUT and RP are efficient if n ≤ 4. For small values

of n, the lower bound (5) implies a high guaranteed efficiency of CUT, a lower bound on εcut (n),
and the computations in Step 2 of the proof below yield a much smaller worst case efficiency of RP,

an upper bound on εrp (n):

n 6 8 12 32 64 1024 16384

εcut ≥ 91% 87% 82% 68% 58% 27% 11%

εrp ≤ 83% 72% 64% 40% 24% 3% 0.12%

7
A consequence of this remark is that CUT and RP pick the same utility profile at problem M if and only if all undominated

outcomes of M are liked by the same number of agents.

8
If some mixture z is efficient ex-post but not ex-ante, then it will be present in each RP mixture with a positive weight, and

prevent RP from being efficient.



Statements ii ) and iii ) make a very strong case that in our model the CUT rule is a much more

efficient interpretation of the random dictator idea than RP. Statement iii ) is proved in the appendix.

7 EFFICIENCY AND FAIRNESS; THE MAX NASH PRODUCT RULE
Our last rule of interest is a familiar compromise between the Utilitarian and Egalitarian rules:

Max Nash Product rule (MNP): Fmnp (M ) = arg max

U ∈Φ(M )

∑
i ∈N

lnUi .

This rule is well-defined because it solves a strictly convex program, and obviously efficient. We

make a few remarks about the computational aspects of MNP. In constrast to the other rules

discussed above, the MNP outcome can be irrational (see, e.g., [2]). The problem is to maximize a

convex objective

∑
i ∈N log(ui ·z) where z is a feasible mixture. Using convex optimization techniques

(such as the ellipsoid method; see the discussion by Vazirani [46]), a lottery that approximates the

objective value of this convex program within an additive term of ϵ > 0 can be computed in time

that is polynomial in the size of the profile and 1/ϵ .
Recall that Unanimous Fair Share offers welfare guarantees only to coalitions of agents with

identical preferences (clones). The first of our two new “Fair Share” axioms applies, much more

generally, to any group who can find at least one outcome that everyone likes.

Average Fair Share (AFS)

for all S ⊆ N : {∃a ∈ A : uia = 1 for all i ∈ S } =⇒
1

|S |
US ≥

|S |

n
.

In words, if there is an object (say, a), approved by all members of S , then the average utility of

this group should be at least as large as its relative size
|S |
n . Note that if all members of S would

approve only of a, then UFS requirement would imply everyone in the group should get at least

|S |
n . Therefore AFS is easily seen as a further strengthening of IFS whereby a principle applied to

individuals is applied to groups.

The next property conveys the idea that, as each agent is endowed with 1/n-th of total decision

power, any coalition of size s can cumulate these shares and impose that a mixture of their choice

be chosen with probability at least
s
n :

Core Fair Share (CFS)

for all S ⊆ N : ∄z ∈ ∆(A) s.t. ∀i ∈ S, Ui ≤
|S |

n
(ui · z) and ∃i,Ui <

|S |

n
(ui · z).

This is a familiar core stability property which is widely used in cooperative game theory [22].

Note that CFS is not logically related to AFS. That UFS follows from either AFS or CFS is clear

because we only consider anonymous rules. Applying CFS to S = N implies that the rule is efficient,

therefore neither the CUT nor the RP rule meets CFS. In Example 3.1, the AFS property selects

uniquely the mixture maximizing the Nash Product.
9
therefore CUT and RP fail AFS as well.

Theorem 3
i ) The MNP rule is efficient and meets Strict Participation, Average Fair Share, and Core Fair Share.
ii ) The MNP rule is not excludable strategyproof.

Proof

9
We leave the proof to the reader.



We first prove AFS and CFS. The separation inequality capturing the optimality of the Max Nash

utility profileU ∗ = Fmnp (M ) at problemM writes as follows:
10∑

i ∈N

Ui

U ∗i
≤
∑
i ∈N

U ∗i
U ∗i
= n for allU ∈ Φ(M ) (6)

Fix S ⊆ N and combine (6) with Cauchy’s inequality as follows

nU ∗S ≥ (
∑
i ∈S

Ui

U ∗i
).(
∑
i ∈S

U ∗i )≥(
∑
i ∈S

√
Ui )

2 =⇒

U ∗S ≥
1

n
max

U ∈Φ(M )
(
∑
i ∈S

√
Ui )

2

(7)

The AFS property follows, because if there is some a ∈ A such that uia = 1 for all i ∈ S , the
maximum on the right hand side of 7 is |S |2. To check CFS we assume there is a mixture z such

thatU ∗i ≤
|S |
n (ui · z) for all i ∈ S and use again (6) to compute:

n ≥
∑
i ∈S

ui · z

U ∗i
≥

n

|S |

∑
i ∈S

U ∗i
U ∗i
= n

therefore none of the inequalitiesU ∗i ≤
|S |
n (ui · z) can be strict.

The proof that MNP satisfies PART
∗
is more technical and is relegated to the appendix. The proof

that the MNP rule fails EXSP is also relegated to the appendix. □

Remark 3. Let Umnp
N be the total utility for the Max Nash allocations and U ∗N be the maximal

achievable utility (utilitarian welfare). Then it can be proved that

Umnp
N
U ∗N
≥ 1

nU
∗
N . So if the average

utilitarian utility is λ ∈ [0, 1], then the average utility of the outcome under MNP is at least λ2.

Remark 4. Another version of the group fair share requirement is proposed by Bogomolnaia et

al. [15]. The same concept was independently proposed by Duddy [23] who referred to it simply as

proportional share [23]. For the sake of consistency with our other notions, we will refer to it as

Group Fair Share (GFS). Writingu∗S for the maximum of all utility functions in S (u∗Sa = maxi ∈S uia ),

this condition requiresU ∗S ≥ |S |n for all S . It is clearly stronger than UFS, but strictly weaker than

CFS or AFS. Both CUT and RP satisfy GFS.

Remark 5. It has been mentioned as an open problem, in the more general voting model with weak

preference orders, whether there exists some rule that satisfies ‘Very Strong Stochastic Dominance

Participation’ and ‘Stochastic Dominance Efficiency’ for weak orders [17, 19]. Because MNP satisfies

both Strict Participation and Efficiency, we see that this question is resolved at least for the case of

dichotomous preferences.

8 EXPERIMENTS
We ran experiments for small numbers of agents and outcomes. We focussed on the ratio of utilitar-

ian welfare of the result to the maximum utilitarian welfare. The ratio gives a lower bound on ε as
used to define the inefficiency of a mixture. For each combination of n and |A| in {3, 5, 7, 10, 15, 20}
and for each rule, we examined under the impartial culture (1) the minimum of this ratio and (2)

its average. For RP, we did not run the experiments for n = 15 and 20 because the computation

becomes very slow. This illustrates the relative computational infeasibility of RP when we want

the exact mixture, even for a relatively modest number of agents. The results are in the appendix.

10
This is simply the first order optimally condition.



As the number of agents increase, the ratios start to get worse. But for a fixed number of agents,

the ratios do not necessarily get worse as we increase the number of outcomes. We note that CUT

seems to fare marginally but consistently better than MNP, RP, and EGAL in the utilitarian metric.

This is especially so when we consider the average rather than the worst ratios. We note that

MNP rule’s fairness constraints also lead to loss of utilitarian welfare. On the other hand, it has

been shown that on certain real-world participatory budgeting datasets, core fair outcomes often

coincide with welfare maximizing ones [24]. Since the objective of EGAL is diametrically opposed

to utilitarian objectives, it is not surprising that EGAL fares the worst in the utilitarian metric

among the rules we consider. In particular its worst case ratios drop rapidly as we increase the

number of agents and outcomes.

Since CUT performs better than the other competing rules in terms of welfare, we zoomed into

the case of CUT and computed its average and worst case inefficiency n in {5, 10, 20, 30, 40, 50}
and |A| in {5, 610, 1530, 40, 50, 60} where agents approve a given percentage of outcomes where

the percentages are 10, 25, 33, 50, 75. For each of the combinations of parameters, 200000 draws are

taken. The level of inefficiency is negligible for all the combinations. By sampling using several

probabilistic models, [34] confirms that CUT achieves very high utilitarian welfare on average.

9 DECENTRALIZATION
We also introduce a Decentralization (DEC) property for polarized societies. Say the agents and the

deterministic outcomes are color-coded with the same set of colors: we call a profile of preferences

polarized if each agent only likes outcomes of her own color. The requirement is that if an agent is

red, the number of green agents will matter to her but not their preferences inside green outcomes.

This natural independence property adds to the appeal of the MNP rule, but also of the CUT and

RP rules.

Consider a problem M = (N ,A,u) and two partitions Γ = (N k )Kk=1 and Λ = (Ak )Kk=1 of N
and A respectively. We call this problem polarized along the partitions Γ,Λ if uia = 0 whenever

i ∈ N k ,a ∈ Ak ′
, and k , k ′. Then if uk is the restriction of u to N k ×Ak

, problemM is captured by

its K subproblems Mk = (N k ,Ak ,uk ). We write Π(Γ,Λ) the set of polarized problems.

Decentralization (DEC): For allM,M ′, for all u,u ′, and for any Γ,Λ and k

{M,M ′ ∈ Π(Γ,Λ) and uia = u
′
ia if i ∈ N k ,a ∈ Ak } =⇒ Fi (M ) = Fi (M

′) for i ∈ N k .

Decentralization can be viewed as satisfying an extension of party-list proportional representation

from multi-winner voting [25]. Combined with the UFS property, it implies that in a polarized

problem, each colored subset N k
chooses the distribution in ∆(Ak ) as if other colors were not

present, then the selected outcome in f (Mk ) is weighted down in proportion of the size of N k
.

Theorem 4 The Max Nash, Conditional Utilitarian, and Random Priority rules meet Decentraliza-
tion. Moreover, for any polarized problem M ∈ Π(Γ,Λ) they satisfy

F (M ) =
K∑
k=1

|N k |

n
F (Mk ) (8)

where the profile F (Mk ) is filled with zeros outside Mk
.

On the other hand, the Utilitarian and Egalitarian rules violate DEC. Consider the two polarized

problems along the partition {1} ∪ (2, 3}:

M :

1 1 0 0

2 0 1 0

3 0 0 1

M ′ :
1 1 0 0

2 0 1 0

3 0 1 1

.



Both UTIL and EGAL choose z = ( 1
3
, 1
3
, 1
3
) atM , but atM ′ they pick respectively z ′ = (0, 1, 0) and

z ′′ = ( 1
2
, 1
2
, 0), in contradiction of DEC.

10 CONCLUSION AND OPEN QUESTIONS
We compared the relative merits of some well-known rules (EGAL, RP, MNP) and of an (essentially)

new one (CUT), for the model of probabilistic/fractional voting under dichotomous preferences.

The two rules that are especially desirable in the instances where protection of minorities and

participation concerns matter most are CUT and MNP. The Conditional Utilitarian rule is strongly

incentive compatible, but in extreme cases it may be severely inefficient (see statement iii) in

Theorem 2). The Max Nash Product rule is efficient and gives much better guarantees to groups

of agents than CUT, but it even fails the weak form of strategyproofness where outcomes are

excludable.

Our study helps identify two especially interesting open questions. We know from [16] that

efficiency, Individual Fair Share and strategyproofness are incompatible. If we are content to

achieve only the excludable version of strategyproofness, this incompatibility disappears, and the

Egalitarian rule is an example. The unpalatable feature of this rule is that it pays no attention

to clones (subgroups of agents with identical preferences) hence offers no protection to sizable

minorities. But can a rule combine efficiency, excludable strategyproofness and Strict Participation;

or efficiency, excludable strategyproofness and Unanimous Fair Share? Such a rule would be a

serious new contender in our fair mixing model.

Bogomolnaia et al. [15, 16] defined and studied a family of welfarist rules directly borrowed from

classical social choice theory. Fix an increasing, strictly concave, and continuous function h on [0, 1].
A rule in the sense of Definition 1 is obtained by maximizing the sum of individual utilities weighted

by h: h-rule: f (M ) = argmaxU ∈Φ(M )
∑

i ∈N h(Ui ). This maximization has a unique solution in

Φ(M ). The MNP rule is of course a paramount example. All h-rules are efficient, and by mimicking

Step 2 in the proof of Theorem 3, we see that they satisfy PART
∗
provided h′(0) = ∞. They satisfy

(resp. fail) IFS if h is at least as concave as (resp. less concave than) the loд function; but MNP is

the only h-rule meeting UFS (these two facts are already proven in [15]). Finally, all h-rules fail
EXSP and only MNP meets DEC. Thus they do not add much to our axiomatic discussion. However,

once we observe that the EGAL and UTIL rules are the two end points of the family of h-rules11

the following intriguing fact emerges: most h-rules meet PART
∗
but neither EGAL nor UTIL does;

EGAL and UTIL meet EXSP, but none of the h-rules does.
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11 APPENDIX
Proof of Theorem 2, part iii )
Step 1 Worst case inefficiency of CUT
Step 1.a: We construct a problem with large n where the CUT profile is (1 −O (n−

1

3 )-inefficient.

We fix N of size n, a partition N = N1 ∪ N2, and an integer p such that

p < n1,n2 and n1 divides (p − 1)n2 where ni = |Ni |, i = 1, 2.

Problem M has 2n2 + 1 outcomes labeled as A = {a} ∪ B ∪ C , where B = {bj , j ∈ N2} and

C = {c j , j ∈ N2}. Setting (p − 1)n2 = qn1, each agent i ∈ N1 likes a, exactly q outcomes in B, and
none in C; and each j ∈ N2 dislikes a, likes only outcome bj in B, and exactly p − 1 outcomes in C .
Moreover, the problem is symmetric in N1 and in N2, which can be achieved by arranging cyclically

the approval sets of the N1 agents in B and the approval sets of the N2 agents in C . Here is an
example with n1 = n2 = 5,p = 4 and q = 3, and the top five agents form N1:

a b1 b2 b3 b4 b5 c1 c2 c3 c4 c5
1 1 0 0 1 1 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0

1 0 0 1 1 1 0 0 0 0 0

0 1 0 0 0 0 1 0 0 1 1

0 0 1 0 0 0 1 1 0 0 1

0 0 0 1 0 0 1 1 1 0 0

0 0 0 0 1 0 0 1 1 1 0

0 0 0 0 0 1 0 0 1 1 1

Note that each outcome bj is liked by exactly p agents, all but one of them in N1, and each c j is
liked by exactly p − 1 agents, all in N2.

Under the CUT rule, each agent i ∈ N1 loads only a because n1 > p, so za =
n1

n , and each j ∈ N2

loads only bj so zbj =
1

n ; there is no weight on C . The total utility in each group is

UN1
=

(n1)
2

n
+
n2
n
(p − 1) ;UN2

=
n2
n

and by the symmetries these are equally shared in N1 and N2 respectively.

Now consider the mixture z ′: z ′a =
2

3
, z ′c j =

1

3n2

for all j ∈ N2, and zero weight on B, resulting in

the total utilities

U ′N1

=
2

3

n1 ;U
′
N2

=
1

3

(p − 1)

again equally shared in each Ni .

For n large enough we can pick n1 and p such that n1 ≃ n
2

3 and p − 1 ≃ n
1

3 (if n is a cube these

values are exact and q = n
2

3 − n
1

3 ) so that
n2

n ≃ 1. This yields the ratios

U ′N1

UN1

≃

2

3
n

2

3

2n
1

3

=
1

3

n
1

3 =
U ′N2

UN2

and completes the proof of Step 1.a.

Step 1.b. For an arbitrary problem M we give a upper-bound of the inefficiency of the CUT mixture.
We fix a problem M and partition the agents according to their scores maxU ∈Φp (M ;i )UN , that

is, the utilitarian score of the outcomes on which they spread their weight under the CUT rule.

Let p1 > p2 > · · · > pK > 0 be the sequence of such scores and Nk the subset of agents who load



outcomes with score pk . Note that n1 ≥ p1. Set Ak to be the set of outcomes loaded by at least one

agent in Nk : they all have the same score pk so the Ak -s are pairwise disjoint. Note also that agents

in Nk do not like any outcome in Aℓ for ℓ < k .
Consider finally the outcomes b in B = A⧹(∪K

1
Ak ), if any. Their utilitarian score uNb is at most

p1 − 1. We partition B by gathering in Bk all the outcomes with a score in [pk+1,pk ], with the

convention pK+1 = 0. Therefore the agents in Nk do not like any outcome in Bℓ for ℓ < k .
We prove first that for any feasible profile U ∈ Φ(M ), we can find convex weights π1, · · · ,πK

such that

UNk ≤ πkpk for k = 1, · · · ,K (9)

Pick z ∈ ∆(A) implementing U and write for simplicity zAk = xk and zBk = yk . The total

contribution
12 UNAk = xkpk of Ak toUN is shared between the agents of ∪k

1
Nℓ only, so there are

some convex weights γ k
ℓ
, 1 ≤ ℓ ≤ k, such that

UNℓAk = γ
k
ℓ xkpk for all 1 ≤ ℓ ≤ k ≤ K .

Similarly, the contributionUNBk of Bk is shared in ∪k
1
Nℓ andUNBk ≤ ykpk . So we can find convex

weights δk
ℓ
, 1 ≤ ℓ ≤ k, such that

UNℓBk ≤ δkℓykpk for all 1 ≤ ℓ ≤ k ≤ K .

Combining the above equality and inequality we have for all k

UNk =

K∑
ℓ=k

(UNkAℓ +UNkBℓ ) ≤
K∑
ℓ=k

(γ ℓ
kxℓ + δ

ℓ
kyℓ )pℓ ≤ pk

K∑
ℓ=k

(γ ℓ
kxℓ + δ

ℓ
kyℓ )

so the weights πk =
∑K

ℓ=k (γ
ℓ
kxℓ + δ

ℓ
kyℓ ) are indeed convex and satisfy (9).

Next we evaluate the blocks of the profileU cut
in the same fashion. Agents in Nk load exclusively

Ak therefore if z implement U cut
we have zAk =

nk
n and U cut

NAk
=

nk
n pk . We can find as above

convex weights θk
ℓ
, 1 ≤ ℓ ≤ k, such that

U cut
NℓAk = θ

k
ℓ

nk
n
pk for all 1 ≤ ℓ ≤ k ≤ K

and then as above we get

U cut
Nk
=

K∑
ℓ=k

θ ℓk
nℓ
n
pℓ .

Assume now the profileU cut
is (1 − ε )-inefficient:U cut ≤ εU for some feasible U . From (9) we

find convex weights π such thatU cut
Nk
≤ επkpk for all k , which implies

ε ≥
K∑
k=1

1

pk
U cut
Nk
=

K∑
ℓ=1

nℓ
n

ℓ∑
k=1

θ ℓk
pℓ
pk
.

The key inequality isU cut
NkAk

≥
nk
n because agent i ∈ Nk loads only Ak containing her approval

set: this implies θkk ≥
1

pk
. Moreover, in the sum

∑ℓ
k=1 θ

ℓ
k
pℓ
pk

the terms
pℓ
pk

increase in k . Combining

these two observations we have for any ℓ ≥ 2:

ℓ∑
k=1

θ ℓk
pℓ
pk
≥ (

ℓ−1∑
k=1

θ ℓk )
pℓ
p1
+ θ ℓℓ ≥ (1 −

1

pℓ
)
pℓ
p1
+

1

pℓ
=
pℓ − 1

p1
+

1

pℓ
.

12
Recall our notation uSB =

∑
i∈S
∑
a∈B uia .



We invoke now the inequality
α−1
p1
+ 1

α ≥
2√
p1
− 1

p1
, for any α > 0, that we apply to each α = pℓ, ℓ ≥ 2,

and combine with the two inequalities above as well as θ 1
1
= 1:

ε ≥
n1
n
+ (1 −

n1
n
) (

2

√
p1
−

1

p1
).

Finally, the term
2√
p1
− 1

p1
decreases in p1 and we know p1 ≤ n1, so we get

ε ≥
1

n
(n1 + (n − n1) (

2

√
n1
−

1

n1
)).

It remains to compute the minimum of the above expression for fixed n and variable n1 ∈ [1,n].
With the real variable x instead of n1 the right hand term and its derivative are

φ (x ) =
1

n
(1 + x − 2

√
x ) + (

2

√
x
−

1

x
) =⇒ φ ′(x ) = (1 −

1

√
x
) (
1

n
−

1

x
3

2

).

therefore x = n
2

3 achieves the minimum and we compute

ε ≥ φ (n
2

3 ) =
1

n
+ (1 −

1

n
1

3

)
3

n
1

3

.

which is inequality (5).

Step 2: Lower bounding the worst case inefficiency of RP
Fix N and integers k,d, ℓ such that n = kd and 2 ≤ ℓ < k . Fix a partition N 1 ∪ · · · ∪ N d

of N
where each subset contains k agents. This construction requires n ≥ 6 and is not feasible for all n.

We consider the problem with A = D ∪C where D = {1, · · · ,d } and each δ ∈ D is liked exactly

by the k agents in N δ
; also |C | =

(
n
ℓ

)
and each outcome inC is liked exactly by a different subset of

ℓ agents.
The symmetric (egalitarian) and efficient outcome is the uniform distribution in D and yields the

utility profileU ∗i =
1

d for all i . We compute now the symmetric profileU implemented by RP.

Fix an ordering σ ∈ Θ(N ) and let L be the set of its ℓ highest priority agents. In the resulting

profile U σ
, the first ℓ agents have full utility (because there is a ∈ C where they all do). Two

cases arise. In the favourable case L is contained in some set N δ
: then δ is the only efficient pure

outcome liked by all agents in L, thus it must be chosen by the σ -priority rule and U σ
N = k . In

the unfavourable case L straddles two or more sets N δ
and there is only one outcome (in C) that

everyone in L like, so thatU σ
N = ℓ. Therefore

UN =
d
(
k
ℓ

)(
n
ℓ

) · k + (1 −
d
(
k
ℓ

)(
n
ℓ

) k ) · ℓ = (k − ℓ)
n

k

(
k
ℓ

)(
n
ℓ

) + ℓ.
=⇒ ε (n) ≤

UN

U ∗N
= (1 −

ℓ

k
)
(k − 1) · · · (k − ℓ + 1)

(n − 1) · · · (n − ℓ + 1)
+
ℓ

k
(10)

For the asymptotic statement we use the inequality
(kℓ)
(nℓ )
≤ ( kn )

ℓ
and compute

⇒
Ui

U ′i
=
UN

U ′N
≤ (

k

n
)ℓ−1 +

ℓ

k
.

Then we choose k ≃ n
e and ℓ ≃ ln(n) so that ( kn )

ℓ−1 + ℓ
k ≃ e ln(n)

n . The systematic inequality

εrp (n) ≤ 6
ln(n)
n is obtained by numerical estimations of (10), omitted for brevity.■

Remark 2 The proof of Step 2 improves upon, with a similar proof technique, Example 1 in [15]
establishing that RP is (1 − 2√

n )-inefficient.



Proof of Theorem 3 i ): MNP satisfies PART∗

In a preliminary result we fix S ⊂ RN+ convex and compact, and write S (−1) for its projection on

R
N⧹1

+ . Define

U ∗ = argmax

U ∈S

∑
i ∈N

ln(Ui )

U −1 = arg max

U−1∈S (−1)

∑
i ∈N⧹1

ln(Ui ) andU 1 = max

(U1,U −1 )∈S
U1.

InequalityU ∗
1
< U 1 brings a contradiction as follows∑

i ∈N

ln(U i ) ≥ ln(U 1) +
∑

i ∈N⧹{1}
ln(U ∗i ) >

∑
i ∈N

ln(U ∗i ).

Assume nextU ∗
1
= U 1. The right hand inequality above becomes an equality, sowe get

∑
i ∈N ln(U i ) =∑

i ∈N ln(U ∗i ) and finallyU = U ∗. Summing up, we have just proven:

U ∗
1
≥ U 1; and if U ∗1 = U 1 then U ∗−1 = U −1 (11)

Applying (11) to S = Φ(M ), U ∗ = Fmnp (M ), U −1 = Fmnp (M (−1)) gives U 1 = U1 (−1) and

U ∗
1
≥ U 1, the first inequality in PART

∗
(i.e., PART). To check the second we can assume that any

two columns of u are different, for if two columns are identical one of them can be eliminated as a

redundant outcome. Also recall that no row of u is null.

BecauseU ∗i > 0 for all i , the statement is true ifU 1 = 0. We assume now 0 < U ∗
1
= U 1 < 1 and

derive a contradiction. Property (11) impliesU ∗ = U , therefore there is some z ∈ ∆(A) solving both
problems: z ∈ f mnp (M ) ∩ f mnp (M ( − 1)).

As 0 < U ∗
1
< 1 the mixture z cannot be deterministic, moreover there exists two outcomes a,b in

the support [z] of z such that u1a = 1,u1b = 0. Writing N (x ;y) for the set of agents in N who like

x and dislike y, this means 1 ∈ N (a;b).
Note that N (b;a) must contain at least one i ∈ N⧹1: otherwise the columnUa dominates column

Ub (outcome b is Pareto inferior to a) which contradicts the efficiency of z in M . We claim that

N (a;b) as well contains some j ∈ N⧹1: suppose not, then the restriction of column Ub to N⧹1

either dominates the corresponding restriction of Ua , or these two restricted columns are equal;

the former case contradicts efficiency of z inM (−1), the latter contradicts its efficiency inM .

We have shown that N (a;b) and N (b;a) both contains at least one outcome in N⧹1. Recalling

that za , zb are both positive, we define z (ε ) by shifting the weight ε from a to b: this outcome is

well defined for ε small enough and of arbitrary sign; such a shift does not affect agents outside

N (a;b) ∪ N (b;a). From z ∈ f mnp (M ( − 1)) we see that the strictly concave functionφ (ε ) =∑
i ∈(N (a;b )∪N (b ;a))⧹1

ln(ui · z (ε )) reaches its maximum at ε = 0. And z ∈ f mnp (M ) implies that the

function φ (ε ) + ln(u1 · z (ε )) is also maximal at ε = 0: this is a contradiction because ln(u1 · z (ε ))
decreases strictly in ε .■

Proof of Theorem 3 ii ): The MNP rule fails EXSP
A numerical example. The following small example with 7 voters and 4 outcomes is due to Dominik

Peters.



a b c d
No. of agents types

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 0

5 1 0 1 0

6 0 1 0 1

7 0 0 1 1

MNP returns the following mixture: [a : 0.47619047619951582, b : 0.23809523808330549, c :

0.23809523808330565, d : 0.047619047633873257]
Voter 1 manipulates by additionally liking b.

a b c d
No. of agents types

1 1 1 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 0

5 1 0 1 0

6 0 1 0 1

7 0 0 1 1

MNP returns the following mixture: [a : 0.53169166954599634, b : 0.11707708261768104, c :

0.11707708261768078, d : 0.23415416521864219]. The misreporting agent 1 gets more utility

(equivalently more share for outcome a) by additionally liking b.

Experiments: welfare achieved by the rules



|A| 3 5 7 10 15 20

|N |
3 0.8314 0.8155 0.8069 0.8005 0.781 0.7149

5 0.7777 0.7778 0.7322 0.7531 0.7072 0.7172

7 0.7678 0.80790 0.7373 0.695 0.7581 0.7109

10 0.7524 0.7334 0.808 0.7843 0.7857 0.7204

15 0.7862 0.8029 0.7561 0.7801 0.7747 0.7737

20 0.792 0.8234 0.7764 0.8155 0.7505 0.7896

Table 2. Minimum ratio of utilitarian welfare under the MNP rule to maximum utilitarian welfare for 100
profiles draws under impartial culture assumption for each combination of # agents and # outcomes.

|A| 3 5 7 10 15 20

|N |
3 0.9451 0.9652 0.9722 0.9678 0.9759 0.9634

5 0.9171 0.9309 0.9421 0.9377 0.9335 0.9004

7 0.8926 0.9324 0.9171 0.9277 0.9121 0.8856

10 0.8921 0.9014 0.91 0.9094 0.9056 0.8873

15 0.893 0.9013 0.8911 0.9049 0.8984 0.8774

20 0.8948 0.9001 0.8909 0.9047 0.9049 0.8941

Table 3. Average ratio of utilitarian welfare the MNP rule to maximum utilitarian welfare for 100 profiles
draws under impartial culture assumption for each combination of # agents and # outcomes.

|A| 3 5 7 10 15 20

|N |
3 0.75 0.6397 0.5333 0.4815 0.4333 0.3743

5 0.625 0.3919 0.4244 0.4592 0.4956 0.403

7 0.5833 0.492 0.3632 0.5102 0.5599 0.5799

10 0.5834 0.375 0.4952 0.4253 0.5689 0.5696

15 0.5129 0.5525 0.57 0.4361 0.5198 0.5817

20 0.6001 0.625 0.5927 0.5525 0.6425 0.5656

Table 4. Minimum ratio of utilitarian welfare under EGAL to maximum utilitarian welfare for 100 profiles
draws under impartial culture assumption for each combination of # agents and # outcomes.



|A| 3 5 7 10 15 20

|N |
3 0.9325 0.9256 0.8838 0.8075 0.844 0.8408

5 0.8482 0.8484 0.781 0.8019 0.82 0.8175

7 0.8221 0.8131 0.7817 0.7978 0.7992 0.8118

10 0.8176 0.8049 0.7902 0.7639 0.8152 0.7803

15 0.8267 0.807 0.7805 0.7476 0.8259 0.8009

20 0.8414 0.8278 0.8121 0.7748 0.8265 0.8084

Table 5. Average ratio of utilitarian welfare under EGAL to maximum utilitarian welfare for 100 profiles draws
under impartial culture assumption for each combination of # agents and # outcomes.

|A| 3 5 7 10 15 20

|N |
3 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333

5 0.8 0.7333 0.8 0.8 0.8 0.8667

7 0.75 0.7619 0.8571 0.8214 0.8857 0.8571

10 0.8 0.8 0.8714 0.86 0.8667 0.8833

15 0.8 0.8444 0.8583 0.8417 0.8741 0.8815

20 0.8038 0.85 0.8773 0.9 0.8944 0.8727

Table 6. Minimum ratio of utilitarian welfare under CUT to maximum utilitarian welfare for 100 profiles
draws under impartial culture assumption for each combination of # agents and # outcomes.

|A| 3 5 7 10 15 20

|N |
3 0.9333 0.9717 0.9717 0.9867 0.9867 0.995

5 0.9372 0.9452 0.959 0.9748 0.969 0.9757

7 0.9139 0.9468 0.9549 0.9624 0.969 0.9778

10 0.9194 0.9383 0.9502 0.9586 0.9576 0.965

15 0.9263 0.9276 0.9483 0.9483 0.9567 0.9634

20 0.9195 0.9332 0.9486 0.955 0.9588 0.9631

Table 7. Average ratio of utilitarian welfare under CUT to maximum utilitarian welfare for 100 profiles draws
under impartial culture assumption for each combination of # agents and # outcomes.

|A| 3 5 7 10 15 20

|N |
3 0.8333 0.8333 0.8333 0.8333 0.8333 0.8333

5 0.7778 0.7 0.7778 0.7778 0.7 0.8

7 0.7679 0.75 0.8036 0.75 0.7943 0.7778

10 0.7778 0.7737 0.7596 0.8116 0.7684 0.8031

Table 8. Minimum ratio of utilitarian welfare under RP to maximum utilitarian welfare for 100 profiles draws
under impartial culture assumption for each combination of # agents and # outcomes.

Experiments: inefficiency of CUT



|A| 3 5 7 10 15 20

|N |
3 0.9483 0.9733 0.9883 0.99 0.9867 0.9933

5 0.8992 0.9302 0.9351 0.9471 0.9512 0.962

7 0.8851 0.8952 0.9143 0.9182 0.929 0.9305

10 0.8839 0.89 0.8911 0.8969 0.9 0.8997

Table 9. Average ratio of utilitarian welfare under RP to maximum utilitarian welfare for 100 profiles draws
under impartial culture assumption for each combination of # agents and # outcomes.

|N | × |A| 10% 25% 33% 50% 75%

5 × 6 0 0 0 0 0

10 × 5 0 0 0 0 0

5 × 15 0 0.045000 0.050000 0 0

10 × 10 0 0.037037 0.025000 0.012500 0

10 × 20 0.027778 0.041667 0.033333 0.008000 0

10 × 30 0.050000 0.039583 0.027619 0.007937 0

20 × 20 0.031250 0.009524 0.007000 0.001852 0

20 × 30 0.026316 0.023611 0.009387 0.001515 0

20 × 40 0.027018 0.012500 0.006206 0.001786 0

20 × 60 0.035227 0.019236 0.008758 0.001777 0

30 × 30 0.017857 0.003580 0 0 0

40 × 60 0.007232 0 0 0 0

50 × 50 0.001096 0 0 0 0

Table 10. The worst inefficiency ofU cut ; 200000 draws for each level.

|N | × |A| 10% 25% 33% 50% 75%

5 × 6 0 0 0 0 0

10 × 5 0 0 0 0 0

5 × 15 0 0 0.000257 0 0

10 × 10 0 0.000008 0.000006 0.000001 0

10 × 20 0.000005 0.000168 0.000069 0.000009 0

10 × 30 0.000163 0.000236 0.000086 0.000016 0

20 × 20 0.000010 0.000001 0 0 0

20 × 30 0.000051 0.000002 0.000002 0 0

20 × 40 0.000127 0.000004 0.000001 0 0

20 × 60 0.000344 0.000007 0.000001 0 0

30 × 30 0.000002 0 0 0 0

40 × 60 0 0 0 0 0

50 × 50 0 0 0 0 0

Table 11. The average inefficiency ofU cut ; 200000 draws for each level.
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