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A Rule for Committee Selection
with Soft Diversity Constraints

Haris Aziz

Abstract Committee selection with diversity or distributional constraints is a ubiqui-
tous problem. However, many of the formal approaches proposed so far have certain
drawbacks including (1) computational intractability in general, and (2) inability to
suggest a solution for instances where the hard constraints cannot be met. We propose
a cubic-time algorithm for diverse committee selection that satisfies natural axioms
and draws on the idea of using soft bounds.
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1 Introduction

Selecting a target number of candidates is a ubiquitous problem that occurs in faculty
hiring, scholarship selection, corporate board election, and formation of representa-
tive bodies (Aziz et al., 2017a,b; Ratliff, 2006; Faliszewski et al., 2017). In many of
these settings, there may be natural distributional constraints motivated for example
by diversity. For example, in certain European countries, there is a requirement of
having a minimum percentage of females in corporate boards. In some school admis-
sion guidelines, there are quotas for less-advantaged groups.

Finding the best set of candidates subject to diversity constraints has also been
formally studied in social choice. In several works, the problem of diverse committee
selection is viewed as the problem with candidates having different (possibly multi-
ple) types and the committee having distributions constraints on each of the types (see
e.g., (Brams and Potthoff, 1990; Bredereck et al., 2018; Celis et al., 2018; Potthoff,
1990; Straszak et al., 1993)). There are a few drawbacks of approaches that use hard
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distributional constraints. The drawbacks include the following: (1) there may be in-
stances of the diverse committee selection problem that do not admit any feasible
solution that satisfies the constraints (for example, there simply may not be enough
female applicants) and (2) the hard constraints make the problem of committee se-
lection computationally hard (for example, if we require that each type should have
at least one representative, the problem of checking whether there exists a committee
satisfying the requirement is NP-complete (see e.g., (Aziz et al., 2016))). Drawback
(1) can especially arise if there are many types of applicants and there are diversity
targets for all of them. For example, in large-scale admissions programs in India,
there are quotas for several types of backgrounds. For approaches that are NP-hard,
the lack of a simple polynomial-time algorithm may render them impractical for large
enough instances. Even for smaller instances, these approaches cannot be used with-
out resorting to a computer. Finally, not imposing hard constraints may allow for
outcomes that are more preferred by more agents.

Some other approaches consider distances between candidates or committees
based on their type attributes and then view diversity not as a constraint but as an
optimisation objective based on the distances (see e.g., (Kuo et al., 1993; Lang and
Skowron, 2016)). The approaches do not generally take into account the excellence of
the candidates and the underlying problems are NP-hard. Apart from imposing hard
distributional constraints, another approach that is often used in real-life committee
selection to achieve diversity is to give bonus points or ranking boosts to candidates
who are from under-represented groups.1 When these rules are imposed centrally,
they may come across as arbitrary fixes to solving diversity issues. If the decision
makers or voters internally take diversity issues into account while formulating an
objective linear ranking, it puts a cognitive burden on the voters to mix diversity pri-
oritisation with objective excellence estimation.

In this paper, we consider the committee selection problem with distributional
constraints and focus on the most common constraints whereby at least certain frac-
tion of the candidates should satisfy a given type.2 Our approach is to view the distri-
butional constraints as soft constraints which should be satisfied as much as possible.
Often real-life diversity guidelines need not be hard constraints but general rules of
thumb to achieve procedural fairness. We present a simple cubic-time algorithm that
simultaneously satisfies two axioms called type optimality and justified envy-freeness.
The axiom justified envy-freeness is inspired by the matching market literature. The
combination of the two axioms can be viewed as finding a committee that is as close
to satisfying the hard distributional constraints and also selecting the best candidates.

2 Setup

The setting involves a set of candidates C, a weak order % over C, a set of types T ,
a matrix τ that specifies whether a candidate is of a certain type, and a vector q that

1 The model where synergies or presence of diverse agents provide additional points to the committee
has been considered in a general model by Izsak et al. (2018).

2 More general models also allow for expressing upper quotas. The goal of the upper quotas can easily
be met by setting lower quotas on the complement of the set of types.
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specifies the lower quota bound for each type. A diverse committee selection instance
can be summarized as (C,%,T, τ, q) where

– C = {c1, . . . , cm} is the set of candidates.
– The weak order % over C is the priority order over the candidates.
– T = {t1, t2, ..., t`} is the set of types. We will use t to refer to some generic type in

T .
– τ is a matrix consisting of each candidate c’s type vector τc where

– τc is a type row vector of candidate c consisting of 1’s and 0’s
– τt

c = 1 if c belongs to type t and τt
c = 0 otherwise.

– q is a vector consisting of all type-specific lower bounds. The value qt denotes the
lower bound for type t.3

We will denote the set of all types that a candidate c belongs to by η(c). For c, d ∈ C,
if c % d but d � c, we will write the strict part of the relation as c � d. Note that
the model is powerful enough to capture the following kind of lower bounds: “there
should be at least x members who are of one of the types from set S ⊂ T .” In that
case, one can create an ‘artificial’ type tS such that for any c ∈ C, τtS

c = 1 if τt
c = 1

for some t ∈ S .
For a committee W ⊂ C, we will denote

∑
c∈W τc by τW . We will denote the

number of candidates of type t in W by τW (t). For some committee W ⊂ C, if τW (t) <
qt, we will say that type t is under-represented in W.

The linear ranking over C could be based on some objective measure that reflects
the global quality of the candidate such as entrance examination scores. It could also
be based on the aggregate scores based on some positional scoring voting done by
voters who vote on the candidates (Brams and Potthoff, 1990; Bredereck et al., 2018).

The goal in the committee selection problem is to select a target number of can-
didates. We will denote the target size by k.

Example 1 Consider the following instance.

– C = {c1, c2, c3, c4}

– c1 � c2 � c3 � c4

– T = {t1, t2, t3, t4, t5}

– τ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 1 1 0 0


– q =

(
0 1 2 1 0

)
Suppose the target committee size is two. There is no feasible committee that can

satisfy the hard constraints. The committee {c3, c4} satisfies all the constraints except
the one corresponding to t4.

3 Note that qt is not a vector. The underscore denotes that it is a lower bound.
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3 Axioms for Diverse Committee Selection

We formalize some axiomatic properties that are desirable in our context. A commit-
tee W satisfies type distribution (x1, . . . , x`) if for each i, it has at least xi members of
type ti.

Definition 1 (domination between type distributions) A type distribution x =

(x1, . . . , x`) weakly dominates another type distribution y = (y1, . . . , y`) if

(i) for each ti such that yi ≥ qi, we also have xi ≥ qi, and

(ii) for each ti such that yi < qi, either xi ≥ qi or |xi − qi| ≤ |yi − qi|

When x weakly dominates y, we denote it by x ≥ y. We say x dominates y if x ≥ y
but y � x.

Next, we observe the following lemma regarding the transitivity of the weak dom-
ination relation between type distributions.

Lemma 1 If τX ≥ τY and τY ≥ τZ , then τX ≥ τZ .

Proof. By the definition of weak domination, if some type ti is not under-represented
in Z, then it also not under-represented in Y . If ti is under-represented in Z, then
its representation is at least as much in Y . By the same reasoning, if some type is
not under-represented in Y , then it also not under-represented in X. If ti is under-
represented in Y , then its representation is at least as much in X. Hence we obtain the
following implications. (i) if some type ti is not under-represented in Z, then it also not
under-represented in X, and (ii) if ti is under-represented in Z, then its representation
is at least as much in X. By the definition of domination between types, we note that
τX ≥ τZ . ut

Based on the notion of dominance between type distributions, we are now in a po-
sition to define type optimality of a committee. Roughly speaking, a committee W is
type optimal if there exists no other committee obtained by swapping two candidates
whose type distribution dominates that of W.

Definition 2 (Type optimal) A committee W is type optimal if there exists no can-
didate c′ ∈ W and c < W such that τ((W\{c′})∪{c}) dominates τW .

We note that type optimality is desirable in terms of distributional constraints but
does not take into account the excellence of the candidates. Type optimality has been
defined in a local sense based on swaps of candidates. If we define it in a global sense
by allowing swaps of subsets of candidates with subsets of candidates, then checking
whether a given type distribution is optimal is NP-complete.

We now present an axiom that avoids scenarios where a candidate may feel that
she deserves the place of a lesser ranked candidate. The axiom is adapted from the
literature on stable matching with distributional constraints (Kurata et al., 2017; Goto
et al., 2017; Kojima et al., 2014; Ehlers et al., 2014; Kamada and Kojima, 2015).
The intuition behind the axiom is that a candidate c < W has justified envy towards
c′ ∈ W if c has higher priority than c′, and replacing c′ with c will not make some
type ti reaching the desired quota to being under-represented, or from being under-
represented to being even more under-represented.
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Definition 3 (Justified envy-freeness) A committee W satisfies justified envy-
freeness if there are no candidates c < W and c′ ∈ W such that c � c′ and there
exists no type ti ∈ η(c′) \ η(c) such that the number of candidates in W of type ti is
less than or equal to qi.

We note that justified envy-freeness by itself can be trivially satisfied by a com-
mittee that selects the top k ranked candidates. Such a committee is score-optimal,
i.e., maximizes the total score, if there were points associated with ranks of ordi-
nal ranks in the priority list. However, such a committee may not respect any of the
distributional constraints.

We have identified justified envy-freeness and type optimality as two desirable
axioms for our setting. The two axioms are necessarily satisfied by any committee
that is score-optimal and meets the hard distributional constraints. If a committee is
not type optimal, then it does not satisfy the distributional constraints. If it does not
satisfy justified envy-freeness, then a swap of two candidates can increase the total
points of the committee without violating its hard constraints which means that the
committee was not score-optimal subject to the constraints. In the next section, we
present an algorithm that returns a committee satisfying both axioms.

4 A Rule for Diverse Committee Selection

We are in a position to present our algorithm (Algorithm 1) to find a diverse com-
mittee. In the first stage (Steps 1 to 7), the algorithm checks if there is a type that is
under-represented and then selects the highest priority candidate who satisfies such
a type. The first stage is along similar lines as the Greedy Algorithm I of Bredereck
et al. (2018). If no type is under-represented, then the algorithm adds the required
number of highest ranking candidates. The second stage (Steps 8 to 10) is geared
towards obtaining a good type distribution. If the committee does not satisfy type
optimality, candidates are exchanged with the goal to satisfy type optimality until it
is satisfied. In the final while loop (Steps 11 to 13), the algorithm allows swaps of
candidates if there is justified envy. The algorithm stops when the committee satis-
fies justified envy-freeness. In certain steps of the algorithm, there may be multiple
options for selecting or choosing candidates to be included or excluded from the com-
mittee. In this sense the algorithm represents a class of rules rather than a single rule.
The exact choice can be established by choosing any tie-breaking rule. We have pre-
sented the algorithm without specifying the tie-breaking rule because the axiomatic
properties satisfied by the algorithm are not dependent on tie-breaking.

Let us illustrate the algorithm.

Example 2 Consider the following instance.

– C = {c1, c2, c3, c4}

– c1 � c2 � c3 � c4

– T = {t1, t2, t3, t4, t5}
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Algorithm 1 Rule for finding a desirable committee satisfying soft distributional
constraints on types
Input: (C,%,T, τ, q).
Output: W ⊆ C such that |W | = k

1: W ←− ∅
2: while |W | < k and there exists some candidate in C \ W of some type t that is

underrepresented in W do
3: Add a highest priority candidate of that type t to W.
4: end while
5: if |W | < k then
6: Select highest ranked k − |W | candidates from C \W into W.
7: end if
8: while there is a candidate c < W and candidate c′ ∈ W such that τ(W\{c′})∪{c}

dominates τW do
9: W ←− (W \ {c′}) ∪ {c}

10: end while
11: while there is a candidate c < W who has justified envy for some candidate

c′ ∈ W do
12: W ←− (W \ {c′}) ∪ {c}
13: end while
14: return W

– τ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 1
0 1 1 0 0


– q =

(
0 1 2 1 0

)
Suppose the target committee size is 2. The algorithm first considers a type t2 that

is under-represented and selects c2 because c2 � c4. It then considers type t3 that is
under-represented and selects c3. At this point the type distribution is not optimal and
can be improved by the exchange of c2 with c4 so that W = {c3, c4}. At this point the
committee is type optimal and also satisfies justified envy-freeness.

Proposition 1 Algorithm 1 returns in time O(|C|3) a committee that satisfies justified
envy-freeness.

Proof. Note that by Step 7, we already have a committee of size k. The first while
loop takes time at most O(k|C|). In the second while loop, the type distribution keeps
improving since the type domination relation is transitive (Lemma 1), but there can
be at most |C|2 such improvements. The while loop requires the scan of at most |C|
candidates so the time taken for the second while loop is at O(|C|3). Finally, in the last
while loop, with each swap of candidates, a candidate is replaced by a candidate with
a higher ranking. This can happen at most O(|C|2) times. The while loop requires the
scan of at most |C| candidates so the time taken for the last while loop is at O(|C|3).
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The while loop terminates when no candidate has justified envy for some candidate
in W. ut

Although Algorithm 1 finds a type optimal committee by Step 10, the committee
undergoes further changes in the final while loop to achieve justified envy-freeness.
We now argue that the returned committee still satisfies type optimality.

Proposition 2 Algorithm 1 returns a committee satisfying type optimality.

Proof. In the second while loop, we start from a committee of size k. Due to the
argument in the proof of Proposition 1, we know that by the end of Step 10, W is a
committee that is type optimal.

We show that in the final while loop, W remains type optimal. In the final while
loop, we implement swaps if there is a candidate c < W who has justified envy for
some candidate c′ ∈ W. Suppose we swap c′ with c. We claim that (W \ {c′}) ∪ {c}
is also type optimal. Since c had justified envy against c′, by definition of justified
envy, there exists no type ti ∈ η(c′) \ η(c) such that the number of candidates in
W of type ti is less than or equal to qi. If there is a type ti such that τW (ti) ≥ qi,
then τ(W\{c′})∪{c})(ti) ≥ qi. In words, if a type is not under-represented in W, it is
not under-represented in (W \ {c′}) ∪ {c}. If there is a type ti such that τW (ti) < qi,
then τW (ti) ≤ τ(W\{c′})∪{c})(ti) ≤ qi. In words, if a type is under-represented in W, it
is at most as under-represented in (W \ {c′}) ∪ {c}. Thus we have established that
τ(W\{c′})∪{c}) ≥ τW . Since W was type optimal, (W \ {c′}) ∪ {c} is type optimal as well.

ut

We have shown that our algorithm simultaneously satisfies both type optimality
and justified envy-freeness. Since these are two basic properties satisfied by opti-
mal committees satisfying hard constraints, our algorithm provides a computation-
ally easy and principled rule to find desirable committees that ‘almost’ satisfy the
distributional constraints. It will be interesting to see if other desirable axioms can
be simultaneously satisfied in conjunction with the ones which our algorithm satis-
fies. Our cubic-time algorithm may not return a committee satisfying the distribu-
tional constraints even if such a committee exists. However this may not be viewed
as criticism of the algorithm since the problem of checking whether such a commit-
tee exists is NP-complete, and a polynomial-time algorithm is unlikely to exist unless
P-NP (Papadimitriou, 1994).

Our general algorithm can have more precise specifications that prioritise cer-
tain types in a lexicographical manner or implement swaps according to some pre-
determined pattern. The % ranking order can be derived by using some social welfare
function for a set of voters voting on the quality of the candidates. Finally, it will
be interesting to undertake a more experimental comparison of our rule with other
methods proposed in the literature.
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