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Abstract
We study the controlled school choice problem
where students may belong to overlapping types
and schools have soft target quotas for each type.
We formalize fairness concepts for the setting that
extend fairness concepts considered for restricted
settings without overlapping types. Our central
contribution is presenting a new class of algorithms
that takes into account the representations of com-
binations of student types. The algorithms return
matchings that are non-wasteful and satisfy fairness
for same types. We further prove that the algo-
rithms are strategyproof for the students and yield
a fair outcome with respect to the induced quotas
for type combinations. We experimentally com-
pare our algorithms with two existing approaches
in terms of achieving diversity goals and satisfying
fairness.

1 Introduction
Incorporating diversity constraints, transparency and fairness
into systems and mechanisms are some of the prominent con-
cerns in artificial intelligence. These concerns are also preva-
lent in matching markets where there has been increased at-
tention to school choice problems that take into account affir-
mative action and diversity concerns when matching students
to schools. One particular model of school choice with diver-
sity constraints is controlled school choice [Abdulkadiroğlu
and Sönmez, 2003], in which students are associated with a
set of types. These types capture traits, such as being extra-
talented or being from a disadvantaged group. In recent years,
algorithms for matching with diversity goals have been de-
ployed in many places including Israel [Gonczarowski et al.,
2019] and India [Sonmez and Yenmez, 2019].

Typically, the diversity goals are achieved by setting min-
imum and maximum target representation of students. If di-
versity constraints are considered as hard bounds, there may
not exist an outcome that fulfills all minimum quotas, and a
fundamental tension between fairness and non-wastefulness
arises [Ehlers et al., 2014]. Placing hard constraints on diver-
sity constraints may be over-constraining and may put them in
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head-on conflict with school priorities or other merit consid-
eration. Kojima [2012] shows additional evidence that setting
hard bounds can be counter-productive. There are challenges
on the computational front as well: it is NP-hard to check
whether there exists a feasible or stable matching under hard
bounds [Aziz et al., 2019].

Because of these issues with hard bounds, the recent lit-
erature on controlled school choice problems treats diversity
constraints as soft bounds which are soft goals that schools
attempt to achieve [Hafalir et al., 2013; Ehlers et al., 2014;
Kurata et al., 2015, 2017]. In particular, these quotas are used
to determine which types should be given higher precedence
when allocating school seats.

Most papers on controlled school choice assume that each
student is associated with only one type. In reality, students
may satisfy multiple types. For example, a student could be
both female and aboriginal. Kurata et al. [2015] studied the
setting where diversity constraints are soft bounds and stu-
dents are allowed to have multiple types. One important is-
sue in existing work on multiple types is the imbalance of
representation for certain type combinations. For example,
the existing algorithms may achieve a reasonable representa-
tion of girls as well as aboriginals but have zero representa-
tion of aboriginal girls. Similar issues have also been debated
machine learning algorithms where fairness across types has
become increasingly important [Kearns et al., 2018].

In this paper, we study the controlled school choice prob-
lem where students may have overlapping types, and diversity
constraints are viewed as soft bounds. The research question
we consider is how to design mechanisms that cater to diver-
sity objectives while still satisfying desirable fairness, non-
wastefulness and strategy-proofness properties?

Contributions We propose a new fairness concept gener-
alizing the standard one for the model in which each student
has one type [Ehlers et al., 2014]. Then we present a clear
taxonomy of fairness and non-wastefulness concepts in the
literature as shown in Figure 1 and show an impossibility re-
sult that fairness is incompatible with non-wastefulness.

We then present a novel class of algorithms Generalized
Deferred Acceptance for Type Combinations (GDA-TC). Un-
like a previous approach DA-OT [Kurata et al., 2015, 2017]
that modifies the structure of preferences and priorities, we
take an alternative route to overcome this incompatibility.
A central idea is to create a set of type combinations such
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Figure 1: Relations between all concepts for school choice with
overlapping types. An arrow from A to B denotes that A implies B.
A dashed line between two concepts implies they are incompatible.

that each student is associated with precisely one type com-
bination. Then we directly set target quotas for each of the
relevant type combinations. We show that our GDA-TC al-
gorithm is strategy-proof for the students and yields a non-
wasteful and fair outcome for students who have the same set
of types. We compare with existing algorithms and summa-
rize the theoretical properties satisfied by each algorithm in
Table 1.

Finally, we undertake the first experimental comparative
analysis of school choice algorithms for students with multi-
ple types. Our generated data uses similar features as the pri-
vate data set used by Gonczarowski et al. [2019]. We show
that our new algorithm performs well across several axes, in-
cluding fairness, diversity goals as well as running time. Note
that although DA-OT additionally satisfies KHIY-fairness, it
performs the worst in achieving diversity goals and running
time. In contrast, GDA-TC performs better than the other two
algorithms in terms of consistently satisfying a reasonable re-
laxation of targets representations.

GDA-TC GDA-PMA DA-OT
Fairness 7 7 7
KHIY-fairness 7 7 3
Fairness for same types 3 7 3
KHIY-non-wastefulness 7 7 7
Non-wastefulness 3 3 3
Strategy-proofness 3 7 3

Table 1: Comparison of our new algorithm GDA-TC with two exist-
ing algorithms GDA-PMA and DA-OT.

Related Work Our paper belongs to the line of work on
school choice with affirmative action goals. Methodologi-
cally, our work is closest to that of Ehlers et al. [2014] whose
objective is to deal with soft diversity constraints. Our results
are more general in a strict sense because their model and
algorithms do not cater to multiple types. The GDA-PMA
algorithm of Gonczarowski et al. [2019] directly fits into our
model. As the authors point out, GDA-PMA does not guar-
antee a fair and non-wasteful outcome. We further show that
it is also not fair for same types.

There are other recent papers on school choice that con-
cern overlapping types [Aygün and Turhan, 2016; Kurata et
al., 2015, 2017]. However, the models and algorithms con-
sidered in these papers are different from ours in one crucial
respect. Students and schools are asked to express strict pref-
erences and priorities over contracts that also involve types.

However, in several scenarios, students may not care about
which privilege type they were granted for admission as long
as they obtained a school seat. They also may be averse to
reveal their contract explicitly corresponding to some type.
The algorithms in the papers can be tailored for our model by
letting the mechanism form artificial preference over school-
type pairs. We pursue this adaptation to experimentally com-
pare the algorithms.

Kominers and Sönmez [2013, 2016] studied matching with
slot-specific priorities in which each slot may have differ-
ent priorities from the school and the school has a prede-
fined precedence ordering over all slots. Sonmez and Yen-
mez [2019] studied the affirmative action system in Indian in
which students may belong to multiple types. They show de-
sirable outcomes only exist under the assumption that types
form a nested structure such that for any two distinct types, ei-
ther they are unrelated or one is the other’s ancestor. Baswana
et al. [2019] designed and deployed an algorithm for Indian
engineering colleges. For their setting with its very partic-
ular features, they used a heuristic to deal with non-nested
common quotas and their algorithm does not guarantee a fair
outcome. Echenique and Yenmez [2015] consider different
choice functions based on merit and diversity concerns but
do not focus on algorithms or markets as a whole. Ahmed et
al. [2017]; Dickerson et al. [2019] concern a different model
with cardinal information.

2 Preliminaries
To simplify the presentation, we only focus minimum quotas
only for the rest of the paper, as was the focus of Kurata et
al. [2015]. The impossibility result in Theorem 1 carries over
to maximum quotas, and our new algorithms can be easily
extended to cater to maximum quotas.

An instance IT of the school choice problem with diversity
constraints consists of a tuple (S,C, qC , T, η,X ,�S ,�C)
where S and C denote the set of students and schools respec-
tively. The capacity vector qC = (qc)c∈C assigns each school
c a capacity qc. Let T denote the type space. For each student
s, T (s) ⊆ T denotes the subset of types to which student s
belongs. If T (s) = ∅, then student s does not have any priv-
ileged type. Each school c imposes a minimum quota ηt

c
on

each type t. Let η
c

= (ηt
c
)t∈T denote the type-specific mini-

mum quota vector of school c and let η be a matrix consisting
of all schools’ type-specific minimum quotas.

Each contract denoted by x = (s, c) consists of a student-
school pair representing that student s is matched to school c.
Let X ⊆ S × C denote the set of available contracts. Given
any X ⊆ X , let Xs be the set of contracts involving student
s, let Xc be the set of contracts involving school c and let Xt

c
be the set of contracts involving type t and school c.

Each student s has a strict preference ordering �s over
Xs ∪ {∅} where ∅ is a null contract representing the option
of being unmatched for student s. A contract (s, c) is accept-
able to student s if (s, c) �s ∅. Let �S= {�s1 , ...,�sn}
be the preference profile of all students S. Each school c
has a strict priority ordering �c over Xc ∪ {∅} where ∅ rep-
resents the option of leaving seats vacant for school c. A
contract (s, c) is acceptable to school c if (s, c) �c ∅. Let



�C= {�c1 , ...,�cm} be the priority profile of all the schools.
An outcome (or a matching) X is a subset of X . An out-

come X is feasible (under soft bounds) for IT if i) each stu-
dent s is matched with at most one school, i.e., |Xs| ≤ 1, and
ii) the number of students matched to each school c does not
exceed its capacity, i.e., |Xc| ≤ qc. A feasible outcome X is
individually rational if each contract (s, c) ∈ X is acceptable
to both student s and school c. Without loss of generality, we
focus on acceptable contracts.

Definition 1 (Non-wastefulness). Given a feasible outcome
X , student s claims an empty seat of school c if (s, c) �s

{Xs} and |Xc| < qc. A feasible outcome is non-wasteful if
no student claims an empty seat.

An algorithm for our problem takes an instance IT as input
and outputs a set of contracts. An algorithm is strategy-proof
for students if there exists no student who can misreport his
preferences to be matched with a better school.

Next, we briefly introduce the generalized deferred accep-
tance (GDA) algorithm, which extends the classical deferred
acceptance (DA) algorithm to the setting of matching with
contracts [Hatfield and Milgrom, 2005]. Given any X ⊆ X ,
let ChS(X) denote the choice function of students S which
selects each student’s favorite contract from XS . Similarly,
the choice function ChC(X) of schools C selects a set of
contracts from XC . Note that the way to specify ChC is not
unique and different implementations of the GDA algorithm
vary on how to define the choice function of schools [Kurata
et al., 2015; Gonczarowski et al., 2019].

Input: A set of contracts X ⊆ X , ChS , ChC
Output: An outcome Y ⊆ X

1: R← ∅, Y ← X,Z ← ∅ % R: rejected contracts
2: while Y 6= Z do
3: Y ← ChS(X \R), Z ← ChC(Y ), R← R∪ (Y \Z)
4: return Y

Algorithm 1: Generalized Deferred Acceptance (GDA)

The GDA algorithm works in the same way as the original
deferred acceptance algorithm [Roth and Sotomayor, 1990]
does: each student first selects one contract involving her
favorite school that has not rejected her yet; then schools
choose a set of contracts among the proposals and reject oth-
ers. Repeat this procedure until no more contract is rejected
by any school.

3 Fairness under Diversity Constraints
In this section, we discuss how to define fairness under soft
diversity constraints. In the seminal paper on school choice,
Abdulkadiroğlu and Sönmez [2003] proposed an algorithm
that eliminates justified envy among students who have the
same type. Ehlers et al. [2014] also considered this concept,
while the difference from our Definition 2 is that in our set-
ting, each student may belong to multiple types.

Definition 2 (Fairness for same types). Given an instance
IT and a feasible outcome X , student s has justified envy
towards student s′ of same types if i) (s, c) �s Xs, (s′, c) ∈

X , ii) (s, c) �c (s′, c) and iii) T (s) = T (s′). A feasible
outcome is fair for same types if no student has justified envy
towards any student of same types.

In real-life, the number of distinct type combinations is rel-
atively small. For instance, in the Indian college admission
which involves 1.2 million annual applicants, the affirmative
action was imposed on three backward classes (Scheduled
Castes, Scheduled Tribes, Other Backward Castes) due to his-
torical discrimination and two disadvantaged groups (female
and disables) [Baswana et al., 2019].

Thus fairness for same types is a meaningful concept and
it is a suitable way to measure the outcomes in terms of fair-
ness, because it concerns a huge number of students who
have the same types. On the other hand, as we will show
later, that s stronger fairness concept is incompatible with
non-wastefulness.

3.1 General Impossibility

Next we propose a natural way to measure justified envy
among students of different types. The idea is that student
s is given higher precedence over student s′ if student s has
a superset of types that are below the minimum quotas com-
pared to student s′. In other words, student s makes more
contribution in terms of satisfying diversity goals. Formally,
given a feasible outcome X , let V X

c = {t ∈ T | ηt
c
> |Xt

c|}
denote the set of types that are undersubscribed at school c.

Definition 3 (Relation D). Given a feasible outcome X and
two students s, s′ with (s, c) /∈ X and (s′, c) /∈ X ,

• s DX
c s′ ⇔ T (s) ∩ V X

c ⊇ T (s′) ∩ V X
c ,

• s .Xc s′ ⇔ s DX
c s′ and s′ 4X

c s,

• s ∼X
c s′ ⇔ s DX

c s′ and s′ DX
c s.

Given a feasible outcome X , the notation s DX
c s′ means

that student s contributes at least as much as student s′ to
school c. The notations s .Xc s′ and s ∼X

c s′ specify the strict
and equivalent binary relation respectively.

Based on binary relation D we propose a new and ex-
tremely weak fairness concept in Definition 4.

Definition 4 (Fairness). Given an instance IT and a feasible
outcome X , student s has justified envy towards student s′
if i) (s, c) �s {Xs}, (s′, c) ∈ X and ii) for the outcome
X ′ = X \ {(s′, c)}, either ii-a) s .X

′

c s′, or ii-b) s′ 7X′

c s
and (s, c) �c (s′, c) hold. An outcome is fair if no student
has justified envy towards any student.

Although there are other ways to define fairness, we show
in Theorem 1 that even such weak fairness concept in Defini-
tion 4, is incompatible with non-wastefulness.

Theorem 1. The set of fair and non-wasteful outcomes could
be empty, even if there are only two types.

Proof. We prove Theorem 1 by the following counterexam-



ple in which each contract is acceptable.

S = {s1, s2, s3, s4}, C = {c1, c2}, qc1 = 2, qc2 = 1,
T = {t1, t2}, ηc1 = (1, 1), η

c2
= (0, 0), T (s1) = {∅},

T (s2) = {t1, t2}, T (s3) = {t1}, T (s4) = {t2},
(s1, c1) �s1 (s1, c2), (s2, c2) �s2 (s2, c1),
(s3, c1) �s3 (s3, c2), (s4, c1) �s4 (s4, c2),
(s1, c1) �c1 (s2, c1) �c1 (s3, c1) �c1 (s4, c1),
(s1, c2) �c2 (s2, c2) �c2 (s3, c2) �c2 (s4, c2).

It can be argued that the set of fair and non-wasteful outcomes
is empty for the instance and we omit the detailed proof.

3.2 Taxonomy of Concepts
In this subsection, we present a clear taxonomy of fairness
and non-wastefulness concepts in the literature. Ehlers et al.
[2014] proposed Definition 5 for the model where each stu-
dent belongs to one type.
Definition 5 (Fairness across types). Given an instance IT
with distinct types and a feasible outcome X , student s
has justified envy towards student s′ of a different type if i)
(s, c) �s {Xs}, (s′, c) ∈ X and ii) one of the following
cases holds, where T (s) = {t} and T (s′) = {t′} with t 6= t′:

a) |Xt
c| < ηt

c
and |Xt′

c | > ηt
′

c
;

b) |Xt
c| < ηt

c
, |Xt′

c | ≤ ηt
′

c
and (s, c) �c (s′, c);

c) |Xt
c| ≥ ηtc, |Xt′

c | > ηt
′

c
and (s, c) �c (s′, c).

An outcome is fair across types if no student has justified envy
towards any student of different type.

Kurata et al. [2015] proposed concepts of fairness and non-
wastefulness for school choice with multiple types, where
KHIY consists of the first letter of each of the authors.
Definition 6 (KHIY-fairness). Given an instance IT with
overlapping types and a feasible outcome X , student s has
KHIY-justified-envy towards student s′ if i) (s, c) �s {Xs},
(s′, c) ∈ X , ii) (s, c) �c (s′, c) and iii) ∀t ∈ T (s′) \
T (s), |Xt

c| > ηt
c

or T (s′) \ T (s) = ∅. A feasible outcome
X is KHIY-fair if no student has KHIY-justified-envy.

Definition 7 (KHIY-non-wastefulness). Given a feasible out-
come X , student s claims an empty seat of school c if
(s, c) �s {Xs} and |Xc| < qc; and student s claims
an empty seat of school c by type if (s, c) �s {Xs}, and
∃t ∈ T (s), |Xt

c| < ηt
c
. A feasible outcome is KHIY-non-

wasteful if no student claims an empty seat or an empty seat
by type.

Next, we present a clear taxonomy of all non-wastefulness
and fairness concepts through Theorem 2 and Theorem 3.
Due to space limitations, proofs are omitted and we depict
the results of Theorem 3 in Figure 1.
Theorem 2. Given an instance IT in which each student be-
longs to one type and a feasible outcome X ,

i) X is fair if and only if it is fair for same types and fair
across types;

ii) X is non-wasteful and fair if and only if it is KHIY-non-
wasteful and KHIY-fair.

Theorem 3. Given an instance IT in which each student be-
longs to multiple types and a feasible outcome X ,

i) if X is KHIY-non-wasteful, then it is non-wasteful;

ii) if X is fair, then it is KHIY-fair;

iii) if X is KHIY-fair, then it is fair for same types;

iv) if X is KHIY-non-wasteful and KHIY-fair, then it is non-
wasteful and fair.

Although Kurata et al. [2017] showed that KHIY-fairness
is incompatible with KHIY-non-wastefulness, our impossibil-
ity result in Theorem 1 is stronger than the impossibility re-
sult of Kurata et al. [2017] in two respects. First, as shown in
Theorem 3, the combination of non-wastefulness and fairness
is weaker than the combination of KHIY-non-wastefulness
and KHIY-fairness. Second, our incompatibility result still
holds even if there are only two types, while the proof of Ku-
rata et al. [2017] uses three types.

4 A Class of Algorithms GDA-TC
In this section, we propose a new class of algorithms Gen-
eralized Deferred Acceptance for Type Combinations (GDA-
TC) which yields outcomes that are non-wasteful and fair for
students of same types. The general idea is to eliminate over-
lapping types by creating a new set U corresponding to type
combinations of T so that each student is associated with ex-
actly one type combination. Then we establish new quotas
for type combinations U and incorporate the induced quotas
into the choice function ChTC

c of schools. We employ the
GDA algorithm with choice function ChTC

c to determine the
outcome. All these procedures consist of our new class of
algorithms GDA-TC, as shown in Algorithm 2.

Input: IT =(S,C, qC , T, η, X ,�S ,�C)
Output: An outcome X ⊆ X

1: Create a set of type combinations U from types T .
2: Determine quotas δ for type combinations U .
3: Incorporate quotas δ into choice function ChTC

c .
4: Run GDA with choice function ChTC

c .

Algorithm 2: GDA-TC

There are different ways to establish quotas for type com-
binations U and each different method specifies one particu-
lar algorithm of GDA-TC. For instance, we can invoke linear
programming to divide minimum quotas η for types T into
minimum quotas δ for type combinations U . We refer to this
algorithm as GDA-TC-LP that makes use of linear program-
ming and we explain how GDA-TC-LP works in detail.

Create type combinations Let U ⊆ 2T denote the set of
type combinations over types T and let U(s) represent the
type combination of student s. Note that we only consider the
set of type combinations associated with students S, whose
number is bounded by the number of students.

Let T (u) represent the set of types associated with u ∈ U .
For ease of exposition, the index of type combination u is
represented in binary where the i-th element is 1 if type ti ∈
T (u) and 0 otherwise. For a set of type combinationsR⊆ U ,



we say set R covers type t if ∀u ∈ U\R, we have t /∈ T (u).
We say set R exactly covers type t if set R is the smallest set
that covers type t. For type t ∈ T , let U t ⊆ U denote the set
of type combinations that exactly covers type t. Note that any
superset R of set U t also covers type t.
Example 1. Consider two types T = {t1, t2} with four type
combinations U={u00,u01,u10,u11}. The set {u00,u10,u11}
covers type t1 and U t1={u10,u11} exactly covers type t1.

Setting quotas for type combinations Let δc=(δuc )u∈U

denote a minimum target vector of school c where each el-
ement δuc is the minimum target quota of type combination
u. Let δ=(δc)c∈C be a matrix consisting of minimum tar-
get quota of each type combination for each school. Next,
we explain one possible way to calculate the vector δc by the
following linear program LP 1.

min
∑

u∈U
δuc (1)∑

u∈Ut
δuc ≥ ηtc, ∀c ∈ C, ∀t ∈ T (2)

δuc ≥ 0, ∀u ∈ U (3)
δuc × |Sv| = δvc × |Su|, ∀c ∈ C, ∀u, v ∈ U (4)

The objective of LP 1 is to minimize the sum of minimum
quotas δuc of each type combination u at school c. Inequal-
ities (2) specify the basic requirement on how to convert
quotas for types into quotas for type combinations. Given
a school c with minimum target vector η

c
= (ηt

c
)t∈T , the

sum of minimum target quota δuc of each type combination
u ∈ U t that exactly covers type t should be at least as large
as the minimum quota ηt

c
for type t. Inequalities (3) require

that the quota for each type combination should be positive.
We also consider a set of inequalities (4) that takes the pro-

portion of different type combinations into account. In words,
in a school c, for every two type combinations u, v ∈ U , the
minimum quotas δuc and δvc should be proportional to the total
number of students with corresponding type combinations.

Specifying choice functions for schools We take the min-
imum targets δ for type combinations U into account when
defining choice function ChTC

c , as described in Algorithm 3.
Given a set of contractsX , the choice functionChUc traverses
the set of contractsXc involving school c twice in accordance
with the priority order of school c: in the first round, it selects
a set of contracts without exceeding any minimum quota for
type combinations and the capacity qc of school c; in the sec-
ond round, it selects a set of contracts without exceeding the
capacity only. Next, we show the key properties that the class
of GDA-TC algorithms guarantees.
Theorem 4. The class of GDA-TC algorithms with choice
function 3 is strategy-proof for students, and yields a feasible
outcome that is fair for same types and non-wasteful.

Proof. Ehlers et al. [2014] study the model in which each
student has one type and they show that GDA algorithm
with their choice function is strategy-proof for students and
the outcome yielded by their algorithm is fair for same
types and non-wasteful. If we consider a new instance
IU=(S,C, qC , U, δ,X ,�S ,�C) obtained from IT by re-
placing types T withU and replacing matrix η with δ, then we

Input: An instance IT , quotas δ for U , a set of contracts X
Output: A set of contracts Y ⊆ X

1: Y ← ∅
2: for x = (s, c) ∈ X in descending ordering of �c do
3: if |Yc| < qc and |Y u

c | < δuc with u = U(s) then
4: Y ← Y ∪ {x}, X ← X \ {x}
5: while |Y | < qc and |Xc| > 0 do
6: Select x ∈ X with highest priority based on �c

7: Y ← Y ∪ {x}, X ← X \ {x}
8: return Y

Algorithm 3: Choice function ChTC
c of school c

have a new instance of school choice in which each student
has one type combination and our choice function becomes
equivalent to the choice function of [Ehlers et al., 2014]. It
is easy to infer that the class of GDA-TC algorithms satisfies
fairness for same types and non-wastefulness.

Suppose GDA-TC is not strategy-proof. Say student s is
matched with Xs if he truly reports his preference �s and
is matched with X ′

s if misreports his preference �′
s with

{Xs} �s {X ′
s}. Note that quotas δ for type combinations

U are independent from preference profile. Then for instance
IU , student s is matched to a better school by manipulating
his preference, however, this violates the fact that GDA-TC is
strategy-proof for the case each student has one type.

If we set minimum quotas to be zero for all type combi-
nations, then GDA-TC is equivalent to deferred acceptance
(DA). By Theorem 4, we infer that DA also satisfies fairness
for same types and non-wastefulness. However, DA algo-
rithm completely ignores diversity goals.

5 Comparison with Existing Algorithms
In this section, we compare GDA-TC with two existing algo-
rithms designed by Kurata et al. [2015] and Gonczarowski et
al. [2019] for school choice with multiple types. The experi-
mental results show that GDA-TC performs better than these
two algorithms in terms of consistently satisfying a reason-
able relaxation of targets representations.

Kurata et al. [2015] proposed Deferred Acceptance Algo-
rithm for Overlapping Types (DA-OT) under the assumption
that each student is assumed to consume only one unit of
some type rather than one unit of each type to which she
belongs. Gonczarowski et al. [2019] proposed GDA-PMA
algorithm to handle soft minimum quotas and multiple types.
During the process of GDA-PMA, schools give higher prece-
dence to students who have some type that has not reached the
minimum quota. GDA-PMA algorithm is not strategy-proof
for students and does not yield a fair outcome [Gonczarowski
et al., 2019]. We further show that GDA-PMA algorithm
does not eliminate justified envy among students who have
the same types. When each student has one type, the choice
functions in GDA-TC, GDA-PMA and DA-OT are the same
as the choice function defined by Ehlers et al. [2014].

Setup of Experiments We consider a market with |S| =
2000, |C| = 40 and qc = 50, which are close to the
number of students, the number of schools and the average



number of slots at each institution in the ‘Mechinot’ market
[Gonczarowski et al., 2019]. The number of types is |T | ∈
{2, 4, 6, 8}. For a given type t, its percentage per(t) is deter-
mined by the number of students |St| associated with type t
divided by the total number of students |S|. The percentage of
each type is randomly chosen from the set {0.1, 0.2, 0.3, 0.4,
0.5}. The same minimum vector η

c
is imposed on all schools.

The minimum target ηt
c

for type t is set as ηt
c

= |St|/|C| ∗ α
where α is the target ratio. The target ratio α takes three val-
ues from {0.7, 1.0, 1.3}. The preference profile of students
and the priority profile of schools is generated by Mallows
Model (MM). Let Φ be the set of all possible preference or-
ders. MM is a distribution over permutations of Φ determined
by two parameters, a reference order σ ∈ Φ and a dispersion
parameter θ ∈ (0, 1] [Lu and Boutilier, 2011]. We gener-
ate 100 instances for each setting and compute the average
results. Because the relative performances of the three algo-
rithms are consistent, we present the results for target ratio
α = 1.3 as shown in Figure 2 and Figure 3.

The preference and priority profiles are generated by MM
model with dispersion parameter θ = 0.1 and 0.9 respec-
tively.

Measurement of Achieving Diversity Goals We measure
the performance of three algorithms in terms of achieving di-
versity goals by calculating the percentage of types that sat-
isfy different fractional relaxation of minimum targets. For
instance, suppose the minimum target for type t of school c
is ηt

c
= 20. If an outcome assigns 16 students of type t to

school c, then it satisfies 0.8 fractional relaxation of target ηt
c

of school c, but not 1.0 fractional relaxation.
Note that reaching more minimum targets of large frac-

tional relaxation is not always desirable. This is because the
total number of students is fixed: the more students of a given
type are assigned to some schools, the fewer students of that
type could be assigned to other schools, which may lead to se-
rious imbalanced distribution of students across schools. This
violates the motivation of diversity targets, which attempts to
eliminate segmentation of students of different types.

An outcome is more balanced if it satisfies more percent-
age of reasonable fractional relaxation (1/α) of minimum
quotas. For instance, when target ratio α = 1.3, in an ideal
outcome, there should be more type targets satisfying frac-
tional relaxation less than 1/1.3 ≈ 0.77.

Results of the Experiment In Figure 2 and 3, we present
the experimental results for the setting of target ratio α = 1.3,
MM model with dispersion parameter θ = 0.1 and θ = 0.9.
The x-axis denotes the fractional relaxation of type targets at
schools and the y-axis denotes the percentage of type targets
whose fractional relaxation are satisfied. For instance, in the
first subfigure Figure 2 of with 2 types, the orange bar at 0.6
indicates that in the outcome returned by GDA-PMA, around
75% of all types at all schools satisfied a 0.6 fraction of the
minimum targets on average. The red horizontal line repre-
sents the ideal outcome, and the red dotted line represents
reasonable fractional relaxation 1/α ≈ 0.77.

The experimental results show that GDA-TC performs bet-
ter than the other two algorithms in terms of consistently
satisfying a reasonable relaxation of targets representations.

Figure 2: Experimental results of achieving diversity goals for the
setting of target ratio α = 1.3, MM model with θ = 0.1.

Figure 3: Experimental results of achieving diversity goals for the
setting of target ratio α = 1.3, MM model with θ = 0.9.

In contrast, GDA-PMA and DA-OT algorithms satisfy much
more targets of 1.0 fractional relaxation than GDA-TC does,
but at the expense of more type targets not satisfying 0.2 / 0.4
/ 0.6 fractional relaxation of targets.

We also analysed the number of justified envy relations
among students of same types in the outcomes returned by
GDA-PMA. When α = 1.0 and θ = 0.1, there is a significant
number of justified envy relations. We also compare three al-
gorithms in terms of running time. GDA-TC runs the fastest,
followed by GDA-PMA. DA-OT is the slowest and spends up
to 30 times more time than GDA-TC does.

In conclusion, GDA-TC-LP is a suitable alternative algo-
rithm to GDA-PMA and DA-OT. It outperforms DA-OT in
terms of achieving diversity goals and returns a much more
balanced outcome. It also has satisfies several important the-
oretical properties that GDA-PMA does not. In addition, it
takes the representation of type combinations into account
which was overlooked by the other two algorithms.
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