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ABSTRACT
A probabilistic approach to the stable matching problem has been

identified as an important research area with several important

open problems. When considering random matchings, ex-post sta-

bility is a fundamental stability concept. A prominent open problem

is characterizing ex-post stability and establishing its computational

complexity. We investigate the computational complexity of testing

ex-post stability. Our central result is that when either side has

ties in the preferences/priorities, testing ex-post stability is NP-

complete. The result even holds if both sides have dichotomous

preferences. We also consider stronger versions of ex-post stability

(in particular robust ex-post stability and ex-post strong stability)

and prove that they can be tested in polynomial time.
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1 INTRODUCTION
“One important question is about the characterization
of ex post stability when matchings are allowed to be
random”—Kesten and Unver [19].

We consider the two-sided matching problems in which agents

have preferences over items and items have priorities over agents.

For deterministic matchings, the most widely applied stability con-

cept (often referred to simply as stability, pairwise stability or weak

stability) requires that there should be no agent 𝑖 and item 𝑜 such

that both prefer each other over their existing match. A stronger

version of the concept (referred to as strong stability) requires that

there should be no agent 𝑖 and item 𝑜 such that both weakly pre-

fer each other over their existing match with one of the relations

being strict. Both concepts are well-understood in the context of

deterministic matchings but less so in the context of probabilistic

matchings.

Whereas much of the matching literature focuses on determinis-

tic matching, there is increased focus on probabilistic matchings.

There are several reasons randomization is useful including allow-

ing a richer outcome space (may be essential to achieve fairness

, , . ©

properties such as anonymity and (ex-ante) equal-treatment-of-

equals, or to satisfy certain distributional constraints in expecta-

tion) and also to capture time sharing arrangements [3, 14, 22, 24].

A randommatching specifies the probability with which each agent

gets a particular item. In graph-theoretical terms, it is a fractional

matching. Kesten and Unver [19] mention that “The research on
school-choice lotteries is a relatively new area in market design theory,
and there are many remaining open questions.” Research on random

matching under preferences has also been highlighted as an im-

portant research direction in the Dagstuhl Workshop on Matching

Under Preferences: Theory and Practice (2021) [4]. When there is a

need to both consider ex-ante probabilistic constraints as well as the

requirement to achieve stability ex-post, a fundamental algorithmic

problem that arises is the following one:

Can a given random matching be represented as a prob-
ability distribution over stable integral / deterministic
matchings?

The problem above also captures the problem of checking

whether a given random matching is ex post stable or not.
1
This

problem will be the central focus of our paper. The problem is in-

trinsically linked to the open problem highlighted by Kesten and

Unver [19] concerning the characterization of ex post stability when

matchings are allowed to be random.

Results. We show that when either agents have ties in their pref-

erences or items have ties in their priorities, testing ex-post stability

is NP-complete. In particular, we prove two complexity results: (1)

deciding whether a random matching 𝑝 is ex-post stable is NP-

complete, even if one side has strict and the other has dichotomous

preferences and (2) deciding whether a random matching 𝑝 is ex-

post stable is NP-complete, even if both sides have dichotomous

preferences.

The results also give an explanation on why a simple and compu-

tationally tractable characterization of ex-post stability has eluded

researchers. Woeginger [25] writes that “the combinatorics of NP-
complete problems usually is complicated and rather messy. If one
proves theorems about properties and the behavior of NP-complete
problems, then this usually involves lots of tedious case analysis.” Our

1
The complexity of the problemwas highlighted as an open problem by Jay Sethuraman

at the Dagstuhl Workshop on Matching Under Preferences: Theory and Practice [4].



, , Haris Aziz, Péter Biró, Gergely Csáji, and Ali Pourmiri

ex-post stability strong ex-post stability robust ex-post stability
Restriction

strict prefs, strict priorities in P in P in P

dichotomous prefs, dichotomous priorities NP-complete (Th 5.4) in P in P

strict prefs, dichotomous priorities NP-complete (Th 5.1) in P in P

dichotomous prefs, strict priorities NP-complete in P in P

- NP-complete in P (Th 6.8) in P (Th 6.2)

Table 1: Complexity of testing stability

results sharply contrast with the fact that the set of ex-post match-

ing matchings can be represented by a linear number of linear

constraints when both the preferences and priorities are strict.

We then turn our attention to stronger versions of ex post stabil-

ity. We show that there is a polynomial time algorithm for testing

ex-post strong stability and also find a decomposition into a convex

combination of integral strongly stable matchings (if it exists). We

also prove a similar result for robust ex post stability that is another

stability concept. Our complexity results are summarized in Table 1.

2 RELATEDWORK
The theory of stable matchings has a long history with several

books written on the topic [17, 21, 23].

In the theory of matching under preferences, Roth et al. [22]

presented several results regarding the stable matching polytope

(when there are no ties) that also provide insights into random stable

matching. Teo and Sethuraman [24] presented another paper that

provides connections between linear programming formulations

and stable matchings.

Bogomolnaia and Moulin [9] presented a seminal paper on ran-

dom matchings when the items do not have any priorities. In this

paper, we focus on the setting when items also have priorities. Our

focus is also on stability concepts. Bogomolnaia and Moulin [10]

then considered two-sided matching under dichotomous prefer-

ences.

Kesten and Unver [19] initiated a mechanism design approach

to the stable random matching problem where they explore the

compatibility of stability and efficiency and propose algorithms that

satisfy ex-ante stability (a property that is stronger than ex-post

stability). Afacan [1] considered a more general model in which

objects have probabilities for prioritizing one agent over another.

They present a weak stability concept called claimwise stability and

propose an algorithm to achieve it. Aziz and Klaus [6] explore a hi-

erarchy of stability concepts when considering random matchings

and explored their relations and mathematical properties. Caragian-

nis et al. [12] considered stability under cardinal preferences. Aziz

and Brandl [5] presented a general random allocation algorithm

that can handle general feasibility constraints including those that

are as a result of imposing stability concepts.

Chen et al. [13] considered the classical as well as a concept

based on cardinal utilities [12] and presented additional complexity

results when stability is combined with other objectives such as

maximum size or maximum welfare. Aziz et al. [7] examined the

complexity of testing ex post Pareto optimality and proved that the

problem is coNP-complete.

Regarding the practical applications, the problem of socially

optimal decomposition of probabilistic allocations came up in at

least two contexts, where the probabilities are coming from lotteries.

Ashlagi and Shi [2] proposed to improve community cohesion in

a school choice mechanism by finding a convex combination of

such deterministic assignments, where the students from the same

neighbourhood are matched to the same schools with high chances.

Such solutions can decrease the busing costs as well, which has

been a crucial objective for the city of Boston, where the redesign

was proposed. Bronfman et al. [11] used a similar approach to

implement a new matching algorithm in the resident allocation

programme of Israel, where the focus of the optimal decomposition

was to keep the married couples together.

3 PRELIMINARIES
We consider the classic matching setting in which there are𝑛 agents

and 𝑛 items. The agents have preferences over items and items have

priorities over agents. The preference relation of an agent 𝑖 ∈ 𝑁

over items is denoted by ≿𝑖 where ≻𝑖 denotes the strict part of

the preference and ∼𝑖 denotes the indifference part. The priority
relation of an item 𝑜 ∈ 𝑁 over agents is denoted by ≿𝑜 where

≻𝑜 denotes the strict part of the preference and ∼𝑜 denotes the

indifference part.

A random matching 𝑝 is a bistochastic 𝑛 × 𝑛 matrix

[𝑝 (𝑖, 𝑜)]𝑖∈𝑁,𝑜∈𝑂 , i.e.,

for each pair (𝑖, 𝑜) ∈ 𝑁 ×𝑂, 𝑝 (𝑖, 𝑜) ≥ 0, (1)

for each 𝑖 ∈ 𝑁,
∑︁
𝑜∈𝑂

𝑝 (𝑖, 𝑜) = 1, and (2)

for each 𝑜 ∈ 𝑂,
∑︁
𝑖∈𝑁

𝑝 (𝑖, 𝑜) = 1. (3)

Randommatchings are often also referred to as fractional matchings
[24]. For each pair (𝑖, 𝑜) ∈ 𝑁 ×𝑂 , the value 𝑝 (𝑖, 𝑜) represents the
probability of item 𝑜 being matched to agent 𝑖 and agent 𝑖’s match
is the probability vector 𝑝 (𝑖) = (𝑝 (𝑖, 𝑜))𝑜∈𝑂 . A random matching

𝑝 is deterministic if for each pair (𝑖, 𝑜) ∈ 𝑁 ×𝑂 , 𝑝 (𝑖, 𝑜) ∈ {0, 1}.
Alternatively, a deterministic matching is an integer solution to

linear inequalities (1), (2), and (3).

By [8], each random matching can be represented as a convex

combination of deterministic matchings: a decomposition of a

randommatching 𝑝 into deterministic matchings 𝑃 𝑗 ( 𝑗 ∈ {1, . . . , 𝑘})
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equals a sum 𝑝 =
∑𝑘

𝑗=1 _ 𝑗𝑃 𝑗 such that for each 𝑗 ∈ {1, . . . , 𝑘},
_ 𝑗 ∈ (0, 1] and ∑𝑘

𝑗=1 _ 𝑗 = 1.

Definition 3.1 (Stability for deterministic matchings). A de-

terministic matching 𝑝 has no justified envy or is stable if there
exists no agent 𝑖 who is matched to item 𝑜 ′ but prefers item 𝑜 while

item 𝑜 is matched to some agent 𝑗 with lower priority than 𝑖 , i.e.,

there exist no 𝑖, 𝑗 ∈ 𝑁 and no 𝑜, 𝑜 ′ ∈ 𝑂 such that 𝑝 (𝑖, 𝑜 ′) = 1,

𝑝 ( 𝑗, 𝑜) = 1, 𝑜 ≻𝑖 𝑜 ′, and 𝑖 ≻𝑜 𝑗 .

A deterministic matching 𝑝 is stable if it satisfies the following

inequalities: for each pair (𝑖, 𝑜) ∈ 𝑁 ×𝑂 ,

𝑝 (𝑖, 𝑜) +
∑︁

𝑜′:𝑜′≿𝑖𝑜 ;𝑜′≠𝑜

𝑝 (𝑖, 𝑜 ′) +
∑︁

𝑗 :𝑗≿𝑜𝑖;𝑗≠𝑖

𝑝 ( 𝑗, 𝑜) ≥ 1. (4)

If one breaks all preference and priority ties, then the well-

known deferred-acceptance algorithm [15] computes a determinis-

tic matching that is stable.

Definition 3.2 (Ex-post stability). A random matching 𝑝 is ex-
post stable if it can be decomposed into deterministic stable match-

ings.

4 EX POST STABILITY: ALGORITHM AND
CHARACTERIZATION UNDER ABSENCE OF
TIES

We first warm up with an observation that when both prefer-

ences and priorities are strict, then ex post stability admits both a

simple characterization, concise geometric description and also a

polynomial-time algorithm to test ex post stability.

Definition 4.1 (Fractional stability and violations of frac-
tional stability). A random matching 𝑝 is fractionally stable if
for each pair (𝑖, 𝑜) ∈ 𝑁 ×𝑂 ,

𝑝 (𝑖, 𝑜) +
∑︁

𝑜′:𝑜′≿𝑖𝑜 ;𝑜′≠𝑜

𝑝 (𝑖, 𝑜 ′) +
∑︁

𝑗 :𝑗≿𝑜𝑖;𝑗≠𝑖

𝑝 ( 𝑗, 𝑜) ≥ 1, (4)

or more compactly,∑︁
𝑜′:𝑜′≿𝑖𝑜 ;𝑜′≠𝑜

𝑝 (𝑖, 𝑜 ′) ≥
∑︁
𝑗 :𝑗≺𝑜𝑖

𝑝 ( 𝑗, 𝑜). (5)

A violation of fractional stability occurs if there exists a pair
(𝑖, 𝑜) ∈ 𝑁 ×𝑂 such that∑︁

𝑗 :𝑗≺𝑜𝑖

𝑝 ( 𝑗, 𝑜) >
∑︁

𝑜′:𝑜′≿𝑖𝑜 ;𝑜′≠𝑜

𝑝 (𝑖, 𝑜 ′). (6)

Next, we highlight that fractional stability does not imply ex-post

stability.
2

Example 4.2 (Fractional stability does not imply ex-post stabil-
ity). Let 𝑁 = {1, 2, 3} and 𝑂 = {𝑥,𝑦, 𝑧}. Consider the following

preferences and priorities (the brackets indicate indifference):

≻1: [𝑥 𝑦 𝑧]
≻2: 𝑦 𝑥 𝑧

≻3: [𝑥 𝑦 𝑧]

≻𝑥 : [2 3] 1

≻𝑦 : [1 2 3]
≻𝑧 : [1 2 3]

Consider random matching 𝑞, which is fractionally stable because

agents 1 and 3 only get best items and from agent 2’s perspective

2
The example was first presented by Aziz and Klaus [6].

no agent with a lower priority consumes his best item 𝑦, which he

receives with probability
1

2
, and agent 2, who does have a lower

priority for item 𝑥 does not consume more that
1

2
of 𝑥 ,

𝑞 =
©«
1/2 0 1/2
0 1/2 1/2
1/2 1/2 0

ª®¬ .
Note that random matching 𝑞 has a unique decomposition into the

deterministic matchings

𝑝1 =
©«
1 0 0

0 0 1

0 1 0

ª®¬ 𝑝2 =
©«
0 0 1

0 1 0

1 0 0

ª®¬
such that 𝑞 = 1

2
𝑝1 + 1

2
𝑝2. However, deterministic matching 𝑝1 is

unstable because agent 2 justifiably envies agent 1. Hence, random

matching 𝑞 is not ex-post stable.

We note that ex post stability can be tested in linear-time if

preferences / priorities on both sides are strict

Proposition 4.3. Ex post stability can be tested in linear-time if
preferences on both sides are strict. Furthermore, if a given a random
matching is ex post stable, there exists a polynomial-time algorithm to
represent the random matching as a lottery over deterministic stable
matchings.

Proof. Under strict preferences and priorities, ex post stability

and fractional stability are equivalent [6]. So we just need to check

for the linear constraints capturing fractional stability. In strict

preference setting, any fractional stable matching (equivalently ex

post stable matching) can be efficiently decomposed to a convex

combination of deterministic stable matchings [24]. □

5 EX POST STABILITY: COMPLEXITY UNDER
THE PRESENCE OF TIES

Next, we move to the general setting in which there may be ties

in the preferences or priorities. Our first observation is as follows.

Suppose that 𝐶 denote the set of all stable matching of a given

instance with weak preferences. The convex hull of all points in 𝐶

is a subset of the polytope defined by the inequalities (1) to (4). Next,

we prove that checking whether a random matching 𝑝 is ex-post

stable is NP-complete

Theorem 5.1. Deciding whether a random matching 𝑝 is ex-post
stable is NP-complete, even if one side’s preferences/priorities are strict
and the other’s are dichotomous.

Proof. To show NPmembership, it is enough to show that there

always exist a polynomial size witness for yes instances. But it is

true, since if a random matching 𝑝 is in the convex hull of the

characteristic vectors of stable matchings, than by Caratheodory’s

theorem it can be expressed as a convex combination of at most

𝑛2 + 1 stable matchings also.

To show NP-hardness, we reduce from X3C. In this problem, we

are given a family of 3-sets 𝐶1, ..,𝐶3𝑛 over elements 𝑎1, .., 𝑎3𝑛 and

the question is whether there is an exact 3-cover among the 3-sets.

This problem is NP-complete, even if each element 𝑎𝑖 is contained

in exactly three 3-sets [16].
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X3C

Input: A finite set 𝑋 = {𝑎1, .., 𝑎3𝑛} containing exactly 3n

elements; a collection 𝐶 = {𝐶1, ..,𝐶3𝑛} of subsets
of 𝑋 each of which contains exactly 3 elements.

Task: Does 𝐶 contain an exact cover for 𝑋 , i.e. a sub-

collection of 3-element sets 𝐷 = (𝐷1, ..., 𝐷𝑛) such
that each element of𝑋 occurs in exactly one subset

in 𝐷?

Let 𝐼 be such an instance of X3C. We construct an instance 𝐼 ′

for our problem as follows.

For each element 𝑎𝑖 we add an item 𝑎𝑖 . For each set 𝐶 𝑗 , we

add 6 items 𝑥1
𝑗
, 𝑥2

𝑗
, 𝑥3

𝑗
and 𝑦1

𝑗
, 𝑦2

𝑗
, 𝑦3

𝑗
and also 6 agents 𝑐1

𝑗
, 𝑐2

𝑗
, 𝑐3

𝑗
and

𝑑1
𝑗
, 𝑑2

𝑗
, 𝑑3

𝑗
. Then, we add 3𝑛 collector agents 𝑧1, , .., 𝑧3𝑛 . Finally, we

add two more items 𝑜1 and 𝑜2 and two more agents 𝑠1 and 𝑠2. Let

𝐶 𝑗 = {𝑎 𝑗1 , 𝑎 𝑗2 , 𝑎 𝑗3 }, 𝑗1 < 𝑗2 < 𝑗3 be the 𝑗-th set in 𝐼 . We refer to 𝑎 𝑗1
as the first element in 𝐶 𝑗 , 𝑎 𝑗2 as the second and 𝑎 𝑗3 as the third.

Let the preferences be the following. For the agents:

𝑐𝑙
𝑗
: 𝑎 𝑗𝑙 , 𝑦

𝑙
𝑗
, 𝑥𝑙−1

𝑗
, 𝑥𝑙

𝑗
, 𝑜𝑡ℎ𝑒𝑟𝑠

𝑑𝑙
𝑗
: 𝑥𝑙

𝑗
, 𝑦𝑙

𝑗
, 𝑜𝑡ℎ𝑒𝑟𝑠 ,

𝑠1 : 𝑜2, (𝑌 ), 𝑜1, 𝑜𝑡ℎ𝑒𝑟𝑠
𝑠2 : 𝑜1, 𝑜2, 𝑜𝑡ℎ𝑒𝑟𝑠

𝑧 𝑗 : (𝑋 ), 𝑜𝑡ℎ𝑒𝑟𝑠

where 𝑗 = 1, .., 3𝑛, 𝑙 = 1, 2, 3 taken (𝑚𝑜𝑑 3) and 𝑌 = {𝑦𝑙
𝑗
| 𝑗 =

1, .., 3𝑛, 𝑙 = 1, 2, 3}, 𝑋 = {𝑥𝑙
𝑗
| 𝑗 = 1, .., 3𝑛, 𝑙 = 1, 2, 3} and (𝑆) for

a set 𝑆 indicates that the elements of 𝑆 are ranked in an arbitrary

strict order.

For the item we have:

𝑎𝑖 : [𝑐1 (𝑎𝑖 ), 𝑐2 (𝑎𝑖 ), 𝑐3 (𝑎𝑖 )], [𝑜𝑡ℎ𝑒𝑟𝑠]
𝑥𝑙
𝑗
: [𝑐𝑙

𝑗
, 𝑐𝑙+1

𝑗
], [𝑜𝑡ℎ𝑒𝑟𝑠]

𝑦𝑙
𝑗
: [𝑑𝑙

𝑗
, 𝑠1], [𝑜𝑡ℎ𝑒𝑟𝑠]

𝑜1 : [𝑒𝑣𝑒𝑟𝑦 𝑎𝑔𝑒𝑛𝑡]
𝑜2 : [𝑒𝑣𝑒𝑟𝑦 𝑎𝑔𝑒𝑛𝑡]

where 𝑍 = {𝑧1, .., 𝑧3𝑛}, 𝑖 = 1, .., 3𝑛, 𝑗 = 1, .., 3𝑛 , 𝑙 = 1, 2, 3 and 𝑐𝑘 (𝑎𝑖 )
is 𝑐𝑙

𝑗
, iff the 𝑘-th appearance of 𝑎𝑖 is in the 𝑙-th position of the set𝐶 𝑗

and the brackets indicate indifferences. Let the fractional matching

𝑝 be:

(1) 𝑝 (𝑐𝑘 (𝑎𝑖 ), 𝑎𝑖 ) = 1

3
for 𝑖 = 1, .., 3𝑛, 𝑘 = 1, 2, 3

(2) 𝑝 (𝑐𝑙
𝑗
, 𝑥𝑙

𝑗
) = 𝑝 (𝑐𝑙

𝑗
, 𝑦𝑙

𝑗
) = 1

3
, 𝑗 = 1, .., 3𝑛, 𝑙 = 1, 2, 3

(3) 𝑝 (𝑑𝑙
𝑗
, 𝑥𝑙

𝑗
) = 1

3
, 𝑝 (𝑑𝑙

𝑗
, 𝑦𝑙

𝑗
) = 2

3
, 𝑗 = 1, .., 3𝑛, 𝑙 = 1, 2, 3

(4) 𝑝 (𝑠1, 𝑜1) = 𝑝 (𝑠2, 𝑜2) = 1

3
, 𝑝 (𝑠2, 𝑜1) = 𝑝 (𝑠1, 𝑜2) = 2

3

(5) 𝑝 (𝑧𝑘 , 𝑥𝑙𝑗 ) =
1

9𝑛 for each 𝑗, 𝑘 = 1, .., 3𝑛, 𝑙 = 1, 2, 3.

This completes the construction of 𝐼 ′. The random matching re-

stricted to a gadget of a set 𝐶 𝑗 is illustrated in Figure1.

Proposition 5.2. If 𝑝 is ex-post stable, then there exists an exact
3-cover.

Proof. If 𝑝 can be written as a convex combination of stable

matchings, then, because 𝑝 (𝑠1, 𝑜1) > 0, there has to be onematching

in which the edge (𝑠1, 𝑜1) is included. Let this matching be𝑀 .

𝑀 is stable, therefore 𝑠1 does not block with any items from 𝑌 .

This can only happen, if each item from 𝑌 is matched to someone

with at least as high priority, so (𝑦𝑙
𝑗
, 𝑑𝑙

𝑗
) ∈ 𝑀 for each 𝑗 = 1, .., 3𝑛,

𝑙 = 1, 2, 3. We also know that each 𝑐𝑙
𝑗
agent must be matched in𝑀 ,

so she is matched to either 𝑥𝑙
𝑗
or her element item.

We claim that for each 𝑗 , either all of 𝑐1
𝑗
, 𝑐2

𝑗
, 𝑐3

𝑗
are matched to

items from 𝐴 = {𝑎1, .., 𝑎3𝑛}, or none of them are.

Suppose that it is not the case. Then, there is a 𝑗 and an 𝑙 , such

that 𝑐𝑙
𝑗
is matched to 𝑥𝑙

𝑗
, but 𝑐𝑙−1

𝑗
is not matched to 𝑥𝑙−1

𝑗
. But then,

𝑥𝑙−1
𝑗

must be matched to an agent from 𝑍 in 𝑀 , and therefore

(𝑐𝑙
𝑗
, 𝑥𝑙−1

𝑗
) blocks𝑀 , contradiction.

Also, observe that each 𝑎𝑖 must be matched with a 𝑐𝑙
𝑗
agent in

𝑀 , since otherwise they would block with 𝑐1 (𝑎𝑖 ).
Therefore, if we take those 𝐶 𝑗 sets, for which 𝑐1

𝑗
, 𝑐2

𝑗
, 𝑐3

𝑗
are

matched to 𝑎𝑖 items, they must form an exact 3-cover.

□

Now, we move on to the other direction.

Proposition 5.3. If there exists an exact 3-cover in 𝐼 , then 𝑝 is
ex-post stable.

Proof. We prove that 𝑝 = 1

9𝑛 (
∑
3𝑛
𝑘=1

𝑀𝑘
1
+∑3𝑛

𝑘=1
𝑀𝑘
2
+∑3𝑛

𝑘=1
𝑀𝑘
3
),

where each 𝑀𝑘
𝑖
is stable. For the sake of simplicity, suppose the

exact cover of 𝐼 is 𝐶1, ..,𝐶𝑛 . (by the symmetry of the construction

and the fact that each 𝑎𝑖 is in exactly 3 sets, we can suppose this

by reindexing the sets). Then, for each 𝑎𝑖 , 𝑐
1 (𝑎𝑖 ) ∈ {𝐶1, ..,𝐶𝑛} and

𝑐2 (𝑎𝑖 ), 𝑐3 (𝑎𝑖 ) ∉ {𝐶1, ..,𝐶𝑛}.
Now we define the 9𝑛 matchings that will be the support of 𝑝 .

For each 𝑘 , let edges of 𝑀𝑘
1
be (𝑐1 (𝑎𝑖 ), 𝑎𝑖 ), (𝑑𝑙𝑗 , 𝑦

𝑙
𝑗
) for 𝑗 ≤ 𝑛,

𝑖 = 1, .., 3𝑛, 𝑙 = 1, 2, 3 and (𝑐𝑙
𝑗
, 𝑥𝑙

𝑗
), (𝑑𝑙

𝑗
, 𝑦𝑙

𝑗
) for 𝑗 > 𝑛. Furthermore

(𝑠1, 𝑜1) and (𝑠2, 𝑜2) are also matched in𝑀𝑘
1
. Then, let 𝑥𝑡 be the 𝑡-th

𝑥𝑙
𝑗
agent who has not obtained a partner yet, 𝑡 = 1, .., 3𝑛. Then,

we match 𝑥𝑡 to 𝑧𝑡+𝑘 in 𝑀𝑘
1
, where 𝑡 + 𝑘 is taken modulo 3𝑛. The

matchings𝑀𝑘
1
are illustrated in Figure 2 and 5.

Now, we observe that removing𝐶1, ..,𝐶𝑛 , the remaining sets will

satisfy that each 𝑎𝑖 is included in exactly 2 of them, since 𝐶1, ..,𝐶𝑛
is an exact 3-cover.

For each 𝑘 , let the edges of𝑀𝑘
2
be (𝑐𝑙

𝑗
, 𝑥𝑙

𝑗
), (𝑑𝑙

𝑗
, 𝑦𝑙

𝑗
) for 𝑗 ≤ 𝑛 and

(𝑐2 (𝑎𝑖 ), 𝑎𝑖 ), 𝑖 = 1, .., 3𝑛. The 𝑐𝑙
𝑗
agents that are not matched yet are

matched to the corresponding 𝑦𝑙
𝑗
. The 𝑑𝑙

𝑗
agents are matched to 𝑦𝑙

𝑗
,

if that item is not matched to 𝑐𝑙
𝑗
agents and to 𝑥𝑙

𝑗
otherwise. Then,

we match (𝑠1, 𝑜2), (𝑠2, 𝑜1) in𝑀𝑘
2
. Finally, let 𝑥𝑡 be the 𝑡-th 𝑥𝑙

𝑗
agent

who has not obtained a partner yet, 𝑡 = 1, .., 3𝑛. Then, we match 𝑥𝑡

to 𝑧𝑡+𝑘 in𝑀𝑘
2
, where 𝑡 + 𝑘 is taken modulo 3𝑛. The matchings𝑀𝑘

2

are illustrated in Figure 3 and 6

For each 𝑘 , let the edges of𝑀𝑘
3
be (𝑐𝑙

𝑗
, 𝑦𝑙

𝑗
), (𝑑𝑙

𝑗
, 𝑥𝑙

𝑗
) for 𝑗 ≤ 𝑛 and

(𝑐3 (𝑎𝑖 ), 𝑎𝑖 ) 𝑖 = 1, .., 3𝑛. The 𝑐𝑙
𝑗
agents that are not matched yet are

matched to the corresponding 𝑦𝑙
𝑗
. The 𝑑𝑙

𝑗
agents are matched to 𝑦𝑙

𝑗
,

if that item is not matched to 𝑐𝑙
𝑗
agents and to 𝑥𝑙

𝑗
otherwise. Then,

we match (𝑠1, 𝑜2), (𝑠2, 𝑜1) in𝑀𝑙
3
. Finally, let 𝑥𝑡 be the 𝑡-th 𝑥𝑙

𝑗
agent

who has not obtained a partner yet, 𝑡 = 1, .., 3𝑛. Then, we match 𝑥𝑡
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c13 c23 c33 d13 d23 d33 s1 s2

o1 o2a3 a5 a8 x11 x21 x31 y11 y21 y31

Figure 1: The gadget for a set 𝐶3 = {𝑎3, 𝑎5, 𝑎8} with the impor-
tant edges. Red edges have weight 0, blue edges have weight
1

3
, green edges have weight 2

3
.

c13 c23 c33 d13 d23 d33 s1 s2

o1 o2a3 a5 a8 x11 x21 x31 y11 y21 y31

Z

Figure 2: The induced edges of𝑀1 on a set gadget of a set that
is part of the exact cover.

c13 c23 c33 d13 d23 d33 s1 s2

o1 o2a3 a5 a8 x11 x21 x31 y11 y21 y31

Z

Figure 3: The induced edges of𝑀2 on a set gadget of a set that
is part of the exact cover.

c13 c23 c33 d13 d23 d33 s1 s2

o1 o2a3 a5 a8 x11 x21 x31 y11 y21 y31

Z

Figure 4: The induced edges of𝑀3 on a set gadget of a set that
is part of the exact cover.

to 𝑧𝑡+𝑘 in 𝑀𝑘
3
, where 𝑡 + 𝑘 is taken modulo 3𝑛. These matchings

are illustrated in Figure 4 and Figure 7.

It is easy to see that the edges with weight
1

3
are included in

exactly 3𝑛matchings, the ones with weight
2

3
are included in exactly

6𝑛 matchings, the edges with weight
1

9𝑛 are included in exactly

one matching and all other edges are not included in any matching

from {𝑀𝑘
1
, 𝑀𝑘

2
, 𝑀𝑘

3
| 𝑘 = 1, .., 3𝑛}. Therefore, 𝑝 = 1

9𝑛 (
∑
3𝑛
𝑘=1

𝑀𝑘
1
+∑

3𝑛
𝑘=1

𝑀𝑘
2
+∑

3𝑛
𝑘=1

𝑀𝑘
3
).

c13 c23 c33 d13 d23 d33 s1 s2

o1 o2a3 a5 a8 x11 x21 x31 y11 y21 y31

Z

Figure 5: The induced edges of𝑀1 on a set gadget of a set that
is not part of the exact cover.

c13 c23 c33 d13 d23 d33 s1 s2

o1 o2a3 a5 a8 x11 x21 x31 y11 y21 y31

Z

Figure 6: The induced edges of𝑀2 on a set gadget of a set that
is not part of the exact cover.

c13 c23 c33 d13 d23 d33 s1 s2

o1 o2a3 a5 a8 x11 x21 x31 y11 y21 y31

Z

Figure 7: The induced edges of𝑀3 on a set gadget of a set that
is not part of the exact cover.

Let 𝑘 be an arbitrary index from {1, .., 3𝑛}. It only remains to

show that𝑀𝑘
1
, 𝑀𝑘

2
and𝑀𝑘

3
are stable matchings. Let us start with

𝑀𝑘
1
.

Each 𝑎𝑖 and 𝑦
𝑙
𝑗
item and also 𝑜1 and 𝑜2 are matched to one of

their best agents in𝑀𝑘
1
, so they cannot participate in any blocking.

For an item 𝑥𝑙
𝑗
, either it is matched to one of its top agents, or it is

matched to someone from 𝑍 . But, even if it is with a collector agent

from 𝑍 , all higher priority agents for it (𝑐𝑙
𝑗
and 𝑐𝑙+1

𝑗
) are matched

to better items (𝑎𝑖 -s), so there is no blocking with 𝑥𝑙
𝑗
items either.

Therefore,𝑀𝑘
1
is stable.

The cases of𝑀𝑘
2
and𝑀𝑘

3
are similar, we only show stability of

𝑀𝑘
2
. Again, each 𝑎𝑖 item as well as 𝑜1 and 𝑜2 are matched to one of

their highest priority options, so they cannot be part of a blocking

pair. Each 𝑦𝑙
𝑗
agent is matched to either 𝑐𝑙

𝑗
or 𝑑𝑙

𝑗
. There could only

be a potential block, if 𝑦𝑙
𝑗
is matched to 𝑐𝑙

𝑗
. But, since 𝑠1 is matched

to 𝑜2, it cannot block with 𝑠1, and since each 𝑑𝑙
𝑗
is matched to an at

least as good item, it cannot block with 𝑑𝑙
𝑗
either. The 𝑥𝑙

𝑗
items also

cannot block with anyone, since if they are not with one of their

first choices (which are the only strictly higher priority ones than
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the agents of 𝑍 ∪ {𝑑𝑙
𝑗
}), then each of their top agents (𝑐𝑙

𝑗
and 𝑐𝑙+1

𝑗
)

are matched with someone strictly better (an 𝑎𝑖 or 𝑦
𝑙
𝑗
).

This shows that 𝑝 is indeed ex-post stable. □

This completes the proof of the theorem.

□

Now we show that the problem remains hard even if both sides

have dichotomous preferences.

Theorem 5.4. Deciding whether a random matching 𝑝 is ex-post
stable is NP-complete, even if the preferences / priorites of both sides
are dichotomous.

Proof. We reduce from x3c. The construction, the random

matching 𝑝 and the matchings 𝑀𝑘
𝑖
, 𝑖 = 1, 2, 3, 𝑘 = 1, .., 3𝑛 are

identical as in the proof of theorem 5.1, only the preferences are

modified. Let the new preferences be the following. For the agents:

𝑐𝑙
𝑗
: [𝑎 𝑗𝑙 , 𝑦𝑙𝑗 , 𝑥

𝑙−1
𝑗

], [𝑜𝑡ℎ𝑒𝑟𝑠]
𝑑𝑙
𝑗
: [𝑒𝑣𝑒𝑟𝑦 𝑖𝑡𝑒𝑚],

𝑠1 : [𝑜2, 𝑌 ], [𝑜𝑡ℎ𝑒𝑟𝑠]
𝑠2 : [𝑒𝑣𝑒𝑟𝑦 𝑖𝑡𝑒𝑚]
𝑧 𝑗 : [𝑒𝑣𝑒𝑟𝑦 𝑖𝑡𝑒𝑚]

where 𝑗 = 1, .., 3𝑛, 𝑙 = 1, 2, 3 taken (𝑚𝑜𝑑 3) and 𝑌 = {𝑦𝑙
𝑗
| 𝑗 =

1, .., 3𝑛, 𝑙 = 1, 2, 3}.
For the items we have:

𝑎𝑖 : [𝑐1 (𝑎𝑖 ), 𝑐2 (𝑎𝑖 ), 𝑐3 (𝑎𝑖 )], [𝑜𝑡ℎ𝑒𝑟𝑠]
𝑥𝑙
𝑗
: [𝑐𝑙

𝑗
, 𝑐𝑙+1

𝑗
], [𝑜𝑡ℎ𝑒𝑟𝑠]

𝑦𝑙
𝑗
: [𝑑𝑙

𝑗
, 𝑠1], [𝑜𝑡ℎ𝑒𝑟𝑠]

𝑜1 : [𝑒𝑣𝑒𝑟𝑦 𝑎𝑔𝑒𝑛𝑡]
𝑜2 : [𝑒𝑣𝑒𝑟𝑦 𝑎𝑔𝑒𝑛𝑡]

where 𝑍 = {𝑧1, .., 𝑧3𝑛}, 𝑖 = 1, .., 3𝑛, 𝑗 = 1, .., 3𝑛 , 𝑙 = 1, 2, 3 and 𝑐𝑘 (𝑎𝑖 )
is 𝑐𝑙

𝑗
, iff the 𝑘-th appearance of 𝑎𝑖 is in the 𝑙-th position of the set

𝐶 𝑗 and the brackets indicate indifferences.

Proposition 5.5. If 𝑝 is ex-post stable, then there exists an exact
3-cover.

Proof. The proof is exactly the same as it was in theorem 5.1.

□

Now, we move on to the other direction.

Proposition 5.6. If there exists an exact 3-cover in 𝐼 , then 𝑝 is
ex-post stable.

Proof. Again, we prove that 𝑝 = 1

9𝑛 (
∑
3𝑛
𝑘=1

𝑀𝑘
1
+ ∑

3𝑛
𝑘=1

𝑀𝑘
2
+∑

3𝑛
𝑘=1

𝑀𝑘
3
), where each𝑀𝑘

𝑖
is stable and is defined the same.

Let𝑘 be an arbitrary index from {1, .., 3𝑛}. It only remains to show

that𝑀𝑘
1
, 𝑀𝑘

2
and𝑀𝑘

3
are stable matchings. Notice, that with the new

preferences, in any matching, only agents from {𝑐𝑙
𝑗
| 𝑗 = 1, .., 3𝑛, 𝑙 =

1, 2, 3} ∪ {𝑠1} could block, since others are totally indifferent.

Let us start with 𝑀𝑘
1
. From the construction, it follows that 𝑠1

does not block with any agent from𝑌 , since all of them are matched

to a same priority agent. A 𝑐𝑙
𝑗
agent could only block, if it is assigned

to 𝑥𝑙
𝑗
. But then, 𝑥𝑙

𝑗
, 𝑦𝑙

𝑗
and 𝑎 𝑗𝑙 are all assigned to at least as good

agents, so no pair can block.

In the case of𝑀𝑘
2
, 𝑠1 is with 𝑜2, so it is not part of any blocking

pair. A 𝑐𝑙
𝑗
agent could again only block, if it is with 𝑥𝑙

𝑗
. But that

can only happen with those set agent that correspond to the exact

cover. But then, all of their better items are with agents that have

at least as high priorities.

In𝑀𝑘
3
, each agent is with a top choice, so it is obviously stable.

This shows that 𝑝 is indeed ex-post stable. □

This completes the proof of the theorem.

□

We also obtain the following statement that may be of indepen-

dent interest.

Theorem 5.7. Deciding whether there is a stable matching that is
consistent with a random matching 𝑝 is NP-complete.

Proof. We use the same construction from theorem 5.1, with

the only difference, that instead of 𝑝 (𝑠1, 𝑜1) = 𝑝 (𝑠2, 𝑜2) = 1

3
,

𝑝 (𝑠2, 𝑜1) = 𝑝 (𝑠1, 𝑜2) = 2

3
we have 𝑝 (𝑠1, 𝑜1) = 𝑝 (𝑠2, 𝑜2) = 1,

𝑝 (𝑠2, 𝑜1) = 𝑝 (𝑠1, 𝑜2) = 0. Then, any consistent matching with 𝑝

must contain (𝑠1, 𝑜1), so by the same argument, there exists an

exact 3-cover.

And if there is an exact 3-cover, then the matching𝑀1

1
will be a

stable matching consistent with 𝑝 . □

6 STRONGER VERSIONS OF EX-POST
STABILITY

In this section, we consider stronger versions of ex-post stability.

6.1 Robust Ex-post Stability
Robust ex-post stability, is a natural strengthening of ex-post stabil-

ity [6].

Definition 6.1 (Robust ex-post stability). A random matching

𝑝 is robust ex-post stable if all of its decompositions are into

deterministic and stable matchings.

It follows easily that if we restrict attention to deterministic

matchings, then all the stability concepts for random matchings

coincide with stability and no envy (Definition 3.1).

Theorem 6.2. For robust ex post stability, checking whether a
current allocation 𝑝 is stable is polynomial-time solvable.

Proof. For each 𝑖 ∈ 𝑁 and 𝑜 ∈ 𝑂 , we check whether there

exists an integral matching 𝑞 consistent with 𝑝 such that 𝑖 is not

matched to 𝑜 under 𝑞 and (𝑖, 𝑜) form a blocking pair for 𝑞. This can

be checked by testingwhether there exists an allocation inwhich 𝑖 is

matched to some item 𝑜 ′ such that 𝑜 ≻𝑖 𝑜 and 𝑝 (𝑖, 𝑜 ′); 𝑜 is matched

to some agent 𝑗 ∈ 𝑁 such that 𝑖 ≻𝑜 𝑗 and 𝑝 ( 𝑗, 𝑜) > 0; and each

other agent 𝑘 is matched to some item 𝑜 ′′ such that 𝑝 (𝑘, 𝑜 ′′) > 0.

This test can be solved in polynomial time by checking whether

the underlying bipartite graph with the admissible edges admits a

perfect matching. □
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6.2 Ex-post Strong Stability
In this section, we consider a stability concept called ex-post strong

stability which is based on a concept called strong stability.

Definition 6.3 (Strong stability). A deterministic matching 𝑝 is

strongly stable if it satisfies the following two conditions.

(1)

∑
𝑜′≻𝑖𝑜 𝑝 (𝑖, 𝑜

′) +∑
𝑖′≻𝑜𝑖 𝑝 (𝑖

′, 𝑜) +∑
𝑜′∼𝑖𝑜 𝑝 (𝑖, 𝑜

′) ≥ 1

(2)

∑
𝑜′≻𝑖𝑜 𝑝 (𝑖, 𝑜

′) +∑
𝑖′≻𝑜𝑖 𝑝 (𝑖

′, 𝑜) +∑
𝑖′∼𝑜𝑖 𝑝 (𝑖

′, 𝑜) ≥ 1.

Clearly strong stability implies stability. Note that under strict

preferences, strong stability and (weak) stability are equivalent. A

strongly matching may not exist but there is a linear-time algorithm

to check if it exists or not and to find one if it exists [18].

The notion of strong stability for integral matchings lends itself

to two natural stability concept for the case of random / fractional

matchings.

Definition 6.4 (Ex post strong stability). A matching 𝑝 is ex
post strongly stable if it can represented as a convex combination

of integral strongly stable matchings.

Definition 6.5 (Fractional strong stability). A fractional match-

ing 𝑝 is fractional strong stable if it satisfies the following two
conditions.

(1)

∑
𝑜′≻𝑖𝑜 𝑝 (𝑖, 𝑜

′) +∑
𝑖′≻𝑜𝑖 𝑝 (𝑖

′, 𝑜) +∑
𝑜′∼𝑖𝑜 𝑝 (𝑖, 𝑜

′) ≥ 1

(2)

∑
𝑜′≻𝑖𝑜 𝑝 (𝑖, 𝑜

′) +∑
𝑖′≻𝑜𝑖 𝑝 (𝑖

′, 𝑜) +∑
𝑖′∼𝑜𝑖 𝑝 (𝑖

′, 𝑜) ≥ 1

Clearly ex post strong stability implies ex post stability.

Proposition 6.6. Strong fractional stability implies fractional
stability.

Proof. Suppose, the first condition of strong fractional sta-

bility is satisfied: for all (𝑖, 𝑜), ∑𝑜′≻𝑖𝑜 𝑝 (𝑖, 𝑜
′) + ∑

𝑖′≻𝑜𝑖 𝑝 (𝑖
′, 𝑜) +∑

𝑜′∼𝑖𝑜 𝑝 (𝑖, 𝑜
′) ≥ 1. Then, for all (𝑖, 𝑜), ∑𝑜′≿𝑖𝑜 ;𝑜′≠𝑜 𝑝 (𝑖, 𝑜

′) +∑
𝑖′≻𝑜𝑖 𝑝 (𝑖

′, 𝑜) + 𝑝 (𝑖, 𝑜) ≥ 1 which means that fractional stability is

satisfied. □

Next, we establish an equivalence between ex-post strong stabil-

ity and fractional strong stability.

Lemma 6.7. The following are equivalent. A fractional matching
(1) satisfies fractional strong stability
(2) is in the convex convex hull of deterministic strongly stable

matchings
(3) satisfies ex-post strong stability.

Proof. (1) ⇐⇒ (2). Theorem 13 of Kunysz [20] shows that the

polytope capturing fractional strong stable matchings is equivalent

to the convex hull of deterministic strongly stable matchings.

(2) =⇒ (3). If a matching is in the convex hull of deterministic

strongly stable matchings, then by Caratheodory’s theorem, it can

represented by a convex combination of the end points of the convex

hull (consisting of deterministic strongly stable matchings). Hence

it satisfies ex-post strong stability.

(3) =⇒ (2). If a fractional matching is ex-post strongly stable,

then by definition, it can be represented as a convex combination

of some deterministic strongly stable matchings. Hence, it can be

represented as a convex combination of the set of all determinis-

tic stable matchings. Hence, it is in the convex hull of the set of

deterministic stable matchings. □

Theorem 6.8. For weak preferences and priorities, there exists a
polynomial-time algorithm to test strong ex post stability and in case
the answer is yes, there is a polynomial-time algorithm to find its
representation as a convex combination of strongly stable deterministic
matchings.

Proof. Strong ex post stability can be checked in polynomial

time as follows. Strong ex post stability is equivalent to strong

fractional stability (Lemma 6.7). Strong fractional stability can be

checked by considering 2|𝑁 |× |𝑂 | inequalities used in the definition
of strong fractional stability. For a matching that satisfies strong

fractional stability, it lies in the convex hull of the set of determinis-

tic strongly stable matchings. Such a matching can be represented

by a convex combination of strongly stable deterministic matchings

by an algorithm of Kunysz [20] that uses a similar argument as that

of Teo and Sethuraman [24]. □

In the proof of Theorem 6.8, we invoke an algorithmic result

of Kunysz [20]. For the sake of completeness and exposition, we

give a description of the algorithm of Kunysz [20] . The proposed

algorithms by Teo and Sethuraman [24] and its extension by Kunysz

[20] are based on self-duality of polytope defined by the fractional

strong stability. By using the self-duality and complementary slack

property it was shown that if 𝑝 is an optimal solution and 𝑝 (𝑖, 𝑜) > 0,

then

(1)

∑
𝑜′≻𝑖𝑜 𝑝 (𝑖, 𝑜

′) +∑
𝑖′≻𝑜𝑖 𝑝 (𝑖

′, 𝑜) +∑
𝑜′∼𝑖𝑜 𝑝 (𝑖, 𝑜

′) = 1

(2)

∑
𝑜′≻𝑖𝑜 𝑝 (𝑖, 𝑜

′) +∑
𝑖′≻𝑜𝑖 𝑝 (𝑖

′, 𝑜) +∑
𝑖′∼𝑜𝑖 𝑝 (𝑖

′, 𝑜) = 1

(3)

∑
𝑖′ 𝑝 (𝑖 ′, 𝑜) = 1

(4)

∑
𝑜′ 𝑝 (𝑖, 𝑜 ′) = 1

For each 𝑖 and 𝑜 , consider interval 𝐼𝑖 = (0, 1] and 𝐼𝑜 = (0, 1] that
results into 2𝑛 intervals. Corresponding to each 𝑝 (𝑖, 𝑜), consider an
interval of length 𝑝 (𝑖, 𝑜) and by abusing the notation denote the in-

terval by 𝑝 (𝑖, 𝑜). The intervals are also arranged in desecrating pref-

erence of 𝑖 . This means that if 𝑜 ≻ 𝑜 ′, then interval 𝑝 (𝑖, 𝑜) appears
before 𝑝 (𝑖, 𝑜 ′). Notice that indifferent preferences are arranged ar-

bitrary next to each other. Since we have that

∑
𝑜′ 𝑝 (𝑖, 𝑜 ′) = 1, then

∪𝑜′𝑝 (𝑖, 𝑜 ′) = (0, 1]. Similarly, define sub-intervals 𝑝 (𝑖, 𝑜) for each
𝐼𝑜 = (0, 1] and arrange them in increasing order.

First, consider the case where preferences are strict. Then, let

𝑢 ∈ (0, 1] be an arbitrary number. Then, we get stable integral

matching𝑀𝑢 as follows: 𝑖 gets matched to 𝑜 if 𝑢 belongs to interval

𝑝 (𝑖, 𝑜) ⊆ 𝐼𝑖 . Moreover, 𝑜 gets matched to 𝑖 if 𝑢 belongs to interval

𝑝 (𝑖, 𝑜) ⊆ 𝐼𝑜 . Notice that by the fact that sub-intervals in 𝐼𝑖 and 𝐼𝑜
are arranged in opposite way and∑︁

𝑜′≻𝑖𝑜

𝑝 (𝑖, 𝑜 ′) +
∑︁
𝑖′≻𝑜𝑖

𝑝 (𝑖 ′, 𝑜) + 𝑝 (𝑖, 𝑜) = 1.

On can observe that𝑀𝑢 is an integral matching. By sub-intervals

construction, each 𝐼𝑖 and 𝐼𝑜 is partitioned to at most 𝑛 intervals

which are determined by 𝑛 + 1 district numbers. Since there are

2𝑛 intervals, there are at most 2𝑛(𝑛 + 1) such numbers. Sort them

as 0 = 𝑥0 < 𝑥1 < . . . < 𝑥𝑠 = 1, where 𝑠 < 2𝑛(𝑛 + 1). Teo and

Sethuraman showed that

𝑝 =

𝑠∑︁
𝑡=1

(𝑥𝑡 − 𝑥𝑡−1) ·𝑀𝑥𝑡

Kunysz slightly modified the construction to handle the case

where there is a weak preferences. In this case one may not be able
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to construct an integral matching𝑀𝑢 , 𝑢 ∈ (0, 1]. Instead he defined
an auxiliary bipartite graph 𝐻𝑢 and then showed that there exists

matching𝑀𝑢 in 𝐻𝑢 . Then, finding the convex composition follows

as Teo and Sethuraman’s algorithm.

7 CONCLUSION
We undertake a study of testing stability of random matchings. Sub-

tle differences between various stability concepts and restrictions

on preferences / priorities lead to remarkably different complexity

results. Our central result is that testing ex-post stability is NP-

complete. The computational hardness result also explains why a

combinatorially simple and tractable characterization has eluded

mathematicians and economists. We also consider stronger versions

of ex post stability and present polynomial-time algorithms for test-

ing them. A natural research direction is to understand sufficient

conditions on the preferences and priorities under which testing

ex-post stability is polynomial-time solvable. Yet another research

problem is understanding the conditions under which stability con-

cepts coincide. Parametrized algorithms for the computationally

hard problems is yet another research direction.

ACKNOWLEDGMENT
The authors thank Onur Kesten and M. Utku Ünver for comments.

REFERENCES
[1] M. O. Afacan. 2018. The object allocation problem with random priorities. Games

and Economic Behavior 110 (2018), 71–89.
[2] I. Ashlagi and P. Shi. 2014. Improving community cohesion in school choice via

correlated-lottery implementation. Operations Research 62, 6 (2014), 1247–1264.

[3] H. Aziz. 2019. A Probabilistic Approach to Voting, Allocation, Matching, and

Coalition Formation. In The Future of Economic Design, J.-F. Laslier, H. Moulin,

R. Sanver, and W. S. Zwicker (Eds.). Springer-Verlag.

[4] H. Aziz, P. Biró, T. Fleiner, and B. Klaus. 2021. Matching Under Preferences:

Theory and Practice (Dagstuhl Seminar 21301). Dagstuhl Reports 11, 6 (2021),
124–146. https://doi.org/10.4230/DagRep.11.6.124

[5] H. Aziz and F. Brandl. 2020. The Vigilant Eating Rule: A General Approach for

Probabilistic Economic Design with Constraints. CoRR abs/2008.08991 (2020).

arXiv:2008.08991 https://arxiv.org/abs/2008.08991

[6] H. Aziz and B. Klaus. 2019. A Taxonomy of Stability Concepts for Random

Matching under Priorities. Social Choice and Welfare (2019).
[7] H. Aziz, S. Mackenzie, L. Xia, and C. Ye. 2015. Ex post efficiency of random

assignments. In Proceedings of the 14th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS).

[8] G. Birkhoff. 1946. Three observations on linear algebra. Univ. Nac. Tacuman Rev.
Ser. A 5 (1946), 147—151.

[9] A. Bogomolnaia and H. Moulin. 2001. A New Solution to the Random Assignment

Problem. Journal of Economic Theory 100, 2 (2001), 295–328.

[10] A. Bogomolnaia and H. Moulin. 2004. Random Matching under Dichotomous

Preferences. Econometrica 72, 1 (2004), 257–279.
[11] S. Bronfman, N. Alon, A. Hassidim, and A. Romm. 2018. Redesigning the israeli

medical internship match. ACM Transactions on Economics and Computation
(TEAC) 6, 3-4 (2018), 1–18.

[12] I. Caragiannis, A. Filos-Ratsikas, P. Kanellopoulos, and R. Vaish. 2021. Stable

fractional matchings. Artificial intelligence 295 (2021), 103416.
[13] J. Chen, S. Roy, and M. Sorge. 2020. Fractional Matchings under Preferences:

Stability and Optimality. CoRR abs/2011.12259 (2020).

[14] B. Dogan and K. Yildiz. 2016. Efficiency and stability of probabilistic assignments

in marriage problems. Games and Economic Behavior 95 (2016), 47–58.
[15] D. Gale and L. S. Shapley. 1962. College Admissions and the Stability of Marriage.

The American Mathematical Monthly 69, 1 (1962), 9–15.

[16] M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman.

[17] D. Gusfield and R. W. Irving. 1989. The stable marriage problem: Structure and
algorithms. MIT Press, Cambridge, MA, USA.

[18] T. Kavitha, K. Mehlhorn, D. Michail, and K. E. Paluch. 2007. Strongly stable

matchings in time O(nm) and extension to the hospitals-residents problem. ACM
Transactions on Algorithms 3, 2 (2007), 15.

[19] O. Kesten and U. Unver. 2015. A theory of school choice lotteries. Theoretical
Economics (2015), 543—595.

[20] A. Kunysz. 2018. An Algorithm for the Maximum Weight Strongly Stable Match-

ing Problem. In 29th International Symposium on Algorithms and Computation,
ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan. 42:1–42:13.

[21] D. F. Manlove. 2013. Algorithmics of Matching Under Preferences. World Scientific

Publishing Company.

[22] A. E. Roth, U. G. Rothblum, and J. H. Vande Vate. 1993. Stable Matchings, Optimal

Assignments, and Linear Programming. Mathematics of Operations Research 18,

4 (1993), 803–828 803–828 803–828 803–828 803–828.

[23] A. E. Roth and M. A. O. Sotomayor. 1990. Two-Sided Matching: A Study in Game
Theoretic Modelling and Analysis. Cambridge University Press.

[24] C-P. Teo and J. Sethuraman. 1998. The Geometry of Fractional Stable Matchings

and Its Applications. Mathematics of Operations Research 23, 4 (1998), 874–891.

[25] G. J. Woeginger. 2003. Banks Winners in Tournaments are Difficult to Recognize.

Social Choice and Welfare 20, 3 (2003), 523–528.

https://doi.org/10.4230/DagRep.11.6.124
https://arxiv.org/abs/2008.08991
https://arxiv.org/abs/2008.08991

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Ex post stability: Algorithm and Characterization Under Absence of Ties
	5 Ex post stability: Complexity under the Presence of Ties
	6 Stronger Versions of Ex-post Stability
	6.1 Robust Ex-post Stability
	6.2 Ex-post Strong Stability

	7 Conclusion
	References

