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Abstract

We consider the problem of fairly dividing a set of items. Much of the fair division
literature assumes that the items are “goods” i.e., they yield positive utility for the agents.
There is also some work where the items are “chores” that yield negative utility for the
agents. In this paper, we consider a more general scenario where an agent may have negative
or positive utility for each item. This framework captures, e.g., fair task assignment, where
agents can have both positive and negative utilities for each task. We show that whereas
some of the positive axiomatic and computational results extend to this more general setting,
others do not. We present several new and efficient algorithms for finding fair allocations in
this general setting. We also point out several gaps in the literature regarding the existence
of allocations satisfying certain fairness and efficiency properties and further study the
complexity of computing such allocations. 1

1. Introduction

Consider a group of students who are assigned to a certain set of coursework tasks. Students
may have subjective views regarding how enjoyable each task is. For some people, solving a
mathematical problem may be fulfilling and rewarding. For others, it may be nothing but
torture. A student who gets more cumbersome chores may be compensated by giving her
some valued goods so that she does not feel hard done by.

This example can be viewed as an instance of a classic fair division problem. The agents
have different preferences over the items and we want to allocate the items to agents as fair
as possible. The twist we consider is that whether an agent has positive or negative utility
for an item is subjective. Our setting is general enough to encapsulate two well-studied
settings: (1) “good allocation” in which agents have positive utilities for the items and
(2) “chore allocation” in which agents have negative utilities for the items. The setting we

1. This article is a complete version of a conference paper, which appeared in the Proceedings of the 28th
International Joint Conference on Artificial Intelligence (IJCAI) (Aziz, Caragiannis, Igarashi, & Walsh,
2019). The conference version contains an error in the proof of Theorem 2 regarding EF1 existence for
arbitrary utility functions. In this extended version, we fix this error by weakening the theorem statement
to the class of doubly monotonic utilities, and provide all proofs that were omitted from the conference
version.
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consider also covers a third setting (3) “allocation of objective goods and chores” in which
the items can be partitioned into chores (that yield negative utility for all agents) and goods
(that yield positive utility for all agents). Setting (3) covers several scenarios where an agent
could be compensated by some goods for doing some chores.

In this paper, we suggest a very simple yet general model of allocation of indivisible
items that properly includes chore and good allocation. For this model, we present some
case studies that highlight that whereas some existence and computational results can be
extended to our general model, in other cases the combination of good and chore allocation
poses interesting challenges not faced in subsettings. Our central technical contributions are
several new efficient algorithms for finding fair allocations. In particular:

• We formalize fairness concepts for the general setting. Some fairness concepts directly
extend from the setting of good allocation to our setting. Other fairness concepts
such as “envy-freeness up to one item” (EF1) and “proportionality up to one item”
(PROP1) need to be generalized appropriately.

• We show a careful generalization of the decentralized round robin algorithm that finds
an EF1 allocation when utilities are additive.

• We present a different polynomial-time algorithm that always returns an EF1 allocation
even when the agents’ utility functions are doubly monotonic (but not necessarily
additive).

• Turning our attention to an efficient and fair allocation, we show that for the case of
two agents, there exists a polynomial-time algorithm that finds an EF1 and Pareto-
optimal (PO) allocation for our setting. The algorithm can be viewed as an interesting
generalization of the Adjusted Winner rule (Brams & Taylor, 1996a, 1996b) that is
designed for divisible goods.

• If we weaken EF1 to PROP1, then we show that there exists an allocation that is not
only PROP1 but is also contiguous (assuming that items are placed in a line). We
further give a polynomial-time algorithm that finds such an allocation.

1.1 Related Work

Fair allocation of indivisible items is a central problem in several fields including computer
science and economics (Aziz, Gaspers, Mackenzie, & Walsh, 2015; Brams & Taylor, 1996a;
Bouveret, Chevaleyre, & Maudet, 2016; Lipton, Markakis, Mossel, & Saberi, 2004). Fair
allocation has been extensively studied for allocation of divisible goods, commonly known as
cake cutting (Brams & Taylor, 1996a).

There are several established notions of fairness, including envy-freeness and proportional-
ity. The recently introduced maximin share (MMS) notion is weaker than envy-freeness and
proportionality and has been heavily studied in the computer science literature. Kurokawa
et al. (2018) showed that an MMS allocation of goods may not always exist; on the posi-
tive side, there exists a polynomial-time algorithm that returns a 2/3-approximate MMS
allocation (Kurokawa et al., 2018; Amanatidis, Markakis, Nikzad, & Saberi, 2017). Sub-
sequent papers have presented simpler (Barman & Krishnamurthy, 2020) or even better
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(Ghodsi, HajiAghayi, Seddighin, Seddighin, & Yami, 2018) approximation algorithms for
MMS allocations. In general, checking whether there exists an envy-free and Pareto-optimal
allocation for goods is Σp

2-complete (de Keijzer, Bouveret, Klos, & Zhang, 2009).
The idea of envy-freeness up to one good (EF1) was implicit in the paper by Lipton et al.

(2004). Today, it has become a well-studied fairness concept in its own right (Budish, 2011).
Caragiannis et al. (2019) further popularized it, showing that a natural modification of the
Nash welfare maximizing rule satisfies EF1 and PO for the case of goods. Barman et al.
(2018) recently presented a pseudo-polynomial-time algorithm for computing an allocation
that is PO and EF1 for goods. A stronger fairness concept, envy freeness up to the least
valued good (EFX), was introduced by Caragiannis et al. (2019).

Aziz (2016) noted that the work on multi-agent chore allocation is less developed than
that of goods and that results from one may not necessarily carry over to the other. Aziz et al.
(2017) considered fair allocation of indivisible chores and showed that there exists a simple
polynomial-time algorithm that returns a 2-approximate MMS allocation for chores. Barman
and Krishnamurthy (2020) presented a better approximation algorithm. Caragiannis et al.
(2012) studied the efficiency loss in order to achieve several fair allocations in the context of
both good and chore divisions. Allocation of a mixture of goods and chores has received
recent attention in the context for divisible items (Bogomolnaia, Moulin, Sandomirskyi, &
Yanovskaya, 2016, 2017). Here, we focus on indivisible items.

2. Our Model and Fairness Concepts

We now define a fair division problem of indivisible items where agents may have both
positive and negative utilities. For a natural number s ∈ N, we write [s] = {1, 2, . . . , s}. An
instance is a triple I = (N,O,U) where

• N = [n] is a set of agents,

• O = {o1, o2, . . . , om} is a set of indivisible items, and

• U is an n-tuple of utility functions ui : O → R.

We note that under this model, an item can be a good for one agent (i.e., ui(o) > 0) but
a chore for another agent (i.e., uj(o) < 0). For X ⊆ O, we write ui(X) :=

∑
o∈X ui(o);

we assume that the utilities in this paper are additive unless specified otherwise. Each
subset X ⊆ O is referred to as a bundle of items. An allocation π is a function π : N → 2O

assigning each agent a different bundle of items, i.e., for every pair of distinct agents i, j ∈ N ,
π(i) ∩ π(j) = ∅; it is said to be complete if

⋃
i∈N π(i) = O.

We first observe that the definitions of standard fairness concepts can be naturally
extended to this general model. The most classical fairness principle is envy-freeness,
requiring that agents do not envy each other. Specifically, given an allocation π, we say
that i envies j if ui(π(i)) < ui(π(j)). An allocation π is envy-free (EF) if no agent envies
the other agents. Another appealing notion of fairness is proportionality which guarantees
each agent an 1/n fraction of her utility for the whole set of items. Formally, an allocation
π is proportional (PROP) if each agent i ∈ N receives a bundle π(i) of value at least her
proportional fair share ui(O)/n. The following implication, which is well-known for the case
of goods, holds in our setting as well.
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Proposition 1. For additive utilities, an envy-free complete allocation satisfies proportion-
ality.

Proof. Suppose that an allocation π is an envy-free allocation. Then for each i ∈ N ,
ui(π(i)) ≥ ui(π(j)) for all j ∈ N . Thus, by summing up all the inequalities, n · ui(π(i)) ≥∑

j∈N ui(π(j)) = ui(O). Hence each i ∈ N receives a bundle of value at least ui(O)/n, so π
satisfies proportionality.

A simple example of one good with two agents already suggests the impossibility in
achieving envy-freeness and proportionality. The recent literature on indivisible allocation
has, thereby, focused on approximations of these fairness concepts. A prominent relaxation
of envy-freeness, introduced by Budish (2011), is envy-freeness up to one good (EF1), which
requires that an agent’s envy towards another bundle can be eliminated by removing some
good from the envied bundle. We will present a generalized definition for EF1 that has
only been considered in the context of good allocation: the envy can diminish by removing
either one “good” from the other’s bundle or one “chore” from their own bundle. Given an
allocation π, we say that i envies j up to one item if i does not envy j, or there is an item
o ∈ π(i) ∪ π(j) such that ui(π(i) \ {o}) ≥ ui(π(j) \ {o}).

Definition 2 (EF1). An allocation π is envy-free up to one item (EF1) if for all i, j ∈ N , i
envies j up to one item.

Obviously, envy-freeness implies EF1. Conitzer et al. (2017) introduced a novel relaxation
of proportionality, which they called PROP1. In the context of good allocation, this fairness
relaxation is a weakening of both EF1 and proportionality, requiring that each agent gets
her proportional fair share if she obtains one additional good from the others’ bundles. Now
we will extend this definition to our setting: under our definition, each agent receives her
proportional fair share by obtaining an additional good or removing some chore from her
bundle.

Definition 3 (PROP1). An allocation π satisfies proportionality up to one item (PROP1)
if for each agent i ∈ N ,

• ui(π(i)) ≥ ui(O)/n; or

• ui(π(i)) + ui(o) ≥ ui(O)/n for some o ∈ O \ π(i); or

• ui(π(i))− ui(o) ≥ ui(O)/n for some o ∈ π(i).

It can be easily verified that EF1 implies PROP1.

Proposition 4. For additive utilities, an EF1 complete allocation satisfies PROP1.

Proof. Suppose π satisfies EF1. Consider any agent i ∈ N . Let x = maxo∈O\π(i) ui(o) and
y = −mino∈π(i) ui(o). Since π satisfies EF1, if i gets bonus value bi by removing getting some
good or some chore where bi = max{x, y, 0}, her updated utility is such that ui(π(i)) + bi ≥
ui(π(j)) for any agent j. This would imply that n(ui(π(i)) + bi) ≥

∑
j∈N ui(π(j)) = ui(O),

which implies that ui(π(i)) + bi ≥ ui(O)/n. Hence PROP1 is satisfied.
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Figure 1: Relations between fairness concepts

Figure 1 illustrates the relations between fairness concepts introduced above.

Besides fairness, we will also consider an efficiency criterion. The most commonly used
efficiency concept is Pareto-optimality. Given an allocation π, another allocation π′ is a
Pareto-improvement of π if ui(π

′(i)) ≥ ui(π(i)) for all i ∈ N and uj(π
′(j)) > uj(π(j)) for

some j ∈ N . We say that an allocation π is Pareto-optimal (PO) if there is no allocation
that is a Pareto-improvement of π.

3. Finding an EF1 Allocation

Double Round Robin Algorithm In this section, we focus on EF1, a very permissive
fairness concept that admits a polynomial-time algorithm in the case of good allocation.
For instance, consider a round robin rule in which agents take turns, and choose their most
preferred unallocated item. The round robin rule finds an EF1 allocation if all the items are
goods (see e.g., Caragiannis et al. (2019)). By a very similar argument, it can be shown that
the algorithm also finds an EF1 allocation if all the items are chores. However, we will show
that the round robin rule already fails to find an EF1 allocation if we have some items that
are goods and others that are chores.

Proposition 5. The round robin rule does not satisfy EF1.

Proof. Suppose there are two agents and four items with identical utilities described below.

1 2 3 4

Alice, Bob: 2 -3 -3 -3

Consider the order, in which Alice chooses the only good and then the remaining chores of
equal value are allocated accordingly. In that case, Alice gets the positive-value and one
chore, whereas Bob gets two chores. So even if one item is removed from the bundles of
Alice or Bob, Bob will still remain envious.

Nevertheless, a careful adaptation of the round robin method to our setting, which we
call the double round robin algorithm, constructs an EF1 allocation. In essence, the algorithm
will apply the round robin method twice: clockwise and anticlockwise. In the first phase,
the round-robin algorithm allocates chores to agents (i.e., the items for which each agent has
non-positive utility), while in the second phase, the reversed round-robin algorithm allocates

5



Aziz, Caragiannis, Igarashi,& Walsh

the remaining goods to agents , in the opposite order starting with the agent who is worst
off in the first phase. Intuitively each agent i may envy agent j who comes earlier than her
at the end of one phase, but i does not envy j with respect to the items allocated in the
other round; hence the envy of i towards j can be bounded up to one item. We formalize
the idea in Algorithm 1; see Figure 2 for an illustration.

Algorithm 1 Double Round Robin Algorithm

Input: An instance I = (N,O,U)
Output: An allocation π

1: Partition O into O+ = {o ∈ O | ∃i ∈ N s.t. ui(o) > 0}, O− = {o ∈ O | ∀i ∈ N, ui(o) ≤
0} and suppose |O−| = an− k for some integer a and k ∈ {0, , . . . , n− 1}.

2: Create k dummy chores for which each agent has utility 0, and add them to O−. (Hence
|O−| = an.)

3: Let the agents come in a robin robin sequence (1, 2, . . . , n)∗ and pick their most preferred
item in O− until all items in O− are allocated.

4: Let the agents come in a robin robin sequence (n, n − 1, . . . , 1)∗ and pick their most
preferred item in O+ until all items in O+ are allocated. If an agent has no available
item which gives her strictly positive utility, she does not get a real item but pretends
to pick a dummy one for which she has utility 0.

5: Remove the dummy items from the current allocation π and return the resulting allocation
π∗.

1
2

3

k

n

Figure 2: Illustration of Double Round Robin Algorithm. The dotted line corresponds to the picking
order when allocating chores. The thick line corresponds to the picking order when allocating goods.
The solid black circle indicates the agent who starts with the picking. For the dotted (chores) round,
agent 1 is the first agent to pick. For the solid (goods) round, agent n is the first agent to pick.

In the following, for an allocation π and a bundle X, we say that i envies j with respect
to X if ui(π(i) ∩X) < ui(π(j) ∩X).

Theorem 6. For additive utilities, the double round robin algorithm returns an EF1 complete
allocation in O(max{m2 logm,mn}) time.

Proof. We note that the algorithm ensures that all agents receive the same number of chores,
by introducing k virtual chores. Now let π be the output of Algorithm 1. To see that π
satisfies EF1, consider any pair of two agents i and j where i < j. We will show that by
removing one item, these agents do not envy each other.

First, consider i’s envy for j. We first observe that the k-th item in O− allocated to i is
weakly preferred by i to the k-th item in O− allocated to j. Hence, agent i does not envy
j with respect to O−. As for the good allocation, agent i may envy agent j with respect
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to O+, which implies that j picks at least one more item from O+. But if the first item o∗

picked by j from O+ is removed from j’s bundle, then the envy will diminish, i.e., i does
not envy j with respect to O+ \ {o∗}. The reason is that for each item in O+ \ {o∗} picked
by j there is a corresponding item picked by i before j’s turn that is at least as preferred by
i. Thus ui(π(i) ≥ ui(π(j) \ {o∗}).

Second, consider j’s envy for i. Similarly to the above, agent j does not envy agent i
with respect to O+ because she takes the first pick among i and j; that is, for every item
in o ∈ O+ ∩ π(i) such that uj(o) > 0, agent j picks a corresponding item before i that she
weakly prefers. As for the items in O−, let o∗ be the last item from O− chosen by j. Then,
for each item o ∈ O− \ {o∗} picked by i, there is a corresponding item picked by j before i
that j weakly prefers to o, which implies that j does not envy i with respect to O− \ {o∗}.
Thus uj(π(j) \ {o∗}) ≥ uj(π(i)).

In either case, agents do not envy each other up to one item. We conclude that π is EF1
and so does the final allocation π∗ as removing dummy items does not affect the utilities of
each agent. It remains to analyze the running time of Algorithm 1. Line 1 requires O(mn)
time as each item needs to be examined by all agents. Lines 3 and 4 require O(m2 logm)
time as there are at most m iterations, and for each iteration, each agent has to choose the
most preferred item out of at most m items. Thus, the total running time can be bounded
by O(max{m2 logm,mn}), which completes the proof.

Generalized Envy Graph Algorithm Algorithm 1 is designed for additive utilities. We
construct another algorithm (Algorithm 2) that finds an EF1 allocation for the more general
class of doubly monotonic utilities. In these utility functions, each agent partitions the items
into desirable and undesirable. The value for bundles of items can be arbitrary but with the
restriction that adding an item which is desirable for an agent does not decrease her utility
and adding an item which is undesirable for an agent does not increase her utility. Formally
speaking, agent i’s utility function ui : 2O → R is said to be doubly monotonic if agent i can
partition the items into two disjoint sets Gi and Ci such that for any item o ∈ O and for
any bundle of items X ⊆ O \ {o},

• ui(X ∪ {o}) ≥ ui(X) if o ∈ Gi; and

• ui(X ∪ {o}) ≤ ui(X) if o ∈ Ci.

The algorithm is based on a generalization of an algorithm presented by Lipton et al.
(2004) for finding an EF1 allocation for goods. For an allocation π, the envy-graph G(π)
is a directed graph where the vertices is given by the set of agents N , and for any pair of
distinct agents i, j ∈ N , there is an arc from i to j if and only if i envies j. For each directed
cycle C = {i1, i2, . . . , ik} of the envy graph G(π) where ij envies ij+1 for each j ∈ [k] and
ik+1 = i1, we may implement an exchange over the cycle, and define the resulting allocation
πC as follows:

πC(i) =

{
π(i) if i 6∈ C,
π(ij+1) if i = ij ∈ C.

Given an allocation π, the marginal utility of an item o ∈ O \ π(i) to an agent i ∈ N is
defined as δi(π, o) := ui(π(i) ∪ {o})− ui(π(i)).
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Algorithm 2 Generalized Envy Graph Algorithm

Input: An instance I = (N,O,U) where each ui (i ∈ N) is doubly monotonic with
partition (Gi, Ci) where for any item o ∈ O and for any bundle of items X ⊆ O \ {o},
ui(X ∪ {o}) ≥ ui(X) if o ∈ Gi and ui(X ∪ {o}) ≤ ui(X) if o ∈ Ci.

Output: An allocation π
1: Initialize allocation π(i) = ∅ for all i ∈ N
2: for o ∈ O do
3: Set N+ = { i ∈ N | δi(π, o) ≥ 0 }
4: if N+ 6= ∅ then
5: Choose an agent i∗ ∈ N+ with no incoming edge in the graph G(π) induced by N+

6: else
7: Choose an agent i∗ ∈ N with no outgoing edge in G(π)
8: end if
9: Update π(i∗)← π(i∗) ∪ {o}

10: while G(π) contains a directed cycle C do
11: Update π ← πC
12: end while
13: end for

Theorem 7. For doubly monotone utilities, the generalized envy-graph algorithm finds an
EF1 complete allocation in O(mn3) time.

Proof. By induction, we will prove the following statements:

(i) each time a new item is allocated in lines 5 and 7, the allocation π is EF1; and

(ii) each time the while loop in lines 10 – 12 is executed, the allocation π is EF1 and the
envy-graph G(π) is acyclic.

The base case clearly holds since the initial allocation corresponds to the empty allocation.
We assume that the claims hold up until k − 1 items have been allocated; we will prove that
they still hold after we allocate the k-th item o. To see this, let π′ denote the allocation
that has been computed just after allocating k − 1 items, and let π denote the allocation
that has been computed just after allocating the k-th item o.

To show (i), it suffices to prove that the envy between agent i∗ who receives a new item
and any other agent is bounded up to one item.

First, suppose that N+ 6= ∅. Let G+ be the envy graph induced by N+. By the induction
hypothesis, the envy-graph is acyclic, which means that G+ is acyclic as well. Hence, at
least one agent i∗ has no incoming arc in G+ and the algorithm can give item o to agent i∗.
Agent i∗ receives an item that does not decrease her utility so she envies the other agents
up to one item by the induction hypothesis. Take any agent j ∈ N \ {i∗}. We will show
that agent j envies i∗ up to one item. Consider the following two cases:

• Suppose that j did not envy i∗ before allocating o to i∗. Then, it is clear that
uj(π(j)) ≥ uj(π′(i)) = uj(π(i) \ {o}).
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• Suppose that j envied i∗ before allocating o to i∗. This means that π′(j) 6= ∅ or
π′(i∗) 6= ∅. Also, j does not belong to N+ since i∗ has no incoming arc in G+, which
implies that δi(π

′, o) < 0 and hence o ∈ Cj . If j’s envy towards i∗ at π′ disappears by
removing an item from the bundle of j, namely, mino′∈π′(j) uj(π

′(j)\{o′}) ≥ uj(π′(i∗)),
then

min
o′∈π(j)

uj(π(j) \ {o′}) = min
o′∈π′(j)

uj(π
′(j) \ {o′}),

≥ uj(π′(i∗)),
≥ uj(π′(i∗) ∪ {o}) = uj(π(i∗)),

where the second inequality holds due to double monotonicity. If j’s envy towards
i∗ at π′ disappears by removing an item from the bundle of i∗, namely, uj(π

′(j)) ≥
mino′∈π′(i∗) uj(π

′(i∗) \ {o′}), then

uj(π(j)) = uj(π
′(j)) ≥ min

o′∈π′(i∗)
uj(π

′(i∗) \ {o′}),

≥ min
o′∈π′(i∗)

uj((π
′(i∗) \ {o′}) ∪ {o}),

≥ min
o′∈π(i∗)

uj(π(i∗) \ {o′}),

where the second inequality holds again due to double monotonicity.

Second, suppose that N+ = ∅. Then we know that all the agents have negative marginal
utility for o and hence consider item o to be undesirable, i.e., o ∈ Ci for each i ∈ N . Since,
by the induction hypothesis, the envy graph G(π) is acyclic, at least one agent i∗ has no
outgoing arcs, which means that we can give item o to agent i∗. Since i∗ envied no one before,
her envy towards others can be removed by disposing o. Further, each agent j ∈ N \ {i∗}
envies i∗ up to one item, because adding item o to π(i∗) does not increase the utility that
agent j would derive from the bundle of i∗. We conclude that the allocation π satisfies EF1
just after the algorithm allocates a new item o to agent i∗, which proves (i).

To show (ii), we now focus on the while loop in the algorithm whereby envy cycles are
removed by exchanging allocations along the cycle. After exchanging bundles over cycle
C, we observe that the agents in the cycle improve their utility, and agents who are not
in C envy each agent in C up to one item, as the set of bundles does not change. Hence,
the resulting allocation πC still satisfies EF1. Further, by removing one cycle, we note that
each agent in the cycle has her out-degree decreased by one. Furthermore, no agent outside
the cycle has her out-degree changed. Hence, after at most n2 cycles being removed, the
envy-graph has no more envy-cycle. This proves (ii).

Similarly to the analysis of Lipton et al. (2004), the running time of the algorithm can
be bounded by O(mn3). To see this, consider each iteration of the for loop in lines 2 – 13.
In order to find agent i∗ who can be assigned to a new item, we consider at most n agents,
and for each agent, we check at most n envy-relations. Further, the while loop in lines 10
– 12 requires at most n3 operations, since there are at most n2 cycles to be removed and
the length of the cycle is at most n. Summing over all m iterations, we conclude that the
number of operations of the algorithm is bounded by O(mn3).
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4. Finding an EF1 and PO allocation

We move on to the the next question as to whether fairness is achievable together with
efficiency. In the context of good allocation where agents have non-negative additive utilities,
Caragiannis et al. (2019) proved that an outcome that maximizes the Nash welfare (i.e.,
the product of utilities) satisfies EF1 and Pareto-optimality simultaneously. The question
regarding whether a Pareto-optimal and EF1 allocation exists for chores is unresolved.
Starting from an EF1 allocation and finding Pareto improvements, one runs into two
challenges: first, Pareto improvements may not necessarily preserve EF1; second, finding
Pareto improvements is NP-hard (Aziz, Biro, Lang, Lesca, & Monnot., 2016; de Keijzer
et al., 2009). Even if we ignore the second challenge, the question regarding the existence of
a Pareto-optimal and EF1 allocation for chores is open.

Next we show that the problem of finding an EF1 and Pareto-optimal allocation is
completely resolved for the restricted but important case of two agents. Our algorithm for
the problem can be viewed as a discrete version of the well-known Adjusted Winner (AW)
rule (Brams & Taylor, 1996a, 1996b). Just like the Adjusted Winner rule, our algorithm
finds a Pareto-optimal and EF1 allocation. In contrast to AW that is designed for goods,
our algorithm can handle both goods and chores.

Theorem 8. For two agents with additive utilities, a Pareto-optimal and EF1 complete
allocation always exists and can be computed in O(m2) time.

Proof. The algorithm begins by giving each subjective item to the agent who considers it as
a good; that is, for each item o ∈ O, it allocates o to agent i if ui(o) ≥ 0 and uj(o) < 0 where
j ∈ N \ {i}. So, in the following, let us assume that there is no item for which each agent
has utility 0. Also, we assume that we have objective items only, i.e., for each item o ∈ O,
either o is a good (ui(o) > 0 for each i ∈ N); or o is a chore (ui(o) < 0 for each i ∈ N). Now
we call one of the two agents winner (denoted by w) and another loser (denoted by `).

1. Initially, all goods are allocated to the winner and all chores to the loser.

2. We sort the items in terms of |u`(o)|/|uw(o)| (monotone non-increasing order), and
consider reallocation of the items according to the ordering (from the left-most to the
right-most item).

3. When considering a good, we move it from the winner to the loser. When considering
a chore, we move it from the loser to the winner. We stop when we find an EF1
allocation from the point of view of the loser. Note that the loser is envious up to one
item of the winner.

We will first prove that at any point of the algorithm, the allocation π is Pareto-optimal,
and so is the final allocation π∗. Assume towards a contradiction that the allocation π is
Pareto-dominated by the allocation π′. For each i, j ∈ {w, `} with i 6= j, let

• Gii be the set of goods in π(i) ∩ π′(i);

• Cii be the set of chores in π(i) ∩ π′(i);

• Gij be the set of goods in π(i) ∩ π′(j);

10
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• Cij be the set of chores in π(i) ∩ π′(j).

Without loss of generality, we assume that, in π, the winner has utility which is at least
as high as in π′, while the loser is strictly better off. Taking into account that the bundles of
goods Gww and G`` and the bundles of chores Cww and C`` are allocated to the same agent
in both allocations, this means

uw(G`w) + uw(C`w)− uw(Gw`)− uw(Cw`) ≥ 0; and (1)

u`(Gw`) + u`(Cw`)− u`(G`w)− u`(C`w) > 0 (2)

The crucial observation now is that the algorithm considered all items in G`w and Cw`
before the items in Gw` and C`w in the ordering (this is why the allocation of the items in
the first two bundles changes while the allocation of the items in the last two bundles does
not). Let α be such that

max
o∈Gw`∪C`w

|u`(o)|
|uw(o)|

≤ α ≤ min
o∈G`w∪Cw`

|u`(o)|
|uw(o)|

.

This definition implies the inequalities,

u`(Gw`) ≤ αuw(Gw`);u`(G`w) ≥ αuw(G`w);

−u`(Cw`) ≥ −αuw(Cw`);−u`(C`w) ≤ −αuw(C`w),

which, together with inequality (2), yields

0 < u`(Gw`) + u`(Cw`)− u`(G`w)− u`(C`w)

≤ −α(uw(G`w) + uw(C`w)− uw(Gw`)− uw(Cw`)) ≤ 0,

a contradiction. The last inequality follows by (1) and by the fact that α is non-negative.
Now observe that at the final allocation π∗, at most one agent envies the other: if the

loser still envies the winner and the winner also envies the loser, then exchanging the bundles
would result in a Pareto improvement, a contradiction. Thus, π∗ is EF1 when the loser
envies the winner at π∗. Consider when at π∗ the loser does not envy the winner but the
winner envies the loser. Let π′ be the previous allocation just before the final transfer, and
X = π′(w)∩π∗(w) and Y = π′(`)∩π∗(`). By construction, the loser envies the winner more
than one item at π′, which implies u`(Y ) < u`(X). Suppose towards a contradiction that
the winner envies the loser more than one item at π∗, which implies uw(X) < uw(Y ). If g is
the last good that has been moved from the winner to the loser, then allocating X to ` and
Y ∪ {g} to w would be a Pareto-improvement of π′, a contradiction. Similarly, if c is the
last chore that has been moved from the loser to the winner, then allocating X ∪ {c} to `
and Y to w would be a Pareto-improvement of π′, a contradiction. Hence, the winner envies
the loser up to one item; we conclude that π∗ is EF1.

It remains to analyze the running time of the algorithm. First, the items can be sorted
in O(m logm) time. The adjustment process takes O(m2) time. Each iteration checks the
allocation is EF1 from the view point of the loser, which requires at most m comparisons of
utilities, and there are at most m iterations. Thus, the number of operations is bounded by
O(m2).

11
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The example below illustrates our discrete adaptation of AW.

Example 9 (Example of the generalized AW). Consider two agents, Alice and Bob, and
five items with the following additive utilities where the gray circles correspond to goods
and the white circles correspond to chores.

1 2 3 4 5 6 7

Alice (winner) : 1 -1 2 1 -2 -4 -6
Bob (loser) : 4 -3 6 2 -2 -2 -2

|u`(o)|/|uw(o)| : 4 3 3 2 1 1/2 1/3

The generalized AW initially allocates the goods to Alice and the chores to Bob. Then, it
transfers the first good from Alice to Bob and moves the second chore from Bob to Alice.
After moving the third good from Alice to Bob, Bob stops being envious up to one item.
Hence the final allocation gives the items 2 and 4 to Alice and the rest to Bob.

A natural question is whether PO and EF1 allocation exists for three agents with general
additive utilities. We leave this as an interesting open question.

We also note that Pareto-optimality by itself is easy to achieve. We take a permutation
of agents and apply a variant of ‘serial dictatorship’. The first agents takes all the items
for which she has strictly positive utility for. Each subsequent agent does the same for the
remaining items. If all agents have been exhausted and there are some items remaining,
then the last agents takes all the remaining items.

Proposition 10. For additive utilities, a Pareto-optimal allocation can be computed in
O(mn) time.

Proof. We take a permutation of agents and apply a variant of ‘serial dictatorship’. The
first agents takes all the items for which she has strictly positive utility for. Each subsequent
agent does the same for remaining items. If all agents have been exhausted and there are
some items remaining, then the last agents takes all the remaining items. The resultant
allocation is Pareto-optimal. Any allocation that Pareto dominates it will require that
the first n− 1 agents have the same allocation and therefore the last agent has the same
allocation as well.

5. Finding a Connected PROP1 Allocation

We saw that there always exists an EF1 allocation for subjective goods/chores. If we
weaken EF1 to PROP1, one can achieve one additional requirement besides fairness, that is,
connectivity. In this section, we will consider a situation when items are placed on a path,
and each agent desires a connected bundle of the path. Finding a connected set of items is
important in many scenarios. For example, the items can be a set of rooms in a corridor and
the agents could be research groups where each research group wants to get adjacent rooms.

We will show that a connected PROP1 allocation exists and can be found efficiently. In
what follows, we assume that the path is given by a sequence of items (o1, o2, . . . , om). We
first prove a result for the case of the cake cutting setting that is of independent interest.
In the following, a mixed cake is the interval [0,m]. Each agent i ∈ N has a value density

12
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function ûi, which maps a subinterval of the cake to a real value, where i has uniform utility
ui(oj) for the interval [j − 1, j] for each j ∈ [m]. A contiguous allocation of a mixed cake
assigns each agent a disjoint sub-interval of the cake where the union of the intervals equals
the entire cake [0,m]; it satisfies proportionality if each agent i gets an interval of value at
least the proportional fair share ui(O)/n.

Theorem 11. For additive utilities, a contiguous proportional allocation of a mixed cake
exists and can be computed in polynomial time.

Proof. Let N+ be the set of agents with strictly positive total value for O. Now we combine
the moving-knife algorithms for goods and chores.

Idea: First, if there is an agent who has positive proportional fair share, i.e., N+ 6= ∅,
we apply the moving-knife algorithm only to the agents in N+. Our algorithm moves a
knife from left to right, and agents shout whenever the left part of the cake has a value of
exactly equal to the proportional fair share. The first agent who shouts is allocated the left
bundle, and the algorithm recurs on the remaining instance. Second, if no agent has positive
proportional fair share, our algorithm moves a knife from right to left, and agents shout
whenever the left part of the cake has value exactly proportional fair share. Again, the first
agent who shouts is allocated the left bundle, and the algorithm recurs on the remaining
instance. Algorithm 3 formalizes the idea.

Algorithm 3 Generalized Moving-knife Algorithm A
Input: A sub-interval [`, r], agent set N ′, utility functions ûi for each i ∈ N ′
Output: An allocation π of a mixed cake [`, r] to N ′

1: Initialize π(i) = ∅ for each i ∈ N ′.
2: Set N+ = { i ∈ N ′ | ûi([`, r]) > 0 }.
3: if N+ 6= ∅ then
4: if |N+| = 1 then
5: Allocate [`, r] to the unique agent in N+.
6: else
7: Let xi be the minimum point where ûi([`, xi]) = ûi([`, r])/|N+| for i ∈ N+.
8: Find agent j with minimum xj among all agents in N+.
9: return π where π(j) = [`, xj ] and π|N ′\{j} = A([xj , r], N

′ \ {j}, (ûi)i∈N ′\{j})
10: end if
11: else
12: Let xi be the maximum point where ûi([`, xi]) = −ûi([`, r])/n for i ∈ N ′.
13: Find agent j with maximum xj among all agents in N ′.
14: return π where π(j) = [`, xj ] and π|N ′\{j} = A([xj , r], N

′ \ {j}, (ûi)i∈N ′\{j})
15: end if

Correctness: We will prove by induction on |N ′| that the allocation of a mixed cake
produced by A satisfies the following:

• if N+ 6= ∅, then each agent in N+ receives an interval of value at least the proportional
fair share and each agent not in N+ receives an empty piece; and

• if N+ = ∅, then each agent receives an interval of value at least the proportional fair
share.

13
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The claim is clearly true when |N ′| = 1. Suppose that A returns a proportional allocation
of a mixed cake with desired properties when |N ′| = k − 1; we will prove it for |N ′| = k.

Suppose that some agent has positive proportional fair share, i.e., N+ 6= ∅. If |N+| = 1,
the claim is trivial; thus assume otherwise. Clearly, agent j receives an interval of value at
least the proportional fair share. Further, all other agents in N+ have value at most the
proportional fair share for the left piece [`, xj ]. Indeed, if there is an agent i′ ∈ N+ whose value
for the left piece is greater than the proportional fair share, then i′ would have shouted when
the knife reaches before xj by the continuity of ûi′ , and ûi′([`, xj ]) > ûi′([`, `]), contradicting
the minimality of xj . Thus, the remaining agents in N+ have at least (n− 1) · ûi([`, r])/n
value for the rest of the cake [xj , r]; hence, by the induction hypothesis each agent in N+

gets an interval of value at least the proportional fair share, and each of the remaining agents
gets an empty piece.

Suppose that no agent has positive proportional fair share. Again, if there is an
agent i′ whose value for the left piece [`, xj ] is greater than the proportional fair share,
then i′ would have shouted when the knife reaches before xj by the continuity of ûi′ and
ûi′([`, xj ]) > ûi′([`,m]), contradicting the maximality of xj . Thus, all the remaining agents
have value at least (n − 1) · ûi([`, r])/n for the rest of the cake [xj , r], and hence, by the
induction hypothesis, each agent gets an interval of value at least proportional fair share.

The theorem stated above also applies to a general cake-cutting model in which informa-
tion about agent’s utility function over an interval can be inferred by a series of queries. We
note that a contiguous envy-free allocation of a mixed cake is known to exist only when the
number of agents is four or a prime number (Segal-Halevi, 2018; Meunier & Zerbib, 2018).
Next, we show how a fractional proportional allocation can be used to achieve a contiguous
PROP1 division of indivisible items.

Theorem 12. For additive utilities, a connected PROP1 allocation of a path always exists
and can be computed in polynomial time.

Proof. We know that a fractional contiguous and proportional allocation always exists from
Theorem 11. In such an allocation we will not change the allocation of agents who get an
empty allocation. As for the rest of the agents we do as follows.

Take any contiguous proportional fractional division of a path. From left to right, we
allocate the items on the boundary according to the left-agents preferences. Specifically, we
assume without loss of generality that agents 1, 2, . . . , n, receive the 1st, 2nd, ..., and n-th
bundles. If there is an agent who gets a fraction of one item only under the proportional
fractional division, the agent gets nothing under our final allocation. Now suppose that an
item o is divided between two agents i and i+ 1. Then we do the following:

1. If two agents disagree on the sign of o, we give the item o to the agent who has positive
value for it.

2. If two agents agree on the sign of o, we allocate the item o in such a way that:

• the left-agent i takes o if the value of o is positive;

• the right-agent i+ 1 takes o if the value of o is negative.
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The resulting integral allocation is PROP1. Clearly, the bundles for the end agents 1
and n satisfy PROP1. Also, the bundles for the middle agents 2, . . . , n− 1 satisfy PROP1
since such an agent gets value 1/n by either receiving the item next to its bundle or deleting
the left-most item of his bundle.

6. Discussion

In this paper, we have formally studied fair allocation when the items are a combination of
subjective goods and chores. Our work paves the way for detailed examination of allocation
of goods/chores, and opens up an interesting line of research, with many problems left open
to explore. In particular, there are further fairness concepts that could be studied from
both existence and complexity issues, most notably envy-freeness up to the least valued item
(EFX) (Caragiannis et al., 2019). In our setting, one can define an allocation π to be EFX
if for any pair of agents i, j, the following two hold:

1. ∀o ∈ π(i) s.t. ui(o) < 0: ui(π(i) \ {o}) ≥ ui(π(j)); and

2. ∀o ∈ π(j) s.t. ui(o) > 0: ui(π(i)) ≥ ui(π(j) \ {o}).

That is, i’s envy towards j can be eliminated by either removing i’s least valuable good
from j’s bundle or removing i’s favorite chore from i’s bundle. Caragiannis et al. (2019)
mentioned the following ‘enigmatic’ problem: does an EFX allocation exist for goods? It
would be intriguing to investigate the same question for subjective or objective goods/chores.

We also note that while the relationship between Pareto-optimality and most of fairness
notions is still unclear, Conitzer et al. (2017) proposed a fairness concept called Round Robin
Share that can be achieved together with Pareto-optimality. In our context, RRS can be
formalized as follows. Given an instance I = (N,O,U), consider the round robin sequence
in which all agents have the same utilities as agent i. In that case, the minimum utility
achieved by any of the agents is RRSi(I). An allocation satisfies RRS if each agent i gets
utility at least RRSi(I). It would be then very natural to ask what is the computational
complexity of finding an allocation satisfying both properties.

Finally, recent papers of Bouveret et al. (2017) and Bilò et al. (2019) showed that a
connected allocation satisfying several fairness notions, such as MMS and EF1, is guaranteed
to exist for some restricted domains. Although these existence results crucially rely on the
fact that the agents have monotonic valuations, it remains open whether similar results can
be obtained in fair division of indivisible goods and chores.
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Bouveret, S., Cechlárová, K., Elkind, E., Igarashi, A., & Peters, D. (2017). Fair division of a
graph. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pp. 135–141.

Bouveret, S., Chevaleyre, Y., & Maudet, N. (2016). Fair allocation of indivisible goods. In
Brandt, F., Conitzer, V., Endriss, U., Lang, J., & Procaccia, A. D. (Eds.), Handbook
of Computational Social Choice, chap. 12. Cambridge University Press.

16



Fair allocation of combinations of indivisible goods and chores

Brams, S. J., & Taylor, A. D. (1996a). Fair division: From cake-cutting to dispute resolution.
Cambridge University Press.

Brams, S. J., & Taylor, A. D. (1996b). A procedure for divorce settlements. Issue Mediation
Quarterly Mediation Quarterly, 13 (3), 191–205.

Budish, E. (2011). The combinatorial assignment problem: Approximate competitive
equilibrium from equal incomes. Journal of Political Economy, 119 (6), 1061–1103.

Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., & Kyropoulou, M. (2012). The efficiency
of fair division. Theory of Computing Systems, 50 (4), 589–610.

Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A. D., Shah, N., & Wang, J. (2019).
The unreasonable fairness of maximum nash welfare. ACM Transactions on Economics
and Computation, 7 (3), 12:1–12:32.

Conitzer, V., Freeman, R., & Shah, N. (2017). Fair public decision making. In Proceedings
of the 18th ACM Conference on Economics and Computation (ACM-EC), pp. 629–646.
ACM Press.

de Keijzer, B., Bouveret, S., Klos, T., & Zhang, Y. (2009). On the complexity of efficiency
and envy-freeness in fair division of indivisible goods with additive preferences. In
Proceedings of the 1st International Conference on Algorithmic Decision Theory, pp.
98–110.

Ghodsi, M., HajiAghayi, M., Seddighin, M., Seddighin, S., & Yami, H. (2018). Fair allocation
of indivisible goods: Improvements and generalizations. In Proceedings of the 19th
ACM Conference on Economics and Computation (ACM-EC). ACM Press.

Kurokawa, D., Procaccia, A. D., & Wang, J. (2018). Fair enough: Guaranteeing approximate
maximin shares. Journal of the ACM, 65 (2), 8:1–8:27.

Lipton, R. J., Markakis, E., Mossel, E., & Saberi, A. (2004). On approximately fair allocations
of indivisible goods. In Proceedings of the 5th ACM Conference on Electronic Commerce
(ACM-EC), pp. 125–131. ACM Press.

Meunier, F., & Zerbib, S. (2018). Envy-free divisions of a partially burnt cake. CoRR,
abs/1804.00449.

Segal-Halevi, E. (2018). Fairly dividing a cake after some parts were burnt in the oven. In
Proceedings of the 17th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 1276–1284. Extended version available as arXiv:1704.00726v5
[math.CO].

17


