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Abstract

We present a new and rich model of school choice
with flexible diversity goals and specialized seats.
The model also applies to other settings such as
public housing allocation with diversity objectives.
Our method of expressing flexible diversity goals
is also applicable to other settings in moral multi-
agent decision making where competing policies
need to be balanced when allocating scarce re-
sources. For our matching model, we present a
polynomial-time algorithm that satisfies desirable
properties, including strategyproofness and stabil-
ity under several natural subdomains of our prob-
lem. We complement the results by providing a
clear understanding about what results do not ex-
tend when considering the general model.

1 Introduction
Diversity goals are prevalent in many scenarios including the
hiring of employees, student-intake, and public housing [Ben-
abbou et al., 2018]. These may be affirmative action legal re-
quirements, institutional policies, or guidelines for ensuring
a healthier and better balance of various groups. As impor-
tant decisions are made concerning who gets the next job or
who gets their preferred school seat, it is critical that the al-
gorithms are transparent and fair. This is especially so when
they make complex decisions that simultaneously take into
account merit, priority, and diversity.

In the past few years, diversity issues have been heavily
studied in school choice [Abdulkadiroğlu and Sönmez, 2003],
the prototypical model of two-sided matching. In the ba-
sic school choice problem, students have preferences over
schools and schools have priorities over students. The typical
goal is to match the students to schools in a way that is stable
(no student wants to take an vacant slot or wants to replace a
lower priority student). Another property that is important in
this context is strategyproofness (no student has an incentive
to misreport her preferences).

In school choice with diversity goals, schools accept stu-
dents while not just taking into account the priority order-
ing over students (that could be based on test scores) but also
considering diversity requirements (such as keeping in mind

a target number of students with special talents or disadvan-
taged backgrounds). Student placement under diversity con-
cerns has been considered in many countries including Israel
[Gonczarowski et al., 2019] and India [Baswana et al., 2019].
A prominent and successful approach for these problems is
to specify diversity requirements via upper and lower bounds
on the types of students at the school (see, e.g. Ehlers et al.
[2014] and Aziz et al. [2019]). Based on these quotas, diver-
sity is achieved by first admitting students whose types have
not reached the minimum quotas and then admitting students
whose types have not reached the maximum quotas [Kurata
et al., 2017; Aziz et al., 2020; Sun, 2019].

There are limitations of specifying diversity goals just by
imposing upper and lower bounds on types. The first concern
is whether one should indeed treat the status of being under-
subscribed equally. For instance, suppose one school imposes
minimum quota 10 on two types. Type t1 admits just 1 stu-
dent while type t2 admits 8 students. It is reasonable to give
higher precedence to students of type t1, who will help to
achieve a diversity balance. The second concern is whether
we should treat all types equally. It is common that some
types are more important than others. Thirdly, lower and up-
per quotas are not sufficient to target proportionality ratios of
types (that captures desirable distributions of different types
of students). In particular, having targets on absolute numbers
does not achieve proportionality goals effectively.

We explain the third issue through the following example.
Suppose there is a market where students are associated with
one of the three types t1, t2, and t3. Consider one school c
with capacity 100 that has the target proportions of students
are as follows: t1 : 30%, t2 : 30%, t3 : 40%. If we wish to
capture these targets via setting of lower bounds, one can im-
pose minimum quotas 30, 30 and 40 on type t1, t2, t3 respec-
tively. Suppose 15, 60, and 60 students of type t1, t2, t3 apply
for the school c. Then notable algorithms for the problem that
use minimum quotas would return an outcome with type dis-
tribution (t1 : 15, t2 : 45, t3 : 40). However, there exists an
outcome with type distribution (t1 : 15, t2 : 37, t3 : 48) that
is closer to the target proportions. Such an outcome will be
computed by the algorithm we propose. In this paper, we ex-
plore the issue of capturing a rich class of diversity goals in
matching problems.

In this paper, we aim to address the following questions.
What is a powerful yet computationally tractable framework



of specifying diversity goals, that encompasses most of the
particular diversity approaches in theory and practice? Can
it also capture meaningful and well-motivated diversity goals
not yet addressed in the literature? Can we use such a frame-
work and achieve desirable objectives in two-sided matching
market design such as stability and strategyproofness in a ro-
bust manner? What are the limits of such an approach when
students are allowed to express preferences over individual
school seats?
Contributions We present a new model of matching mar-
kets that generalizes school choice with diversity goals in two
important ways. (1) Firstly, we allow schools to have special-
ized seats that are motivated by additional features such as
accompanying scholarships, tuition-fee waiver etc. (2) Sec-
ondly, we greatly expand the type of diversity goals that can
be specified. Our model introduces a flexible and general
ordinal approach to specifying diversity goals that capture
lower and upper quotas as well as proportionality concerns.
We discuss how existing approaches that only minimum and
maximum quotas in the intended rations may not achieve out-
comes that are closest to the intended ratios. The approach
applies to many other settings including social choice and
multi-agent decision making in which diversity is a concern.

For the new model, we present an algorithm called Gen-
eralized Deferred Acceptance with Flexible Diversity (GDA-
FD). It is a novel algorithm that we design for schools to
choose students while taking into account flexible diversity
goals. GDA-FD satisfies a natural notion of stability, strate-
gyproofness, and non-wastefulness when each agent has one
type and there are no specialized seats.

We then show that allowing for specialized seats but en-
forcing diversity over students leads to several challenges in
achieving stability and strategyproofness. In view of these
challenges, we then turn to an important domain in which we
allow for specialized seats but there is exactly one school.1
In this domain, we show that even if students have overlap-
ping types, GDA-FD algorithm satisfies weak Pareto optimal-
ity and two notions of strategyproofness. En route to proving
these results, we provide an alternative view of GDA-FD by
showing its equivalence with an algorithm called Sequential
Allocation Under Dynamic Diversity Goals.

Finally, we turn to a class of preferences called school-
based that generalizes the case of homogenous school seats
as well as the case of exactly one school. For school-based
preferences, we show that GDA-FD is not strategyproof even
if each agent has a single type. However, strategyproofness
is regained by using another algorithm called Modified GDA-
FD that calls GDA-FD on a modification of the problem in-
stance. Since Modified GDA-FD is equivalent to GDA-FD
when there are no special seats, our key message is that the
modified GDA-FD works well on several important domains.
Some of our results are summarized in Table 1.

2 Related Work
Abdulkadiroğlu and Sönmez [2003] presented one of the
seminal works on the use of matching market design for

1The domain captures various committee selecting or hiring sce-
narios that take into account diversity goals.

Preference Strategyproofness Stability Non-wastefulness
Domain

No Specialized Seats 3 3 3

One School 3 7 3

School-based 3 7 3

Table 1: Properties satisfied by Modified GDA-FD (Algorithm 4)
under different preference domains when each agent has a single
type. The positive results for the case of one school also hold for
multiple types.

school choice. The problem of school choice with diversity
constraints or goals is an active area of research in market
design. Typically, each school imposes a maximum quota
and a minimum quota on each type [Kojima, 2012; Hafalir et
al., 2013; Kominers and Sönmez, 2013]. Since stable match-
ings cannot exist for hard lower quotas and the corresponding
problems become NP-hard (see e.g., Kurata et al. [2017] and
Chen et al. [2020]), most of the successful approaches treat
the quotas as soft (see, e.g. Ehlers et al. [2014] and followup
works). Most work on school choice with diversity goals fo-
cuses on minimum and maximum quotas only [Ehlers et al.,
2014; Gonczarowski et al., 2019; Sönmez and Yenmez, 2019;
Baswana et al., 2019; Aziz et al., 2019]. Although there is
some recent work on ratio constraints [Nguyen and Vohra,
2019], our diversity goals are more general and flexible, and
our algorithmic solutions are different as well. Kominers and
Sönmez [2016] considered a matching model in which each
school seat may have a different priority ordering over stu-
dents and students have rankings over schools. In contrast,
we allow students to distinguish between seats of the same
school. One more difference from the work of Kominers and
Sönmez [2016] is that we take different forms of diversity
goals into consideration.

Our model also bears some similarities with hospital-
resident matching with regional constraints [Kamada and Ko-
jima, 2015, 2017], in which students are viewed as doctors,
school seats are viewed as hospitals and schools are viewed
as regions. However, in the hospital-resident matching, the
distributional constraints are imposed on the number of doc-
tors matched to different regions but not on the proportional
composition of types of doctors. Ahmadi et al. [2020] consid-
ered diversity goals in a different model that does not involve
preferences and priorities.

3 A Model for School Choice with Flexible
Diversity Goals and Specialized Seats

In this section, we formalize the model of School Choice with
Flexible Diversity Goals and Specialized Seats. An instance
I of the setting consists of a tuple (S, T,H,C,X ,%S ,%C

, RC). There is a set of students denoted by S = {1, . . . , n},
each of whom belongs to some of the types from the type
space T = {t1, . . . , tk}. Let T (i) denote the set of types
of student i. We will denote by C the set of schools with a
generic school denoted by bj or b. We will denote by H the
set of school seats with a genertic seat denoted by h. School
seats H are partitioned into |C| schools, where bj ⊆ H is
the set of school seats controlled by school bj ∈ C. For



any two different schools bi, bj ∈ C, we have bi ∩ bj = ∅.
The symbolRC denotes the precedence profile of schools that
captures flexible diversity goals. Section 4 is devoted to the
precedence profile RC .

We follow the model of matching with contracts [Hatfield
and Milgrom, 2005] where each contract x = (i, h, b) is a
student–seat–school tuple indicating that student i is matched
to seat h at school b. The set of all contracts is denoted by
X ⊆ S ×H ×C and we assume that for any (i, h, b) ∈X ,
we have h ∈ b. Given any X ⊆ X , for each student i,
we denote by Xi as the set of contracts pertaining to student
i; for each seat h, we denote by Xh as the set of contracts
pertaining to seat h; for each school b, we denote byXb as the
set of contracts pertaining to school b. We denote by Xt

b =
{(i, h, b) ∈ Xb | t ∈ T (i)} as the set of contracts involving
students of type t and school b. We extend the notation of
each individual to a set of agents by taking the union, i.e., for
any S′ ⊆ S,XS′ =

⋃
i∈S′ Xi.

The preference profile of students S is denoted by %S=
{%1, . . . ,%n} where for student i ∈ S, each %i specifies
the preference of student i over contracts Xi. For instance,
(i, h1, b1) %i (i, h2, b2) means that student i weakly prefers
the contract (i, h1, b1) to the contract (i, h2, b2). Let �i and
∼i denote the strict and indifferent relation, respectively. In
Section 5.2, we will assume that a student is indifferent be-
tween all contracts involving seats of the same school. In
general, if some algorithm of ours requires strict preferences,
we will assume that the ties are broken arbitarily.

The priority profile of schools C is denoted by %C= {%b1
, . . . ,%b|C|} where each %b specifies the priority ordering of
school b over contracts Xb. We will assume that a school’s
priority over contracts is based on an underlying priority re-
lation over students, which could be based on first-come first-
served basis, entrance exam scores or randomization.

Next, we introduce several important properties for a de-
sirable outcome. A contract (i, h, b) is acceptable to student
i and school b if both (i, h, b) %i ∅ and (i, h, b) %b ∅ hold
where ∅ represents the option of being unmatched. W.L.O.G,
we consider acceptable contracts only, since we can remove
any unacceptable contract from X . An outcome or a match-
ing X is a set of contracts, i.e. X ⊆ X . An outcome is
feasible if each student is matched to at most one contract,
i.e. ∀i ∈ S, |Xi| ≤ 1, and each seat is matched to at most one
student, i.e. ∀ h ∈ H , |Xh| ≤ 1. A feasible outcome Y is
non-wasteful if there exists no (i, h′, b′) ∈ Y such that there
exists another contract (i, h, b) with (i, h, b) �i (i, h

′, b′) and
Y ∪ {(i, h, b)} \ {(i, h′, b′)} is feasible. Given an instance
I , an algorithm is strategyproof for students if no student can
be matched to a strictly better contract when the student mis-
reports his preferences.

4 Framework for Flexible Diversity Goals
In this section, we present a novel way for schools to select
students. A key component of the method is to design a novel
method to specify dynamic priorities of a school over stu-
dents. The dynamic priorities of a school b are based on the
static priority relation %b over students, and a dynamic prece-
dence relation Rb over the types in T that we specify below.

Given a feasible outcome X , each school b has a dynamic
precedence ordering Rb(X) over types T . If t1Rb(X)t2
holds, then for the outcome X , type t1 is weakly preferred to
type t2 in terms of achieving diversity goals of school b. Let
Pb and Ib denote the strict and indifferent relation, respec-
tively. We denote by RC = {Rb1 , . . ., Rb|C|} the precedence
profile of all schools.

4.1 Dynamic Precedence Representation
Next, we explain how we represent the dynamic precedence
Rb over types. First, each school b specifies different levels
over each type t, denoted by Lb,t where each level `jb,t ∈ Lb,t

specifies the range of number of students of type t that are
matched to school b. For instance, in Figure 1, `1b,t = [0, 10)
means that when the number of students of type t matched to
school b is weakly larger than 0 and smaller than 10, then it
falls into the level `1b,t. We refer to Lj

b = {`jb,t}t∈T as level j
of school b for convenience. Note that for each type t, it is not
necessary to define levels for every integer from [1, ..., |S|].

0 10 25 · · · 80 100

`1b,t `2b,t `10b,t

Figure 1: An instance of levels of type t at school b.

Then the dynamic precedence ordering Rb(X) is deter-
mined as follows with indifference classes in decreasing order
of precedence from left to right: Rb(X) : {t ∈ T : |Xt

b| ∈
`1b,t}, {t ∈ T : |Xt

b| ∈ `2b,t}, . . . , {t ∈ T : |Xt
b| ∈ `kb,t},

where |Xt
b| denotes the number of students of type t matched

to school b in the outcome X . Intuitively, for a given out-
come X , school b gives the highest precedence to types that
fall into level 1 of school b, the second highest precedence to
types that fall into level 2 of school b and so on.

Next, we explain how to capture different diversity goals
through the dynamic precedence relation Rb(X).
Lexicographic: Let there be a fixed precedence ordering over
types, say t1, . . . , t|T |. The lexicographic diversity goal of
school b is that whenever possible, it prefers to be matched to
students of type t with smaller index. In that case, for each
type ti, create one level `ib,ti = [0, |S|].
Min and Maximum quotas: For each school b, let ηt

b
and ηtb

denote the minimum quota and the maximum quota of type t,
respectively. The diversity goal of school b under minimum
and maximum quotas is that, school b gives the highest prece-
dence to the student whose type has not reached the minimum
quota, medium precedence to the student whose type has
reached the minimum quota but not the maximum quota, and
the lowest precedence to the student whose type has reached
the maximum quota [Ehlers et al., 2014]. In that case, for
each type t, school b has three levels `1b,t = [0, ηt

b
− 1],

`2b,t = [ηt
b
, ηtb − 1] and `3b,t = [ηtb, |S|]. When only mini-

mum quotas or maximum quotas exist, we can reduce to two
levels.



Proportional Let there be |T | positive integers, say r1, · · · ,
r|T | corresponding to each type t. The proportional diversity
goal of school b is that the number of students of each type
matched to school b is proportional to r1 : · · · : r|T |. In that
case, each school b has multiple levels over each type t and
leve number j, `jb,t = [(j − 1) ∗ rt, j ∗ rt − 1]. For example,
`1b,t = [0, rt − 1] and `2b,t = [rt, 2rt − 1].
Egalitarian Egalitarian is a special case of proportionality
where the ratio among all types is 1. In that case, each school
b has multiple levels over each type t where each level `jb,t =
[j − 1, j − 1].

Our diversity framework can also capture combinations of
the above objectives. For example, one could use minimum
quotas to ensure that school b has a certain number of students
from each type and beyond that we can use the egalitarian
objective so that when all minimum quotas have been met,
we then give the highest priority to the student whose type
exceeds its minimum quota by the least margin.

Next, we give an example of how our approach can capture
proportionality goals.
Example 1 (Proportional Diversity Goals). Consider a
school b and a set of types T = {t1, t2, t3, t4}with desired ra-
tios 1: 2 : 3 : 2. Then graphically Rb is depicted in Figure 2.
Based on a current allocation of a school, each type has its
own count of how many admitted students satisfy that type.
Which types have the highest precedence for the school de-
pends on current level of the types based on their counts. Sup-
pose that the current allocation leads to the following counts
t1 : 0, t2 : 1, t3 : 4, and t4 : 7. Then, then precedence level
of the types are as follows: t1 : 1, t2 : 1, t3 : 2, and t4 : 4.
Hence, t1 and t2 are the highest precedence types.
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Figure 2: Proportional goals in Example 1.

4.2 Choice Function for Flexible Diversity Goals
For a given school b, its priority relation %b over the students
along with its precedence relation Rb over types can guide
the school to select students from applicants. We specify a
particular choice function for the schools.

We define a natural choice function of school b that chooses
a set of contracts in Algorithm 1. The high level idea is that
it identifies the types whose precedence is most important
(based on which students are already selected) and then se-
lects the highest priority contract that involves a student who
satisfies one of the types. The process is repeated until the
school capacity is reached or all students are selected.

Next, we explain Algorithm 1 in more detail. Given a set
of contracts Yb that pertain to school b, a priority ordering %b

over contracts and a precedence ordering Rb over types, the
choice function Chb works as follows. In the beginning, we
remove all unacceptable contracts from Yb and initialize the
set Z to be empty which is used to store the set of contracts
selected by school b. Next, we repeat the following procedure
until the set of contracts Yb becomes empty or the school ca-
pacity is reached: First, we identify the set of types T ′ such
that i) each type t ∈ T ′ has the highest precedence based on
Rb(Z), and ii) there exists some contract x = (i, h, b) from
Yb in which student i has some type from T ′. Then, we scan
over the set of contracts Yb based on the priority ordering
�b of school b and select the first contract (i, h, b) such that
student i has one of the highest precedence types. Finally, we
update Z and Y accordingly and remove any contract y′ from
Yb that is associated with either student i or seat h.

Note that our new choice function (Algorithm 1) is a gen-
eralization of the one by Ehlers et al. [2014], and it is de-
signed for more general diversity goals instead of minimum
and maximum quotas only. It is also well-defined for students
having overlapping types. Algorithm 1 can also easily incor-
porate hard upper bounds for each type. All of our results go
through with these hard upper bounds.

Input: A set of contracts Yb, Rb, and %b

Output: A set of contracts Z ⊆ Yb

1: Remove unacceptable contracts from Yb.
2: Z ← ∅ % Z stores the set of contracts chosen by school b.
3: while Yb 6= ∅ and |Z| is no more than school capacity do
4: Identify the set of types T ′ such that i) each type t ∈ T ′ has

the highest precedence based on Rb(Z) and ii) there exists
some contract y = (i, h, b) ∈ Yb with T (i) ∩ T ′ 6= ∅.

5: Scan over Yb based on priority ordering �b and select the
first contract y = (i, h, b) such that T (i) ∩ T ′ 6= ∅.

6: Z ← Z ∪ {y}, Yb ← Yb \ {y}.
7: Remove all contracts from Yb that involve i or h.
8: return Z

Algorithm 1: Choice function Chb of school b

5 Stable Matching under Flexible Diversity
Goals

In this section, we propose a two-sided matching algorithm
that deals with general diversity goals.

5.1 Generalized Deferred Acceptance with
Flexible Diversity

The algorithm is well-defined whether students have strict
preferences over all the school seats or whether they are in-
different between all the school seats of the same school. It is
also well-defined even if students have multiple types.

Given a set of contracts X , let Chi(X) denote the choice
function of student i that selects her favorite contract among
Xi. Let Chb(X) denote the choice function of school b that
selects a set of contracts among Xb, which is not necessar-
ily unique. Let ChS(X) =

⋃
i∈S Chi(X) and ChC(X) =



⋃
b∈C Chb(X) denote the choice functions of students S and

schools C, respectively.
Armed with our specified choice function for schools (Al-

gorithm 1) , we consider the framework of the Generalized
Deferred Acceptance (GDA) by Hatfield and Milgrom [2005]
that works as follows. Each student first chooses her favorite
contract from the set Y . Among all contracts proposed by stu-
dents, each school then chooses a set of contracts. All con-
tracts that are not selected by any school are removed from
the set Y . Repeat these procedures until no more contract is
removed.

Input: Instance I, ChS , ChC , a set of contracts Y
Output: An outcome Z ⊆ Y

1: Re← ∅, X ← Y,Z ← ∅
2: while X 6= Z do
3: X ← ChS(Y \Re) % Students select contracts.
4: Z ← ChC(X) % Schools select contracts.
5: Re← Re ∪ (X \ Z) % Update rejected contracts.
6: return Z

Algorithm 2: Generalized Deferred Acceptance (GDA)

We will refer to the GDA algorithm with the choice func-
tion defined in Algorithm 1 as Generalized Deferred Accep-
tance with Flexible Diversity (GDA-FD).

Here is an example illustrating how GDA-FD works.

Example 2. There are 4 students S = {1, . . . , 4} where stu-
dents {1, 2, 3} belong to type t1 and student 4 belongs to type
t2. Suppose there is one school b that has 3 school seats
H = {h1, h2, h3}, a priority list 1, 2, 3, 4 and precedence
relation that requires proportionality ratio of 2: 1 between t1
and t2. The preference profile of students are as follows: h1
�1 h2 �1 h3, h2 �2 h3 �2 h1, h3 �3 h2 �3 h1, h3 �4 h1
�4 h2. We abuse the notation of preferences and contracts,
since there is only one school b. In the first round, students
propose (1, h1), (2, h2), (3, h3), (4, h3) and school b chooses
(1, h1), (2, h2), (4, h3). In the second round, students pro-
pose (1, h1), (2, h2), (3, h2), (4, h3) and school b chooses
(1, h1), (2, h2), (4, h3). In the final round, students propose
(1, h1), (2, h2), (3, h1), (4, h3) and school b chooses (1, h1),
(2, h2), and (4, h3).

Theorem 1. The GDA-FD algorithm runs in polynomial-
time and returns a feasible outcome that is non-wasteful, even
if each student has multiple types.

Next, we propose a stability concept for the setting of
School Choice with Flexible Diversity Goals and Specialized
Seats by taking the dynamic precedence of schools into ac-
count. The following Definition 1 captures a natural idea
called dynamic priority proposed in a influential work on
school choice with diversity goals [Ehlers et al., 2014]. While
our new definition is applicable to any market with flexible di-
versity goals. When diversity goals are not considered, it is
equivalent to the standard stability concept.

Definition 1 (Stability). Given a feasible outcome Y with
(i, h′, b′) ∈ Y , a student i and a school b will form a block-
ing pair if (i, h, b) �i (i, h′, b′) and either i) the outcome
Y ∪ {(i, h, b)} \ {(i, h′, b′)} is feasible; or ii) there exists

a contract (j, h, b) ∈ Y such that for all t ∈ T (i) and
all t′ ∈ T (j) and for the outcome Y ′ = Y \ {(j, h, b)},
one of the following conditions holds: a) t Pb(Y

′) t′; or b)
(i, h, b) �b (j, h, b) and either T (i) = T (j) or t Ib(Y ′) t′

holds. A feasible outcome is stable if there is no blocking pair.

We will try to understand how far stability can be achieved
under various conditions.

5.2 No Specialized Seats
We first focus on the case in which each school has identi-
cal/homogenous school seats or students are indifferent be-
tween school seats of the same school. This model is still
a significant generalization of the controlled school choice
problem [Ehlers et al., 2014] in which all the school seats are
identical and schools impose soft minimum and maximum
quotas on each type. In contrast, our model allows for much
more general diversity goals including type-specific quotas.
Our first result is the following Theorem 2.
Theorem 2. When there are no specialized seats and each
student has one type, GDA-FD is strategy-proof for the stu-
dents and yields a stable outcome.

Note that to run GDA-FD, students need to break ties lex-
icographically to derive a strict preference relation over con-
tracts. The proof idea for Theorem 2 is as follows. We show
that in our framework, even though the choice functions of
schools capture complex diversity goals, they still satisfy two
key properties called substitutability (SUB) and law of ag-
gregate demand (LAD) as defined by Hatfield and Milgrom
[2005]. Once these properties are established, we invoke a
general result of Hatfield and Milgrom [2005] that the Gener-
alized Deferred Acceptance is strategy-proof for the students
and always yields a stable outcome.

Note that Theorem 2 does not hold when each student may
have multiple types, as mentioned in Theorem 3.
Theorem 3. When there are no specialized seats and each
student has multiple types, GDA-FD is no longer strategy-
proof for the students and does not always yield a stable out-
come.

6 Specialized Seats
In this section, we delve deeper into the case where students
may distinguish between certain seats of a school. We study
which positive properties of GDA-FD such as strategyproof-
ness continue to hold under more general preferences, and
present negative results that stable outcomes are not guaran-
teed to exist even under very restrictive conditions.

6.1 Case of a Global School
We first warm up by getting an in-depth understanding of
GDA-FD for the case of a global school. The case of a global
school is still an important setting that captures scenarios such
as hiring of candidates by a company under diversity goals.
We provide an alternative view of GDA-FD by showing that
it is equivalent to a sequential allocation algorithm (Algo-
rithm 3) under the assumption that there is a policy maker
who treats the set of school seats as one global school b that
has a global priority and a precedence ordering. Algorithm 3



can be viewed as a generalized version of serial dictatorship
or sequential allocation in which dynamic diversity priorities
are taken into account.

Input: An instance I with global priorities and precedence relation
for school b

Output: An outcome Z ⊆ X

1: while some student is unmatched and can get an unallocated
school seat do

2: Identify the set of types T ′ with the highest precedence based
on Rb(Z) for which there exists some student who satisfies
some type in T ′

3: Among the students who satisfy some type in T ′, find the
student i ∈ S who has the highest school priority based on
�b (which is achieved from %b by any fixed tie-breaking
rule)

4: Assign student i her favorite contract x = (i, h, b) among
X , Z ← Z ∪ {x}

5: Remove the student i from the market, S ← S \ {i}
6: Remove the set of contracts involving student i and seat h,

X \ (Xi ∪Xh)
7: return Z

Algorithm 3: Sequential Allocation Under Dynamic Diversity Goals

An outcomeX is weakly Pareto optimal if there is no other
outcome X ′ such that all the students get a more preferred
outcome. An algorithm is type-strategyproof if no student
has an incentive to report a subset of her true types. Next, we
summarize the properties of the Algorithm 3 in Theorem 4.
Theorem 4. If there is one global school, even if students
have multiple types, Algorithm 3 is strategyproof and type-
strategyproof and the outcome returned by Algorithm 3 is
weakly Pareto optimal.

Next, we show Algorithm 3 has a strong connection with
GDA-FD for the setting in which students have strict prefer-
ences over the school seats and there is exactly one school.
Theorem 5. When there is exactly one school, the GDA-FD
algorithm returns the same outcome as Algorithm 3 even if
each student may have multiple types

Proof. (Sketch) Assume Algorithm 2 terminates in m itera-
tions. For each iteration k ∈ [1,m], let Y 1, . . . , Y m denote
the set of contracts proposed by students. We prove that Al-
gorithm 3 also returns the same outcome Y m given the same
input in the Appendix.

Although the GDA-FD remains strategyproof when there
is one global school and each student has a strict preference
over school seats, it does not return a stable outcome even if
each student has one type, as mentioned in Theorem 6.
Theorem 6. When each student has a strict preference over
school seats, then the GDA-FD algorithm and Algorithm 3 do
not return a stable outcome even if there is only one school
and each student has one type.

6.2 School-based Preferences
In this section, we consider the case that students have school-
based preferences. A student has school-based preferences if
all the school seats of one school are preferred over all the

Input: I, ChS , ChC , a set of contracts Y
Output: An outcome Z ⊆ Y

1: Let I ′ be the instance in which students are indifferent between
school seats of the same school.

2: Let Y denote the outcome after applying GDA-FD to I ′.
3: Let Sj denote the set of students who get matched to school bj

in the outcome Y .
4: for each j ∈ [1, · · · ,m] where m = |C| do
5: Apply GDA-FD to the set of students Sj and school bj to al-

locate the school seats of bj to Sj , with respect to the original
preferences �S in I . Let the outcome be Y ′

j .
6: return Z =

⋃m
j=1 Y

′
j .

Algorithm 4: Modified GDA-FD: Algorithm for school-based
preferences

school seats of another school or vice versa. Note that stu-
dents may have different preferences over school seats within
the same school. For school-based preferences, we assume
that all the school seats of a school are acceptable or none.
The model of school choice with identical school seats is a
special class of school-based preferences. The case of a sin-
gle school is also a special case of school-based preferences.

Theorem 7. For school-based preferences, GDA-FD is not
strategy-proof for students even if each student has one type.

Next, we design a new algorithm (Algorithm 4) for the case
of school-based preferences which invokes GDA-FD twice.
In the first stage of Algorithm 4, we first run GDA-FD on a
modified instance I ′ in which school seats within a school
are identical. This gives us information about which students
are matched to which schools. In the second stage, we ap-
ply GDA-FD to each school and the set of students who are
matched to that school based on students’ true preferences
over school seats. The second step determines which student
receives which school seat. Algorithm 4 is strategyproof if
each student has a single type as shown in Theorem 8.

Theorem 8. For school-based preferences, when each stu-
dent has one type, Algorithm 4 is strategy-proof for students.

Next, we point out an impossibility result that the set of
stable outcomes may be empty for school-based preferences
even if under very restrictive conditions as shown in Theo-
rem 9.

Theorem 9. When each student has a strict preference over
school seats, the set of stable outcomes may be empty even
if each student has one type and all schools have the same
priority ordering over students.

7 Conclusions
We proposed a matching market model for residential mar-
kets with flexible diversity goals. We provided a clear under-
standing of under which conditions a stable matching is guar-
anteed to exist. Our diversity goal framework can be applied
to many other settings in which priorities for different types
dynamically change based on the current allocation. An in-
teresting research direction is to identify other sufficient con-
ditions for the guaranteed existence of stable outcomes under
diversity goals.
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