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Abstract We consider the assignment problem in which agents express ordinal pref-
erences over m objects and the objects are allocated to the agents based on the
preferences. In a recent paper Brams, Kilgour, and Klamler (Not AMS 61(2):130–
141, 2014) , presented the AL method to compute an envy-free assignment for two
agents. The AL method crucially depends on the assumption that agents have strict
preferences over objects. We generalize the AL method to the case where agents may
express indifferences and prove the axiomatic properties satisfied by the algorithm.
As a result of the generalization, we also get a O(m) speedup on previous algorithms
to check whether a complete envy-free assignment exists or not. Finally, we show that
unless P = N P , there can be no polynomial time extension of GAL to the case of
arbitrary number of agents.

Keywords Fair division · Envy-freeness · Pareto optimality · AL method

JEL Classification C70 · D61 · D71

1 Introduction

Fair allocation of resources is one of the most critical issues faced by society. A basic,
yet widely applicable, problem in computer science and economics is to allocate dis-
crete objects to agents given the ordinal preferences of the agents over the objects. The
setting is referred to as the assignment problem or the house allocation problem (see,
e.g., Abraham et al. 2005; Aziz et al. 2014; Bouveret et al. 2010; Brams and Kaplan
2004; Brams et al. 2003; Brams and Fishburn 2000; Brams et al. 2012; Demko andHill
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1988; Gärdenfors 1973; Manlove 2013; Wilson 1977; Young 1995). In this setting,
there are a set of agents N = {1, . . . , n} and a set of objects O = {o1, . . . , om} with
each agent i ∈ N expressing ordinal preferences �i over O . Each object is assumed
to be acceptable to the agents. The goal is to allocate the objects among the agents in
a fair or optimal manner without allowing transfer of money. The model is applicable
to many resource allocations or fair division settings, where the objects may be pub-
lic houses, school seats, course enrolments, kidneys for transplant, car park spaces,
chores, joint assets of a divorcing couple, or time slots in schedules.

For the assignment problem, the case of two agents is especially central. Many
disputes are between two parties and may require division of common resources.
Divorce proceedings are one of the settings in which common assets need to be divided
among the two parties. Other examples in history include partition of countries which
results in the need to divide common assets.

When objects are allocated among agents, it is desirable that they are allocated
in a fair and efficient manner. For fairness, one of the most established concepts is
envy-freeness. A formal study of envy-freeness in microeconomics can be traced back
to the work of Foley (1967). Envy-freeness requires that each agent should prefer its
allocation over other agents’ allocations. Envy-freeness can be trivially satisfied by not
giving any objects to any agents. However, if we insist that the assignment should be
complete, i.e., it allocated all the objects to the agents, no assignment may be envy-free
as is the case in which there is only one object and the agent who does not get any
object is envious. The most established notion of efficiency is Pareto optimality which
requires that there should be no other allocation which each agent weakly prefers
and at least one agent strictly prefers. Pareto optimality has been termed the “single
most important tool of normative economic analysis” (Moulin 2003). In case there is
one object but multiple agents, there does not exist an assignment that is both Pareto
optimal and envy-free. The reason is that a Pareto optimal assignment allocates the
object to some agent in which case the other agents envy him.

In view of the importance of the two-agent setting and the fact that there may
not exist a Pareto optimal and envy-free assignment, Brams et al. (2014) presented
an elegant algorithm called AL for the case of two agents that computes a maximal
assignment that is envy-free aswell as locally Pareto optimal (Pareto optimal for the set
of allocated objects).1 The algorithm has received attention in the literature (see e.g.,
Brams 2014; Bouveret et al. 2015; Dickerson et al. 2014; Procaccia and Wang 2014).
The desirable aspect of AL is that it returns a locally Pareto optimal and a maximal
envy-free assignment. By maximal, we mean that unallocated objects cannot be added
to the agents’ partial allocations without compromising envy-freeness. Brams et al.
(2014) also claim that AL returns a complete envy-free assignment if there exists one
complete envy-free assignment. One possible limitation of the AL method is that it
assumes that agents have strict preferences over objects. We present a generalization
of the AL method in which agents may express indifferences among objects.

Indifferences in preferences are not only a natural relaxation but are also a practical
reality in many cases. For example, if there are multiple copies of the same object with

1 The notion of envy-freeness that they use is equivalent to SD (stochastic dominance) envy-freeness (Aziz
et al. 2014) and necessary envy-freeness (Bouveret et al. 2010).
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the same characteristics, then an agent is invariably indifferent among all such copies.
Indifferences can lead to various challenges. The complexity of solution concepts
in the presence of indifferences can be considerably more than in the case of strict
preferences. A famous example is that of roommate markets for which the problem of
finding a stable matching is polynomial time solvable for strict preferences but NP-
complete for weak orders (Ronn 1990). Similarly, a number of fairness concepts are
harder to compute when weak orders are allowed (Aziz et al. 2014). In view of this,
effort has been taken to generalize algorithms and rules for the case of indifferences in
voting (see e.g., Aziz et al. 2013a; Cullinan et al. 2014), housingmarkets (see e.g., Aziz
and de Keijzer 2012; Saban and Sethuraman 2013), coalition formation (Aziz et al.
2013b), and various matching market models (Iwama and Miyazaki 2008; Manlove
2013; Scott 2005). The main contribution of this paper is a generalization of ALwhich
we refer to as GAL for the case in which agents may express indifferences. The main
result of the paper is as follows.

Theorem 1 For two agents, GAL returns in time O(m2) a maximal envy-free and
locally Pareto optimal assignment even if agents express weak preferences. If a com-
plete envy-free assignment exists, GAL computes a complete envy-free assignment.
Moreover, there exists no other assignment that Pareto dominates it and is envy-free
and there exists no other assignment that allocates a superset of the allocated objects
and is envy-free.

Previously, Bouveret et al. (2010) and Aziz et al. (2014) presented O(m3) time
algorithms to check whether a complete envy-free assignment for two agents exists or
not. The algorithms require solving network flow or maximum matching problems.
As a corollary of GAL, we obtain a simple O(m2) algorithm to check whether there
exists a complete assignment that is EF.

A critical reader may ask whether GAL can be generalized to handle an arbitrary
number of agents.We show that unless complexity classes P andNP coincide (Fortnow
2013), there exists no polynomial time algorithm for an arbitrary number of agents
that satisfies the same properties as GAL.

2 Related work

Computation of fair discrete assignments has been intensely studied in the last decade.
In many of the papers considered, agents express cardinal utilities for the objects and
the goal is to compute fair assignments (see e.g., Lipton et al. 2004; Procaccia and
Wang 2014). We consider the setting in which agents only express ordinal preferences
over objects (Aziz et al. 2014; Bouveret et al. 2010; Brams and Kaplan 2004; Brams
et al. 2003; Brams and Fishburn 2000; Pruhs and Woeginger 2012) which are less
demanding to elicit.

When agents express preferences over objects and we need to reason about prefer-
ences over allocations, there are different ways one can define envy-freeness such as
possible envy-freeness and weak SD envy-freeness (Aziz et al. 2014). In this paper, we
will use the strongest known reasonable notion of envy-freeness. The notion is equiv-
alent to ‘not envy-possible’ (Brams et al. 2003), necessary envy-freeness (Bouveret

123



310 H. Aziz

et al. 2010), SD envy-freeness (Aziz et al. 2014), and EF (envy-freeness) notion used
by Brams et al. (2014). We will refer to the notion simply as EF just like Brams et al.
(2014) do. Aziz et al. (2014) and Bouveret et al. (2010) presented O(m3) algorithms
to check whether there exists a complete EF assignment. We show that there exists a
simple O(m2) algorithm for the problem even if agents express weak preferences.

There are other papers (Aziz 2014; Chevaleyre et al. 2006; de Keijzer et al. 2009) in
fair division in which agents explicitly express ordinal preferences over sets of objects
rather than simply expressing preferences over objects (Aziz 2014; Chevaleyre et al.
2006; de Keijzer et al. 2009). For these more expressive models, the computational
complexity of computing fair assignments is either even higher (Chevaleyre et al. 2006;
de Keijzer et al. 2009) or representing preferences requires exponential space (Aziz
2014; Brams et al. 2012). In this paper, we restrict agents to simply express ordinal
preferences over objects.

3 Preliminaries

An assignment problem is a triple (N , O,�) such that N = {1, . . . , n} is a set of
agents, O = {o1, . . . , om} is a set of objects, and the preference profile �= (�1
, . . . ,�n) specifies for each agent i its preference�i overO . Agentsmay be indifferent
among objects. We will denote by �i the strict part and by ∼i the indifference part of
the relation �i . We denote �i : E1

i , . . . , E
ki
i for each agent i with equivalence classes

in decreasing order of preferences. Thus, each set E j
i is a maximal equivalence class of

objects among which agent i is indifferent, and ki is the number of equivalence classes
of agent i . If an equivalence class is a singleton {o}, we list the object o in the list
without the curly brackets. A preference profile consists of dichotomous preferences
if each agent has at most two equivalence classes. A preference profile consists of
strict preferences if each agent has strict preferences over the objects. For a subset
of objects O ′ ⊆ O , we will denote {o ∈ O ′ : o �i o′ ∈ O ′} by max�i

(O ′) and
{o ∈ O ′ : o �i o′ ∈ O ′} by min�i

(O ′).

Definition 1 (Assignment) An assignment p = (p(1), . . . , p(n)) specifies the allo-
cation of objects p(i) to each i ∈ N such that p(i) ⊆ O and p(i) ∩ p( j) = ∅ for all
i 	= j . An assignment is complete if

⋃

i∈N
p(i) = O.

We define the stochastic dominance (SD) relation which extends preferences over
objects to preferences over sets of objects. An agent SD prefers one allocation over
another if for each object o, the former allocation gives the agent as many objects at
least as preferred as o as the latter allocation.

Definition 2 [(SD (stochastic dominance)] Given two assignments p and q, p(i) �SD
i

q(i), i.e., agent i SD prefers allocation p(i) to allocation q(i) if for each o ∈ O ,
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∣∣{o′ : o′ �i o} ∩ p(i)
∣∣ ≥ ∣∣{o′ : o′ �i o} ∩ q(i)

∣∣ .

We say that agent i strictly SD prefers p(i) to q(i) denoted by p(i) �SD
i q(i) if

p(i) �SD
i q(i) and ¬[q(i) �SD

i p(i)].
Although each agent i expresses ordinal preferences over objects, he could have a

private cardinal utility ui consistent with �i : ui (o) ≥ ui (o′) if and only if o �i o′.

Definition 3 (SD-efficiency) An assignment p is SD-efficient if there exists no other
assignment q such that q(i) �SD

i p(i) for all i ∈ N and q(i) �SD
i p(i) for some

i ∈ N .

SD-efficiency is equivalent to Pareto optimality for discrete assignments as defined
by Brams et al. (2014). Hence, we will refer to SD-efficiency as Pareto optimality and
SD-domination as Pareto domination.

Definition 4 (Locally Pareto optimal) An assignment p is LPO (locally Pareto opti-
mal) if there exists no other assignment q such that

⋃
i∈N p(i) = ⋃

i∈N q(i) and
q(i) �SD

i p(i) for all i ∈ N and q(i) �SD
i p(i) for some i ∈ N .

Definition 5 (SD envy-freeness) An assignment p satisfies SD envy-freeness or is SD
envy-free if each agent SD prefers its allocation to that of any other agent:

p(i) �SD
i p( j) for all i, j ∈ N .

From the definition, it is easy to see that a necessary condition for SD envy-freeness
is that each agent gets the same number of objects.

Brams et al. (2014) defined EF as follows. We use the same definition as the one by
Brams et al. (2014) but write it for any number of agents. Furthermore, we use weakly
prefers rather than strictly prefers since we are considering weak preferences.

Definition 6 [EF (envy-freeness)] An allocation p is EF (envy-free) if for all i, j ∈ N ,
|p(i)| = |p( j)| and there exists an injection fi j : p(i) → p( j) and an injection
f j i : p( j) → p(i) such that for each object o ∈ p(i), i (weakly) prefers o to fi j (o)
and for each object o ∈ p( j), j (weakly) prefers o to f j i (o).

Therefore, using a similar argument as (Lemma 1, Brams et al. 2014), we can
show that EF is equivalent to SD envy-freeness. We detail the argument for the sake
of completeness and to formally extend Lemma 1(Brams et al. 2014) to the case of
indifferences.

Lemma 1 EF is equivalent to SD envy-freeness.

Proof We first show that EF implies SD envy-freeness. Suppose p satisfies EF and
take any object o ∈ O . Suppose that there is an object o′ ∈ p(i) such that fi j (o′) �i o.
By the definition of fi j , we know that o′ �i fi j (o′). Since fi j (o′) �i o, we get that
o′ �i fi j (o′) �i o. Hence,

∣∣{o′ : o′ �i o} ∩ p(i)
∣∣ ≥ ∣∣{o′ : o′ �i o} ∩ p( j)

∣∣ .

123



312 H. Aziz

We now show that SD envy-freeness implies EF. Suppose that assignment p does
not satisfy EF with the EF condition violated for agent i . Consider a bipartite graph
G = (p( j) ∪ p(i), E) where {o, o′} ∈ E if o ∈ p( j), o′ ∈ p(i), and o′ �i o. Since
p does not satisfy EF for i , G does not admit a perfect matching. By Hall’s theorem,
there exists set O ′ ⊆ p( j) such that |N (O ′)| < |O ′| where N is the neighborhood of
O ′ in the graph G. Consider an object o ∈ min�i

(O ′). Since, |N (O ′)| < |O ′|, this it
implies that

∣∣{o′ : o′ �i o} ∩ p(i)
∣∣ <

∣∣{o′ : o′ �i o} ∩ p( j)
∣∣ .

But then p does not satisfy SD envy-freeness. �
Lemma 2 It can be checked in O(n2m) time whether a given assignment is EF or
not.

Proof We show that it can be checked in O(m) time whether a given assignment for a
constant number agents is SD envy-free or not. We first show that an SD comparison
between any two allocations can be made in O(m) time. Let us say that we want to
check whether p(i) �SD

i p( j) where j is some agent other than i . Without loss of
generality, assume that i’s preferences are a coarsening of linear order o1, . . . , om .

– We construct in O(m) a vector x(p(i)) = (x1, . . . , xm) where xi = 1 if oi ∈
p(i) and xi = 0 otherwise. Using x(p(i)), we construct in O(ki ) time a vector
s′(p(i)) = (s′

1, . . . , s
′
ki

) where s′
j = |{E j

i } ∩ p(i)|. Using s′(p(i)), we construct
in O(ki ) time a vector s(p(i)) = (s1, . . . , ski ) where s j = ∑ j

�=1 s
′
j .

– In a similar way, we construct in O(m) a vector y(p( j)) = (y1, . . . , ym) where
yi = 1 if oi ∈ p( j) and xi = 0 otherwise. Using y(p(i)), we construct in O(ki )
time a vector t ′(p( j)) = (t ′1, . . . , t ′ki ) where t j = |{E j

i } ∩ p( j)|. Using t ′(p( j)),
we construct in O(ki ) time a vector t (p(i)) = (t1, . . . , tki ) where t j = ∑ j

�=1 t
′
�.

Now p(i) �SD
i p( j) iff s j ≥ t j for all j ∈ {1, . . . , ki }. This again takes time O(ki ).

Hence, an SD comparison between allocations takes time O(m) + 4O(ki ) = O(m).
To test EF, we need to make n(n− 1) comparisons. Hence, testing EF of an assign-

ment takes time O(n2m). �
In the paper, we will assume that n = 2, i.e., there are two agents. Hence for n = 2,

EF can be tested in time O(m). If we refer to some agent as i ∈ {1, 2}, then we will
refer to the other agent as −i . Even for more than two agents, we may refer to −i as
some agents other than i ∈ N .

We define maximal envy-freeness.

Definition 7 (Maximally envy-free assignment) We say that a partial assignment p
is maximally envy-free if it is envy-free and there exists no assignment q such that
q(i) ⊇ p(i) for all i ∈ N , q(i) ⊃ p(i) for some i ∈ N , and q is envy-free.

Finally, we define strong maximal envy-freeness.
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Definition 8 (Strong maximally envy-free assignment) We say that a partial assign-
ment p is strong maximally envy-free if it is envy-free and there exists no assignment
q such that

⋃
i∈N q(i) ⊃ ⋃

i∈N p(i) and q is envy-free.

We note that strong maximal envy-freeness implies maximal envy-freeness.

4 GAL: Generalized AL

Before we delve into GAL, we first informally describe a simplified version of AL that
still satisfies the properties of AL as described by Brams et al. (2014). Agents have
strict preferences and, in each round, they pick one object each. The algorithm repeats
the following until all objects have been allocated to agent 1, 2, or the contested pileC .
We will refer to an object as unallocated if it has not been allocated to 1 or 2 or placed
in C . If the most preferred unallocated object of the agents is not the same, each agent
picks its most preferred object. Otherwise, if the most preferred unallocated object
o coincides, then we check whether we can give it to agent 1. If o is given to agent
1 and the next most preferred unallocated object is given to agent 2 and the partial
assignment satisfies EF, then we allow such an allocation in the round. If not, we check
in the same way whether we can give it to agent 2.2 If o cannot be given to either of
the two, we put it in C .

The general idea of GAL is as follows. Since the preferences of the two agents are
weak orders, we first construct unique linear orders called priority orders based on the
preferences. Although the comparisons to check the feasibility of EF assignments are
still done with respect to the original preferences, the constructed linear orders help to
identify which unique object should each agent try to get first. The priority orders are
refinements of the preferences where, if an agent is indifferent between two objects,
it has higher priority for the object less preferred by the other agent. If both agents
are indifferent among two objects, then agent 1 has higher priority for the object with
the lower index and agent 2 has higher priority for the object with the higher index.
After suitably constructing the linear orders, >1 and >2, agents try to take the highest
priority object. If agents have a different highest priority object, they take their highest
priority objects. Otherwise, there is a conflict so we must try to give one of the agents
the highest priority object and give the other agent the second highest priority object
according to the priority list if it does not violate EF.3 If this cannot be done, we send
the contested object to C , the so-called contested pile. A key idea behind GAL is that
if an object o∗ is sent to the contested pile, then it cannot be the case that o∗ along with
some subsequent less preferred objects are allocated to agents and EF is not violated.
The algorithm is formally defined as Algorithm 1. Note that there is an asymmetry
in the algorithm in that agent one is considered first to get object o∗ in Step 18. One
can consider any of the two agents first or even toss a coin to select one agent. The
properties of the algorithm are not affected.

2 This feasibility check is phrased in a different way in the original description of AL but is equivalent to
checking for EF.
3 The view of EF as being defined with respect to the SD relation makes it easy to argue for a maximal EF
assignment.
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Algorithm 1 GAL—algorithm for envy-free assignment of indivisible objects to two
agents
Input: ((�1, �2), O)

Output: EF assignment p
1 Construct the linear order >1 for agent 1: for all i, j ∈ {1, . . . ,m}, oi >1 o j if oi �1 o j ; o j >1 oi if

oi �2 o j and oi ∼1 o j ; oi >1 o j if oi ∼2 o j and oi ∼1 o j and i < j .
2 Construct the linear order >2 for agent 2: for all i, j ∈ {1, . . . ,m}, oi >2 o j if oi �2 o j ; o j >2 oi if

oi �1 o j and oi ∼2 o j ; o j >2 oi if oi ∼2 o j and oi ∼1 o j and i < j .
3 O ′ ←− O
4 p(1) ←− ∅; p(2) ←− ∅
5 C ←− ∅
6 round number t ←− 0
7 while O ′ 	= ∅ do
8 t ←− t + 1
9 if |O ′| = 1 then
10 C ←− C ∪ O ′
11 else if max>1 (O

′) 	= max>2 (O
′) then

12 p(1) ←− p(1) ∪ max>1 (O
′)

13 p(2) ←− p(2) ∪ max>2 (O
′)

14 O ′ ←− O ′ \ {max>1 (O
′),max>2 (O

′)}
15 else if max>1 (O

′) = max>2 (O
′) then

16 o∗ ←− max>1 (O
′) (or max>2 (O

′))
17 O ′ ←− O ′ \ {o∗}
18 if (p(1) ∪ {o∗}, p(2) ∪ {max>2 (O

′)}) is EF w.r.t � then
19 p(1) ←− p(1) ∪ {o∗}
20 p(2) ←− p(2) ∪ {max>2 (O

′)}
21 O ′ ←− O ′ \ {max>2 (O

′)}
22 else if (p(1) ∪ {max>1 (O

′)}, p(2) ∪ {o∗}) is EF w.r.t � then
23 p(2) ←− p(2) ∪ {o∗}
24 p(1) ←− p(1) ∪ {max>1 (O

′)}
25 O ′ ←− O ′ \ {{max>1 (O

′)}
26 else
27 C ←− C ∪ {o∗}
28 end if
29 end if
30 end while
31 return (p(1), p(2))

First observe that for strict preferences, GAL is equivalent to the simplified AL
method. The reason is that for strict preferences, there exists a unique priority order
irrespective of any lexicographical tie-breaking order.We present a couple of examples
to illustrate how GAL works. The contested pile is empty in one example and non-
empty in another.

Example 1

�1: {o1, o2, o3}, {o4, o5, o6}
�2: {o2, o3, o4}, {o6}, {o1, o5}
>1: o1, o2, o3, o5, o6, o4
>2: o4, o3, o2, o6, o5, o1

(i) Round 1: p(1) = {o1}, p(2) = {o4}, C = ∅;
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(ii) Round 2: p(1) = {o1, o2}, p(2) = {o4, o3}, C = ∅;
(iii) Round 3: p(1) = {o1, o2, o5}, p(2) = {o4, o3, o6}, C = ∅.

Example 2

�1: {o7}, {o1, o2, o3}, {o4, o5, o6}
�2: {o7}, {o1}, {o3}, {o4, o5}, {o2, o6}
>1: o7, o2, o3, o1, o6, o4, o5
>2: o7, o1, o3, o5, o4, o6, o2

(i) Round 1: p(1) = ∅, p(2) = ∅, C = {o7};
(ii) Round 2: p(1) = {o2}, p(2) = {o1}, C = {o7};
(iii) Round 3: p(1) = {o2, o3}, p(2) = {o1, o5}, C = {o7};
(iv) Round 4: p(1) = {o2, o3, o6}, p(2) = {o1, o5, o4}, C = {o7}.

Proposition 1 GAL runs in O(m2) time and is deterministic.

Proof Thepriority orders of the agents canbe computed in timeO(m2). Theweakpref-
erences�i of each agent are viewed as an adjacencymatrixMi in whichMi [o, o′] = 1
if o �i o′, Mi [o, o′] = 0 if o ∼i o′, and Mi [o, o′] = −1 if o ≺i o′. The matrix can
be computed in time O(m2). For each pair o, o′ ∈ O in the priority list of agent i ,
the relative positions can be decided by examining the two preference comparisons
�i and �′

i between o and o′. Hence, the priority order of an agent can be computed
in O(m2).

In each round, either one object each is allocated to the agents or one contested
object is sent to C . If each agent has a different highest priority unallocated object,
then the allocation takes constant time. Otherwise, the agents have the same highest
priority contested object o∗. In this case, we need to make at most two checks for
whether there exists an EF partial assignment that allocates o∗ to one of the agents. In
either of these checks, we simply need to verify whether the given partial assignment
is EF or not which takes time O(m) according to Lemma 2. Thus, GAL takes time
O(m2). �

We present a simple argument why GAL returns a maximal EF assignment. Previ-
ously, Brams et al. (2014) had proved that AL returns a maximal EF assignment when
preferences are strict. Later, we will prove that GAL even satisfies strong maximal
envy-freeness.

Proposition 2 GAL returns a maximal EF assignment.

Proof The GAL outcome is EF. This follows from the way the partial assignments
are constructed so that EF is maintained. Consider O ′ the set of unallocated objects. If
max>1(O

′) = max>2(O
′), then the partial assignment is only modified after checking

that the modification still satisfies EF. If max>1(O
′) 	= max>1(O

′), then each agent
is given a most preferred unallocated object from O ′. Since the partial allocation p
is EF, and for each o ∈ p(i), o �i max>i (O

′) �i max>−i (O
′), it follows that the

allocation which gives p(i) ∪ {max>i (O
′)} to each i ∈ {1, 2} is EF.
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We now show that the outcome is a maximal EF assignment. Assume for contra-
diction that GAL’s outcome p is not maximal EF. This means that for some object
o ∈ C there exists an assignment q that matches the objects matched by p as well
as o and possibly other objects. Consider the first such object o that is to be placed
in the contested pile C and consider the stage in Algorithm 1 where o was sent to C .
If o was given to agent −i , then agent i was given the next highest priority object o′
according to >i which still leads to infeasibility of EF. Clearly, o �i o′ or else the
partial assignment pt at the stage would not fail EF. For every other unallocated object
o′′ in O ′ (that is not in the contested pile) at that stage, it holds that o′ �i o′′. Hence,
no object o′′ can be given to agent i while o is given to−i so that pt is still EF . Hence
q cannot be EF, a contradiction. �

Next, we strengthen Proposition 2 by showing that GAL satisfies strong maximal
envy-freeness. For the proposition, we require the following lemma. It says that a
partial assignment is EF if for each allocated object o, an agent gets at least half of the
allocated objects that are at least as preferred as o.

Lemma 3 For the case of two agents, any partial assignment p is EF iff for each
o ∈ p(i) ∪ p(−i),

|p(i) ∩ {o′ : o′ �i o}| ≥ |{o′ ∈ p(i) ∪ p(−i) : o′ �i o}|/2.

Proof For two agents, a partial assignment is EF if and only if it is SD-proportional
(Theorem 4(ii), Aziz et al. 2015). Assignment p is SD-proportional if for each i ∈ N
and o ∈ ∪i∈N p(i),

|p(i) ∩ {o′ : o′ �i o}| ≥ |{o′ ∈ ∪i∈N p(i) : o′ �i o}|/n.

For n = 2, we get the statement in the lemma. �
Proposition 3 GAL returns a strong maximal EF assignment.

Proof Let p be the partial assignment returned by GAL. Let the objects that are
not allocated by p be o′

1, o
′
2, . . . in the order in which they are placed in C during the

running of GAL.We denote this order by π . Assume for contradiction that there exists
an assignment q such that

⋃
i∈N q(i) ⊃ ⋃

i∈N p(i) and q is envy-free.Without loss of
generality, letq be such an assignment that allocates the earliest objecto in the sequence
π . This implies that there exists no EF assignment r such that (p(i)∪ p(−i)∪{o′}) ⊂
(r(i) ∪ r(−i)) where o′ is an object that comes earlier than o in the sequence π .

When o is placed in the contested pile, let the partial EF allocation be pt . We
note that o′ �i o for all o′ ∈ pt (i) and o′ �−i o for all o′ ∈ pt (−i). If there are
no objects left to be considered for allocation, then this is a contradiction since q
allocates objects allocated by p as well as o without violating EF. Let us assume
that there are still some objects to be considered for allocation. Let the next priority
available unallocated objects of i and −i be oi and o−i , respectively, where it could
be possible that oi = o−i . Since o is placed in the contested pile, it follows that the
assignment in which pt (i) ∪ {o} is allocated to i and pt (−i) ∪ {o−i } is allocated
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to −i not EF. Similarly, the assignment in which pt (i) ∪ {oi } is allocated to i and
pt (−i) ∪ {o} is allocated to −i is not EF. This implies that o �i oi and o �−i o−i .
This implies that o is strictly more preferred by i and −i than all objects that are
neither currently in C nor in pt (i)∪ pt (−i). We denote the current C as Ct . Note that
(q(i) ∪ q(−i)) ∩ Ct = ∅ because o is the first object in sequence π that is allocated
to an agent by q but not by p.

Now consider the objects in pt (i). All objects in pt (i) have a better rank than o
for agent i . Secondly, in agent i’s priority list, if an object that is weakly preferred by
agent i to o is not allocated to i , it is allocated to agent −i . Now agent i’s allocation
pt (i) is such that if o is given agent −i and oi to agent i , the assignment is not EF. By
Lemma 3, this means that

|(pt (i) ∪ {oi }) ∩ {o′ ∈ pt (i) ∪ pt (−i) ∪ {o, oi } : o′ �i o}|
< |{o′ ∈ pt (i) ∪ pt (−i) ∪ {o, oi } : o′ �i o}|/2.

Since o �i oi , the statement above is equivalent to

|pt (i) ∩ {o′ ∈ pt (i) ∪ pt (−i) ∪ {o} : o′ �i o}|
< |{o′ ∈ pt (i) ∪ p(−i) ∪ {o} : o′ �i o}|/2.

Since −i cannot get o without the partial assignment pt violating envy-freeness,
we get the following condition for agent −i by symmetry.

|pt (−i) ∩ {o′ ∈ pt (i) ∪ pt (−i) ∪ {o} : o′ �−i o}|
< |{o′ ∈ pt (i) ∪ pt (−i) ∪ {o} : o′ �−i o}|/2

Since o is strictly more preferred by i and −i over all the other unallocated objects,
it follows from the above inequalities that

{o′ ∈ O \ Ct : o′ �i o} = pt (i) ∪ pt (−i) ∪ {o}
and

{o′ ∈ O \ Ct : o′ �−i o} = pt (i) ∪ pt (−i) ∪ {o}.
Since (q(i) ∪ q(−i)) ∩ Ct = ∅, it follows that

{o′ ∈ (q(i) ∪ q(−i)) : o′ �i o} = pt (i) ∪ pt (−i) ∪ {o}
and

{o′ ∈ (q(i) ∪ q(−i)) : o′ �−i o} = pt (i) ∪ pt (−i) ∪ {o}.
Hence, {o′ ∈ (q(i) ∪ q(−i)) : o′ �i o} = {o′ ∈ (q(i) ∪ q(−i)) : o′ �−i o}. Note

that |{o′ ∈ (q(i)∪ q(−i)) : o′ �i o}| = |{o′ ∈ (q(i)∪ q(−i)) : o′ �−i o}| is odd since
|pt (i) ∪ pt (−i)| is even. Now, if
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|q(i) ∩ {o′ ∈ (q(i) ∪ q(−i)) : o′ �i o}| ≥ |{o′ ∈ q(i) ∪ q(−i) : o′ �i o}|/2,

it follows that

|q(−i) ∩ {o′ ∈ (q(i) ∪ q(−i)) : o′ �−i o}| < |{o′ ∈ q(i) ∪ q(−i) : o′ �−i o}|/2.

By Lemma 3, this means that EF is violated for agent −i . Hence, we have shown that
p is a strong maximal EF assignment. �

The argument for Proposition 3 can be used to show that GAL returns a strong
maximal EF assignment p that allocates the maximum number of objects.

Proposition 4 GAL returns an EF assignment p that allocates the maximum number
of objects.

Proof Weknow fromProposition 3 thatGAL returns a strongmaximal EF assignment.
Let us denote this assignment by p. Assume for contradiction that there exists another
strong maximal EF assignment q that allocates strictly more objects. But this means
that q allocates some objects to the agents that p does not allocate to the agents. Let
o be the first such object that is placed in the contested pile during the running of
GAL that returns p. By the argument in the proof of Proposition 3, there exists no EF
assignment that allocates the objects allocated by GAL up till that point as well as o
and possibly some other objects. �

Proposition 3 implies that if there exists a complete EF assignment, then GAL
returns a complete EF assignment. 4

Proposition 5 If there exists a complete EF assignment, then GAL returns a complete
EF assignment.

Proof Since GAL returns a strong maximal EF assignment (Proposition 3), it will
return a complete EF assignment if such an assignment exists. �

Next, we show that the GAL outcome is LPO. Unlike Brams et al. (2014), we
cannot use the characterization of Brams and King (2005) that if agents have strict
preferences, any assignment as a result of sequential allocation is Pareto optimal.
Hence, we need a lemma.

Let (N , O,�) be an assignment problem and p be a discrete assignment. We will
create an auxiliary assignment problem and assignment where each agent is allocated
exactly one object (see e.g., Aziz et al. 2015). The clones of an agent i ∈ N are
the agents in N ′

i = {io : o ∈ O and o ∈ p(i)}. The cloned assignment problem of
(N , O,�) is (N ′, O,�′) such that N ′ = ⋃

i∈N N ′
i . and for each io ∈ N ′, �′

io
=�i .

The cloned assignment of p is the discrete assignment p′ in which o ∈ p′(io) if
o ∈ p(i) and o /∈ p′(io) otherwise. The cloned assignment of p is the discrete

4 The argument in Theorem 3 of Brams et al. (2014) only shows that for strict preferences, AL finds
maximally EF assignment. It does not show that for strict preferences, AL efficiently computes a complete
EF assignment if a complete EF assignment exists.
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assignment p′ in which each clone io gets at most one object o and it gets o only
if o ∈ p(i). A cloned assignment can easily be transformed back into the original
assignment where each agent i ∈ N is allocated all the objects assigned by p′ to the
clones of i .

Lemma 4 An assignment for two agents is LPO iff there exist no objects o, o′ such
that o is allocated to i , o′ is allocated to −i , o′ �i o and o �−i o′.

Proof By (Lemma 2, Aziz et al. 2015), an assignment is Pareto optimal if and only if
its cloned assignment is Pareto optimal for the cloned assignment problem. Hence, we
can restrict our attention to the cloned assignment and the cloned assignment setting.
If the cloned assignment is Pareto optimal, the original assignment is Pareto optimal.

If the cloned assignment is not Pareto optimal, then there exists a ‘trading cycle’
in which each object points to its owner, each cloned agent in the cycle points to an
object that is at least as preferred as its own object and at least one agent in the cycle
points to a strictly more preferred object than the one it owns (Aziz and de Keijzer
2012).

Firstly, we claim that there exists no trading cycle consisting only of clones of
one agent. Assume for contradiction that there exists a trading cycle consisting only
of clones of the same agent. Then, there exists at least one object that is minimally
preferred. The agent who points to this object also owns a minimally preferred object.
Hence, each agent owns a minimally preferred object, and thus the cycle is not Pareto
improving.

We now show that, if there exists a trading cycle, then there exists one which alter-
nates between clones of the two agents. Consider any cycle which has the following
path consisting of multiple clones of the same agent in succession:

oc1 → ic1 → oc2 → ic2 → · · · → ock → ick → ock+1 → −i ck+1 .

Since clones of each agent i have the identical preference, ic1 also points directly to
ock+1 . Hence, we know that there is also a path

oc1 → ic1 → ock+1 → −i ck+1 .

We now show that if there exists a trading cycle, if a clone of agent i points to
a strictly more preferred object, then we can assume it is the clone of agent i who
owns the least preferred object among all clones of i in the cycle. By the definition
of trading cycle, at least one agent points to an object strictly more preferred than the
object he owns. Assume that a clone of agent i gets a strictly more preferred object
in the trading cycle. Let such a clone be i j that points to o∗. Consider the clone i1 of
agent i who has the least preferred object among all clones of i in the cycle. We can
assume without loss of generality that i1 points to a strictly more preferred object than
the one he owns. If this were not the case, then we know that i j has a path to i1 and
i1 also strictly prefers o∗ over the object he owns. This means that there is a trading
cycle in which i1 points to a strictly more preferred object owned by a clone of −i .
Hence, without loss of generality, let the agents in the trading cycle have the following
sequence where i1 points to and strictly prefers the object of −i1 over his own object:
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i1,−i1, i2,−i2, . . . , ik,−ik, i1.

We now show that if there exists a trading cycle which alternates between clones of
the two agents, then there exists one with exactly one clone of each agent. Note that
−i1 at least weakly prefers the object of i2 to his own object. We distinguish between
two cases: (i) Clone i2 is indifferent between his object and the object owned by i1 (ii)
Clone i2 strictly prefers his object over the object owned by i1. In case of (i), clone
i2 strictly prefers −i1’s object over his own object. But this means that −i1 weakly
prefers i2’s object over his own object and i2 strictly prefers −i1’s object in which
case we have already shown that there exist o, o′ such that o is allocated to i , o′ is
allocated to −i , o′ �i o and o �−i o′. Now let us consider case (i i). Since i1 has the
least preferred object among all clones of i , it points to any object that i2 points to.
Hence, −i1 and i2 can be removed from the cycle, and we still have a trading cycle
in which i1 now points to the object of −i2. By repeating the argument inductively,
we can find the clone −ik who points to the object of i1 and i1 strictly prefers −ik’s
object over his own object. Hence, we have shown that there exist o, o′ such that o is
allocated to i , o′ is allocated to −i , o′ �i o and o �−i o′. �

We use Lemma 4 to obtain the following proposition.

Proposition 6 The GAL outcome is LPO.

Proof Let us constrain ourselves to the set of objects O ′ ⊆ O that are allocated to
agents 1 and 2. Now assume that the GAL outcome is not LPO. Then, the assignment
with respect to O ′ is not PO. By Lemma 4, there exists i ∈ {1, 2} such that i gets o in
some round t , o′ �i o, where o′ was allocated to −i and o �−i o′. This means that
o′ was allocated to −i in round t ′ ≤ t . Now if o �−i o′, then o would be a higher
priority object for −i so that it would not have gone for o′ before o. Then, it must be
that o ∼−i o′. But, if o ∼−i o′, then o would again be a higher priority object for −i
so that it would not have gone for o′ before o, hence a contradiction. �

In Proposition 6, we showed that there exists no other (not necessarily EF) assign-
ment that uses the same objects as the GAL outcome and is a Pareto improvement
over the GAL outcome. Next, we show that there exists no other EF assignment that
may use any objects and is a Pareto improvement over the GAL outcome.

Proposition 7 GAL returns an assignment such that there exists no other assignment
that Pareto dominates it and is EF.

Proof Assume for contradiction that GAL’s outcome p is SD-dominated by another
EF assignment q such that q(i) �SD

i p(i) for both i and q(i) �SD
i p(i) for at least

one i . Since p is a GAL outcome and q is EF, q cannot allocate more objects to the
agents than p. Let pt be the partial EF assignment after round t of GAL. Let qt be
the partial assignment in which each agent i gets the t ′ most preferred objects among
q(i) where t ′ is the number of objects allocated to i in pt . We now proceed in rounds
where in each round we check the highest priority allocated object of each of the two
agents that have not been checked. We check the partial assignments pt and qt in
each round t to see whether qt (i) �SD

i pt (i). Let us assume that qt (i) �SD
i pt (i)
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and qt (−i) �SD
−i pt (−i) for the smallest possible t . If both qt (i) �SD

i pt (i) and
qt (−i) �SD

−i pt (−i), then it means that in q both get higher priority objects than
p in that round. This is a contradiction as GAL would allocate these higher priority
and more preferred objects to the agents. Now assume that qt (i) �SD

i pt (i) and
qt (−i) ∼SD

−i pt (−i). This means that agent −i gets an equally preferred object and
the other agent i gets a higher priority object. But this is again a contradiction, because
GAL would have allocated the more preferred object to i in that round. �

Note that for the case of two agents, Aziz et al. (2014) presented a polynomial
time algorithm to check whether a complete SD envy-free assignment exists or not.
To compute a maximal SD envy-free assignment, one can consider different subsets
O ′ ⊂ O and check whether a complete SD envy-free assignment exists or not for O ′.
However, this approach would require checking exponential number of subsets.

We have already shown that GAL satisfies the desirable properties of AL on a more
general domain. Next, we show that under strict preferences GAL returns an assign-
ment that is a possible outcome of AL. In this sense, GAL is a ‘proper’ generalization
of AL.

Proposition 8 For strict preferences, GAL returns an AL outcome.

Proof For strict preferences, there exists a unique priority order irrespective of any
lexicographical tie-breaking order. We show that under strict preferences, GAL and
AL handle all the cases in an equivalent manner.

Let us compare the formal definition of AL (pp 133–134, Brams et al. 2014) with
the pseudocode of GAL. In AL, in stage t , the direction “If one unallocated item
remains, place it in CP and stop” is equivalent to Steps 9 and 10 of Algorithm 1.

In AL, in stage t , the direction “If no unallocated items remain, stop.” is equivalent
to the stopping condition in the while loop of Algorithm 1.

If both agents have different most preferred (equivalent to highest priority since
the preferences are strict) unallocated objects, then both GAL and AL behave in the
same manner and give the most preferred objects to the agents. For AL, this direction
is specified in the last sentence of the stage t.1.

Finally, both algorithms have a check for when both agents have the same most
preferred objects with this check being in stage t.2 in the specification of the AL
method. In AL, the most preferred available contested object i is tentatively given to
the one of the agents. In the specification of Algorithm 1, the most preferred available
object is also tentatively given to one of the agents. Since, in Algorithm 1, this object
is referred to as o∗, we will refer it as o∗ for both algorithms. Let us say that the
agent who gets it is agent −i . The other agent i is tentatively given the next most
preferred object that is not yet allocated. In the description of AL, i could be given
an even less preferred unallocated object but in at least one instantiation of AL, i is
tentatively given the next most preferred object that is still available. According to
AL, such a tentative assignment is feasible as long as the number of objects assigned
to −i including o∗ or put in the contested pile (“unassigned”) that i prefers to the
next most preferred unallocated object is at most t . This means that for the tentative
assignment p, |{o′ ∈ p(i) : o′ �i o∗}| ≥ |{o′ ∈ p(i) ∪ p(−i) : o′ �i o∗}|/2. Since
agent i’s allocation from the previous round consists of objects strictly preferred over
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o∗, this means that i is not envious of −i in p as long as i was not envious of −i in
the previous round. Thus, in both algorithms, the tentative assignment in which the
contested object is given to agent −i and the next most preferred unallocated object
is given to agent i is made permanent if the modification does not cause envy. Hence,
the feasibility check in the case of AL is equivalent to checking whether the tentative
new assignment is EF. If the tentative assignment is not EF for o∗ given to either of
the two agents, then GAL puts o∗ in the contested pile. Similarly, AL puts the object
in the contested pile (stage t.5). �

5 Discussion

In this paper, we presented GAL that is a generalization of the AL method of Brams
et al. (2014) for the fair allocation of indivisible objects among two agents. A crucial
advantage of extending AL to GAL is for the case in which agents have identical
preferences. If agents have strict and identical preferences, then AL assigns all the
objects to the contested pile. However, if the preferences are really coarse, such as
when all objects are equally preferred, then GAL assigns �m/2� to each agent.

GAL can also be used as an algorithm to solve previously studied problems within
fair division:

Theorem 2 There exists a O(m2) algorithm to check whether there exists a complete
assignment that is EF.

Proof By Proposition 5, if there exists a complete EF assignment, GAL returns such
an assignment. �

Previous algorithms to solve this problem take time O(m3) and require solving
network flow or maximummatching problems (Bouveret et al. 2010; Aziz et al. 2014).

GAL is specifically designed for the case of two agents. This raises the question
whether GAL can be generalized to an algorithm that returns a strong maximal EF
assignment for any number of agents.

Theorem 3 Assume there exists an algorithm A that returns a strong maximal EF
assignment. Then, A does not take polynomial time assuming P 	= N P.

Proof Checking whether there exists a complete EF assignment is NP-complete for
strict preferences (Proposition 7, Bouveret et al. 2010). Furthermore, checkingwhether
there exists a complete EF assignment is NP-complete for dichotomous preferences
(Theorem 10, Aziz et al. 2014).

If A is polynomial time, then it can be used to compute a strong maximal EF
assignment in polynomial time. If the assignment is complete, we know that there
exists a complete EF assignment. If the assignment is not complete, then we know that
there does not exist a complete EF assignment. Hence, A can solve an NP-complete
problem in polynomial time. �

GAL can also be seen as a discrete version of the probabilistic serial (PS) algo-
rithm (Bogomolnaia andMoulin 2001; Katta and Sethuraman 2006). PS is a fractional
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assignment algorithm that allocates a maximal subset of objects (in fact it allocates
all the objects) and still achieves SD-efficiency and SD envy-freeness. In the dis-
crete domain, GAL is an algorithm that returns a maximal assignment that is both
SD-efficient and SD envy-free.

In this paper, we assumed that all objects are acceptable. The case where some
objects may be unacceptable to an agent can be handled. If an object is unacceptable
to both agents, it can be discarded from the outset. If an object is only acceptable to
one agent, it will only be given to that agent.

It will be interesting to apply the approach of maximal EF to weaker notions of
fairness (Aziz et al. 2014; Bouveret et al. 2010). The approach of finding a maximally
fair assignment also applies to any setting in which there may not exist a complete fair
assignment. Finally, extending GAL to the case of constant number of agents is left
as future work.
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