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a b s t r a c t

We consider exchange markets with single-unit endowments and demands where there is a bound on
the size of the exchange cycles. The computational problem we study is that of computing a Pareto
optimal and individually rational allocation. We present polynomial-time algorithms to compute a
Pareto optimal and individually rational allocation when preferences are strict, the exchange bound is
two, or when Pareto optimality is replaced with weak Pareto optimality.
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1. Introduction

We consider the basic Shapley–Scarf housing market in which
each agent owns one item and the goal is to exchange the items
in a mutually beneficial manner. Typical properties that are de-
sirable in this context are Pareto optimality and individual ratio-
nality [2,4,9,11,14].

An allocation as a result of exchanges of items can alterna-
tively be seen as a set of disjoint cycles consisting of agents and
items. Each agent is seen as giving her item to the next agent
in the ‘exchange’ cycle. We consider allocations that are a result
of disjoint exchange cycles such that there are at most L agents
in each cycle. We will call such allocations L-allocations. They
are referred to as allocations that are a result of most L-way
exchanges. Considering short exchange cycles has several moti-
vating factors. The most prominent motivation of short cycles is
in the context of kidney exchange in which exchange cycles have
a natural size limit due to operational and logistical factors [1].
For example, there is a bound on how many operations can be
conducted simultaneously. Even for other barter markets, we may
not want to depend on too many people coming together for an
exchange hence we may want to resort to short exchange cycles.

We especially focus on a concept called L-efficiency (see e.g.,
[10]). An allocation is L-efficient if it is an L-allocation and it is
not Pareto dominated by another L-allocation. An allocation is
weakly L-efficient if it is an L-allocation and it is not strongly
Pareto dominated by another L-allocation. In this note, we focus
on achieving individual rationality and L-efficiency. The existence
of allocations satisfying both properties is easy to see: with the
set of L-allocations, we start from the endowment allocation and
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make a finite number of Pareto improvements until no further
improvement can be made. We focus on computing such an
allocation.

We present a polynomial-time algorithm to find an individ-
ually rational and L-efficient allocation for strict preferences.
If we allow for indifferences, we show that the problem of
finding an L-efficient allocation is NP-hard. However, our algo-
rithm can be used to find an individually rational and weak
L-efficient allocation for weak preferences. We also show that for
L = 2, the problem of computing an individually rational and
L-efficient allocation is polynomial-time solvable. The complexity
classification is summarized in Table 1.

2. Related work

The focus on L-allocations is well-established in the literature
(see e.g., [1,5,10]). In contrast to requiring Pareto optimality,
the main focus in the algorithmic literature is (1) on either
maximizing the number of satisfied agents assuming that pref-
erence are dichotomous [1] or (2) examining the complexity of
checking whether a stable allocation exists or not (see e.g., [5]).
Both problems are NP-hard. In recent years, integer programming
techniques have been used for these problems (see e.g., [1,7])

When there is no restriction on the size of the exchange cycles,
then variants of the well-known Gale’s Top Trading Cycles algo-
rithm satisfy polynomial-time computability, strategyproofness,
individual rationality, and Pareto optimality (see e.g., [8,11,13]).

The problem of finding a Pareto optimal allocation is NP-hard
when there are multiple items to be allocated to each agent (see
e.g., [3]). It becomes easier when we consider Pareto optimality
with respect to the responsive set extension (see e.g., [6]).
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Table 1
Complexity of finding an IR and L-efficient allocation.
Restrictions Cycle bound

2 3 n General L

Strict In P (Proposition 2) In P (Proposition 2) In P (TTC) In P (Proposition 2)
Dichotomous In P [12] NP-c (Corollary 1) In P (GATTC) NP-c (Corollary 1)
Weak In P (Proposition 1) NP-c (Corollary 2) In P (GATTC) NP-c (Corollary 2)

3. Model and concepts

Let N = {1, . . . , n} be a set of n agents and H = {h1, . . . , hn}

a set of n items. The endowment function e : N → H assigns to
each agent the item he originally owns.

Each agent has complete and transitive preferences ≿i over
the items and ≿= (≿1, . . . ≿n) is the preference profile of the
agents. The housing market is a quadruple M = (N,H, e,≿). For
S ⊆ N , we denote

⋃
i∈S{e(i)} by e(S). A function x : S → H is an

allocation on S ⊆ N that allocates item x(i) to agent i ∈ N . We will
generally consider weak orders. Two restrictions of weak orders
are strict preferences and dichotomous preferences. Under strict
preferences, there are no indifferences: if h ≿i h′ then h′ ̸≿i h.
Under dichotomous preferences, an agent partitions the items
into at most two indifference classes.

An allocation x is individually rational (IR) if x(i) ≿i e(i) for all
i ∈ N . An allocation x is Pareto optimal if there exists no other
allocation y such that y(i) ≿i x(i) for all i ∈ N and y(i) ≻i x(i) for
some i ∈ N . An L-allocation x is L-efficient if there exists no other
L-allocation y such that y(i) ≿i x(i) for all i ∈ N and y(i) ≻i x(i) for
some i ∈ N . An L-allocation x is weakly L-efficient if there exists
no other L-allocation y such that y(i) ≻i x(i) for all i ∈ N .

For any housing market, M = (N,H,≿, e), there exists a
corresponding exchange graph GM = (V , E) where GM = (V , E)
where V = N ∪H and E = {(h, i) :h = e(i)}∪ {(i, h) :h ≿i e(i)}. We
note that any individually rational allocation for M = (N,H,≿, e)
has a one-to-one correspondence with a set of vertex-disjoint
cycles in which each agent gets the item she points to in the
cycle. We note that any individually rational L-allocation for M =
(N,H,≿, e) has a one-to-one correspondence with a set of vertex-
disjoint cycles of size at most 2L in which each agent gets the item
she points to in the cycle. We will denote |E| by m.

4. Computing an individually rational and L-efficient alloca-
tion

We first note that if preferences are dichotomous, finding an
L-efficient allocation is NP-hard even if we do not require individ-
ual rationality. The argument heavily relies on the fact that check-
ing whether there exists an L-allocation in which each agent gets
an acceptable item is NP-complete [1]. Dichotomous preferences
are standard in the framework of kidney exchange. Recently there
has been work on exact algorithms to save the maximum number
of lives [15]. We give the argument for the sake of completeness.

Corollary 1. Under dichotomous preferences, computing an
L-efficient allocation is NP-hard for L = 3.

Proof. It is known that if L = 3, agents have dichotomous pref-
erences, checking whether there exists an L-allocation in which
each agent gets maximally preferred item is NP-complete [1]. If
there exists an allocation in which each agent gets maximally
preferred allocation, then any Pareto optimal allocation will be
such an allocation. If there exists a polynomial-time algorithm to
find a Pareto optimal allocation, it will find such an allocation if
it exists. Therefore, computing an L-efficient allocation is NP-hard
for L = 3. □

Corollary 2. Under weak preferences, computing a Pareto optimal
allocation is NP-hard.

If L = n, then L-efficiency coincides with Pareto optimality.
Under strict preferences, the famous Top Trading Cycles (TTC)
algorithm returns an individually rational and Pareto optimal
allocation. Even when ties are allowed, it is well-known that
extensions of the TTC algorithm find an IR and PO allocation (see
e.g., [8,11,13]). All of the algorithms in the cited papers fall in the
class of algorithms called GATTC [4].

Next, we point out that even for L = 2, there exists a
polynomial-time algorithm that returns an individually rational
and L-efficient allocation. Previously, for L = 2 and dichotomous
preferences, a polynomial-time was presented that returns an
L-efficient and individually rational allocation [12]. The following
algorithm for pairwise exchange works for any number of items
agents may have as long as they are only interested in successful
pairwise exchanges.

Proposition 1. For weak preferences and L = 2, there exists a
polynomial-time algorithm that returns an individually rational and
L-efficient allocation in time O(n3).

Proof. Construct a weighted graph G = (V , E, w) where {i, j} ∈ E
if e(i) ≿j e(j) and e(j) ≿i e(i). We set the weights of edges as fol-
lows w(e) = r ji+r

i
j where r ji is the number of rank improvements i

gets when she e(j) in place of e(i). We then compute a maximum
weight matching M . The matching corresponds to the pairwise
exchanges between the agents and hence to an allocation of items
to the agents. If some i ∈ N is unmatched, she is not part of
any pairwise exchange. If {i, j} ∈ M then, i and j exchange their
items. The allocation is IR because an agent only exchanges with
an agent whose item she finds individually rational.

We prove that the allocation xM corresponding to matching
M is L-efficient. Note that the weight of M is equal to the to-
tal number of rank improvements over all agents. Suppose for
contradiction that xM is not L-efficient. Then there exists another
matching M ′ in which each agent gets at least the same rank
item and one agents gets a more preferred item. This implies that
if i is unmatched in M ′, then it is also unmatched in M . If i is
matched in e ∈ M , she contributes as much to some edge in M
as she does to e ∈ M . Since xM ′ Pareto dominates xM , at least
one agent contributes more weight to M ′ than she does to M .
This implies that M ′ has higher total weight than M . But this is a
contradiction. □

Next, we present a polynomial-time algorithm that returns
an individually rational and L-efficient allocation. The result con-
trasts sharply with the fact that finding L-allocations that are
stable is NP-hard even under strict preferences [5]. The high-level
idea of the algorithm is as follows. We take an agent i1 owning
g1 and try to refine the set of L-allocations in which the agents
get a most preferred item g2. We consider the agent i2 who owns
g2. We then refine the set of allocations further by considering
only those L-allocations in which i2 gets her most preferred item.
Instead of enumerating exponentially many allocations under
consideration, we implicitly track them by only focusing on those
edges of the exchange cycles that we have fixed. We continue
until we reach some ij who must get g1. We remove this cycle and
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continue until all the items have been allocated. The algorithm is
formally specified as Algorithm 1.

Proposition 2. For strict preferences and any given integer L,
there exists a polynomial-time O(n(n + m)) algorithm that returns
an individually rational and L-efficient allocation.

Proof. Consider Algorithm 1. We first claim that the resultant
allocation is an L-allocation. We consider the agent i1 with the
lowest index and include her in the exchange cycle. We know
that the agent has at least one feasible L exchange cycle: the
one in which she gets her own item. Therefore, by choosing i1,
we can guarantee a feasible L-exchange in which i is involved.
Consider any exchange cycle C ′ involving an alternating sequence
of agents and items that includes i1. We claim that the length of
the cycle is at most 2L which would imply that at most L agents
exchange among themselves. When we build the cycle, we also
build a corresponding set C of agents in the cycle. Suppose we
have the set C currently consists of agents i1, . . . , i|C |. Then by
construction, we know that there exists a path of length exactly
2|C | − 2 from i1 to i|C |. When we choose the edge for i|C | to an
item, we check in the condition of the while loop that the edge
allows for a path of length at most 2L − 2|C | + 2 from i|C | to i1.
This can be checked in time O(m) by using breadth first search
on the constructed graph G. Now consider the length of the cycle
from i1 to i1. It is the sum of the length of the path from i1 to i|C |
(which is exactly 2|C | − 2) and the length of the path from i|C | to
i1 (which is at most 2L − 2|C | + 2). Therefore the length of the
cycle from i1 to i1 is at most (2|C | − 2)+ 2L− 2|C | + 2 = 2L.

In each iteration of the outer while loop, one exchange cycle
is identified and the vertices are removed from the graph. In each
iteration of the inner while loop, either another vertex is added to
the exchange cycle or one vertex is removed from consideration
so it takes time at most O(n+m). Therefore the overall algorithm
takes time O(n(n+m)).

When we consider exchange cycles, note that an agent i only
points to an item o if o ≿i e(i). Therefore the allocation is
individually rational.

Next, we argue that the allocation is L-efficient. Consider
C1, . . . , Cℓ the ‘C ’ sets discovered during the running of the PCA.
We prove by induction on order of the C sets that no agent is
involved in a Pareto improvement. Consider C1 the first C set.
Consider the first agent i1 added to C1. Note that i1 gets the most
preferred item she can get in an exchange of size at most L. There-
fore i1 is not part of any Pareto improvement. Given the condition
i1 gets a most preferred item, we give the most preferred item to
i2 and so on. If some agent ij were to get a more preferred item
than her allocated item, it implies that at least some agent among
{i1, i1, . . . , ij−1} gets a less preferred item. Therefore we have
established that no agent in C1 is part of a Pareto improvement.
Therefore we can remove these agents and their allocated items
from consideration from any Pareto improvement that results in
an L-allocation. We can repeat the same argument for the next C
set until all the agents are accounted for. Thus the allocation is
L-efficient. □

Proposition 3. For weak preferences and any given integer L,
there exists a polynomial-time algorithm that returns an individually
rational and weakly L-efficient allocation.

Proof. The algorithm works as follows. For input preference
profile ≿ we break ties arbitrarily to get an artificial preference
profile ≿′ and then run PCA on profile ≿′ to get outcome y. We
argue that y is weakly L-efficient under ≿′. Note that for any
two allocations z and y, z(i) ≻i y(i) implies z(i) ≻′i y(i). Next

Algorithm 1 Priority Cycles Algorithm (PCA) to find an L-efficient
and individually rational allocation
Input: (N,H,≿, e) where ≿ is a strict preference profile, and

permutation π on N .
1: N ′ ←− N; H ′ ←− H .
2: Construct a graph G = (V , E) where V = N ∪ H and E =
{(h, i) : h = e(i)} ∪ {(i, h) : h ≿i e(i)}. % Takes time O(n+m)

3: while G is not empty do
4: Consider any agent i1 with the smallest index in G.
5: C ←− {i1}.
6: while i|C | has a path to i1 of length at most 2L− 2|C |+2 in

G % Takes time O(n+m) do
7: Find the most preferred item h that i|C | points to such that

there exists a path of length at most 2L− 2|C |+1 from h
to i1.

8: Set G to one in which i|C | points only to h.
9: Consider the owner of h. Call it i|C |+1. C ←− C ∪ {i|C |+1}.

10: end while
11: Give each agent i the item she points to in C . Remove the

agents in C and the items they point to. Remove from G any
edges involving the removed the vertices. % Takes time
O(n+m)

12: end while

we argue that y is weakly L-efficient under ≿. Suppose y is not
weakly L-efficient. Then there exists another allocation z such
that z(i) ≻i y(i) for all i ∈ N . But this means that z(i) ≻′i y(i)
for all i ∈ N . Therefore y is not L-efficient under strict preference
profile ≿′ which is a contradiction of the fact that PCA returns an
L-efficient allocation if the input preferences are strict. Thus y is
weakly L-efficient under ≿. □

We call an algorithm non-bossy if no agent can change her
preferences and get the same allocation but some other agent gets
a different allocation. We observe that PCA is non-bossy.

Proposition 4. PCA is non-bossy.

Proof. Compare x = PCA(≿) with x′ = PCA(≿) in which i changes
her preferences and gets the same item. Let the cycles discovered
while returning x be C1, C2, . . . , Ck where i ∈ Cj. Since the only
stage where a different cycle can be involved is when i is involved,
we note that for ℓ ∈ {1, . . . , j − 1}, the cycles discovered while
finding x′ are C1, C2, . . . , Cj−1, . . .. At this point, the graphs for
both x and x′ are the same. Note that since i points to x and all
agents who find e(i) individually rational point to e(i). Therefore
Cj is executed both under PCA(≿) and PCA(≿′). At this point i is
no more part of the graph and subsequently PCA(≿) and PCA(≿′)
take exactly the same steps and find the same cycles. Hence no
agent gets a different item. □

One may wonder whether it is possible to additionally satisfy
strategyproofness. Nicoló and Rodríguez-Álvarez [10] proved that
for strict preferences, there exists no IR, L-efficient, and strate-
gyproof algorithm even for single-unit allocations and for L = 2.
As a corollary, PCA is not strategyproof.

Remark 1. A possible approach towards finding an efficient
matching is to run a priority algorithm based on a pre-fixed
ordering of agents in which we start from the set of all individ-
ually rational L-efficient allocations each agent in the ordering
refines the set of allocation to her most preferred ones. How-
ever, PCA is not a priority algorithm because the ordering of the
agents depends on the preferences of the agents. Since the pri-
ority algorithm returns an L-efficient allocation even under weak
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preferences, it cannot run in polynomial time unless P=NP. Under
strict preferences and 2 < L < n, it is not clear whether a priority
rule has some algorithmic specification that is polynomial time.

Remark 2. Even for strict preferences and L = n, PCA does not
coincide with the TTC algorithm. The reason is that in TTC, we
do not necessarily find an exchange of the agent with the lowest
index.
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