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ABSTRACT
Selection under category or diversity constraints is a ubiquitous
and widely-applicable problem that is encountered in immigration,
school choice, hiring, and healthcare rationing. These diversity
constraints are typically represented by minimum and maximum
quotas on various categories or types. We undertake a detailed
comparative study of applicant selection algorithms with respect
to the diversity goals.
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1 INTRODUCTION
How should we hire job applicants when we want to take both the
overall merit as well as requirements of various departments into
account? How should we decide on student intake while consider-
ing both entrance test scores and target number of scholarships for
different categories? How should we ration healthcare resources
when patients can avail resources under various categories? Which
applicants should be given an immigration slot when the govern-
ment has targets for various categories? These fundamental and
important questions constitute a recurring theme in allocation and
selection decisions. We consider a natural mathematical model for
the problem that captures the main features of many of the prob-
lems discussed above. Although various choice rules and algorithms
for selecting agents have been proposed, there has been little work
carefully comparing the relative performance of these algorithms,
especially from an experimental methodology. In this paper, we
undertake one of the first detailed experimental studies to under-
stand how well the algorithms perform with respect to capturing
the intended diversity goals as well as selecting the highest priority
applicants. We also try to understand the tradeoffs between merit
and diversity.

We consider a very widely studied model of selection under
diversity constraints. Firstly, there is a baseline ordering over the
applicants. The baseline ordering could be the merit ordering in the
context of school admissions, or the need for treatment in the con-
text of healthcare rationing. If no diversity constraints are present,
the selection of agents is made only with respect to the baseline pri-
ority ordering. If the diversity constraints are additionally present,
then both the priority ordering and the diversity constraints are
used to make selection decisions.

The diversity constraints or goals are represented by imposing
minimum and maximum quotas on each of the types. In particular,
given one school 𝑐 , there is a lower quota of 𝑞1𝑐,𝑡 for the number
of slots taken by agents for type 𝑡 and there is an upper quota of
𝑞2𝑐,𝑡 for the number of slots taken by agents for type 𝑡 . In the line of
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literature (see, e.g., Ehlers et al. [9]) both lower and upper quotas
are viewed as guidelines towards reaching diversity goals: firstly,
fill up slots of those types whose minimum quotas have not been
reached. As a secondary consideration, fill up slots of those types
whose minimum quotas have been reached, but not their maximum
quotas.

Another feature of our setting is that applicants can satisfy multi-
ple types such as being extra talented or being from a disdavantaged
group. Each applicant who is selected is assumed to count towards
one of the types satisfied by them. Such a type could include a
general public type. This way of accounting for representation has
been referred to as the one-to-one convention, which is popular in
Indian college admissions [16]. Since we are not only interested in
which agents are selected but also about how many target numbers
of spots corresponding to relevant types are filled up, the output
for our problems is not just a set of selected agents. Instead, it is a
matching that matches each student to some type that the student
satisfies. Such a matching not only gives information about the set
of selected agents who are matched but also gives a count of how
many seats of each type are used.

In this paper, we examine the following problem.
In selection problems under minimum and maximum
quota diversity goals, how do various algorithms per-
form with respect to satisfying diversity goals as well
as merit?

With respect to performance on merit, we will compare the
outcomes of algorithms according to various objectives, including
average rank, worst rank, and best rank.When considering diversity
constraints captured by lower and upper diversity quotas, a natural
question is how to gauge the level of diversity captured by a given
set of applicants or a matching? A natural solution was provided
by Aziz and Sun [5] who viewed each type 𝑡 as two ranks of slots
corresponding lower and upper quotas. A set of agents provides
maximal diversity if there is a matching that matches the agents to
the types in such a way that the number of rank 1 slots is maximized
and given that the number of rank 2 slots is maximized.

One of the first algorithms for the problem was presented by
Ehlers et al. [9] who assumed that each applicant can satisfy at most
one type. The algorithm takes a natural greedy approach to first fill
up slots corresponding to rank 1 and then to rank 2. It can suitably
be extended to the case where agents may have multiple types. We
will use the natural extension as one of the main algorithms whose
performance we examine. We will refer to the algorithm as EHYY.

Another algorithm that we consider is the horizontal choice rule
by Sönmez and Yenmez [17] that was designed to optimally filling
up seats when there is a single rank of slots. We consider two
versions of the rule of Sönmez and Yenmez [17]: SY1 optimizes the
use of the first ranked slots and SY2 merges the first and second
ranked slots and then optimizes the use of these slots.
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Aziz and Sun [5] presented algorithms that achieve maximal
diversity. We will refer to the algorithm as A-S. There are several
other algorithms that have been proposed or are used in real-world
systems. The goal of this paper is to undertake a comparative study
of various algorithms for the problem and see how they fare in
terms of maximal diversity. We check how various algorithms do in
terms of filling up the first ranked slots. We also check how various
algorithms do in filling up the first two ranks.

From the specification, the A-S already maximizes the use of rank
1 slots and given that, it maximizes the use of rank 2 slots. One of the
goals of the paper is to understand the extent to which it performs
in relation to other existing approaches. We will also compare the
algorithms with two baseline algorithms that predominantly care
about the priority of the agents rather than diversity concerns.

In this paper, we present several contributions. Firstly, we present
a consistent specification of various algorithms for our setting with
minimum and maximum quotas or equivalently rank 1 and rank
2 seats. Secondly, we perform one of the first experimental com-
parisons of prominent selection algorithms in achieving optimal
diversity goals as well as average merit ranking of the agents. Next,
we investigate the performance of prominent selection algorithms
across a variety of different environments, thereby determining the
environmental parameters affecting their performance.

Some of the conclusions from the experiments include the fol-
lowing. The total number of reserves and the selection capacity of a
problem instance influence the performance of each algorithm. As
the number of reserves relative to selection capacity increases, the
performance of diversity based algorithms is reduced with respect
to satisfying merit compared to matching algorithms that ignore
reserves. When the total number of reserves is exceeded by the se-
lection capacity, A-S and SY2 have equivalent performance, despite
having different behaviour when total reserves exceed selection ca-
pacity. Overall, A-S is the best algorithm at fulfilling reserves across
two ranks but performs worse in selecting for merit compared to
SY1 and SY2, which are optimal for filling the first and first two
ranks of reserves respectively. The performance of EHYY is close
to optimality on average when satisfying the first rank reserves,
but its worst case performance is reduced when selection capacity
and the number of reserves increase.

We find that, due to the various different characteristics of each
algorithm, there is a necessary tradeoff between achieving merit
and diversity goals, and the choice of algorithm can help negotiate
between these two goals for any specific problem instance.

2 RELATEDWORK
The literature on matching under diversity and other distributional
constraints is vast. We discuss work that is closely related to our
problem.

Affirmative action in two-sided matching has been considered
in early work on school choice Abdulkadiroğlu [1], Abdulkadiroğlu
and Sönmez [2]. In many of the diversity models, each school puts
a minimum quota on each type [9, 11–13]. Ehlers et al. [9] treated
the quotas in a soft manner since hard constraints can lead to
infeasibility. We pursue the same approach as well. In contrast to
Ehlers et al. [9], we allow agents to have multiple types.

The issue of agents having multiple ‘overlapping types’ has
been considered in recent papers and deployed applications in
the past few years, including those in Brazil, Chile, Israel, and
India (see, e.g., [3, 6, 8, 10, 14]). There are two ways to perform
accounting when agents have multiple types [17]. In the one-for-all
convention, an agent is viewed as taking slots for all the types that
they satisfy [4, 10]. In the one-for-one convention, they take the
slot of one of the types they satisfy. In this paper, we pursue the
one-for-one convention. This convention has the ‘more widespread
interpretation’ [17]. The one-for-one convention has been explicitly
or implicitly considered in several recent paper [3, 6, 8, 9, 14]. Most
of these approaches do not achieve diversity optimally. In contrast,
Aziz and Sun [5] presented a rule that achieves diversity optimally.
When there is only one rank of reserves or when there are no
maximum quotas, Sönmez and Yenmez [17] presented a rule that
also satisfies diversity optimally. We will consider two extensions
of the algorithm for our model.

3 PRELIMINARIES
An instance 𝐼 of the problem consists of a tuple (𝑆, 𝑐, 𝑞𝑐 ,𝑇 , ≻𝑐 , [𝑐 )
where 𝑆 denotes the set of agents. There is one school 𝑐 with ca-
pacity 𝑞𝑐 . We denote by 𝑇 the set of types. We overload the term
to also capture the information about the types of each agent. For
each agent 𝑠 , let𝑇 (𝑠) ⊆ 𝑇 denote the subset of types to which agent
𝑠 belongs. If 𝑇 (𝑠) = ∅, then agent 𝑠 does not have any privileged
type. We use the term [𝑐 to specify the diversity goals of school 𝑐 .
In this work, we consider two ranks of slots. The term [1𝑐,𝑡 denotes
the number of slots of rank 1 of type 𝑡 (minimum quotas) and [2𝑐,𝑡
denotes slots of rank 2 of type 𝑡 (maximum quotas).

The school 𝑐 has a strict priority ordering ≻𝑐 over 𝑆∪{∅}where ∅
represents the option of leaving seats vacant for school 𝑐 . An agent
𝑠 is acceptable to school 𝑐 if 𝑠 ≻𝑐 ∅ holds. The priority ordering of
the school could be based on the entrance exam scores, or in the
case of automated hiring, on some objective measure that captures
the suitability of the applicants.

Example 3.1. Consider the setting in which there are six students
𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6}, applying for seats at one school 𝑐 . The type
profile of the students is 𝑇 (𝑠1) = {}, 𝑇 (𝑠2) = {𝑡4} , 𝑇 (𝑠3) = {𝑡3},
𝑇 (𝑠4) = {𝑡1, 𝑡2, 𝑡3}, 𝑇 (𝑠5) = {𝑡1} , 𝑇 (𝑠6) = {𝑡2, 𝑡3}. The capacity of
the school is 𝑞𝑐 = 3 and the school has diversity goals specified as
follows: [1𝑐,𝑡1 = 1, [1𝑐,𝑡2 = 1, [2𝑐,𝑡3 = 1, [2𝑐,𝑡4 = 1. The priority ordering
of students is 𝑠1 ≻𝑐 𝑠2 ≻𝑐 𝑠3 ≻𝑐 𝑠4 ≻𝑐 𝑠5 ≻𝑐 𝑠6.

The interpretation of the diversity goals outlined for school 𝑐
are as follows: school 𝑐 wishes to admit 3 students while matching
as many students to slots of rank 1 as possible. In the event that no
further rank 1 slots can be matched, school 𝑐 would like to match
as many rank 2 seats as possible. School 𝑐 has one rank 1 slot each
for types 𝑡1, 𝑡2 and one rank 2 slot each for types 𝑡3, 𝑡4.

4 A TOOL BOX OF ALGORITHMS
In this section, we describe several algorithms that we considered in
the experiments. Diversity goals have been defined over two ranks,
in the sense that first rank diversity goals are to be satisfied before
second rank diversity goals whenever possible. This is analogous
to diversity settings in which minimum quotas are to be satisfied
as many as possible before targeting maximum quotas. Within this
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setting, we also allow for overlapping types, such that any agent
may be prescribed multiple undersubscribed types.

A-S algorithm of Aziz and Sun
The A-S algorithm creates a ranked reservation graph and then
computes a rank-maximal matching within this graph to find a
matching which optimizes first rank seat usage before second rank
usage.

Given a set of students 𝑆 ′ and a school 𝑐 with reserved quotas
[𝑐 , a corresponding ranked reservation graph 𝐺 = (𝑆 ′ ∪ 𝑉 , 𝐸, [𝑐 )
is a bipartite graph whose vertices consist of a set of students 𝑆 ′

and a set of reserved seats 𝑉 . Each reserved seat 𝑣 𝑗
𝑡,𝑖
∈ 𝑉 has a

rank 𝑗 , a type 𝑡 and an index 𝑖 . For each rank 𝑗 and each type 𝑡 ,
we create [ 𝑗𝑐,𝑡 reserved seats in 𝐺 . The edge set 𝐸 is specified as
follows. There is an edge between a student 𝑠 and a reserved seat
𝑣
𝑗
𝑡,𝑖

if student 𝑠 belongs to type 𝑡 , i.e., 𝑡 ∈ 𝑇 (𝑠). Each edge (𝑠, 𝑣 𝑗
𝑡,𝑖
)

has a rank 𝑗 corresponding to the rank 𝑗 of the reserved seat 𝑣 𝑗
𝑡,𝑖
.

We refer to all edges with rank 𝑗 as 𝑗-ranked edges. Since we are
focusing on problems arising from lower and upper quotas, we
assume that there are two main ranks 1 and 2. We also create an
artificial universal type 𝑡0 that each agent is eligible for and that
has zero seats of rank 1 and 2 but 𝑞𝑐 seats of rank 3. Only those
agents are matched to this type, if they are unable to be matched
to seats of the real types. This type is only present to match those
agents who are unable to be matched to real types. To keep our
figures simple, we will not depict vertices corresponding to 𝑡0.

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑣1
𝑡1,1

𝑣1
𝑡2,1

𝑣2
𝑡3,1

𝑣2
𝑡4,1

rank 1

rank 2

Figure 1: The ranked reservation graph for the problem in-
stance in Example 3.1.

Example 4.1 (A-S Algorithm). For Example 3.1, the A-S algo-
rithm will select the students 𝑆∗ = {𝑠2, 𝑠4, 𝑠5}, which fills both
rank 1 slots and a rank 2 slot for type 𝑡4. This arises from the
ranked reservation graph 𝐺 pictured in Figure 1. Evidently,
the 5 possible rank maximal matchings on 𝐺 of size 3 are
{{(𝑠2, 𝑣2𝑡4,1), (𝑠4, 𝑣

1
𝑡2,1), (𝑠5, 𝑣

1
𝑡1,1)},{(𝑠2, 𝑣

2
𝑡4,1), (𝑠4, 𝑣

1
𝑡1,1), (𝑠6, 𝑣

1
𝑡2,1)},

{(𝑠3, 𝑣2𝑡3,1), (𝑠4, 𝑣1𝑡2,1), (𝑠5, 𝑣
1
𝑡1,1)},{(𝑠3, 𝑣

2
𝑡3,1), (𝑠4, 𝑣

1
𝑡1,1), (𝑠6, 𝑣

1
𝑡2,1)},

{(𝑠4, 𝑣2𝑡3,1), (𝑠5, 𝑣
1
𝑡1,1), (𝑠6, 𝑣

1
𝑡2,1)}}. The A-S algorithm will first select

𝑠2 when scanning the students by priority ordering, as there exists
a rank maximal matching in 𝑠2 is matched. It will then select 𝑠4,
as 𝑠3 cannot be in the same rank-maximal matching as 𝑠2, before
finally selecting 𝑠5.

As the A-S algorithm selects the highest priority students possi-
ble while maintaining a rank-maximal matching, the final matching
in this instance will be {(𝑠2, 𝑣2𝑡4,1), (𝑠4, 𝑣

1
𝑡2,1), (𝑠5, 𝑣

1
𝑡1,1)}, as pictured

Input: 𝑆 ′ ⊆ 𝑆 , 𝑞𝑐 , [𝑐 , ≻𝑐 .
Output: A matching 𝑀 ⊆ 𝑆 ′ × 𝑉 and a set of matched agents

𝑆∗ ⊆ 𝑆 ′

1: Selected agents 𝑆∗ ← ∅
2: Matching𝑀 ← ∅
3: Construct the corresponding ranked reservation graph 𝐺 =

(𝑆 ′ ∪𝑉 , 𝐸, [𝑐 ).
4: for agent 𝑠 ∉ 𝑆∗ down the list in ≻𝑐 do
5: if there exists a matching in𝐺 of size at most 𝑞𝑐 that satisfies

the following two conditions
(1) it is rank maximal among all matchings in 𝐺 of size

at most 𝑞𝑐
(2) it matches all agents in 𝑆∗ ∪ {𝑠}
then

6: Add 𝑠 to 𝑆∗
7: Compute a rank maximal matching 𝑀 of 𝐺 that matches all

the students in 𝑆∗

8: return 𝑀 and 𝑆∗.

Algorithm 1: A-S algorithm from Aziz and Sun [5]
in Figure 2. To keep our figure simple, we have not depicted vertices
corresponding to 𝑡0.

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑣1
𝑡1,1

𝑣1
𝑡2,1

𝑣2
𝑡3,1

𝑣2
𝑡4,1

rank 1

rank 2

Figure 2: The matching returned by the A-S Algorithm for
the problem instance in Example 3.1.

EHYY Algorithm of Ehlers et al.
One of the first algorithms for the problem was presented by Ehlers
et al. [9] who assumed that each applicant can satisfy at most one
type. When each agent has at most one type, the choice of which
type’s slot an agent should take is straightforward. The algorithm
proposed by Ehlers et al. [9] follows a natural idea that provides
the blueprint for many of the other algorithms in the literature.
The algorithm works as follows. The algorithm goes down the
priority list and selects the highest priority agent who has a type
that is undersubscribed (whose count has not reached the lower
quota). If there is no such agent, the algorithm selects agents with
the highest priority who has some type that is not oversubscribed
(whose count has not reached the upper quota). If there are no
such agents, then the highest priority agents are selected until the
total capacity is reached. When agents may have multiple types,
the algorithm of Ehlers et al. [9] can be suitably generalized to
handle ‘overlapping types’. When choosing an agent we select the
highest priority agent who has some type that is undersubscribed;
and otherwise we select the highest priority agents who have some
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type that is not oversubscribed. We will refer to the algorithm as
EHYY.

The EHYY algorithm below approaches the two-ranked school
choice problem by greedily selecting agents with first rank types
before selecting agents with second rank types. This approach is
not optimal when there are multiple overlapping types for agents.

Input: 𝑆 ′ ⊆ 𝑆 , 𝑞𝑐 , [𝑐 , ≻𝑐 .
Output: A matching 𝑀 ⊆ 𝑆 ′ × 𝑉 and a set of matched agents

𝑆∗ ⊆ 𝑆 ′

1: Selected agents 𝑆∗ ← ∅
2: Matching𝑀 ← ∅
3: for agent 𝑠 ∉ 𝑆∗ down the list in ≻𝑐 do
4: if |𝑆∗ | < 𝑞𝑐 and if there exists an unmatched first rank seat

𝑣1
𝑡,𝑖

for some type 𝑡 satisfied by 𝑠 then
5: Add 𝑠 to 𝑆∗ and (𝑠, 𝑣1

𝑡,𝑖
) to𝑀

6: for agent 𝑠 ∉ 𝑆∗ down the list in ≻𝑐 do
7: if |𝑆∗ | < 𝑞𝑐 and if there exists a second rank seat (𝑠, 𝑣2𝑡,𝑖 ) for

some type 𝑡 satisfied by 𝑠 then
8: Add 𝑠 to 𝑆∗ and (𝑠, 𝑣2

𝑡,𝑖
) to𝑀

9: for agent 𝑠 down the list in ≻𝑐 do
10: if |𝑆∗ | < 𝑞𝑐 and 𝑠 ∉ 𝑆∗ then
11: Add 𝑠 to 𝑆∗ and add some new edge (𝑠, 𝑣3

𝑡,𝑖
) to 𝑀 where

𝑡 ∈ 𝑇 (𝑠).
12: return 𝑀 and 𝑆∗.

Algorithm 2: EHYY Algorithm of Ehlers et al. [9]

Example 4.2 (EHYY Algorithm). Consider the problem instance
described in Example 3.1. In this problem instance, EHYYmay select
𝑆∗ = {𝑠2, 𝑠4, 𝑠6}, filling two rank 1 slots and one rank 2 slot.

In the first traversal of the priority list of students, we match
students 𝑠4 and 𝑠6 to the unmatched slots 𝑣1𝑐,𝑡1 and 𝑣

1
𝑐,𝑡2

respectively.
When matching 𝑠4, we have two options: 𝑣1𝑐,𝑡1 and 𝑣

1
𝑐,𝑡2

- by random
tiebreaking, we choose 𝑣1𝑐,𝑡1 .

In the second traversal of the priority list of students, we select
student 𝑠2 by matching her to the unmatched slot 𝑣2𝑐,𝑡4 . Our final
matching is {(𝑠2, 𝑣2𝑡4,1), (𝑠4, 𝑣

1
𝑡1,1), (𝑠6, 𝑣

1
𝑡2,1)}.

Horizontal Choice Algorithms of Sönmez and
Yenmez
The horizontal choice algorithm was proposed by Sönmez and Yen-
mez [17] for the case where a school has only one rank of reserves
and once the reserves are filled up, the remaining seats are filled
according to the priority ranking. We will refer to the algorithm
as the SY algorithm. The algorithm gives the same outcome as the
A-S algorithm for the case of one rank of reserves (along with the
generic type 𝑡0 that takes up any remaining agents who are not
matched to reserves types) so we do not define it formally in the
way Sönmez and Yenmez [17] did. We adapt the SY algorithm from
Sönmez and Yenmez [17] by either focusing on one rank only, or by
merging the two ranks of quotas into one. The original algorithm
SY does not allow for any type that has a rank 3. However, we can
view SY as having one type of rank 3 that matches all agents who
were unable to be matched to an actual reserved seat.

As a result of this preprocessing, we are testing two different
algorithms: which we will call SY1 and SY2. SY1 below eliminates
second rank seats from consideration when running the selection
algorithm.

Input: 𝑆 ′ ⊆ 𝑆 , 𝑞𝑐 , [𝑐 , ≻𝑐 .
Output: A matching 𝑀 ⊆ 𝑆 ′ × 𝑉 and a set of matched agents

𝑆∗ ⊆ 𝑆 ′

1: Eliminate second rank seats from [𝑐 to get [ ′𝑐
2: Run the horizontal choice rule of Sönmez and Yenmez [17] with

respect to [ ′𝑐 ;𝑀 ←matching returned by the horizontal choice
rule

3: return 𝑀 and 𝑆∗ (the set of agents matched by𝑀).

Algorithm 3: SY1 per Sönmez and Yenmez [17]

Example 4.3. Consider the problem instance described in Exam-
ple 3.1. In this instance, SY1 will select students 𝑆∗ = {𝑠1, 𝑠4, 𝑠5},
filling two rank 1 slots and no rank 2 slots. This is as we remove
all rank 2 slots from our instance, so the remaining slots are 𝑣1

𝑡1,1
and 𝑣1

𝑡2,1. Any matching that includes these two slots will be rank
maximal.

In order to fill the two rank 1 slots, SY1 will pair 𝑠4 with 𝑣1
𝑡2,1,

and 𝑠5 with 𝑣1𝑡1,1. Due to the lack of second rank seats, SY1 will then
select the highest priority student 𝑠1, pairing 𝑠1 with 𝑣3𝑡0,1, where 𝑡0
is a generic type shared by all students. Hence the final matching
for SY1 will be {(𝑠4, 𝑣1𝑡2,1), (𝑠5, 𝑣

1
𝑡1,1), (𝑠1, 𝑣

3
𝑡0,1)}.

SY2 below merges first and second rank seats into seats for a
single rank, such that both ranks are considered at the same priority.

Input: 𝑆 ′ ⊆ 𝑆 , 𝑞𝑐 , [𝑐 , ≻𝑐 .
Output: A matching 𝑀 ⊆ 𝑆 ′ × 𝑉 and a set of matched agents

𝑆∗ ⊆ 𝑆 ′

1: Merge first and second rank seats from [𝑐 into one rank to get
[ ′𝑐

2: Run the horizontal choice rule as per Sönmez and Yenmez [17]
with respect to [ ′𝑐

3: 𝑀 ← matching returned by the horizontal choice rule
4: return 𝑀 and 𝑆∗ (the set of agents matched by𝑀).

Algorithm 4: SY2 per Sönmez and Yenmez [17]

Example 4.4 (SY2 Algorithm). Consider the problem instance
described in Example 3.1. Since SY2 considers all seats as equal
rank, for this instance any matching where all students are
matched to a ranked seat is considered rank maximal. Hence,
SY2 will select students 𝑆∗ = {𝑠2, 𝑠3, 𝑠4}, filling one rank 1 slot
and two rank 2 slots. This is as, we ignore 𝑠1 due to a lack of
types, then match 𝑠2, 𝑠3, 𝑠4 sequentially as they can be matched as
{(𝑠2, 𝑣2𝑡4,1), (𝑠3, 𝑣

2
𝑡3,1), (𝑠4, 𝑣

1
𝑡1,1)}, which is our final matching. Other

rank-maximal matchings, in this case, are ignored as they require
selecting students of lower rank in the priority list.

Priority Only Algorithms
Next, we discuss two algorithms that select agents only on the basis
of their priority. In other words, they select the top 𝑞𝑐 agents. Since
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we are not only interested in the selection of agents but also want to
check the type used by each selected student, the algorithms return
matchings by specifying which student is matched with which slot.

The first priority only algorithm Priority Only Greedy (POG)
goes down the priority list and for a current agent, gives them a rank
1 seat from an eligible type, and if such seat is not available, then a
rank 2 seat seat from an eligible type. If neither of the two ranks
are available, then a rank 3 seat from an eligible type is matched to
the agent.

The second priority only algorithm selects the same set of agents
but matches them to ranked seats in a smart way. For this reason,
we refer to it as Priority Only Smart (POS). The algorithm uses
A-S to match the set of selected students in an optimal way to the
ranked seats.

Input: 𝑆 ′ ⊆ 𝑆 , 𝑞𝑐 , [𝑐 , ≻𝑐 .
Output: A matching 𝑀 ⊆ 𝑆 ′ × 𝑉 and a set of matched agents

𝑆∗ ⊆ 𝑆 ′

1: Selected agents 𝑆∗ ← ∅
2: Matching𝑀 ← ∅
3: for agent 𝑠 ∉ 𝑆∗ down the list in ≻𝑐 do
4: if |𝑆∗ | < 𝑞𝑐 then
5: Add 𝑠 to 𝑆∗
6: if |𝑆∗ | < 𝑞𝑐 and if there exists an unmatched first rank seat

𝑣1
𝑡,𝑖

for some type 𝑡 satisfied by 𝑠 then
7: Add (𝑠, 𝑣1

𝑡,𝑖
) to𝑀

8: else if |𝑆∗ | < 𝑞𝑐 and if there exists a second rank seat (𝑠, 𝑣2𝑡,𝑖 )
for some type 𝑡 satisfied by 𝑠 then

9: Add (𝑠, 𝑣2
𝑡,𝑖
) to𝑀

10: else if |𝑆∗ | < 𝑞𝑐 then
11: Add some new edge (𝑠, 𝑣3

𝑡,𝑖
) to𝑀 where 𝑡 ∈ 𝑇 (𝑠).

12: return 𝑀 and 𝑆∗.

Algorithm 5: Priority Only Greedy (POG)

Input: 𝑆 ′ ⊆ 𝑆 , 𝑞𝑐 , [𝑐 , ≻𝑐 .
Output: A matching 𝑀 ⊆ 𝑆 ′ × 𝑉 and a set of matched agents

𝑆∗ ⊆ 𝑆 ′

1: Take top 𝑞𝑐 students 𝑆∗ with respect to ≻𝑐
2: return A-S applied to (𝑆∗, 𝑞𝑐 , [𝑐 , ≻𝑐 ).

Algorithm 6: Priority Only Smart (POS)

Example 4.5 (Priority Only Algorithms). Consider the problem
instance described in Example 3.1. Both priority based algorithms
will select students 𝑆∗ = 𝑠1, 𝑠2, 𝑠3 filling no rank 1 seats and 2
rank 2 seats. The matching generated for both algorithms will be
{(𝑠1, 𝑣3𝑡0,1), (𝑠2, 𝑣

2
𝑡4,1), (𝑠3, 𝑣

2
𝑡3,1)}. Both algorithms simply select the

highest ranked 3 students, but their main difference arises in the
way in which they assign seats.

5 EXPERIMENTAL COMPARISON
Weuse two sets of synthetic data in order to compare our algorithms.
The first dataset is based on the SAT: the US university entrance
examinations. In this dataset, we generate data to match the relative
diversity of test-takers in the US. The goal of this dataset is to

compare the performance of our selected matching algorithms in a
real-world setting in which they can be utilised.

The first dataset is limited in testing scope by the total number
of first and second rank reserves, which we will define as 𝜓 =

(
∑ |𝑡𝑦𝑝𝑒𝑠 |
𝑘=1 ( |[1𝑡𝑘 | + |[

2
𝑡𝑘
|), being less than 𝑞𝑐 . In order to overcome

this limitation, for our second dataset, described in Section 5.2, we
generate data based on𝜓 values exceeding 𝑞𝑐 .

5.1 Comparison using synthetic SAT data
In this section, we compare the performance of our selected algo-
rithms when selecting a variable number of applicants from an
input of 100 applicants with randomly generated types and priority
ranking. The diversity types we consider are "disadvantaged minor-
ity", "low parental education", and "low income household". These
types are generated based on [7]. The "disadvantaged minority"
type is an aggregation of the Black, Hispanic, and American Indian
ethnicities, "low parental education" consists of applicants whose
highest level of parental education is less than a bachelor’s degree,
and "low income household" applicants are those who used an SAT
fee waiver.

For each selection capacity level, we simulate 100 datasets for
consistency.

5.1.1 Dataset generation. In this dataset, we have a consistent
number of applicants |𝑆 | = 100, and examine the performance of
the algorithms across a range of different selection capacities𝑞𝑐 . For
each 𝑞𝑐 , we generate 100 different applicant pools and aggregate the
performance of the selected algorithms across all applicant pools.

For each applicant pool, we generate the diversity types and
SAT score for every applicant individually. We assign students’
types with probabilities such that the total number of students with
a given type matches the type frequencies outlined in [7]. When
assigning overlapping types, we consider the conditional probability
that students have a type given that they have already been assigned
another type. For example, disadvantaged minorities have a 1.7
times higher chance of coming from a low education household
[15]. We assign each applicant the “disadvantaged minority” type
with a 39% probability. If the applicant is a disadvantaged minority,
we assign him to be from a low education household with a 64%
probability, otherwise, we assign him to be from a low education
household with a 30% probability. For applicants who have accrued
both of the previous two types, we assign them to be from a low
income household with a 30% probability, otherwise, if they have
only one type so far—this probability is 26%, finally, if an applicant
has no types so far, the probability of them being low income is
10%.

We generate a student’s SAT score using a truncated normal
distribution. In this truncated normal distribution, the domain is 0
to 1600, the variance we use is 211 (as per [7]), and the mean of the
distribution is based on the types the applicant satisfies. Students
without any types have a mean score of 1135, while disadvantaged
minorities score 172 points lower, applicants with low parental edu-
cation score 171 points lower, and low income household applicants
score 86 points lower on average.

We then reduce the expected score of each applicant in the
truncated normal distribution based on the types they satisfy. For
students with multiple types, we reduce the impact of each type
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harmonically such that the impact of overlapping types is reduced.
For example, a student with all 3 types will have the expected value
of their score reduced by 172 due to the disadvantaged minority
type, ⌈171/2⌉ = 86 due to the low parental education type, and
⌈86/3⌉ = 29 due to the low income household type. Having gener-
ated types and SAT scores for every student, we create a priority
list ≻𝑐 by descending order of SAT scores.

The reserves [𝑐 were generated in a consistent manner propor-
tional to the selection capacity 𝑞𝑐 for all datasets. Writing the disad-
vantaged minority type as 𝑡1, low education household type as 𝑡2,
and the low income household type as 𝑡3, we have: [1𝑡1 = 0.15 × 𝑞𝑐
, [2𝑡1 = 0.2 × 𝑞𝑐 , [1𝑡2 = 0.1 × 𝑞𝑐 ,[2𝑡2 = 0.1 × 𝑞𝑐 ,[1𝑡3 = 0.05 × 𝑞𝑐 ,
[1𝑡2 = 0.05 × 𝑞𝑐 . Recall that [ 𝑗𝑡 denotes the quota of type 𝑡 and rank
𝑗 . Hence, the total number of reserves is 𝜓 = 0.65𝑞𝑐 throughout
this section.

5.1.2 Performance of algorithms. For each of the synthetic appli-
cant pools generated above, we applied all of the algorithms out-
lined in Section 4, then calculated performance metrics to compare
their performance with respect to maximising diversity and selec-
tion of top performers.

For an instance 𝐼 and an algorithm 𝑓 , let the outcome (selected
students) of applying 𝑓 be 𝑓 (𝐼 ). For an outcome 𝑓 (𝐼 ), let 𝑃 (𝑓 (𝐼 ))
denote the performance of 𝑓 (𝐼 ) with respect to a performance
parameter 𝑃 , where 𝑃 may be the number of rank 1 reserves filled,
total reserves filled, or the average percentile rank of students.

For an algorithm 𝑓 , performance measure 𝑃 and a set of in-
stances I, we define the average performance of an algorithm 𝑓

as avg𝐼 ∈I{
𝑃 (𝑓 (𝐼 ))
opt(𝑃 (𝐼 )) } where opt(𝑃 (𝐼 )) denotes the maximum value

of 𝑃 (𝐼 ) reached by all algorithms for instance 𝐼 . Informally, this
calculates the ratio of the performance achieved by an algorithm
𝑓 for a metric 𝑃 relative to the best performance achieved by all
algorithms for the same metric for each instance, and averages
these ratios across all instances.

For an algorithm 𝑓 , performance measure 𝑃 and a set of in-
stances I, we define the worst case perfomance of an algorithm
𝑓 as min𝐼 ∈I{

𝑃 (𝑓 (𝐼 ))
opt(𝑃 (𝐼 )) }. Informally, we calculate the same ratios

as we do in the average case, but we take the lowest value of the
calculated ratio across all instances rather than averaging them.

We define three main performance metrics by which we evaluate
our matching algorithms. For a given algorithm 𝑓 and an outcome
𝑓 (𝐼 ):

(1) 𝑃1 (𝑓 (𝐼 )) denotes the number of first rank reserves satisfied
by 𝑓 ,

(2) 𝑃2 (𝑓 (𝐼 )) denotes the total number of first and second rank
reserves satisfied by 𝑓 , and

(3) 𝑃3 (𝑓 (𝐼 )) denotes the average percentile rank of students in
𝑓 (𝐼 ).

We present below the average and worst case performance of
each algorithm relative to our performance metrics outlined above.

In Figure 3 we see that the four diversity based algorithms (A-S,
EHYY, SY1, SY2) are equivalent on average when selecting rank 1
seats, while the priority algorithms (POG, POS) trail behind.

In Figure 4, we see that with respect to 𝑃2, A-S and SY2 perform
optimally, while EHYY is optimal up to higher values of 𝑞𝑐 . SY1

Figure 3: Average performance with respect to 𝑃1

beats POG and POS (which overlap here) for lower values of 𝑞𝑐 , yet
converges with the priority algorithms at higher 𝑞𝑐 levels.

Figure 4: Average performance with respect to 𝑃2

In Figure 5, POG and POS are optimal for all 𝑞𝑐 with respect
to 𝑃3, while SY1 trails closely behind. A-S and SY2 overlap in per-
formance, while EHYY exhibits the worst performance across the
tested algorithms.

Figure 5: Average performance with respect to 𝑃3

In Figure 6, the four diversity algorithms all overlap with equiv-
alent performances. POG and POS are equivalent for lower values
of 𝑞𝑐 (≤ 30), while POS outperforms POG on higher values of 𝑞𝑐 .

In Figure 7, A-S and SY2 perform equivalently, achieving an
optimal result for all values of 𝑞𝑐 . EHYY is optimal for smaller 𝑞𝑐
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Figure 6: Worst case performance with respect to 𝑃1

values (≤ 50), however, its performance worsens for larger values.
SY1 outperforms the two priority algorithms at lower values, but
converges to POG and POS at higher 𝑞𝑐 .

Figure 7: Worst case performance with respect to 𝑃2

In Figure 8, POG and POS are optimal, SY1 clearly outperforms
other diversity algorithms, and A-S, EHYY, and SY2 are largely
equivalent, with EHYY marginally underperforming.

Figure 8: Worst case performance with respect to 𝑃3

5.1.3 Analysis. By observing all of the figures above, we make the
general observation that A-S and SY2 have an identical performance
for the above dataset. This is as 𝜓 is less than 𝑞𝑐 by a relatively
large margin (𝜓 = 0.65𝑞𝑐 ), meaning that both SY2 and A-S are able

to fill every reserve (regardless of rank) with the highest ranked
students possible.

We also notice that POG and POS converge with SY1 for larger
𝑞𝑐 values. To explain this, we first note that since SY1 is unaware of
rank 2 reserves, any difference between the two algorithms is purely
based on rank 1 selection. As we have distributed students with
types lower than students without types on average, for a greater𝑞𝑐 ,
where priority algorithms will select lower ranked students, there
will be a greater abundance of typed students, allowing POG and
POS to achieve greater diversity results. Since POG and POS both
fill rank 1 seats before rank 2 seats (after selection), they improve on
their first rank diversity before improving on second rank diversity
as 𝑞𝑐 increases. Hence, POG and POS approach SY1 quickly, before
filling rank 2 seats to approach the other diversity algorithms.

Figures 3 and 6 show that all of the diversity based algorithms
are equivalent with respect to one rank (𝑃1), while the performance
by POG and POS improves drastically as 𝑞𝑐 increases, approaching
optimality.

Figures 4 and 7 show that A-S and SY2 are optimal with respect
to the first two ranks, while EHYY is optimal for lower values of 𝑞𝑐 .
We note that, since SY1 is unaware of rank 2 seats, the performance
gap between SY1 and the other diversity algorithms is entirely made
up of the number of rank 2 reserves filled.

From figures 5 and 8 we see that SY1 outperforms other diversity
based algorithms as a result of satisfying fewer reserves (and hence
satisfying a larger proportion of 𝑞𝑐 based only on priority). We also
notice that SY2 and A-S marginally outperform EHYY for all values
of 𝑞𝑐 , as the greedy selection approach by EHYY does not ensure
optimality with respect to priority.

From this dataset (where the number of rank 1 and 2 reserves is
less than 𝑞𝑐 ) we find that:

(1) When maximising diversity with respect to one rank, all
diversity algorithms are optimal.

(2) When maximising diversity with respect to the first two
ranks, A-S, SY2, and EHYY produce near-identical results.

(3) For 𝑞𝑐 ≥ 30, priority based algorithms fill more than 90% of
the optimal number of rank 1 seats.

(4) For 𝑞𝑐 ≥ 70, priority based algorithms fill more than 80% of
the optimal number of rank 1 and 2 seats.

5.2 Comparison using random synthetic data
In our comparison of the algorithms using the synthetic SAT data
above, we have been limited in scope by keeping amostly consistent
set of paramaters in order to simulate a student admission problem.
In this section, we explore scenarios in which𝜓 > 𝑞𝑐 . We thus vary
both the number of total (rank 1 + rank 2) reserves available for
agents, as well as our acceptance capacity (𝑞𝑐 ) to further compare
the performance of our matching algorithms.

5.2.1 Data procurement. We maintain the same testing conditions
as used in the SAT data above, but with the key difference of varying
𝜓 across different snapshots, while varying 𝑞𝑐 within each snapshot.
We choose our three main values for 𝜓 as 1.3, 1.5 and 1.7 times
of 𝑞𝑐 , which we will achieve by multiplying the quotas found in
Section 5.1. For example, instances with𝜓 = 1.3𝑞𝑐 will have double
the number of reserves of each type and rank than the correspond-
ing instances in Section 5.1, as the instances in Section 5.1 have
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𝜓 = 0.65 𝑞𝑐 . For each of these three values, we compare our selec-
tion algorithms across four values of 𝑞𝑐 , namely 20, 40, 60, and 80
with a consistent |𝑆 | = 100. When evaluating the performance of
our algorithms, we will use the same metrics for comparison of the
algorithms as Section 5.1. While we have done average and worst
case testing for𝜓 = {1.3𝑞𝑐 , 1.5𝑞𝑐 , 1.7𝑞𝑐 }, we only include the worst
case graphs for𝜓 = 1.7𝑞𝑐 for the sake of space.

5.2.2 Performance of algorithms for𝜓 = 1.7. In Figure 9, A-S and
SY1 overlap at 𝑃1 = 1. The next best algorithm is EHYY which
trends downwards as 𝑞𝑐 increases. SY2 outperforms POG and POS
(which overlap) at lower 𝑞𝑐 , but is overtaken at higher values of 𝑞𝑐 .

Figure 9: Worst case performance for 𝑃1,𝜓 = 1.7𝑞𝑐

In Figure 10, A-S, SY2, and EHYY overlap at 𝑃2 = 1. SY1 then
heavily outperforms POG and POS, which are overlapping.

Figure 10: Worst case performance for 𝑃2,𝜓 = 1.7𝑞𝑐

In Figure 11, POG and POS overlap at 𝑃3 = 1. SY1 is the next best
performing, then SY2 outperforms EHYY and A-S, which overlap.

5.2.3 Analysis. We see significantly different performance from
each algorithm compared to what has been demonstrated in Sec-
tion 5.1, as well as between different 𝜓 levels. The most notable
difference from Section 5.1 is that, for instances where𝜓 > 1, A-S
and SY2 are no longer equivalent, but POG and POS are equivalent.

From observing performance relative to 𝑃1, we have gained the
following results.

(1) A-S and SY1 remain optimal for 𝑃1.

Figure 11: Worst case performance for 𝑃3,𝜓 = 1.7𝑞𝑐
(2) EHYY’s 𝑃1 performance is close to 1 for all 𝑞𝑐 in the average

case, but drops drastically in the worst case, especially at
higher values of𝜓 and 𝑞𝑐 .

(3) SY2 outperforms POG and POS in satisfying 𝑃1 for lower 𝑞𝑐
values, but is overtaken for higher 𝑞𝑐 .

Relative to 𝑃2, we obtain the following results.

(1) A-S, SY2, and EHYY are optimal for 𝑃2.
(2) SY1 is strictly better than POG and POS when satisfying 𝑃2.
(3) The performance of SY1 increases as 𝜓 increases, both in

terms of average and worst case.

By comparing 𝑃3 performances, we obtain the following results.

(1) POG and POS remain optimal for 𝑃3.
(2) SY1 is significantly better at satisfying 𝑃3 than other diversity

based algorithms.
(3) The performance of all diversity based algorithms decreases

relative to 𝑃3 as𝜓 increases.
(4) Diversity based algorithms perform worst at 𝑃3 for interme-

diate levels of 𝑞𝑐 that is, 𝑞𝑐 = 40, 60.

6 CONCLUSIONS
We have examined the effectiveness of prominent matching algo-
rithms in satisfying a range of performance metrics across a variety
of different instances. We find that there is a necessary tradeoff
when balancing performance between priority and reserves, and
this tradeoff can be negotiated through our choice of selection
algorithm.

When we wish to optimise our matching toward fulfilling re-
serves across multiple ranks, the A-S algorithm will always provide
the best solution while maintaining the highest possible priority
of selected agents. However, if we wish to optimise across only
one rank, SY1 and SY2 can provide a solution that can achieve
this while outperforming A-S in terms of priority ranking. It also
becomes clear that, for most instances where 𝑞𝑐 is not high, reserve
based matching algorithms provide highly different outcomes from
priority-only algorithms such as POG and POS, creating further
emphasis on the tradeoff between priority and reserve satisfaction.

Therefore, when selecting an algorithm to solve a problem, we
must carefully consider the following points:

(1) Whether or not the problem requires optimisation for prior-
ity or reserves.
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(2) The relative importance of filling reserves according to rank
against the importance of maximising priority.

(3) The value of 𝑞𝑐 relative to |𝑆 |.
(4) The number of reserves available relative to 𝑞𝑐 .
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