ABSTRACT

Reallocating resources to get mutually beneficial outcomes is a fundamental problem in various multi-agent settings. In the first part of the paper we focus on the setting in which agents express additive cardinal utilities over objects. We present computational hardness results as well as polynomial-time algorithms for testing Pareto optimality under different restrictions such as two utility values or lexicographic utilities. In the second part of the paper we assume that agents express only their (ordinal) preferences over single objects, and that their preferences are additively separable. In this setting, we present characterizations and polynomial-time algorithms for possible and necessary Pareto optimality.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms and Problem Complexity; I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems; J.4 [Computer Applications]: Social and Behavioral Sciences - Economics

General Terms

Economics, Theory and Algorithms

Keywords

Game theory (cooperative and non-cooperative), Social choice theory

1. INTRODUCTION

Reallocating resources to achieve mutually better outcomes is a central concern in multi-agent settings. A desirable way to achieve ‘better’ outcomes is to obtain a Pareto improvement in which each agent is at least as happy and at least one agent is strictly happier [1, 5, 28, 30]. Pareto improvements are desirable for two fundamental reasons: they result in strictly more welfare for any reasonable notion of welfare (such as utilitarian or leximin). Secondly, they satisfy the minimal requirement of individual rationality in the sense that no agent is worse off after the trade. If a series of Pareto improvements results in a Pareto optimal outcome, that is even better because there exists no other outcome which each agent weakly prefers and at least one agent strictly prefers.

We consider the setting in which agents are initially endowed with objects and they also have additive preferences for the objects. In the absence of endowments, achieving a Pareto optimal assignment is easy: simply assign every object to the agent who values it the most. On the other hand, in the presence of endowments, finding a Pareto optimal assignment that respects individual rationality is more challenging. The problem is closely related to the problem of testing Pareto optimality of the initial assignment. A certificate of Pareto dominance gives an assignment that respects individual rationality and is a Pareto improvement. In fact, if testing Pareto optimality is NP-hard, then finding an individually rational and Pareto optimal assignment is NP-hard as well. In view of this, we focus on the problem of testing Pareto optimality. In all cases where we are able to test it efficiently, we also present algorithms to compute individually rational and Pareto optimal assignments.

Contributions.

We first relate the problem of computing an individually rational and Pareto optimal assignment to the more basic problem of testing Pareto optimality of a given assignment. We show for unbounded number of agents, testing Pareto optimality is strongly coNP-complete even if the assignment assigns at most two objects per agent.

We then identify some natural tractable cases. In particular, we present a pseudo-polynomial-time algorithm for the problem when the number of agents is constant. We characterize Pareto optimality under lexicographic utilities (i.e., lexicographic preferences) and we show that Pareto optimality can be tested in linear time. For dichotomous preferences in which utilities can take values α or β, we present a char-
characterization of Pareto optimal assignments which also yields a polynomial-time algorithm to test Pareto optimality.

In the ordinal setting, we consider two versions of Pareto optimality: possible Pareto optimality and necessary Pareto optimality. For both properties, we present characterizations that lead to polynomial-time algorithms for testing the property for a given assignment.

Related Work.
The setting in which agents express additive cardinal utilities and a welfare maximizing or fair assignment is computed is a very well-studied problem in computer science [2, 10, 11, 13, 19, 18, 23, 26, 27, 31, 32]. Although computing a utilitarian welfare maximizing assignment is easy, the problem of maximizing egalitarian welfare is NP-hard.

Algorithmic aspects of Pareto optimality have received attention in discrete allocation of indivisible goods, randomized allocation of indivisible goods, two-sided matching, and coalition formation under ordinal preferences [1, 5, 8, 21, 28]. Since we are interested in Pareto improvements, our paper is also related to housing markets with endowments and ordinal preferences [4, 22, 25, 33, 34]. Recently, Damamme et al. [17] examined restricted Pareto optimality under ordinal preferences [4, 22, 25, 33, 34]. Recently, Damamme et al. [17] examined restricted Pareto optimality under ordinal preferences [4, 22, 25, 33, 34].

de Keijzer et al. [18] study the complexity of deciding whether there exists a Pareto optimal and envy-free assignment when agents have additive utilities. They also showed that testing Pareto optimality under additive utilities is coNP-complete. We show that this result holds even if each agent has two objects.

Cechlárová et al. [16] proved Pareto optimality of an assignment under lexicographic utilities can be tested in polynomial time. In this paper, we present a simple characterization of Pareto optimality under lexicographic utilities that leads to a linear-time algorithm to test Pareto optimality.

Bouveret et al. [14] consider necessary Pareto optimality as Pareto optimality for all completions of the responsive set extension,1 and present some computational results when necessary Pareto optimality is considered in conjunction with other fairness properties. Reallocating resources to improve fairness has also been studied before [20].

2. PRELIMINARIES

We consider the setting in which we have $N = \{1, \ldots, n\}$ a set of agents, $O = \{o_1, \ldots, o_m\}$ a set of objects, and the preference profile $\succoverset{i}{\equiv} = \{\succoverset{i1}{\equiv}, \ldots, \succoverset{in}{\equiv}\}$ specifies for each agent i her complete, transitive and reflexive preferences $\succoverset{i}{\equiv}$ over O. Agents may be indifferent among objects. Let \succeq_i and \succ_i denote the symmetric and anti-symmetric part of $\succoverset{i}{\equiv}$, respectively. We denote by E_i^k, $i = 1, \ldots, n$, the k_i equivalence classes of an agent $i \in N$. Those classes partition O into k_i sets of objects such that agent i is indifferent between two objects belonging to the same class, and she strictly prefers an object of E_i^k to an object of $E_i^{k'}$ whenever $k < k'$. Each agent may additionally express a cardinal utility function u_i consistent with $\succoverset{i}{\equiv}$: $u_i(o) > u_i(o')$ iff $o \succ_i o'$ and $u_i(o) = u_i(o')$ iff $o \succeq_i o'$. We will assume that each object is positively valued, i.e., $u_i(o) > 0$ for all $i \in N$ and $o \in O$. The set of all utility functions consistent with $\succoverset{i}{\equiv}$ is denoted by $U(\succoverset{i}{\equiv})$. We will denote by $U(\succoverset{\cdot}{\equiv})$ the set of all utility profiles $u = (u_1, \ldots, u_n)$ such that $u_i \in U(\succoverset{i}{\equiv})$ for each $i \in N$. When we consider agents’ valuations according to their cardinal utilities, then we will assume additivity, that is $u_i(O') = \sum_{o \in O'} u_i(o)$ for each $i \in N$ and $O' \subseteq O$.

An assignment $p = (p(1), \ldots, p(n))$ is a partition of O into n subsets, where $p(i)$ is the bundle assigned to agent i. We denote by X the set of all possible assignments.

An assignment $p \in X$ is said to be individually rational for an initial endowment $e \in X$ if $u_i(p(i)) \geq u_i(e_i)$ holds for any agent i. An assignment $p \in X$ is said to be Pareto dominated by another $q \in X$ if $i \in N$, $u_i(q(i)) \geq u_i(p(i))$ holds, (ii) for at least one agent $i \in N$, $u_i(q(i)) > u_i(p(i))$ holds. An assignment is Pareto optimal iff it is not Pareto dominated by another assignment. Finally, whenever cardinal utilities are considered, the social welfare of an assignment p is defined as $SW(p) = \sum_{i \in N} u_i(p(i))$.

EXAMPLE 1. Let $n = 3$, $m = 5$, and the utilities of the agents be represented as follows.

<table>
<thead>
<tr>
<th>o_1</th>
<th>o_2</th>
<th>o_3</th>
<th>o_4</th>
<th>o_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>5</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Since $u_1(o_1) > u_1(o_2)$, we can say that $o_1 \succ_1 o_2$. An example of an assignment is $p = (o_2 o_4 o_1 o_3 o_5)$ in which $p(1) = \{o_2, o_1\}$, $p(2) = \{o_3\}$, and $p(3) = \{o_5\}$.

3. ADDITIVE UTILITIES

In this section we assume that each agent expresses a cardinal utility function u_i over O, where $u_i(o) > 0$ for all $i \in N$ and $o \in O$.

3.1 Complexity of testing Pareto optimality

We will consider Pareto optimality and individual rationality with respect to additive utilities. The following lemma shows that the computation of an individually rational and Pareto-improving assignment is at least as hard as the problem of deciding whether a given assignment is Pareto optimal:

LEMMA 1. If there exists a polynomial-time algorithm to compute a Pareto optimal and individually rational assignment, then there exists a polynomial-time algorithm to test Pareto optimality.

PROOF. We assume that there is a polynomial-time algorithm A to compute an individually rational and Pareto optimal assignment. Consider an assignment p for which Pareto optimality needs to be tested. We can use A to compute an assignment q which is individually rational for the initial endowment p and Pareto optimal. By individual rationality $u_i(q(i)) = u_i(p(i))$ for all $i \in N$. If $u_i(q(i)) = u_i(p(i))$ for all $i \in N$, then p is Pareto optimal simply because q is Pareto optimal. However if there exists $i \in N$ such that $u_i(q(i)) > u_i(p(i))$, it means that p is not Pareto optimal.

A Pareto optimal assignment can be computed trivially by giving each object to the agent who values it the most. Bouveret and Lang [12] proved that a problem concerning coalitional manipulation in sequential allocation is NPC-complete (Proposition 6). The result can be reinterpreted as follows.
Theorem 1. Testing Pareto optimality of a given assignment is weakly coNP-complete for \(n = 2 \) and identical preferences.

Corollary 1. Computing an individually rational and Pareto optimal assignment is weakly NP-hard for \(n = 2 \).

One may additionally require the balanced property, i.e., each agent gets as many objects as she initially owned. Both the theorem above and the corollary above can be extended to that case easily. If there are an unbounded number of agents, then testing Pareto optimality of a given assignment is strongly coNP-complete \([18]\). Next, we show that the problem remains strongly coNP-complete even if each agent receives exactly 2 objects.

Theorem 2. Testing Pareto optimality of a given assignment is strongly coNP-complete for an unbounded number of agents even if each agent receives exactly 2 objects.

Proof. The reduction is done from 2-numerical matching with target sums (2NMTS in short). The inputs of 2NMTS is a sequence \(a_1, \ldots, a_k \) of positive integers such that \(\sum_{i=1}^{k} a_i = k(k+1) \) and \(1 \leq a_i \leq 2k - 1 \) for \(i = 1, \ldots, k \), and \(a_1 \leq a_2 \leq \ldots \leq a_k \). We want to decide if there are two permutations \(\pi \) and \(\theta \) of the integers \(\{1, \ldots, k\} \) such that \(\pi(i) + \theta(i) = a_i \) for \(i = 1, \ldots, k \). 2NMTS is known to be strongly NP-complete \([35]\).

The reduction from an instance of 2NMTS is as follows. There are \(3k + 1 \) agents \(N = L \cup C \cup R \cup \{d\} \) where \(L = \{\ell_1, \ldots, \ell_k\}, R = \{r_1, \ldots, r_k\} \), and \(C = \{c_1, \ldots, c_k\} \) and \(6k + 2 \) objects \(O = F \cup G \cup H \cup \{o\} \) where \(F = \{f_{L,i}, f_{R,i}, i = 1, \ldots, k\}, G = \{g_{L,i}, g_{R,i} : i = 1, \ldots, k\} \cup \{g_{C}, g_{O}\}, H = \{h_{L}, h_{C}, h_{R}, h_{o} : i = 1, \ldots, k\} \). Let \(\varepsilon \) be a positive value strictly lower than \(1/2 \). The following table summarizes the non-zero utilities provided by the different objects, where \(\text{agt}(\#1) \) is the agent which receives the object in the initial assignment and \(u_{\text{agt}(\#1)} \) is her utility for it, and where \(u_{\text{agt}(s)\#2} \) lists the other agents with non-zero utility for the object and \(u_{\text{agt}(s)\#2} \) corresponds to their utility for it:

<table>
<thead>
<tr>
<th>object</th>
<th>(\text{agt}(#1))</th>
<th>(u_{\text{agt}(#1)})</th>
<th>(\text{agt}(s)#2)</th>
<th>(u_{\text{agt}(s)#2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_{L}^{1})</td>
<td>(c_i)</td>
<td>(a_i)</td>
<td>(\ell_i)</td>
<td>(1 + \varepsilon)</td>
</tr>
<tr>
<td>(h_{C}^{R})</td>
<td>(c_i)</td>
<td>(3k)</td>
<td>(r_i)</td>
<td>(1 - \varepsilon)</td>
</tr>
<tr>
<td>(f_{L,i})</td>
<td>(\ell_i)</td>
<td>(1)</td>
<td>(c_j \text{ with } a_j \geq i + 1)</td>
<td>(i)</td>
</tr>
<tr>
<td>(f_{R,i})</td>
<td>(r_i)</td>
<td>(1)</td>
<td>(c_j \text{ with } a_j \geq i + 1)</td>
<td>(3k + i)</td>
</tr>
<tr>
<td>(g_{L}^{R})</td>
<td>(r_i)</td>
<td>(3)</td>
<td>(r_{i+1} \text{ if } i < k)</td>
<td>(3 + \varepsilon)</td>
</tr>
<tr>
<td>(g_{R}^{L})</td>
<td>(\ell_i)</td>
<td>(3)</td>
<td>(\ell_{i-1} \text{ if } i > 1)</td>
<td>(3 - \varepsilon)</td>
</tr>
<tr>
<td>(g_{O}^{C})</td>
<td>(d)</td>
<td>(3)</td>
<td>(\ell_k)</td>
<td>(3 - \varepsilon)</td>
</tr>
<tr>
<td>(o)</td>
<td>(d)</td>
<td>(1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The initial assignment provides the following utilities to the agents: \(u_{\pi}(\{h_{L}^{1}, h_{C}^{R}\}) = 3k + a_i, u_{\theta}(\{f_{L,i}, f_{R,i}\}) = 4 \) and \(u_{\theta}(\{g_{L}^{R}, g_{R}^{L}\}) = 4 \) for \(i = 1, \ldots, k \) and \(u_{\theta}(\{g_{C}, g_{O}\}) = 4 \).

Clearly, this instance is constructed within polynomial time and each agent has two items in the initial assignment. We claim that there is a Pareto improvement of the initial assignment \(\{a_i : i = 1, \ldots, k\} \) is a yes-instance of 2NMTS.

Assume that there exist \(\pi \) and \(\theta \) such that \(\pi(i) + \theta(i) = a_i \) for \(i = 1, \ldots, k \), i.e., \(\{a_i : i = 1, \ldots, k\} \) is a yes-instance of 2NMTS.

Figure 1: Initial assignment for agents of \(L \cup R \cup \{d\} \).

2NMTS. Note that this implies for any \(i = 1, \ldots, k \) that
\[
\pi(i) + 1 \leq a_i \quad \text{and} \quad \theta(i) + 1 \leq a_i
\]
(1)
because \(\pi(i) \geq 1 \) and \(\theta(i) \geq 1 \). Then consider the following assignment:
\[
\{h_{L}^{1}, g_{L}^{1}\} \text{ (resp. } \{h_{C}^{R}, g_{C}^{R}\} \text{) is assigned to } \ell_i \text{ with } i < k \text{ (resp. to } \ell_k \text{) with utility } 4.
\]
\[
\{h_{C}^{R}, g_{L}^{1}\} \text{ (resp. } \{h_{C}^{R}, g_{L}^{1}\} \text{) is assigned to } r_i \text{ with } i > 1 \text{ (resp. to } r_1 \text{) with utility } 4.
\]
\[
\{f_{L,i}, f_{R,i}\} \text{ is assigned to } c_i. \text{ Using (1), the utility of agent } c_i \text{ is } 3k + \pi(i) + \theta(i) = 3k + a_i.
\]
\[
\{o, g_{O}^{C}\} \text{ is assigned to } d \text{ with utility } 4 + \varepsilon.
\]

This allocation is clearly a Pareto improvement of the initial allocation.

Assume now that \(\{a_i : i = 1, \ldots, k\} \) is a no-instance of 2NMTS. By contradiction, assume that there exists a Pareto improvement \(p \) of the initial assignment. Note first that any agent should receive in \(p \) at least two objects. Indeed there is no object which provides a utility greater than \(3 + \varepsilon \) to any agent of \(L \cup R \cup \{d\} \), and any of those agents receives a utility 4 in the initial assignment. Furthermore, any good \(f_{L,i} \) provides a utility at most \(3k + i \) to an agent \(c_i \), which is strictly lower than her utility \(3k + a_i \) in the initial assignment because \(a_i \geq i + 1 \) (otherwise \(c_i \) would get utility 0 from \(f_{R,i} \)). Since the number of objects is twice the number of agents, we can conclude that \(p \) assigns exactly 2 objects to every agent.

Let us focus first on the objects of \(G \). Those objects are the only ones which can provide a utility at least \(3 - \varepsilon \) to the agents of \(L \cup R \cup \{d\} \). All other objects provide a utility at most \(1 + \varepsilon \) to the agents in \(L \cup R \cup \{d\} \). So, to achieve a utility at least 4 for all those agents in \(L \cup R \cup \{d\} \), each of them should receive exactly one good from \(G \) (with non-zero utility for it) because \(|L \cup R \cup \{d\}| = |G| = 2k + 1 \). Figure 1 illustrates the initial assignment for the agents of \(L \cup R \cup \{d\} \). In this figure, a dotted arrow from an object of \(G \) means that this object can be reassigned to the pointed agent with a non zero utility. Figure 1 illustrates the fact that the goods of \(G \) could be allocated in only two different manners in \(p \) to
be a Pareto improvement of the initial endowment: either every good of G is assigned to the same agent as in the initial assignment, or every good of G is assigned to the agent pointed by the corresponding arrow in Figure 1.

First, we consider the case where all goods of G are assigned in p exactly as in the initial assignment. To achieve a utility at least 4, every agent r_i should receive the object f_i^R to complete her bundle of two objects. This implies that those objects cannot be assigned to agent c_i, with $i = 1 \ldots k$, in order to ensure that they get a utility at least $3k + a_i$. Therefore every agent c_i should receive the object h_i^{CL} with utility $3k$. Furthermore no agent c_i can receive an object f_i^R to complete her bundle of two objects because this object would provide her a utility at most $a_i - 1$. So, every agent c_i should receive the object h_i^{CL}. From this, we conclude that p should be exactly the same assignment as the initial assignment, which contradicts p Pareto-dominates this initial assignment.

From the previous paragraphs, we know that any good of G should be assigned in p to the agent pointed by the corresponding dotted arrow in Figure 1. To achieve a utility at least 4, any agent l_i should receive the good h_i^{CL} to complete her bundle of two objects. If an agent c_i did not receive at least one good f_j^R such that $a_i \geq j + 1$, then the maximal utility achievable by c_i would be $3k + a_i - 1$, which would be strictly lower than her utility in the initial assignment. So, every agent c_i should receive exactly one good f_j^R such that $a_i \geq j + 1$. Therefore no good f_j^R can be assigned to agent r_i. So, to achieve a utility at least 4, any agent r_i should receive the good h_i^{CL} to complete her bundle of two objects. Then the good o should be assigned to agent d to complete her bundle of two goods. Finally it remains to assign to every agent c_i a good f_j^R such that $a_i \geq j + 1$.

Now let us focus on the pair of goods assigned in p to agent c_i with $i = 1 \ldots k$. Note that those two objects belong to F. We know that the total amount of utility provided by the goods of F to the agents of C should be exactly equal to $3k^2 + k(k + 1)$. Furthermore any agent c_i should receive a share of at least $3k + a_i$ of this total amount of utility. Since $\sum_{i=1}^{k} (3k + a_i) = 3k^2 + k(k + 1)$, any agent c_i should receive two objects f_j^R and j^R such that $u_i(f_j^R, j^R) = 3k + a_i$. Let π and θ be the two permutations of $\{1, \ldots, k\}$ such that for any $i = 1 \ldots k$, the objects $f_{\pi(i)}^R$ and $j_{\theta(i)}^R$ are assigned in p to agent c_i. Those two permutations are such that for any $i = 1 \ldots k$, $\pi(i) + \theta(i) = a_i$. This leads to a contradiction with $a_i - i = 1 \ldots k$ is a no-instance.

Note that Theorem 2 is the best possible NP-hardness result that we can obtain according to the number of objects received by each agent because if initially each agent has exactly one object in assignment p, then our problem can be solved in linear-time.

3.2 Complexity of testing Pareto optimality: tractable cases

We now identify conditions under which the problem of computing individually rational and Pareto optimal assignments is polynomial-time solvable.

3.2.1 Constant number of agents and small weights

Lemma 2. If there is a constant number of agents, then the set of all vectors of utilities that correspond to a feasible assignment can be computed in pseudo-polynomial time.

Proof. Consider the following algorithm (by 0^k we denote $0, 0, 0$ with k occurrences of 0).

1. $L \leftarrow \{0^n\}$
2. for $j = 1$ to m do
3. $L \leftarrow \{l + (0^{n-j} \cdot u_i(o), 0^{n-j-i}) \mid i \in N; l \in L\}$
4. $L \leftarrow L'$
5. end for
6. return L

Let W be the maximal social welfare that is achievable; then, at any step of the algorithm, the number of vectors in L cannot exceed $(W + 1)^n$. Hence the algorithm runs in $O(n \cdot m^n)$. Now, $W \leq \sum_{i,j} u_i(o_j)$, and since n is constant, the algorithms runs in pseudopolynomial time.

We can prove by induction on k that a vector of utilities $l = (u_1, \ldots, u_n)$ can be achieved by assigning objects a_1, \ldots, a_k to the agents if and only if l belongs to L after objects a_1, \ldots, a_k have been considered. This is obviously true at the start of the algorithm, when no object at all has been considered. Now, suppose the induction assumption is true for k. If l belongs to L after iteration k, then l' belongs to L after iteration $k + 1$ if l' is obtained from l by adding $u_i(o_k)$ to the utility of some agent i, that is, if $l' = (u_1, \ldots, u_n)$ can be achieved by assigning objects a_1, \ldots, a_{k+1}.

Theorem 3. If there is a constant number of agents, then there exists a pseudo-polynomial-time algorithm to compute a Pareto optimal and individually rational assignment.

Proof. We apply the algorithm of Lemma 2, but in addition we keep track, for each $l \in L$, of a partial assignment that supports it: every time we add $l + (0^{n-j} \cdot u_i(o), 0^{n-j-i})$ to L', the corresponding partial assignment is obtained from l by adding $u_i(o_k)$ to the utility of some agent i, that is, if $l = (u_1, \ldots, u_n)$ can be achieved by assigning objects a_1, \ldots, a_k.

2Note that it is generally not the case that we get all Pareto optimal assignments: if there are several assignments corresponding to the same utility vector, then we’ll obtain only one.
in polynomial time. We provide a simple characterization of a Pareto optimal assignment under lexicographic utilities. The characterization we present also provides an interesting connection with the possible Pareto optimality that we consider in the next section.

Theorem 4. An assignment \(p \) is not Pareto optimal wrt lexicographic utilities iff there exists a cycle in \(G(p) \) which contains at least one edge corresponding to a strict preference.

Proof. Assume that there exists a cycle \(C \) which contains at least one edge corresponding to a strict preference. Then, the exchange of objects along the cycle by agents owning the objects corresponds to a Pareto improvement.

Assume now that \(p \) is not Pareto optimal and let \(q_1 \) be an assignment which Pareto dominates \(p \). For at least one agent \(i \), \(q_1(i) \succ p(i) \). So there exist at least one object \(o_1 \) in \(q_1(i) \setminus p(i) \). Let \(i_1 \) be the owner of \(o_1 \) in \(p \). Since preferences are lexicographic, in compensation of the loss of \(o_1 \), agent \(i_1 \) must receive an object \(o_2 \) in \(q_1 \), which is at least as good as \(o_1 \) according to her own preferences. Let \(i_2 \) be the owner of \(o_2 \) in \(p \) and so on. Since \(O \) is finite, there must exist \(k \) and \(k' \) such that the sequence \(o_k
rightarrow o_{k+1} \rightarrow \cdots \rightarrow o_{k'} \) forms a cycle, i.e., \(o_k = o_{k'} \). If \(/\not\in [k, k'-1] \) such that \(o_{k+1}
rightarrow i \) then we consider the assignment \(q_2 \) derived from \(q_1 \) by reallocation of any object \(o_{k+1} \), with \(l \in [k, k'-1] \), \(o_{k+1} \) is assigned to agent \(i_l \) in \(q_2 \) to compensate the loss of \(o_l \) assigned to \(i_l \) (obviously with \(o_{k+1} \succeq_i o_l \)). Once again if \(/\not\in [k, k'-1] \) such that \(o_{k+1}
rightarrow i \) then we consider the assignment \(q_3 \) derived from \(q_2 \) by reassignment of any object \(o_{k+1} \), with \(l \in [k, k'-1] \), \(o_{k+1} \) is assigned to agent \(i_l \) for all \(l \in [k, k'-1] \), \(o_{k+1} \) is assigned to agent \(i_l \) in \(q_3 \) to compensate the loss of \(o_l \) assigned to \(i_l \) (obviously with \(o_{k+1} \succeq_i o_l \)).

It is clear that the graph \(G(p) \) can be constructed in linear time for any assignment \(p \). Furthermore, the search of a cycle containing at least one strict preference edge in \(G(p) \) can be computed in linear time by applying a graph traversal algorithm for any strict preference edge in \(G(p) \). Therefore testing if a given assignment is Pareto optimal can be done in linear time when utilities are lexicographic.

Example 2. Let \(n = 3, m = 5, \) and the following ordinal information about preferences corresponding to the lexicographic utilities in Example 1 (as a consequence of Theorem 4, ordinal preferences are enough information to check Pareto optimality).

1. \(o_1 \succeq o_2 \succeq o_3 \succeq o_4 \succeq o_5 \)
2. \(o_1 \succeq o_2 \sim o_3 \sim o_4 \sim o_5 \)
3. \(o_1 \sim o_2 \sim o_3 \sim o_4 \sim o_5 \)

Figure 2: Graph \(G(p) \) for assignment \(p \) in Example 2.

Let \(p = (o_2, o_3, o_1, o_5, o_4) \) be the initial assignment. The construction of Theorem 4 gives us that it is Pareto dominated by \((o_2, o_3, o_4, o_5, o_1)\), hence it is not Pareto optimal.

3.2.3 Two utility values

In this section we assume the agents use at most two utility values for the objects. We say that the collection of utility functions \((u_1, \ldots, u_n)\) is bivalued if there exist two numbers \(\alpha > \beta > 0 \) such that for every agent \(i \) and every object \(o, u_i(o) \in \{\alpha, \beta\} \). (The result would still hold if each agent \(i \) has a different pair of values \((\alpha_i, \beta_i)\)). Provided that \(\frac{\alpha_i}{\beta_i} = \frac{\alpha}{\beta} \) for all \(i, j \). This means that for every agent \(i \), the set of objects \(O \) is partitioned into two subsets \(E_i^1 = \{ o \in O | u_i(o) = \alpha \} \) and \(E_i^2 = \{ o \in O | u_i(o) = \beta \} \) (with possibly \(E_i^2 = \emptyset \)). Given an assignment \(q \), let \(q_i^+(j) = q(i) \cap E_i^1 \), and \(q_i^-(j) = q(i) \cap E_i^2 \).

We provide a first requirement for an assignment to Pareto dominate another one:

Lemma 3. If an assignment \(p \) is Pareto dominated by an assignment \(q \) then \(|U_{i \in N} q_i^+(j)| > |U_{i \in N} p_i^+(j)| \).

Proof. For contradiction we assume that \(|U_{i \in N} q_i^+(j)| > |U_{i \in N} p_i^+(j)| \). In that case \(SW(q) = |U_{i \in N} q_i^+(j)\cdot \alpha + |U_{i \in N} q_i^-(j)\cdot \beta = |U_{i \in N} q_i^+(j)\cdot (\alpha - \beta) + |O| \cdot \beta \leq |U_{i \in N} p_i^+(j)\cdot (\alpha - \beta) + |O| \cdot \beta = |U_{i \in N} p_i^+(j) + \beta |U_{i \in N} p_i^-(j) \). So \(SW(p) > SW(q) \), which contradicts the assumption that \(q \) Pareto dominates \(p \).

Lemma 4. If an assignment \(p \) is not Pareto optimal then there exists an assignment \(q \) such that \((i) \forall i \in N, q_i^+(j) \geq |p_i^+(j)| \) and \((ii) \exists j \in N, |q_j^-(j)| > |p_j^-(j)| \) and \(p_j^-(j) \neq \emptyset \).

Proof. Assume that \(p \) is not Pareto optimal. Then there exists an assignment \(q \), which Pareto dominates \(p \). We claim that we can reassign the objects in \(q \) in order to obtain an assignment \(q \) such that (i) and (ii) hold.

For any agent \(i \) we initialize \(q(i) \) to \(q_i^+(i) \). In order to obtain (i), while there exists \(i \in N \) such that \(|q_i^+(i)| < |p_i^+(i)| \), we choose \(o \in p_i^+(i) \cap q_i^+(i) \) and assign \(o \) to \(i \) in \(q \). Note that \(o \) may belong to another agent in \(q \) but nevertheless the total number of object assigned in \(q \) never decreases. Furthermore, after at most \(|U_{i \in N} p_i^+(j)| \) steps, condition (i) will hold because an object \(U_{i \in N} p_i^+(j) \) can be reassigned at most once. Finally, Lemma 3 implies that \(|U_{i \in N} q_i^+(j)| > |U_{i \in N} p_i^+(j) \) and \(|U_{i \in N} q_i^+(j)| \geq |U_{i \in N} q_i^+(j) \). Therefore \(SW(p) > SW(q) \).

Let \(A = \{ i \in N | p_i^+(i) = \emptyset \} \) and \(B = \{ i \in N | |q_i^+(i)| > |p_i^+(i)| \} \). Note first that \(A \neq \emptyset \) because otherwise \(p \) would be Pareto optimal. If \(A \cap B = \emptyset \) then condition (ii) holds. Otherwise, if \(\exists i \in A \) and \(o \in O \setminus U_{i \in N} q(j) \) such that \(o \in E_i^1 \)
then assign \(o \) to \(i \) in \(q \) and condition (ii) holds. Otherwise if \(\exists i \in A, \exists j \in B \) and \(\exists o \in q(j) \) such that \(o \in E_i \) then reassign object \(o \) to \(i \) in \(q \) and condition (ii) holds (note that (i) remains true).

Finally we show that other cases never occur. Indeed otherwise we would have \(A \cap B = \emptyset \) and \(\forall i \in A, \forall o _{ \in } E_i \) and \(\forall i \in B, \forall o _{ \in } q(j) \). This would mean that \(\bigcup_{i \in A} E_i^1 = \bigcup_{i \in A} p(i) \cap E_i^1 \). Therefore we would have \(\bigcup_{i \in A} q(i) \cap E_i^1 \leq \bigcup_{i \in A} p(i) \cap E_i^1 \). But \(q \), Pareto dominates \(p \) implies \(\forall i \in A, u_i(q(i)) \geq u_i(p(i)) \). Therefore \(\sum_{i \in A} |q_i(i) \cap E_i^1| \alpha + \sum_{i \in B} |q_i(i) \cap E_i^1| \beta \geq \sum_{i \in A} |p_i(i) \cap E_i^1| \alpha + \sum_{i \in B} |p_i(i) \cap E_i^1| \beta \) which implies \(q_i(i) \cap E_i^1 \geq p_i(i) \cap E_i^1 \). We can now bound the social welfare of \(q \) and \(p \) as:
\[
\sum_{i \in A} |q_i(i) \cap E_i^1| \alpha + \sum_{i \in B} |q_i(i) \cap E_i^1| \beta + \left| \bigcup_{i \in A} q_i(i) \right| \alpha + \sum_{i \in B} |q_i(i) \cap E_i^1| \beta + \left| \bigcup_{i \in A} p_i(i) \cap E_i^1 \right| \alpha + \sum_{i \in B} |p_i(i) \cap E_i^1| \beta \geq \sum_{i \in A} |p_i(i) \cap E_i^1| \alpha + \sum_{i \in B} |p_i(i) \cap E_i^1| \beta
\]
which is a contradiction with \(q \). Pareto dominates \(p \).

Based on the lemma, we obtain the following characterization of Pareto optimality in the bivalued case.

Theorem 5. An assignment \(p \) is Pareto dominated iff there exists an assignment \(q \) such that (i) \(\forall i \in N, |q_i(i)| \geq |p_i(i)| \) and (ii) \(\exists j \in N, |q(j)| > |p(j)| \) and \(p^{-}(j) \neq \emptyset \).

Proof. One implication has already been proved in Lemma 4. To prove the second implication we assume first that there exists \(q \) such that (i) and (ii) holds. Let \(j \) be as described as in (ii). For any \(i \in N \setminus \{j\} \), let \(A_i \subseteq q^{-}(i) \) such that \(|A_i| = |p^{-}(j)| \). Let \(A_j \subseteq q^{-}(j) \) such that \(|A_j| = |p^{-}(j)| + 1 \). Let \(A = O \cup \bigcup_{i \in A_i} N_i \). Note that by definition \(|A| = |O| + \left| \bigcup_{i \in N_i} A_i \right| - 1 \) because \(\left| \bigcup_{i \in N_i} A_i \right| = \sum_{i \in N_i} |p_i(i)| = | \bigcup_{i \in N} p^{-}(i) | - 1 \). We partition \(A \) into \(n \) subsets \(A_1, \ldots, A_n \), such that \(\forall i \in N \setminus \{j\}, |A_i| = |p^{-}(j)| \) and \(|A_j| = |p^{-}(j)| + 1 \). Finally, let \(q \) be the assignment such that \(\forall i \in N, q(i) = A_i \cup A_j \). It is clear that \(\forall i \in N \setminus \{j\}, u_i(q(i)) \geq |A_i| \alpha + |A_j| \beta = u_i(p(i)) \) and \(u_j(q(j)) \geq |A_j| \alpha + |A_j| \beta > u_j(p(j)) \). So \(p \) is Pareto dominated by \(q \).

Theorem 6. Under bivalued utilities, there exists a polynomial-time algorithm for checking Pareto optimality and finding a Pareto improvement, if any.

Proof. According to Theorem 5, a Pareto improvement can be computed by focusing on the assignment of top objects for the agents. We describe an algorithm based on maximum flow problems to obtain such assignment. For any \(i \in N \), let \(G_i = (V_i, E_i) \) be a directed graph which models the search of a Pareto improvement for agent \(i \) as a flow problem. The set of vertices \(V_i \) contains one vertex per agent and per object, plus a source \(s \) and a sink \(t \). To ease the notation, we do not discriminate between the vertices and the agents or objects that they are representing, therefore, we note \(V_i = N \cup O \cup \{s, t\} \). The set of edges \(E_i \) and their capacities are constructed as follow:

- For any \(l \in N \) and \(o \in O \) such that \(o \in E_i \) there is an edge \((l, o)\) with capacity 1.
- For any \(o \in O \) there is an edge \((o, t)\) with capacity 1.
- For any \(l \in N \setminus \{i\} \) there is an edge \((s, l)\) with capacity \(|p^{-}(l)|\), and there is an edge \((s, l)\) with capacity \(|p^{-}(i)| + 1\).

It is easy to show that there exists a flow of value \(\sum_{i \in N} |p^{-}(l)| + 1 \) iff there exists an assignment such that any agent \(l \in N \setminus \{i\} \) receives by at least \(|p(l) \cap E_i^1| \) top objects and agent \(i \) receives \(|p^{-}(i)| + 1 \) top objects. So by Theorem 5, there exists a Pareto improvement of \(p \) iff there exists \(i \in N \) such that \(p(i) \cap E_i^1 \neq \emptyset \) and there exists a flow of value \(\sum_{i \in N} |p^{-}(l)| + 1 \) in \(G_i \). Therefore finding a Pareto improvement can be performed in polynomial time by solving at most \(n \) maximum-flow problems. In each Pareto improvement the number of top objects increases by at least one so there can be at most \(m \) Pareto improvements.

Note that we can also find a Pareto optimal Pareto improvement in polynomial time as well: in each Pareto improvement the number of top objects increases by at least one so there can be at most \(m \) Pareto improvements.

Example 3. Let \(n = 3 \), \(m = 6 \), \(E_1 = \{o_1, o_2, o_3\} \), \(E_2 = \{o_4\} \), \(E_3 = \{o_5, o_6\} \), and \(p = (o_1, o_3, o_5, o_6) \). \(G_1 \) is depicted in Figure 3. The flow of value 5 (boldface) gives the assignment \((o_1, o_3, o_2, o_5, o_6)\), which Pareto-dominates \(p \).

Figure 3: Flow network \(G_1 \) in Example 3.

4. ORDINAL PREFERENCES

In this section, we consider the setting in which the agents have additive cardinal utilities but only their ordinal preferences over the objects is known by the central authority. This could be because the elicitation protocol did not ask the agents to communicate their utilities, or simply because they don’t know them precisely. In this case, one can still reason whether a given assignment is Pareto optimal with respect to some or all cardinal utilities consistent with the ordinal preferences. An assignment \(p \) is possibly Pareto optimal with respect to \(\succ \) if there exists \(u \in \U \) such that \(p \) is Pareto optimal for \(u \). An assignment is necessarily Pareto optimal with respect to \(\succ \) if for any \(u \in \U \) the assignment \(p \) is Pareto optimal for \(u \).

4.1 Possible Pareto Optimality

We first note that necessary Pareto optimality implies possible Pareto optimality. Secondly, at least one necessarily Pareto optimal assignment exists in which all the objects are given to one agent. We focus on the problems of testing possible and necessary Pareto optimality.

In order to characterize possible Pareto optimality, we first define stochastic dominance (SD) which extends ordinal preferences over objects to preferences over sets of objects (and even over fractional allocations in which agents can get fractions of items). We say that an allocation \(q(i) \) stochastically dominates an allocation \(p(i) \), denoted by \(q(i) \preceq_{SD} p(i) \), if \(|q(i) \cap \bigcup_{j=1}^k E_j^1| \geq |p(i) \cap \bigcup_{j=1}^k E_j^1| \) for all \(k \in \{1, \ldots, k\} \).

In the case of fractional allocations, \(q(i) \cap \bigcup_{j=1}^k E_j^1 \) denotes the units of items give to \(i \) for items in \(\bigcup_{j=1}^k E_j^1 \).
Assume that an assignment p is not Pareto optimal under some completion of the responsive set extension. Then there exists another assignment q in which for all $i \in N$ $q(i) \succ_{RS} p(i)$ or $p(i) \succ_{RS} q(i)$ and $q(i) \not\succ_{RS} p(i)$, and for some $i \in N$, $q(i) \succ_{RS} p(i)$ or $p(i) \succ_{RS} q(i)$ and $q(i) \not\succ_{RS} p(i)$. For both the cases, if the allocations are incomparable with respect to responsive set extension, then there exists an object o such that $|\{j : o \succ_{RS} o_j\}| > |\{j : o_j \succ_{RS} o\}|$. In that case, consider a utility function u_i in which $u_i(o^{\prime\prime}) - u_i(o^\prime) \leq \epsilon$ for all $o^{\prime\prime}$, $o^{\prime\prime} \succ_{RS} o$, and $u_i(o) = \sum_{o^{\prime\prime}, o^\prime} u_i(o^{\prime\prime}) + |O|\epsilon$. For u_i, $u_i(q(i)) > u_i(p(i))$.

For characterizing necessarily Pareto optimal assignments, we define a one-for-two Pareto improvement swap as an exchange between two agents i_j and i_k involving objects $o_j^\prime, o_k^\prime \in p(i_j)$ and $o_k \in p(i_k)$ such that $o_k \succ_{ij} o_j^\prime \succ_{ij} o_j^\prime$. We first show that if an assignment does not satisfy the two conditions, then it is not necessarily Pareto optimal. Possible Pareto optimality is a requirement for the assignment to be necessarily Pareto optimal. To see that the second condition is also necessary, we have to show that if p admits a one-for-two Pareto improvement swap then p is not necessarily Pareto optimal. This is because the swap could indeed be a Pareto improvement for these two agents with the following utilities: $u_{i_j}(o_k) > 2u_{i_k}(o_j)$ or $u_{i_k}(o_j^\prime) + u_{i_k}(o_k^\prime)$ and $u_{i_j}(o_k) < u_{i_k}(o_j^\prime) + u_{i_k}(o_j^\prime)$. These utilities are compatible with the ordinal preferences of these agents, because of the assumption $o_k \succ_{ij} o_j^\prime \succ_{ij} o_j^\prime$ (and irrespective of the ordinal preferences of i_k).

Conversely, to show that conditions (i) and (ii) are sufficient for the assignment to be necessarily Pareto optimal, suppose for a contradiction that (1) p is not necessarily Pareto optimal and (2) p does not admit a one-for-two Pareto improvement swap. We will then show that there is an assignment that strictly RS-dominates p, implying that p cannot be necessarily Pareto optimal.

From (1) and Theorem 8, we have $\exists q \in U$ and a collection of additive utility functions $u = (u_1, \ldots, u_n) \in \mathcal{U}(\mathbb{R})$ such that q Pareto dominates p with respect to u.

Without loss of generality we may assume that each agent receives a nonempty bundle in p. Regarding the structure of p, first we observe that the lack of one-for-two Pareto improvement swaps implies that every agent is assigned to some (or none) of her top objects and possibly to one additional object that she ranks lower.

Formally, let $T_q(i)$ denote a set of i’s top objects she is assigned to in p, i.e., $T_q(i) = \{o : o \in p(i) \text{ s.t. } \exists o^{\prime} \in p(i), o^{\prime} \succ_{ij} o\}$. Then $p(i) = T_q(i) \cup w_p(i)$, where $w_p(i)$ is either a single object or the empty set.

We show that $|q(i)| = |p(i)|$ must hold for every agent i. Suppose not, then there is an agent i for which $|q(i)| < |p(i)|$. By the definition of $T_q(i)$ it is straightforward that if $w_p(i) = \emptyset$ then $u_i(p(i)) = u_i(T_q(i)) > u_i(q(i))$, and if $w_p(i) \neq \emptyset$ then $u_i(p(i)) = u_i(T_q(i) \cup w_p(i)) > u_i(T_q(i)) \geq u_i(q(i))$, a contradiction. Furthermore, for every agent i, if $w_p(i) \neq \emptyset$ then for any object $o \in q(i)$ we have $o \succ_{ij} o_j^\prime$. Otherwise, if there was an agent i with $o \in q(j)$ such that...
w_p(i) \succ_i a$, then $u_i(T_p(i)) \geq u_i(q(i) \setminus \{a\})$ would imply $u_i(p(i)) = u_i(T_p(i) \cup w_p(i)) > u_i(q(i))$.

Now we construct a so-called Pareto improvement sequence with respect to p and q, which consists of a sequence of agents $\{i_1, i_2, \ldots, i_k\}$ with possible repetitions and a set of distinct objects $\{o_1, o_2, \ldots, o_m\}$ such that

- $o_1 \in q(i_2) \setminus p(i_2)$, $o_2 \in p(i_2) \setminus q(i_2)$, and $o_1 \succeq_{i_2} o_2$;
- $o_2 \in q(i_3) \setminus p(i_3)$, $p(i_3) \subset i_3$, and $o_2 \succeq_{i_3} o_3$;
- \ldots
- $o_m \in q(i_1) \setminus p(i_1)$, $o_1 \in p(i_1) \setminus q(i_1)$, and $o_m \succeq_{i_1} o_1$.

and with strict preference for at least one agent.

The presence of the above Pareto improvement sequence would imply the existence of an assignment q' that RS-dominates p, obtained by letting the agents exchange their objects along the sequence, i.e., with $q'(i) = p(i) \cup \{o_{k-1} : i_k = i, k = 1, \ldots, m\} \setminus \{o_k : i_k = i, k = 1, \ldots, m\}$. This would contradict our assumption that p is possibly Pareto optimal.

We first define three types of agents, and a one-to-one mapping π over some of the objects they are indifferent between in p and q. In the set X we put all the agents with either no $w_p(i)$ or with $w_p(i) \in q(i)$. Each agent i in this set must be indifferent between all objects in $(p(i) \setminus q(i)) \cup (q(i) \setminus p(i))$ (i.e., these object are in a single tie in i’s preference list) by the following reasons. $|p(i)| \geq |q(i)|$ implies $|p(i) \setminus q(i)| \geq |q(i) \setminus p(i)|$. By the definition of $T_p(i)$ it follows that any object in $p(i) \setminus q(i)$ is weakly preferred to any object in $q(i) \setminus p(i)$ by i. However, from (3) we have $u_i(q(i)) \geq u_i(p(i))$, which implies $u_i(q(i) \setminus p(i)) \geq u_i(p(i) \setminus q(i))$, which can only happen if i is indifferent between any two objects in $(p(i) \setminus q(i)) \cup (q(i) \setminus p(i))$. Let π be any one-to-one mapping from $q(i) \setminus p(i)$ to $p(i) \setminus q(i)$.

Next, let Y contain every agent i who has object $w_p(i)$ such that there is an object $o \in q(i) \setminus p(i)$ with $o \succeq_i w_p(i)$. In this case i must be indifferent between all objects in $(p(i) \setminus q(i)) \setminus \{o\} \cup (q(i) \setminus \{o\}) \setminus T_p(i)$.

Indeed, $|p(i)| = |q(i)|$ implies $|T_p(i) \setminus (q(i) \setminus \{o\})| = |q(i) \setminus \{o\}) \setminus T_p(i)$.

By the definition of $T_p(i)$ any object in $T_p(i) \setminus (q(i) \setminus \{o\})$ is weakly preferred to any object in $(p(i) \setminus \{o\}) \setminus T_p(i)$ by i. On the other hand, $u_i(q(i)) \geq u_i(p(i))$ and $o \succeq_i w_p(i)$ implies $u_i(q(i) \setminus \{o\}) \setminus T_p(i) \geq u_i(T_p(i) \setminus (q(i) \setminus \{o\}))$, leading to the conclusion that i must be indifferent between all objects in $(T_p(i) \setminus (q(i) \setminus \{o\})) \cup (q(i) \setminus \{o\}) \setminus T_p(i))$. Therefore π can map o to $w_p(i)$ in π and $(q(i) \setminus \{o\}) \setminus T_p(i)$ to $T_p(i) \setminus (q(i) \setminus \{o\})$.

Lastly, let Z contain every agent i with object $w_p(i)$ such that for every $o \in q(i)$, $o \succeq_i w_p(i)$. Note that there is at least one agent in Z, the one who gets strictly better off in q, otherwise, if there was an object $o \in q(i)$ such that $w_p(i) \succeq_i a$, then $u_i(T_p(i)) \geq u_i(q(i) \setminus \{a\})$ would imply $u_i(p(i)) = u_i(T_p(i) \cup w_p(i)) \geq u_i(q(i))$.

Finally, we shall note that if $T_p(i)$ is empty then $|p(i)| = |q(i)| = 1$, so either i is indifferent between $p(i) = w_p(i)$ and $q(i)$, in which case i is in Y with $\pi(q(i)) = p(i)$, or i strictly prefers $q(i)$ to $p(i)$ and then i belongs to Z.

To summarize, so far we have that for any $i \in X \cup Y$ and $o \in q(i) \setminus p(i)$ we associate an object $\sigma(o) \in p(i) \setminus q(i)$ such that $o \succeq_i \sigma(o)$. Furthermore, for any $i \in Z$ and $o \in q(i) \setminus p(i)$ we have that $o \succ_i w_p(i)$.

We build a Pareto improvement sequence as a part of a sequence involving agents i_1, i_2, \ldots with corresponding objects a_1, a_2, \ldots starting from any $i_1 \in Z$ with $o_1 = w_p(i)$. For every $k \geq 2$, let i_k be the agent who receives o_{k-1} in q. If $i_k \in X \cup Y$ then let $a_k = \pi(a_{k-1})$, and if $i_k \in Z$ then let $o_k = w_p(i)$. We terminate the sequence when an object is first repeated. This repetition must occur at some agent in Z, since for any agent i the objects in $q(i) \setminus p(i)$ are in a one-to-one correspondence with those in $p(i) \setminus q(i)$ with π.

Let the first repeated object belong to, say, $i_s = i_s \in Z$ for indices $1 \leq s < t$. We show that the sequence $i_s, i_{s+1}, \ldots, i_{t-1}$ is a Pareto improvement sequence. To see this, let us first consider an agent $i \in X \cup Y$. Whenever i appears in the sequence as $i_k \in \{i_{s+1}, \ldots, i_{t-1}\}$ she receives object $a_{k-1} \in q(i) \setminus p(i)$ and in return she gives away $o_{a_{k-1}} = o_k \in p(i) \setminus q(i)$, where i is indifferent between $o_{a_{k-1}}$ and o_k. Now, let $i \in Z \setminus \{i_1\}$ that appears as $i_k \in \{i_{s+1}, \ldots, i_{t-1}\}$. She receives object $o_{a_{k-1}} \in q(i) \setminus p(i)$ and in return she gives away $w_p(i) = o_k \in p(i) \setminus q(i)$, where $o_{a_{k-1}} \succ_i w_p(i)$. So we constructed a Pareto improvement sequence, and therefore p is not possibly Pareto optimal, a contradiction.

In Example 4, p is not necessarily Pareto optimal because it admits a one-for-two Pareto improvement swap: $o_2 \in p(2)$, $o_1 \in p(1)$ and $o_1 \succ_2 o_2 \succ_3 o_3$. It also shows that although an assignment may not be necessarily Pareto optimal there may not be any assignment that Pareto dominates it for all utilities consistent with the ordinal preferences. The characterization above also gives us a polynomial-time algorithm to test necessary Pareto optimality.

5. CONCLUSIONS

We have studied, from a computational point of view, Pareto optimality in resource allocation under additive utilities and ordinal preferences. Many of our positive algorithmic results come with characterizations of Pareto optimality that improve our understanding of the concept and may be of independent interest. Future work includes identifying other important subdomains in which Pareto optimal and individually rational reallocation can be done in a computationally efficient manner.

Acknowledgements

Haris Aziz is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program. Péter Biró acknowledges support from the Hungarian Academy of Sciences under its Momentum Programme (LD-004/2010), the Hungarian Scientific Research Fund, OTKA, Grant No. K108673, and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. Jérôme Lang, Julien Lesca and Jérôme Monnot acknowledge support from the ANR project CoCoRICO-CoDec. Part of the work was conducted when Péter Biró visited Paris Dauphine and when Julien Lesca visited Corvinus University of Budapest sponsored by COST Action ICT1205 on Computational Social Choice.
REFERENCES

