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1 INTRODUCTION
Diversity goals are prevalent in many scenarios including student-intake, hiring of employees,

public housing, and rationing of scarce medical resources. While classical centralized matching

algorithms have received widespread success, they do not directly apply to two-sided matching

under diversity concerns such as those pertaining to proportionality goals or reaching minimum

quotas for types. In this paper, we present a compelling solution to selection and matching problems

under diversity concerns.

Our two-sided matching problem under diversity concerns is couched in the language of school

choice matching with diversity goals. In such scenarios, individuals such as students are to be

matched to resources such as school seats. Each individual may belong to multiple types such as

being from disadvantaged groups. The goal is to match the individuals to the resources in a way

that respects the preferences of the individuals, as well as the priorities and the diversity goals of

the schools.

The diversity goals are typically achieved by setting minimum and maximum target representa-

tion of students of various types. Existing approaches either do not optimally achieve the diversity

goals that are considered, or do so for restricted classes of diversity goals (such as those pertaining to

a single level of reserves, that we will explain later). In view of the limitations of existing approaches

towards diverse matchings, there is a need for a more general model of controlled school choice

that can capture flexible diversity goals, and meaningful methods that achieve these diversity goals

while allocating resources to individuals.

In this paper, we propose a flexible framework for specifying a rich class of diversity goals. For

the framework, we design a novel school choice function and a fast combinatorial algorithm for

the function that draws connections from graph theory and theoretical computer science. We

characterize the choice function as the only one satisfying three fundamental properties: maximal

diversity, non-wastefulness, and justified envy-freeness. It also satisfies important consistency and

incentive properties that make it suitable to be embedded in the broader problem of matching

students to multiple schools (with their own priorities and diversity goals).

Our central contribution is the design of a choice function and a corresponding algorithm

satisfying desirable properties in a two-sided matching problem with diversity goals. In addition to

the school choice problems, our study has several other applications. When there is one school,

the problem we study is equivalent to finding a diverse committee of candidates under a mutually

agreed ranking over the candidates. If school seats are replaced by other scarce and sought-after

resources such as spots for vaccine treatment, our model and results apply as well to them.

Below, we discuss our contributions in more detail.

• Our first contribution is designing a general model of matching under diversity goals that

captures various diversity objectives including proportionality or egalitarian concerns. The

key idea behind our approach is to partition the reserved seats for various types into different

ranks.We are interested in identifying subsets of students that give rise tomatchings capturing

a ‘desirable’ distribution of the reserved seats. We characterize our diversity objective via

size-constrained rank maximal matchings of an underlying ‘ranked reservation graph’. Our

flexible diversity approach not only captures upper quota constraints, it also captures other

diversity goals such as target proportions of types.

• We design a new choice function for each school that takes into account the priority ordering

of the school over students as well as its diversity goals. The choice function is based on a key

link between flexible diversity goals and the concept of rank maximality (that is well-studied

in theoretical computer science). We demonstrate the desirability of the choice function

by showing that it is characterized by three fundamental properties: maximal diversity,



non-wastefulness, and justified envy-freeness. We also show that maximal diversity cannot

be achieved by a natural adaptation of the horizontal envelope choice rule of Sönmez and

Yenmez [39] to the case of multi-ranks.

• We provide a fast polynomial-time algorithm for our choice function based on the Dul-

mage Mendelsohn Decomposition and combinatorial insights into constrained rank-maximal

matchings that are required to match a certain subset of vertices. Our algorithms are the first

known polynomial-time approaches to compute an optimally diverse choice outcome when

there are two levels of ranks that capture minimum and maximum quotas for the number of

admitted students of given types.

• We show that our new choice function generalizes existing choice functions (that handle

more restricted forms of diversity). We prove via Berge’s lemma that maximal diversity

implies the utilization of the maximum number of reserved seats. Our choice function also

incentivizes applicants to report all of their types.

• Weprove that our choice function satisfies substitutability and can hence be directly embedded

in the generalized deferred acceptance algorithm to achieve strategyproofness and stability.

Since our algorithm is the unique rule satisfying fundamental axiomatic properties, we make a

compelling case for its adoption in many important matching problems where diversity is a central

concern.

2 RELATEDWORK
The interest in affirmative action concerns has a long history in matching and market design. The

topic of school choice with diversity constraints has been referred to as controlled school choice [21].
In one of the seminal works on school choice, racial and gender balance concerns were already

alluded to by Abdulkadiroğlu and Sönmez [2]. In another early work, Abdulkadiroğlu [1] focussed

on school choice with affirmative action in detail and imposed hard capacities or quotas on the

number of admitted students of given types.

Typically, in controlled school choice, each school imposes a maximum quota and a minimum

quota on each type [23, 30, 31]. Ehlers et al. [21] considered controlled school choice with lower and

upper quotas for the types when students have exactly one type. They explored the implications of

treating diversity quotas as hard bounds and soft bounds. For the case of soft quotas, they proposed

a choice function of schools via dynamic priorities in which the students who belong to a type that

is undersubscribed, are prioritized. Their dynamic priorities approach has inspired several followup

works for more complex models. In a seminal work on choice functions for affirmative action,

Echenique and Yenmez [20] examined the structure of choice functions that satisfy substitutability.

They also assumed that each student has at most one type.

In reality, each student may satisfy multiple ‘overlapping’ types. Overlapping types have been

considered in recent papers and deployed applications in the past few years including those in

Brazil, Chile, Israel, and India (see, e.g., [6, 13, 17, 22, 33]). When individuals have multiple types,

there are two natural conventions, namely one-for-all and one-for-one, on how many reserved seats

an individual takes up (to be consistent with the majority of text) or how reserved positions are

accounted for [39]. Under the one-for-all convention, an individual takes the reserved seats of all

types she satisfies [9, 10, 22]. For example, an aboriginal girl could take up one seat reserved for girls

and one seat reserved for aboriginals. The one-for-all convention has been employed in algorithms

for the Israeli Mechinot matching system [22]. Optimally meeting diversity requirements is NP-hard

under the one-for-all convention [11, 15]. Under the one-for-one convention, each individual takes

up one of the reserved seats of only one of the types they belong to. This convention has the ‘more

widespread interpretation’ [39]. Following our previous example, an Aboriginal girl could either



take up a seat reserved for a girls or a seat reserved for Aboriginal persons but not both. In this

sense, the convention incorporates a stronger sense of affirmative action because it leaves open the

utilization of the second seat.

The one-for-one convention has been considered in the case where students either have strict

preferences over reserved seats of different types [6, 33], or the indifferences are broken through

fixed tie-breaking [13, 17], or priorities over the combination of students and types are dynamically

updated [21]. In all of the above cases, the decision on which type a student should use, is made in

a greedy or sequential manner and hence this greedy approach may not maximally satisfy diversity

goals when students have overlapping types. A similar approach has been used by Kominers and

Sönmez [31, 32], Aygün and Bó [4], and Aygun and Turhan [7], Aygün and Turhan [8]. In contrast,

our framework captures new diversity goals and our methodology optimally achieves these goals

via a so called ‘smart reserves approach.’

Sönmez and Yenmez [39] were the first to pioneer the approach of using ‘smart reserves’ in the

context of controlled school choice, where the actual decision of which type a student is going to

use is used more flexibly. This allows allows to maximally achieve the utilization of reserved seats

for types. The underlying idea has also been applied to allocating medical resources to patients who

satisfy various categories (Section 4, [36]). Although the smart reserve approach of Sönmez and

Yenmez [39] is compelling, their rule and framework have some limitations. In particular, their work

is limited to a single rank of reserves in which types whose reserves are not filled can be viewed as

undersubscribed. Their approach can be viewed as softly respecting minimum quotas but is unable

to capture a standard requirement in many affirmative action models, where both a minimum and a

maximum quota is present for each type. In school choice models where each type has a minimum

and maximum quota, types that have not reached their minimum quota have a higher priority

than the types who have not reached their maximum quota. Consequently, the model of Sönmez

and Yenmez [39] does not generalize the model of Ehlers et al. [21], who considered one type per

student and allowed upper quotas in addition to lower quotas for types. One rank of reserves is

also unable to capture a wide umbrella of diversity goals such as enforcing ratios among types or

expressing interleaving goals such as follows: “only care about the types 𝑡3 and 𝑡4 once the reserved

seats of 𝑡1 and 𝑡2 are used up.”

The literature on school choice with diversity concerns is naturally divided across several axes: (1)

individual students having a single type versus students having multiple types; (2) two types versus

more than two types (3) hard diversity constraints versus soft diversity constraints; (4) students

types accounted under the one-for-all convention versus one-to-one convention; (5) methods based

on dynamic priority versus a smart reserve approach. Table 1 classifies some of the main works on

controlled school choice across these axes. The distinction between the one-for-all and one-to-one

conventions was first explicitly made by Sönmez and Yenmez [39]. Smart reserves approaches are

meaningful when students may have multiple types and the one-to-one convention is assumed.

We discuss some approaches using the one-for-all convention. Gonczarowski et al. [22] study the

Israeli “Mechinot” gap-year problem in which each student has multiple types and schools impose

soft minimum quotas and hard maximum quotas. They propose a greedy choice function for schools

where students are chosen one by one based on priority orderings as long as the student has some

type that helps to meet the diversity goals. Their model is different from ours as it assumes the

one-for-all convention. In their setting, it is impossible to achieve fairness and strategyproofness

properties simultaneously. Aziz et al. [10] proposed a strategyproof mechanism that treats students

with the same combinations of types in a fair way. Baswana et al. [13] designed and deployed an

algorithm for Indian engineering colleges. They used a heuristic to deal with non-nested common

quotas and their algorithm does not guarantee a fair outcome. Aziz [9] considers the one-for-all

convention for diversity and proposed an algorithm for a choice rule that uses minimum quotas to



Types per student Convention Bounds Diversity Levels Algorithmic Approach
1 any many-1 1-1 Hard Soft 1 ≤ 2 any Dynamic Smart

Priorities Reserves

Huang [24], Biró et al. [15] ✓ ✓ ✓ ✓

Ehlers et al. [21] ✓ ✓ ✓ ✓ ✓
Echenique and Yenmez [20] ✓ ✓ ✓ ✓
Abdulkadiroğlu [1] ✓ ✓ ✓ ✓
Kominers and Sönmez [31] ✓ ✓ ✓ ✓

Kurata et al. [33], Correa et al. [17], Aygün and Bó [4] ✓ ✓ ✓ ✓ ✓
Aygun and Turhan [7], Aygün and Turhan [8] ✓ ✓ ✓ ✓ ✓
Aygün and Bó [4] ✓ ✓ ✓ ✓ ✓

Gonczarowski et al. [22], Aziz et al. [10] ✓ ✓ ✓ ✓ ✓
Aziz [9], Aziz and Sun (2020) ✓ ✓ ✓ ✓ ✓

Sönmez and Yenmez [39], Pathak et al. [36] ✓ ✓ ✓ ✓ ✓
Our paper ✓ ✓ ✓ ✓ ✓

Table 1. Literature on school choice with affirmative action

specify diversity goals. Bredereck et al. [16] examined the complexity of multiwinner voting with

diversity constraints under the one-for-all convention.

There has also been some recent work on matchings with constraints on the ratios of types [35].

The paper discusses how setting lower quotas on types may not be sufficient to achieve target ratios

especially when schools seats are not fully used. The paper assumes that each student/doctor has

exactly one type. Our diversity goals are more flexible (capturing other objectives such as minimum

and maximum quotas), and our algorithmic solution and axiomatic focus is different as well.

Sonmez and Yenmez [38] focus on vertical and horizontal reservations that are distinctive to

affirmative action in Indian college admissions. Horizontal reservations are equivalent to a single

rank of reserves in our framework, whilst vertical Vertical reservations are treated as set-aside seats

for students who are not selected on ‘open merit’. Dur et al. [19] studied a class of mechanisms

in which reserves seats are processed in a sequential manner. They highlighted the impact of the

order in which reserves are processed.

Our model also bears some similarities with the hospital-resident matching problemwith regional

constraints [26, 27], in which students are viewed as doctors, school seats are viewed as hospitals

and schools are viewed as regions. However, in the hospital-resident matching problem, the

distributional constraints are imposed on the number of doctors matched to different regions

, rather than on the proportional composition of types of doctors. Aziz et al. [11] focus on the

connection between matching with diversity constraints and matching with regional quotas where

diversity constraints are set as hard bounds. However, they do not focus on the mechanism design

of choice function of schools that maximize diversity goals.

Benabbou et al. [14] study the Singapore public housing programwhere ethnic quotas are imposed

to each block: the percentage of each ethnic group cannot exceed a certain degree. Each agent has

preferences over apartments within a block, whilst in our model, each student has preferences

over schools rather than school seats within the school. Furthermore, they focus on the tradeoff

between diversity and social welfare, while our attention is drawn to the maximization of diversity

goals for each school. Ahmadi et al. [3] and Dickerson et al. [18] consider an optimisation-based

approach to diverse team formation but do not take preferences and priorities into account.

3 SCHOOL CHOICE WITH MULTI-RANK DIVERSITY GOALS
An instance 𝐼 of the school choice problemwith soft diversity goals consists of a tuple (𝑆,𝐶, 𝑞𝐶 ,𝑇 , ≻𝑆
, ≻𝐶 , [) where 𝑆 and 𝐶 denote the set of students and schools respectively. The capacity vector

𝑞𝐶 = (𝑞𝑐 )𝑐∈𝐶 assigns each school 𝑐 a capacity 𝑞𝑐 . We denote by 𝑇 the set of types. We overload



the term to also capture the information about the types of each student. For each student 𝑠 , let

𝑇 (𝑠) ⊆ 𝑇 denote the subset of types to which student 𝑠 belongs. If𝑇 (𝑠) = ∅, then student 𝑠 does not

have any privileged type. The vector [ = ([1, . . . , [ |𝐶 |) specifies the diversity goals of each school 𝑐 .

We will discuss diversity goals in detail later.

Let X = 𝑆 × 𝐶 denote the set of possible student-school pairs. We also refer to these pairs as

contracts. Given any 𝑋 ⊆ X, let 𝑋𝑠 be the set of student-school pairs involving student 𝑠 and let 𝑋𝑐

be the set of student-school pairs involving school 𝑐 .

Each student 𝑠 has a strict preference ordering ≻𝑠 over 𝐶 ∪ {∅} where ∅ is a null school

representing the option of being unmatched for student 𝑠 . A school 𝑐 is acceptable to student 𝑠 if

𝑐 ≻𝑠 ∅ holds. Let ≻𝑆 (≻𝑠1 , ..., ≻𝑠𝑛 ) be the preference profile of all students 𝑆 . Each school 𝑐 has a

strict priority ordering ≻𝑐 over 𝑆 ∪ {∅} where ∅ represents the option of leaving seats vacant for

school 𝑐 . A student 𝑠 is acceptable to school 𝑐 if 𝑠 ≻𝑐 ∅ holds. Let ≻𝐶= (≻𝑐1 , . . . , ≻𝑐𝑚 ) be the priority
profile of all the schools. The priority ordering of the school could be based on the entrance exam

scores, or in the case of automated hiring, on some objective measure that captures the suitability

of the applicants. Our results continue to hold if we assume weak preferences and priorities: we

can artificially break the ties with fixed tie-breaking to induce strict orders.

An outcome (or a matching) 𝑋 is a subset of X. An outcome 𝑋 is feasible (under soft bounds) for
instance 𝐼 if i) each student 𝑠 is matched with at most one school, i.e., |𝑋𝑠 | ≤ 1, and ii) the number

of students matched to each school 𝑐 does not exceed its capacity, i.e., |𝑋𝑐 | ≤ 𝑞𝑐 . A feasible outcome

𝑋 is individually rational if each contract (𝑠, 𝑐) ∈ 𝑋 is acceptable to both student 𝑠 and school 𝑐 .

Without loss of generality, we focus on acceptable and feasible matchings.

Except for Section 9, we will focus on how a single school makes decisions. A choice function of

a school takes as input a given set of students 𝑆 ′ ⊆ 𝑆 and selects a set of students 𝑆∗ ⊆ 𝑆 ′ as output.
In our setup, the choice function 𝐶ℎ𝑐 of a school 𝑐 will take into account its priority order ≻𝑐 and
its diversity goals [𝑐 to make the choice.

Diversity Goals
In most of the literature on school choice with diversity constraints, schools typically impose

minimum 𝑞𝑚𝑖𝑛
𝑡 and maximum quota 𝑞𝑚𝑎𝑥

𝑡 on each type 𝑡 . We can interpret this type of diversity

goal as using two ranks of quotas: for a given type 𝑡 , rank 1 corresponds to the interval [0, 𝑞𝑚𝑖𝑛
𝑡 ) and

rank 2 corresponds to the interval [𝑞𝑚𝑖𝑛
𝑡 , 𝑞𝑚𝑎𝑥

𝑡 ). An implicit third rank is for types whose maximum

quotas have already been met.

We can interpret this type of diversity goal as using two ranks of quotas: for a given type 𝑡 , rank

1 corresponds to the case where the number of matched students of type 𝑡 is no larger than the

minimum quota, rank 2 corresponds to the case above the minimum quota and no larger than the

maximum quota.
1

0 minimum maximum ∞

rank 1 rank 2

Fig. 1. An interpretation of minimum and maximum quotas.

Here, ranks are used to measure the importance of diversity goals [12]: the smaller the rank is, the

more important the type is. For instance, consider two types 𝑡1 and 𝑡2 whose numbers of matched

students at school 𝑐 fall into rank 𝑖 and 𝑗 respectively. If 𝑖 < 𝑗 , then type 𝑖 is more important than

type 𝑗 to school 𝑐 in terms of satisfying diversity goals. If 𝑖 = 𝑗 , then both types are tied.

1
An implicit third rank is for types whose maximum quotas have already been met.



In our model, we allow each school 𝑐 to impose multiple ranks of quotas on each type. The

parameter [𝑐 specifies for each type 𝑡 and rank 𝑗 , the reserved quota [
𝑗
𝑐,𝑡 . We will denote by 𝑟 the

maximum number of ranks. A student can only take up a reserved seat of a type that she satisfies.
2

If some reserved seats remain unallocated, then in order to ensure maximal utilization of resources,

any eligible student can take up a vacant seat. When a set of students are viewed as taking up

reserved seats for the types they satisfy, the seats of earlier ranks are taken up before seats of later

ranks are considered.
3

Example 3.1 (Example of a problem instance). Consider the setting in which there are four students
𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4} and two schools 𝐶 = {𝑐1, 𝑐2}. The type profile of the students is 𝑇 (𝑠1) = {𝑡1, 𝑡2},
𝑇 (𝑠2) = {𝑡1}, 𝑇 (𝑠3) = ∅, 𝑇 (𝑠4) = {𝑡3}. The capacity of 𝑐1 is 𝑞𝑐1 = 3 and the capacity of 𝑐2 is 𝑞𝑐2 = 1.

School 𝑐1 has diversity goals specified as follows: [1𝑐1,𝑡1 = 1, [1𝑐1,𝑡2 = 1, [1𝑐1,𝑡3 = 0, [2𝑐1,𝑡3 = 1. On the

other hand, school 𝑐2 has no diversity goals. The preferences of the students are unanimous with

𝑐1 preferred over 𝑐2. The priorities of both schools are unanimous: 𝑠1 ≻𝑐 𝑠2 ≻𝑐 𝑠3 ≻𝑐 𝑠4 for 𝑐 ∈ 𝐶 .
The interpretation of the diversity goals of school 𝑐1 is as follows: school 𝑐1 wants to match as

many students to slots of rank 1 as possible. One of the rank 1 slot is reserved for a student of type

𝑡1 and one is reserved for a student of type 𝑡2. Conditional on optimising the number of students

who can be matched to rank 1 slots, the school 𝑐1 wants to next match some student of type 𝑡3.

Another interpretation of the diversity goals is in the form of setting quotas. The minimum and

maximum quota for 𝑡1 and 𝑡2 is 1 whereas the minimum quota for 𝑡3 is 0 and the maximum quota

for 𝑡3 is 1. ⋄
Below we further explain how our framework can capture diversity goals that the method of

using a single layer of reserves used by Sönmez and Yenmez [39] cannot. Suppose that 𝑡1 has a soft

lower quota of 1 and a soft upper quota of 2. On the other hand 𝑡2 has a soft lower quota of 0 and a

soft upper quota of 3. Then it is not clear how many reserves to make for 𝑡1 and 𝑡2 as the diversity

goals are inherently two-layered.

Before we formally specify how the reserved seats information is used to define diversity goals,

we give some intution. Informally speaking, the diversity goals are achieved as follows. We want

as many rank 1 seats to be filled by students who satisfy the corresponding types and conditional

on that we want as many rank 2 seats filled, and so on. In the next section, we will give a formal

description of how the reserved quotas [
𝑗
𝑐,𝑡 give rise to the diversity goals discussed above. We

will use the notion of a ranked reservation graph. This mathematical object is central to formally

specifying diversity goals as well as other axiomatic properties.

4 A GRAPH-THEORETIC VIEW OF DIVERSITY
Given a set of students 𝑆 ′ and a school 𝑐 with reserved quotas [𝑐 , a corresponding ranked reservation
graph 𝐺 = (𝑆 ′ ∪𝑉 , 𝐸, [𝑐 ) is a bipartite graph whose vertices are partitioned into a set of students

𝑆 ′ and a set of reserved seats 𝑉 . Each reserved seat 𝑣
𝑗

𝑡,𝑖
∈ 𝑉 has a rank 𝑗 , a type 𝑡 and an index 𝑖 .

For each rank 𝑗 and each type 𝑡 , we create [
𝑗
𝑐,𝑡 reserved seats in 𝐺 . The edge set 𝐸 is specified as

follows. There is an edge between a student 𝑠 and a reserved seat 𝑣
𝑗

𝑡,𝑖
if student 𝑠 belongs to type

𝑡 , i.e., 𝑡 ∈ 𝑇 (𝑠). Each edge (𝑠, 𝑣 𝑗
𝑡,𝑖
) has a rank 𝑗 corresponding to the rank 𝑗 of the reserved seat

𝑣
𝑗

𝑡,𝑖
. We refer to all edges with rank 𝑗 as 𝑗-ranked edges. The ranks of the edges lead to a natural

partition of the edges: 𝐸 = 𝐸1 ∪ 𝐸1 ∪ · · · ∪ 𝐸𝑟 where 𝐸 𝑗 denotes the set of 𝑗-th ranked edges. Note

that the ranked reservation graph is a generalization of the reservation graph used by Sönmez

2
This assumption is referred to as ‘compliance with eligibility requirements’ in the literature [36].

3
This order of filling up seats is consistent with existing approaches in which minimum quotas are reached first before

targetting the maximum quotas.



and Yenmez [39] in which all edges only have one rank. A ranked reservation graph 𝐺 is a special

ranked bipartite graph in which all edges incident to the same reserved seat 𝑣
𝑗

𝑡,𝑖
have the same rank

𝑗 .

Example 4.1 (Example of a ranked reservation graph). Consider the problem instance in Exam-

ple 3.1. We construct the corresponding reservation graph as shown in Figure 2.

𝑠1

𝑠2

𝑠3

𝑠4

𝑣1𝑡1,1

𝑣1𝑡2,1

𝑣2𝑡3,1

rank 1

rank 2

Fig. 2. The ranked reservation graph of school 𝑐1 in Example 3.1.

Before we proceed further, we formally specify important terms and concepts from matching

theory.

4.1 Matching Theory Preliminaries
Given a graph𝐺 , a matching𝑀 in𝐺 is a set of pairwise non-adjacent edges such that no two edges

have common vertices. Given a matching 𝑀 , an alternating path is a path that begins with an

unmatched vertex and whose edges belong alternately to the matching and not to the matching.

An augmenting path is an alternating path that starts from and ends on unmatched vertices.

Let 𝑃 denote an alternating path with respect to matching𝑀 . Then𝑀 ⊕ 𝑃 = (𝑀 \ 𝑃) ∪ (𝑃 \𝑀)
denotes the symmetric difference of the two set of edges, which is a new matching where the edges

from 𝑃 \𝑀 are matched while the edges from𝑀 ∩ 𝑃 are not matched.

Consider a ranked bipartite graph𝐺 = (𝐴∪ 𝐵, 𝐸) in which each edge is assigned a rank. Suppose

the edge set 𝐸 is partitioned into 𝑟 disjoint sets, i.e. 𝐸 = 𝐸1 ∪ 𝐸2 ∪ · · · ∪ 𝐸𝑟 where 𝐸𝑖 represents

the set of edges of rank 𝑖 . The signature 𝜌 (𝑀) = ⟨𝑥1, 𝑥2, ..., 𝑥𝑟 ⟩ of a matching𝑀 in 𝐺 is a tuple of

integers where each element 𝑥𝑖 represents the number of edges of rank 𝑖 in𝑀 .

For a ranked bipartite graph, we compare the signatures of matchings in a lexicographical

manner. A matching𝑀 ′ with 𝜌 (𝑀 ′) = ⟨𝑥1, · · · , 𝑥𝑟 ⟩ is strictly better than another matching𝑀 ′′

with 𝜌 (𝑀 ′′) = ⟨𝑦1, · · · , 𝑦𝑟 ⟩, if there exists an index 1 ≤ 𝑘 ≤ 𝑟 s.t. for 1 ≤ 𝑖 < 𝑘 , 𝑥𝑖 = 𝑦𝑖 and 𝑥𝑘 > 𝑦𝑘 .

A matching𝑀 ′ is weakly better than another matching𝑀 ′′ if𝑀 ′′ does not provide strictly better

diversity than 𝑀 ′. Let 𝑀 ′ ≻𝑙𝑒𝑥 𝑀 ′′ denote that 𝑀 ′ is strictly better than 𝑀 ′′ and let 𝑀 ′ ≿𝑙𝑒𝑥 𝑀 ′′

denote that𝑀 ′ is weakly better than𝑀 ′′.
A matching𝑀 in a ranked bipartite graph 𝐺 is rank-maximal if𝑀 is weakly better than any

other matching𝑀 ′ in 𝐺 . A rank maximal matching can be computed in polynomial time [25, 34].

4.2 Maximally Diverse Matchings of a Reservation Graph
For a ranked reservation graph, a matching 𝑀 ′ provides strictly better diversity than 𝑀 ′′ if
𝑀 ′ ≻𝑙𝑒𝑥 𝑀 ′′; and a matching 𝑀 ′ provides weakly better diversity than 𝑀 ′′ if 𝑀 ′ ≿𝑙𝑒𝑥 𝑀 ′′.
A matching in a ranked reservation graph 𝐺 is maximally diverse if it provides weakly better



diversity than all other matchings of 𝐺 . Alternatively, a matching in a ranked reservation graph 𝐺

is maximally diverse if it is rank-maximal.

In this paper, one of our main goals is to formalize a way for a school to select a set of students

while keeping diversity goals in mind. In the next section, we show how the concept of diverse

matchings leads to a natural definition of a diverse set of students. Informally speaking, we will

focus on selecting those sets of students that allow for diverse matchings in the underlying ranked

reservation graph.

5 DESIRABLE PROPERTIES OF A CHOICE FUNCTION
A choice function 𝐶ℎ𝑐 of school 𝑐 takes as input an 𝑆 ′ ⊆ 𝑆 , 𝑞𝑐 , [𝑐 , and ≻𝑐 , and selects a set

of students 𝑆∗ ⊆ 𝑆 ′. We will assume that the choice function satisfies feasibility requirements:

|𝐶ℎ𝑐 (𝑆 ′, 𝑞𝑐 , [𝑐 , ≻𝑐 ) | ≤ 𝑞𝑐 .

Next, we extend the idea of comparing the signatures of two matchings in the reservation graph

to that of comparing the diversity satisfaction of two subsets of students. The intuition is to check

which subset of students leads to better utilization of the reserved seats in the ranked reservation

graph.

Given a school 𝑐 and two subsets of students 𝑆1, 𝑆2 ⊆ 𝑆 with |𝑆1 |, |𝑆2 | ≤ 𝑞𝑐 , we say that 𝑆1 provides

strictly (weakly) better diversity than 𝑆2, if there exists a matching 𝑀 in the ranked reservation

graph 𝐺 = (𝑆 ∪𝑉 , 𝐸, [𝑐 ) such that

(1) the matched students in𝑀 are a subset of 𝑆1;

(2) 𝑀 provides strictly (weakly) better diversity than any matching𝑀 ′ of𝐺 in which the matched

students in𝑀 ′ are a subset of 𝑆2.

The weakly better diversity relation is a total order on the set of sets of students. We use it to

define a property called maximal diversity of a choice function.

Definition 5.1 (Maximal diversity of a choice function). A choice function 𝐶ℎ𝑐 satisfies maximal
diversity if for each instance (𝑆 ′, 𝑞𝑐 , [𝑐 , ≻𝑐 ), it selects a feasible set of students 𝐶ℎ𝑐 (𝑆 ′, 𝑞𝑐 , [𝑐 , ≻𝑐 )
such that 𝐶ℎ𝑐 (𝑆 ′, 𝑞𝑐 , [𝑐 , ≻𝑐 ) provides weakly better diversity than all feasible subsets 𝑆 ′′ ⊆ 𝑆 ′.

Note that multiple ranks provides us with the ability to describe more complicated diversity goals.

For instance, only usingminimum andmaximum quotas cannot capture the idea of “proportionality”,

a common diversity goal.

Example 5.2 (Proportional single rank reserves may not achieve proportionality). Suppose each
student is associated with one of three types 𝑡1, 𝑡2, 𝑡3, and the percentages of students of each type

are 30%, 30%, 40%, respectively. Consider one school 𝑐 with capacity 100 which imposes minimum

quotas 30, 30 and 40 on type 𝑡1, 𝑡2, 𝑡3 respectively. Note that the numbers of students of each type

who apply to school 𝑐 do not match their percentages in the population. Say 15, 60, 60 students of

type 𝑡1, 𝑡2, 𝑡3 respectively apply for the school 𝑐 , and the priority ordering of school 𝑐 is consistent

with students’ types, say school 𝑐 prefers students of type 𝑡1, to students of type 𝑡2, to students of

type 𝑡3.

Then one possible matching for school 𝑐 with respect to minimum quotas could be 15, 45, 40,

where each integer denotes the number of students of type 𝑡1, 𝑡2, 𝑡3 respectively. However, another

matching with 15, 37, 48 students of each type matched, seems better for achieving a diversity

balance under the proportionality constraints, in which the numbers of matched students of type

𝑡2 and 𝑡3 are proportional in the ratio of 3:4.



Non-wastefulness stipulates that either the school capacity should be saturated or all valid

applicants must be accepted.
4

Definition 5.3 (Non-wastefulness). A choice function satisfies non-wastefulness if a student is

rejected only if the school capacity is reached.

Justified envy-freeness requires that a student with a higher priority cannot replace another

student with a lower priority without compromising on the best achievable diversity goals.

Definition 5.4 (Justified envy-freeness). For an instance (𝑆 ′ ⊆ 𝑆, 𝑞𝑐 , [𝑐 , ≻𝑐 ), if a school 𝑐 selects
𝐶ℎ𝑐 (𝑆 ′) = 𝑆∗ ⊆ 𝑆 ′, we say that a student 𝑖 ∈ 𝑆 ′ \ 𝑆∗ has justified envy towards another student

𝑗 ∈ 𝑆∗ if 𝑖 ≻𝑐 𝑗 and 𝑆∗ ∪ {𝑖} \ { 𝑗} provides weakly better diversity than 𝑆∗. The choice function
𝐶ℎ𝑐 of a school 𝑐 satisfies justified envy-freeness, if for each instance (𝑆 ′, 𝑞𝑐 , [𝑐 , ≻𝑐 ), it selects a set
of students 𝐶ℎ𝑐 (𝑆 ′) = 𝑆∗ ⊆ 𝑆 ′ s.t. there does not exist any student 𝑖 ∉ 𝑆∗ who has justified envy

towards any student 𝑗 ∈ 𝑆∗.

Note that whereas justified envy-freeness is referred to as a property of matchings in school

choice, the definition above is a property of a choice function of an individual school. If an individual

school does not satisfy the property in Definition 5.4, then the justified envy-freeness of matchings

is also not satisfied. Note that a choice function 𝐶ℎ𝑐 of school 𝑐 that completely ignores diversity

goals and selects the 𝑞𝑐 highest priority students satisfies justified envy-freeness.

Next, we introduce a property called Maximal Reserves Utilization that concerns whether the

number of used reserved seats is maximal in the corresponding ranked reservation graph.

Given a school 𝑐 and two subsets of students 𝑆1, 𝑆2 ⊆ 𝑆 with |𝑆1 |, |𝑆2 | ≤ 𝑞𝑐 , we say that 𝑆1
provides strictly (weakly) better reserves utilization than 𝑆2, if there exists a matching𝑀 in the ranked

reservation graph 𝐺 = (𝑆 ∪𝑉 , 𝐸) such that

(1) the matched students in𝑀 are a subset of 𝑆1;

(2) the size of 𝑀 is strictly (weakly) larger than any matching 𝑀 ′ of 𝐺 in which the matched

students in𝑀 ′ are a subset of 𝑆2.

Definition 5.5 (Maximal Reserves Utilization of a choice function). A choice function 𝐶ℎ𝑐 satisfies

maximal reserves utilization if for each instance (𝑆 ′, 𝑞𝑐 , [𝑐 , ≻𝑐 ), it selects a feasible set of students
𝐶ℎ𝑐 (𝑆 ′, 𝑞𝑐 , [𝑐 , ≻𝑐 ) such that 𝐶ℎ𝑐 (𝑆 ′, 𝑞𝑐 , [𝑐 , ≻𝑐 ) provides weakly better reserves utilization than any

feasible subsets 𝑆 ′′ ⊆ 𝑆 ′.

Finally, we consider another property of choice functions. An algorithm is privilege monotonic
if no student has an incentive to report only a strict subset of their true types. Specifically, there

exists no instance under which a student is selected by a choice function when it reports all her

types but is not selected when she reports a strict subset of her types. The term has been used

previously (see e.g. Aygün and Bó [4]).

6 A NEW CHOICE FUNCTION
Next, we design a new choice function for schools and show that it satisfies the compelling properties

discussed above. The choice function relies on computing size-constrained rank maximal matchings

of the corresponding reservation graph.

The choice function works as follows. We first compute the corresponding reservation graph 𝐺

that includes the ranks of the edges according to their ranks. We then compute the signature of the

rank-maximal matching in 𝐺 constrained to the school’s quota. At this point we do not make a

4
It can be assumed without loss of generality that we only consider those applicants that meet minimal acceptance

requirements.



decision on which individuals are to be chosen. We simply require that the students selected should

give rise to the same signature. We go down the priority list of students and check whether a given

student 𝑠 can be matched along with the previously selected students so that we still can get the

same signature from some matching. If this is possible, we select 𝑠 . Otherwise, we do not select

𝑠 . The process continues until we have exhausted the priority list and we have a set of students

who can all be matched in a rank-maximal matching of 𝐺 . At this point, if the school’s quota is

not exceeded, we again go through students from the start of the priority list and add unselected

students if the quota is still not exceeded. The algorithm is specified formally as Algorithm 1.

Input: 𝑆 ′ ⊆ 𝑆 , 𝑞𝑐 , [𝑐 , ≻𝑐 .
Output: A set of students 𝑆∗ ⊆ 𝑆 ′

1 Selected students 𝑆∗ ← ∅
2 Construct the corresponding ranked reservation graph 𝐺 = (𝑆 ′ ∪𝑉 , 𝐸, [𝑐 ).
3 for student 𝑠 ∉ 𝑆∗ down the list in ≻𝑐 do
4 if there exists a matching in𝐺 of size at most 𝑞𝑐 that satisfies the following two conditions

(1) it is rank maximal among all matchings in 𝐺 of size at most 𝑞𝑐
(2) it matches all students in 𝑆∗ ∪ {𝑠}

then
5 Add 𝑠 to 𝑆∗

6 for student 𝑠 down the list in ≻𝑐 do
7 if |𝑆∗ | < 𝑞𝑐 and 𝑠 ∉ 𝑆∗ then
8 Add 𝑠 to 𝑆∗

9 return 𝑆∗

Algorithm 1. Choice function 𝐶ℎ𝑐 of school 𝑐

In the following example, we illustrate how Algorithm 1 works.

Example 6.1. Consider the problem instance in Example 3.1. Suppose all the four students apply

to school 𝑐1. Then the school 𝑐1 first selects 𝑠1, then 𝑠2, and then 𝑠4. The corresponding maximal

diversity matching is shown in the figure below. It is the unique rank maximal matching of the

reservation graph. Hence 𝑠1, 𝑠2 and 𝑠4 are selected.

𝑠1

𝑠2

𝑠3

𝑠4

𝑣1𝑡1,1

𝑣1𝑡2,1

𝑣2𝑡3,1

rank 1

rank 2

rank 1

rank 1

rank 1

rank 2

Fig. 3. The maximal diversity matching for ranked reservation graph of school 𝑐1 in Example 3.1 is illustrated
by thick bold edges.



7 AXIOMATIC PROPERTIES OF THE NEW CHOICE FUNCTION
In this section, we analyze the fundamental properties satisfied by our choice function. We show

that a choice function satisfies maximal diversity, justified envy-freeness, and non-wastefulness

if and only if it selects the same set of students as the choice function in Algorithm 1 does. The

following lemmata show that our choice function satisfies three important axioms.

Lemma 7.1. The choice function in Algorithm 1 satisfies non-wastefulness.

Lemma 7.2. The choice function in Algorithm 1 satisfies maximal diversity.

Lemma 7.3. The choice function in Algorithm 1 satisfies justified envy-freeness.

We have established that our choice functions satisfies maximal diversity, non-wastefulness, and

justified envy-freeness. Interestingly, the converse holds as well.

Lemma 7.4. If a choice rule satisfies maximal diversity, non-wastefulness, and justified envy-freeness,
then it is equivalent to the choice function in Algorithm 1.

Based on the lemmata above, we obtain the following characterization of our choice function.

Theorem 7.5 (Characterization of the Choice Function). A choice rule satisfies maximal
diversity, justified envy-freeness, and non-wastefulness if and only if it is the choice function in
Algorithm 1.

Next, we discuss other axiomatic properties of our choice function. Maximal diversity puts special

focus on the initial layers before focusing on the latter layers. In view of this focus, a question

arises whether a maximally diverse matching uses the maximum number of reserved seats. In the

next lemma, we prove that a matching that satisfies maximal diversity uses the maximum number

of reserved seats by students who are eligible for the reserved seats. The statement contrasts with

the fact that in general bipartite graphs, a rank maximal matching of a bipartite graph need not be

a maximum size matching.

Lemma 7.6. A matching that satisfies maximal diversity uses the maximum number of reserved
seats.

The lemma above gives us the following.

Theorem 7.7. The choice function in Algorithm 1 satisfies maximal reserves utilization.

The result also shows that our choice function generalizes the horizontal envelope choice rule of

Sönmez and Yenmez [39] in another way by utilizing the maximum number of reserved seats.

Next, we prove that Algorithm 1 incentivizes the students to not hide their types.

Theorem 7.8. Algorithm 1 is privilege monotonic.

8 COMBINATORIAL INSIGHTS AND A FAST ALGORITHM
In this section, we take a closer look at the choice function defined in Algorithm 1. Our first

observation is that the outcome of Algorithm 1 can be computed in polynomial time via a reduction

to maximum weight matching. We denote

∑𝑚𝑐

𝑗=1

∑
𝑡 ∈𝑇 [

𝑗
𝑐,𝑡 by 𝐵.

Theorem 8.1. An outcome of Algorithm 1 can be computed in polynomial time𝑂 (𝑟 |𝑉 |3 · |𝑆 |) where
|𝑉 | = ( |𝑆 | +𝑚𝑖𝑛(𝐵, 𝑞𝑐 )) and 𝑟 is the total number of levels.

Next, we present a tailored algorithm that is faster. Apart from its computational advantage,

the design of the algorithm is based on further combinatorial insights into the structure of our



solutions. Our algorithm does not directly call existing fast algorithms for rank maximal matchings

but carefully relies on some of the combinatorial insights underpinning previous algorithms. The

running time of the algorithm is 𝑂 (𝑟𝑚
√
𝑛 + 𝑛𝑚) where 𝑟 , 𝑛 and𝑚 denotes the number of levels,

the number of nodes, the number of edges in the reservation graph.

8.1 A detour to the Algorithm of Irving et al. [25]
In order to set up the groundwork for our fast algorithm, we first present the classical algorithm of

Irving et al. [25] for computing a rank maximal matching of a given ranked bipartite graph. It is

based on the Dulmage Mendelsohn Decomposition which we describe below.

Let𝑀 denote a maximum matching for a bipartite graph𝐺 . Then we can partition all vertices

into three categories:

• E : vertices which are reachable via even length alternating paths from a free vertex with

respect to𝑀 .

• O : vertices which are reachable via odd length alternating paths from a free vertex with

respect to𝑀 .

• U : vertices that do not belong to E or O.

Theorem 8.2 (Irving et al. [25] ). The Dulmage Mendelsohn Decomposition consists of the
following statement:
• E,O,U are invariant among all maximum matchings.
• 𝐺 does not contain an EU / EE edge.
• No maximum matching contains an OO / OU edge.
• Every vertex in O is matched (to some vertex in E) and every vertex inU is matched (to some
vertex inU).
• The cardinality of any maximum matching is |O| + |U|/2.

The following Algorithm 2 is currently the fastest algorithm for computing a rank maximal

matching [25] based on the Dulmage Mendelsohn Decomposition. The main idea in Algorithm 2

is to convert the problem of computing a rank maximal matching into a problem of computing a

maximum matching in a carefully chosen subgraph, in which all edges that never belong to any

rank maximal matching are deleted, as shown in Theorem 8.3.

Input: a ranked bipartite graph 𝐺 = (𝑆 ∪𝑉 , 𝐸1 ∪ · · · ∪ 𝐸𝐿)
Output: a rank maximal matching𝑀𝐿

1 𝐺 ′
1
= 𝐺1 where 𝐺1 denotes the induced subgraph of 𝐺 with edges of rank 1 only and𝑀1 is an

arbitrary maximum matching in 𝐺 ′
1
.

2 for 𝑖 = 1 to 𝐿 − 1 do
3 Partition all nodes into E𝑖 ,O𝑖 ,U𝑖 in subgraph 𝐺 ′𝑖 ;
4 Delete all edges incident to a node in O𝑖 ,U𝑖 from 𝐸 𝑗 for all 𝑗 > 𝑖;

5 Delete all edges O𝑖O𝑖 and O𝑖U𝑖 in 𝐺
′
𝑖 ;

6 Obtain 𝐺 ′𝑖+1 by adding edges 𝐸𝑖+1 to 𝐺 ′𝑖 ;
7 Compute a maximum matching𝑀𝑖+1 in 𝐺 ′𝑖+1 by finding all augmenting paths w.r.t𝑀𝑖 .

8 return matching𝑀𝐿

Algorithm 2. Algorithm of Irving et al. [25] for computing a rank maximal matching

Theorem 8.3 (Irving et al. [25] ). For every 1 ≤ 𝑖 ≤ 𝐿, we have:
• Every rank maximal matching in 𝐺𝑖 has all of its edges in 𝐺 ′𝑖 .



• 𝑀𝑖 is a rank maximal matching for 𝐺𝑖 .

Note that 𝐺𝑖 = (𝑆 ∪𝑉 , 𝐸1 ∪ · · · ∪ 𝐸𝑖 ) represents a subgraph of 𝐺 with only edges of rank 1 to 𝑖

and 𝐺 ′𝑖 represents a pruned subgraph by removing some edges from 𝐺 ′𝑖 that could not be part of

any rank maximal matching. In Theorem 8.3, the matching 𝑀𝑖 is obtained by augmenting 𝑀𝑖−1.
Note that not every maximum matching𝑀 ′𝑖 in subgraph graph 𝐺 ′𝑖 is a rank maximal matching.

Theorem 8.4 (Irving et al. [25]). A rank-maximal matching can be computed in time 𝑂 (𝑟𝑚
√
𝑛)

where 𝑟 , 𝑛 and𝑚 denotes the number of ranks, the number of nodes, the number of edges in the ranked
bipartite graph.

Although the algorithm of Irving et al. [25] provides an efficient way to compute a rank maximal

matching and hence a diverse matching, it cannot be directly used to design a fast algorithm for

our choice function. There are at least two aspects that need to be simultaneously handled: (1)

our problem is subject to a size constraint on the matchings due to school capacity (2) we need to

match target subsets of students with respect to school priority. Next we address these issues by

designing a new algorithm that takes inspiration from the combinatorial insights of Irving et al.

[25].

8.2 Modified Rank Maximal Matching
Since we take school capacity 𝑞𝑐 into consideration, it is possible that the size of a rank maximal

matching𝑀 in 𝐺 is larger than school capacity. Given the school capacity 𝑞𝑐 and a rank maximal

matching 𝑀∗ in 𝐺 with the signature 𝜌 (𝑀∗) = ⟨𝑥1, · · · , 𝑥𝑟 ⟩, let 𝑘 denote the rank s.t.

∑𝑘
𝑖=1 𝑥𝑖 ≤

𝑞𝑐 <
∑𝑘+1

𝑖=1 𝑥𝑖 . The maximal clipped signature of 𝐺 with respect to school capacity 𝑞𝑐 is denoted

as 𝜌 (𝐺,𝑞𝑐 ) = ⟨𝑦1, · · · , 𝑦𝑘 , · · · , 𝑦𝑟 ⟩ where

𝑦𝑖 =


𝑥𝑖 , if 𝑖 ≤ 𝑘 − 1,
𝑞𝑐 −

∑𝑘−1
𝑖=1 𝑥𝑖 if 𝑖 = 𝑘,

0 if 𝑖 > 𝑘.

We reduce the element 𝑦𝑘 to be 𝑞𝑐 −
∑𝑘−1

𝑖=1 𝑥𝑖 and set each element 𝑦𝑖 to be 0 for 𝑖 > 𝑘 . It is safe to

remove all edges of rank 𝑘 + 1 or above from graph 𝐺 , since they cannot be matched in any rank

maximal matching due to school capacity.

Note that a matching with maximal clipped signature is rank maximal among all matchings in𝐺

of size at most 𝑞𝑐 . By the definition of maximal diversity, a matching𝑀 is maximally diverse if it

has the maximal clipped signature 𝜌 (𝐺,𝑞𝑐 ).
The following Algorithm 3 is a modified version of Algorithm 2 that computes a matching with

maximal clipped signature with respect to school capacity. Next, we give some intuition about

Algorithm 3.

Algorithm 3 yields two objects: a pruned reservation graph𝐺 ′
𝑘
and a rank maximal matching

𝑀𝑘 in 𝐺 ′
𝑘
. Here 𝑘 denotes some integer in the range [1, 𝑟 ], depending on school capacity 𝑞𝑐 .

Note that in subgraph 𝐺 ′
𝑘
, all edges of 𝐺 that do not belong to any rank maximal matching are

removed, while every rank maximal matching in 𝐺𝑘 has all of its edges in 𝐺 ′
𝑘
by Theorem 8.3.

If the size of the returned matching𝑀𝑘 in𝐺 ′
𝑘
is larger than 𝑞𝑐 , then we can just remove |𝑀𝑘 | −𝑞𝑐

edges of rank 𝑘 from𝑀𝑘 to obtain a new matching𝑀 ′
𝑘
of size 𝑞𝑐 , which is still rank maximal among

all matchings of size at most 𝑞𝑐 in 𝐺 ′
𝑘
. However, we do not immediately make decisions about

which edges of rank 𝑘 should be deleted. We need to take school priorities into account to decide

which students should be selected, as discussed in the next section.



Input: a ranked reservation graph 𝐺 = (𝑆 ∪𝑉 , 𝐸1 ∪ · · · ∪ 𝐸𝑟 ), 𝑞𝑐
Output: a pruned reservation graph 𝐺 ′

𝑘
and a rank maximal matching𝑀𝑘 in 𝐺 ′

𝑘

1 𝐺 ′
1
= 𝐺1 where 𝐺1 denotes the induced subgraph of 𝐺 with edges of rank 1 only.

2 Compute a maximum matching𝑀1 in subgraph 𝐺 ′
1
.

3 for 𝑖 = 1 to 𝑟 − 1 do
4 Partition all nodes into E𝑖 ,O𝑖 ,U𝑖 w.r.t𝑀𝑖 in 𝐺

′
𝑖 .

5 Delete all edges incident to some node in O𝑖 ,U𝑖 from 𝐸 𝑗 for all 𝑗 > 𝑖 .

6 Delete all edges O𝑖O𝑖 and O𝑖U𝑖 in 𝐺
′
𝑖 .

7 if |𝑀𝑖 | ≥ 𝑞𝑐 then
8 𝑘 ← 𝑖

9 return 𝐺 ′
𝑘
and𝑀𝑘

10 else
11 Obtain 𝐺 ′𝑖+1 by adding edges 𝐸𝑖+1 to 𝐺 ′𝑖 .
12 Compute a maximum matching𝑀𝑖+1 in 𝐺 ′𝑖+1 by finding augmenting paths w.r.t.𝑀𝑖 .

13 𝑘 ← 𝑟

14 return 𝐺 ′
𝑘
and𝑀𝑘

Algorithm 3. Computing a modified rank maximal matching

8.3 A Fast Algorithm for Our Choice Function
Next, we present a fast solution (Algorithm 4) that implements the choice function in Algorithm 1.

There are two main differences from the previous solution in Theorem 8.1. First, we do not compute

a maximum weight matching, which is computational inefficient. Second, we do not compute a

new rank maximal matching containing a certain set of students 𝑆∗ each time. Instead, we make

full use of an existing rank maximal matching by computing alternating and augmenting paths.

Theorem 8.5. Algorithm 1 and Algorithm 4 return the same set of students.

Theorem 8.6. Algorithm 4 runs in time 𝑂 (𝑟𝑚
√
𝑛 + 𝑛𝑚) where 𝑟 , 𝑛 and𝑚 denotes the number of

levels, the number of nodes, the number of edges in the pruned reservation graph.

Proof. Algorithm 4 first computes a rank maximal matching𝑀 in the pruned reservation graph

𝐺 ′𝑟 by Algorithm 3, which takes time𝑂 (𝑟𝑚
√
𝑛) by Theorem 8.4. Then we arbitrarily remove |𝑀 | −𝑞𝑐

edges of rank 𝑟 from 𝑀 if |𝑀 | > 𝑞𝑐 in constant time. In the first for loop, for each student, we

check whether there exists an alternating path or an augmenting path in time𝑂 (𝑚). Thus the total
running time of the first for loop is 𝑂 (𝑛𝑚). The second for loop checks whether we can add some

students without exceeding school capacity in time 𝑂 (𝑛). The whole running time of Algorithm 4

is 𝑂 (𝑟𝑚
√
𝑛 + 𝑛𝑚). □

Next, we present an illustrating example for Algorithm 4.

Example 8.7. Consider the following setting in which there are four students 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4}
and one school 𝐶 = {𝑐}. The priority ordering of school 𝑐 is 𝑠1 ≻𝑐 𝑠2 ≻𝑐 𝑠3 ≻𝑐 𝑠4 and all students

consider school 𝑐 acceptable. The type profile of the students is 𝑇 (𝑠1) = {𝑡1, 𝑡2}, 𝑇 (𝑠2) = {𝑡1},
𝑇 (𝑠3) = {𝑡3, 𝑡4}, 𝑇 (𝑠4) = {𝑡4}. The school capacity of 𝑐 is 𝑞𝑐 = 3 and it has diversity goals specified

as follows: [1𝑐,𝑡2 = [1𝑐,𝑡3 = 0, [1𝑐,𝑡1 = [2𝑐,𝑡2 = [2𝑐,𝑡3 = [1𝑐,𝑡4 = 1. The corresponding reservation graph is

depicted in Figure 4 where the superscript 𝑗 of a seat 𝑣
𝑗

𝑡,𝑖
represents its rank.

The rank maximal matching yielded by Algorithm 3 is {(𝑠1, 𝑣2𝑡2,1), (𝑠2, 𝑣
1

𝑡1,1
), (𝑠3, 𝑣2𝑡3,1), (𝑠4, 𝑣

1

𝑡4,1
)}.

Since the school capacity is 3, we randomly delete one edge of rank 2, say (𝑠1, 𝑣2𝑡2,1).



Input: 𝑆 ′ ⊆ 𝑆 , 𝑞𝑐 , ≻𝑐 , [𝑐 .
Output: A set of students 𝑆∗ ⊆ 𝑆 ′

1 Construct a ranked reservation graph 𝐺 .

2 Compute a pruned reservation graph 𝐺 ′
𝑘
as well as a rank maximal matching 𝑀 in 𝐺 ′

𝑘
by

running Algorithm 3 on input 𝐺,𝑞𝑐 .

3 if |𝑀 | > 𝑞𝑐 then
4 Remove |𝑀 | − 𝑞𝑐 edges of rank 𝑘 from𝑀 arbitrarily.

5 𝑆∗ ← ∅
6 for each student 𝑠 in descending ordering of ≻𝑐 do
7 if 𝑠 is matched in𝑀 then
8 𝑆∗ ← 𝑆∗ ∪ {𝑠}
9 else if there exists an alternating path 𝑃 w.r.t𝑀 that starts from 𝑠 and ends at 𝑠 ′ ∈ 𝑆 \ 𝑆∗

then
10 𝑆∗ ← 𝑆∗ ∪ {𝑠}
11 𝑀 ← 𝑀 ⊕ 𝑃
12 else if there exist i) an augmenting path 𝑃 w.r.t 𝑀 that starts from 𝑠 and ends at some

free seat 𝑣 of rank 𝑘 and ii) some student 𝑠 ′ ∈ 𝑆 \ 𝑆∗ who is matched to some seat 𝑣𝑘𝑡,𝑖 of

rank 𝑘 in𝑀 then
13 𝑆∗ ← 𝑆∗ ∪ {𝑠}
14 𝑀 ← 𝑀 ⊕ 𝑃
15 𝑀 \ {(𝑠 ′, 𝑣𝑘𝑡,𝑖 )} % Remove student 𝑠 ′ from the matching𝑀

16 for each student 𝑠 in descending ordering of ≻𝑐 do
17 if |𝑆∗ | < 𝑞𝑐 and 𝑠 ∉ 𝑆∗ then
18 𝑆∗ ← 𝑆∗ ∪ {𝑠}
19 return 𝑆∗

Algorithm 4. A Fast Algorithm for the Choice Function

𝑠1

𝑠2

𝑠3

𝑠4

𝑣1𝑡1,1

𝑣2𝑡2,1

𝑣2𝑡3,1

𝑣1𝑡4,1

Fig. 4. The corresponding reservation graph of school 𝑐 in Example 8.7.

Next, we go through students one by one based on school priority and check whether there

exists a matching of size 3 with maximal clipped signature ⟨2, 1⟩. Initially set 𝑆∗ to be empty.

• For student 𝑠1, there exists an alternating path 𝑠1, 𝑣
1

𝑡1,1
, 𝑠2. Thus we add 𝑠1 to 𝑆

∗
and update𝑀

to be {(𝑠1, 𝑣1𝑡1,1), (𝑠3, 𝑣
2

𝑡3,1
), (𝑠4, 𝑣1𝑡4,1)}.

• For student 𝑠2, there exist an augmenting path 𝑠2, 𝑣
1

𝑡1,1
, 𝑠1, 𝑣

2

𝑡2,1
and another student 𝑠3 ∉ 𝑆∗

who is matched to some seat of rank 2. Thus we add 𝑠2 to 𝑆
∗
and update𝑀 to be {(𝑠1, 𝑣2𝑡2,1),

(𝑠2, 𝑣1𝑡1,1), (𝑠4, 𝑣
1

𝑡4,1
)}.



• For student 𝑠3, there exists an alternating path 𝑠3, 𝑣
1

𝑡4,1
, 𝑠4. Thus we add 𝑠3 to 𝑆

∗
and update𝑀

to be {(𝑠1, 𝑣2𝑡2,1), (𝑠2, 𝑣
1

𝑡1,1
), (𝑠3, 𝑣1𝑡4,1)}.

• For student 𝑠4, we cannot find either i) an alternating path starting from 𝑠4 and ending at

some 𝑠 ′ ∉ 𝑆∗ or ii) an augmenting path starting from 𝑠4 and another student 𝑠 ′ ∉ 𝑆∗ who is
matched to some seat of rank 2. Thus we cannot add 𝑠4 to 𝑆

∗
.

9 CONTROLLED SCHOOL CHOICE
In two-sided matching, the most important algorithm is the deferred acceptance algorithm.

Input: ≻𝑆 ,𝐶ℎ𝐶
Output: A matching 𝑋

1 while some student has not been rejected from all the schools do
2 All the unmatched students apply to their most preferred schools that have not rejected

them.

3 For each school 𝑐 ∈ 𝐶 , let 𝑆𝑐 be the set of students who are matched to 𝑐 or who now

apply to 𝑐 . School 𝑐 selects students 𝐶ℎ𝑐 (𝑆𝑐 ) and rejects the rest.

4 return Matching 𝑋 that represents the current matches.

Algorithm 5. Student Proposing Deferred Acceptance (SPDA)

The Student Proposing Deferred Acceptance (SPDA) algorithm works in the same way as the

original deferred acceptance algorithm [37]: each student first selects one contract involving her

favorite school that has not rejected her yet; then schools choose a set of contracts among the

proposals and reject others. This procedure is repeated until no more contract is rejected by any

school.

The cornerstone result in the theory of matching markets is that the student proposing deferred

acceptance algorithm is strategyproof and returns a matching which satisfies a natural notion

of stability. We say that an algorithm or rule is strategyproof if there exists no student who can

misreport her preferences to get a better outcome. Stability is defined as follows. Here we use a

natural notion of choice function of a given student 𝐶ℎ𝑠 as taking as input a set of schools and

returning the most preferred school according to ≻𝑠 .

Definition 9.1 (Stability). A matching𝑀 is stable if it is

(1) 𝑀 (𝑖) ∈ 𝐶ℎ𝑖 (𝑀 (𝑖)) (individually rational)

(2) there exists no student 𝑠 and school 𝑐 such that (𝑠, 𝑐) ≻𝑠 (𝑠, 𝑀 (𝑠)) and 𝑠 ∈ 𝐶ℎ𝑐 (𝑀 (𝑐) ∪ {𝑠}).
(No blocking pair)

The results rely on the assumption that the choice function satisfies certain axioms we define

below. We first formally define these axioms and then show that they are satisfied by our choice

function.

Definition 9.2 (Substitutability [28]). A choice rule 𝐶ℎ satisfies substitutability if for every 𝑆 ′ ⊆ 𝑆 ,

𝑖 ∈ 𝐶ℎ(𝑆 ′) and 𝑗 ≠ 𝑖 =⇒ 𝑖 ∈ 𝐶ℎ(𝑆 ′ \ { 𝑗}) .

Definition 9.3 (Law of aggregate demand (LAD)). A choice rule 𝐶ℎ satisfies the law of aggregate
demand (LAD) if for 𝑆 ′′ ⊆ 𝑆 ′ ⊆ 𝑆 , if |𝐶ℎ(𝑆 ′′) | ≤ |𝐶ℎ(𝑆 ′) |.

Definition 9.4 (Irrelevance of rejected individuals [5]). A choice rule 𝐶ℎ satisfies the irrelevance of
rejected individuals condition if for every 𝑆 ′ ⊆ 𝑆 , 𝑖 ∈ 𝑆 \𝐶ℎ(𝑆 ′) =⇒ 𝐶ℎ(𝑆 ′ \ {𝑖}) = 𝐶ℎ(𝑆 ′).



Lemma 9.5. The choice function in Algorithm 1 satisfies substitutability, law of aggregate demand,
and the irrelevance of rejected individuals condition.

Theorem 9.6. If the choice functions of the schools are of the class defined in Algorithm 1, then
SPDA is strategyproof and returns a stable outcome.

Proof. We have already shown that the choice function defined in Algorithm 1 satisfy the

conditions of substitutability, Law of aggregate demand, and irrelevance of rejected individuals. It

follows from existing results (see, e.g., Aygün and Sönmez [5]) that GDA with choice function of

schools that satisfy these three properties is strategyproof and results in a stable outcome. □

10 DISCUSSION
We consider a natural and general model of diversity goals in which the schools first want to fill

in reserves for the first rank and then subsequent ranks. For this model, we designed a choice

function that achieves diversity maximally. The choice function also serves as a useful decision-tool

for committee or set selection problems (see e.g., [29]). In the latter problems, a set of candidates

are selected after aggregating the preferences of the voters. If we have already aggregated the

preferences to derive common (priority) ranking over the candidates, then our devised choice

function can be used to additionally cater for diversity.

In our framework, a student can use a reserved seat if she satisfies the corresponding type of the

seat. Our framework and all of our technical results immediately extend to scenarios where each

reserved seat has a corresponding criterion based on types and a student can use a reserved seat

if she satisfied the criterion. For example a criterion could indicate that ‘any student of any type

can use the seat.’ This captures the seats that are under termed as ‘open category seats.’ Another

criterion could be that the user ‘satisfies type 𝑡1 and 𝑡2 but not 𝑡3.’ Note that it can be the case that

one meta type is more constrained than another meta type. For example there could be some seats

reserved for people with disabilities and separate seats reserved for people with a special disability.

Finally, we mention that the general approach for our choice function (Algorithm 1) can also be

applied to other settings in which the priority list of applicants needs to be processed subject to

various constraints. The approach deals with the applicants in decreasing order of priority and only

adds an applicant if doing so will maintain the possibility of getting a feasible set of applicants.
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