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Abstract We initiate the work on maximin share (MMS) fair allocation of m
indivisible chores to n agents using only their ordinal preferences, from both
algorithmic and mechanism design perspectives. The previous best-known ap-
proximation ratio using ordinal preferences is 2 − 1/n by Aziz et al. [AAAI
2017]. We improve this result by giving a deterministic 5/3-approximation al-
gorithm that determines an allocation sequence of agents, according to which
items are allocated one by one. By a tighter analysis, we show that for n = 2
and 3, our algorithm achieves better approximation ratios, and is actually op-
timal. We also consider the setting with strategic agents, where agents may
misreport their preferences to manipulate the outcome. We first provide a
strategyproof O(log(m/n))-approximation consecutive picking algorithm, and
then improve the approximation ratio to O(

√
log n) by a randomized algo-

rithm. Both algorithms only use the ordinal preferences of agents. Our results
uncover some interesting contrasts between the approximation ratios achieved
for chores versus goods.
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1 Introduction

Multi-agent resource allocation and fair division are major themes in math-
ematical economics [Brams and Taylor, 1996, Balinski and Young, 2001] and
computer science [Bouveret et al., 2016]. In this work, we consider allocation
algorithms to fairly assign m heterogeneous and indivisible chores to n agents
with additive utilities. We take both algorithmic and mechanism design per-
spectives. Firstly, we investigate the extent to which fairness can be guaranteed
when the algorithms can only use agents’ ordinal preferences. There is a grow-
ing body of work on this issue [Anshelevich and Sekar, 2016b, Anshelevich,
2016, Anshelevich and Sekar, 2016a] where it is being explored how well ordinal
information can help approximate objectives defined by cardinal valuations.
Secondly, we take a mechanism design perspective to the problem when the
preferences are agents’ private information. We impose the requirement that
the algorithm should be strategyproof, i.e., no agent should have an incentive
to misreport her preference. Accordingly, we study how to approximately en-
sure fairness by designing strategyproof algorithms. This research falls under
the umbrella of approximate mechanism design without money that has been
popularized by Procaccia and Tennenholtz [2013].

The fairness concept we consider in this work is the intensively studied
maximin share fairness. The maximin fair share (MMS) of an agent is the
best utility she can guarantee if she is to partition the items into n bundles
but receives the least preferred bundle, which was proposed by Budish [2011] as
a fairness concept for allocating indivisible items. MMS fairness coincides with
the classic concept of proportionality when the items are divisible. It was first
proved by Kurokawa et al. [2018] that there may not exist an allocation such
that every agent’s utility is no worse than her MMS. As a result, significant
effort has been spent on designing algorithms that compute approximate MMS
allocations [Amanatidis et al., 2017, Kurokawa et al., 2018]. The state-of-the-
art results are the (3/4 + 1/12n)- and 11/9-approximate MMS fair allocation
algorithms for goods and chores, respectively, designed by Garg and Taki [2021]
and Huang and Lu [2021]. Recently, it is proved by Feige et al. [2021] that the
approximation ratios cannot be better than 39/40 for goods and 44/43 for
chores. For a more detailed literature view, please refer to Section 5.

On one hand, one agent’s MMS is defined with respect to her cardinal
preference, which places an exact numerical value on each item, and all the
aforementioned works assume that the algorithm has full information of these
cardinal values. Since cardinal values can sometimes be difficult to obtain,
this has led researchers to study ordinal algorithms which only ask agents
to rank the items in the order of their preferences, i.e. the ordinal preferences
[Bouveret et al., 2010, Aziz et al., 2015]. A decision maker wants to know what
the price of the missing information is by knowing only ordinal preferences.
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Amanatidis et al. [2016] proved that with only ordinal information about the
valuations, no algorithm can guarantee better than Ω(1/ log n)-approximation
for goods. Very recently, Halpern and Shah [2021] showed that there is an
ordinal algorithm that guarantees O(1/ log n)-approximate MMS fairness for
all agents. These works only focused on the allocation of goods, but there are
many settings in which agents may have negative utilities such as when chores
or tasks are to be allocated. In this work, we study to what extent MMS
fairness can be guaranteed via ordinal preferences when the items are chores.

In the works discussed above, the focus has been on examining the existence
or approximation of MMS allocations. In other words, the problem has been
considered from an algorithmic point of view, but incentive compatibility has
not been addressed. Strategic agents may have incentives to misreport their
preferences to manipulate the final allocation in order to increase their own
utilities. Thus, a natural question is whether it is possible to elicit truthful pref-
erences and also guarantee approximate MMS fairness? Strategyproofness can
be a demanding constraint especially when monetary transfers are not allowed.
Amanatidis et al. [2016] were the first to embark on a study of strategyproof
and approximately MMS fair algorithms. They designed a deterministic strat-
egyproof ordinal algorithm which achieves O(1/(m− n))-approximation ratio
when the items are goods. In this paper, we revisit strategyproof MMS allo-
cation by considering the case of chores.

In a nutshell, we want to answer the following questions in this work.

When allocating indivisible chores, what approximation guarantee of
maximin share fairness can be achieved using only ordinal preferences?
Furthermore, how can we elicit agents’ true preferences and still ap-
proximate maximin share fairness?

1.1 Our results

Algorithmic Perspective. We first take an algorithmic perspective on fair allo-
cation of indivisible chores to agents using ordinal preferences. With cardinal
preferences, the best known result is the 11/9-approximate MMS algorithm
in [Huang and Lu, 2021]. We note that the round-robin algorithm that uses
only agents’ ordinal preferences returns 2−1/n approximate MMS allocations
[Aziz et al., 2017c]. In this work, we first improve this result by designing a
simple periodic sequential allocation algorithm that ensures 5/3 approxima-
tion for all n. Interestingly, by refining our analyses and constructing examples
for n = 2, 3, we show that no algorithm is able to achieve strictly better ap-
proximation ratios, i.e., our algorithm is actually optimal for these cases.

Our results depend on the following two ideas. Firstly, we reduce any chore
allocation instance to a special one where all agents have the same ordinal
preference for items, which is essentially the hardest situation for maximin
share fair allocation. The technique has been used previously [Bouveret and
Lemâıtre, 2016, Barman and Krishnamurthy, 2020, Huang and Lu, 2021]. Sec-
ondly, our algorithm falls under the umbrella of sequential allocating algo-
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rithms in which items are ordered in decreasing order of their costs and as-
signed to agents sequentially following the order. In particular, we consider
allocation sequences that have a pattern and the sequence is obtained by re-
peating the pattern. We design a pattern with a length of roughly 1.5n, and
name our algorithm as the Sesqui-Round Robin Algorithm. While we prove
that our algorithm is optimal for n ≤ 3, we note that it is not optimal for
n = 4 or larger (for a detailed discussion, please refer to Section 6). We leave
exploring the optimal algorithm for arbitrary n as a future study.

Goods Chores
Upper Lower Lower Upper

Ordinal
1/Hn

Amanatidis et al.
[2016]

1/2Hn

Halpern and Shah
[2020]

4/3 for n = 2
7/5 for n = 3
[Our work]

4/3 for n = 2
7/5 for n = 3
5/3 for n ≥ 4
[Our work]

Cardinal
39/40

Feige et al.
[2021]

3/4 + 1/12n
Garg and Taki

[2020]

44/43
Feige et al.

[2021]

11/9
Huang and Lu

[2019]

Table 1: Lower and upper bounds on approximation of MMS fairness for allocating goods
or chores using cardinal or ordinal preferences. Here Hn = Θ(logn) is the n-th harmonic
number and n is the number of agents.

Mechanism Design Perspective. We also take a mechanism design perspective
for our problem when the agents may misreport their preferences to decrease
costs. We design a deterministic sequential picking algorithm, ConsecutivePick,
where each agent consecutively selects a number of items, and show that it is
strategyproof. Roughly speaking, given an order of the agents, ConsecutivePick
lets each agent i pick ai items and leave, where

∑
i ai = m. Amanatidis et al.

[2016] proved that when the items are goods, the best ConsecutivePick al-
gorithm can guarantee an approximation of b(m − n + 2)/2c, and such an
approximation can be easily achieved by letting each of the first n− 1 agents
select one item and allocating all the remaining items to the last agent. Com-
pared to their result, we show that by carefully deciding the ai’s, when items
are chores, we are able to significantly improve the bound to O(log(m/n)).1

Moreover, we show that this approximation ratio is the best a ConsecutivePick
algorithm can achieve. We further improve the approximation ratio by ran-
domized algorithms. Particularly, we show that by randomly allocating each
item but allowing each agent to reject a small set of “bad” items (i.e., with
the largest cost) once, the resulting algorithm is strategyproof and achieves an
approximation ratio of O(

√
log n) in expectation.

Organization. We formally define our model and introduce necessary notations
in Section 2. The algorithmic results for approximating MMS fairness using
ordinal preferences are given in Section 3. We present strategyproof algorithms
in Section 4 and a detailed literature review in Section 5. Finally, Section 6
concludes the paper with some discussions on the future work.

1 In this paper we use log(·) to denote log2(·).
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2 Model and Preliminaries

In a fair allocation problem, N is a set of n agents, and M is a set of m
indivisible items. The goal is to fairly distribute all the items to the agents.
Different agents may have different preferences or utilities for the items and
the preferences are captured by valuation functions: each agent i is associated
with a function vi : 2M → R that valuates any set of items.

MMS Fairness. Imagine that agent i gets the opportunity to partition all
items into n bundles, but she is the last to choose a bundle. Then her best
strategy is to partition the items such that the smallest value of a bundle is
maximized. Let Π(M) denote the set of all n-partitionings of M . Then the
maximin share (MMS) of agent i is defined as

MMSi = max
(X1,...,Xn)∈Π(M)

min
j∈N

vi(Xj). (1)

If agent i receives a bundle of items with value at least MMSi, this allocation
is called MMS fair to her.

In this work, it is assumed that items are chores, i.e., vi(S) ≤ 0 for all
i ∈ N and S ⊆ M . Then each agent actually wants to receive as few items
as possible. For ease of description, we ascribe a disutility or cost function
ci = −vi for each agent i. We further assume that the cost function of each
agent i is additive. Accordingly, the cost function ci can be represented by a
cost vector (ci1, . . . , cim) where cij = ci({j}) is the cost of agent i for item j.
Then for any S ⊆ M we have ci(S) =

∑
j∈S cij . Without loss of generality,

we assume that cij > 0 for every i ∈ N and j ∈ M , as otherwise we can
allocate item j to agent i without increasing the cost of agent i. We refer
c = (c1, . . . , cn) as the cardinal preference profile. Agent i’s maximin share can
be equivalently defined as

MMSi = min
(X1,...,Xn)∈Π(M)

max
j∈N

ci(Xj), (2)

and we have MMSi > 0 for every i ∈ N by the assumption of positive costs.
Note that the maximin threshold defined in Equation 2 is exactly the oppo-

site number of the threshold defined in Equation 1. Throughout the rest of our
paper, we choose to use the second definition. For each agent i, we define a per-
mutation over M , σi : [m]→M , to denote agent i’s ranking on the items such
that ciσi(1) ≥ . . . ≥ ciσi(m). Particularly, item σi(1) is the least preferred item
and σi(m) is the most preferred. We refer to σ = (σ1, . . . , σn) as the ordinal
preference profile. Let x = (xi)i∈N be an allocation, where xi = (xij)j∈M and
xij ∈ {0, 1} indicates whether agent i gets item j under allocation x. A feasible
allocation guarantees a partition of M , i.e.,

∑
i∈N xij = 1 for any j ∈M . We

somewhat abuse the definition and let X = (Xi)i∈N , Xi = {j ∈ M : xij = 1}
and ci(x) = ci(xi) = ci(Xi). An allocation x is called an MMS allocation
if ci(xi) ≤ MMSi for every agent i and an α-approximate MMS (α-MMS)
allocation if ci(xi) ≤ α ·MMSi for all agents i.
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We first state the following simple observation about MMS, which implies
that if an agent receives k items, then her cost is at most k ·MMSi.

Lemma 1 For any agent i and any cost function ci, we have

– MMSi ≥ 1
n · ci(M);

– MMSi ≥ cij for any j ∈M .

Proof The first inequality is clear as for any partition of the items, the largest
bundle has cost at least the average of total cost, i.e., 1

n ·ci(M). For the second
inequality, it suffices to show MMSi ≥ ciσi(1). This is also clear since in any
partition of the items, σi(1) belongs to some bundle and thus the costliest
bundle should have cost at least ciσi(1). ut

By Lemma 1, it is easy to see that if m ≤ n, any allocation that allocates
at most one item to each agent is MMS fair. Thus throughout the rest of this
paper, we assume m > n.

Ordinal Algorithm. An ordinal algorithm A takes the ordinal preferences σ of
agents (instead of cardinal preferences c) as input, and computes an allocation
A(σ). Note that the agents do have cardinal cost functions, according to which
MMSi’s are defined. We call an ordinal algorithm α-approximate if for any cost
functions c that are consistent with the ordinal preference σ, the allocation
A(σ) given by the algorithm is an α-MMS allocation, i.e., ci(A(σ)) ≤ α ·MMSi
for all i. A randomized algorithm A returns a distribution over Π(M) and
is called α-approximate MMS if for any cost functions (consistent with the

ordinal ranking) c1, . . . , cn, Ex∼A(σ)

[
maxi∈N

ci(x)
MMSi

]
≤ α.

Remark. Note that it is necessary and more interesting to define the approx-
imation as the expectation of the maximum ratio over all agents. If the α-
approximation is defined as for every agent i, Ex∼A(σ)ci(x) ≤ α ·MMSi, the
problem becomes trivial as uniform-randomly allocating all items gives an
exact MMS allocation.

Strategyproof Algorithm. In this work, we also study the strategic situation
when the cost rankings σi are private information of agents. Each agent may
misreport her true ranking to manipulate the allocation in order to minimize
her own cost. We call an algorithm strategyproof if no agent can unilaterally
misreport her ranking to reduce her cost. Formally, a deterministic algorithm
A is called strategyproof if for every agent i, ranking σi and the ranking profile
σ−i of other agents,

ci(A(σi, σ−i)) ≤ ci(A(σ′i, σ−i)) holds for all σ′i.

We call a randomized algorithm A strategyproof in expectation if for every i,
σi and σ−i,

Ex∼A(σi,σ−i)ci(x) ≤ Ex∼A(σ′i,σ−i)ci(x) holds for all σ′i.
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3 Approximate Maximin Share

In this section, we consider the problem of computing an allocation of items
that is approximately MMS based on the agents’ ordinal rankings, and prove
the results listed in Table 1.

3.1 Identical Ordinal Preference and Allocation Sequence

We first note that we can assume without loss of generality that all agents have
identical ordinal preference (IDO). A chore allocation instance is called IDO
if σi(k) = σj(k) for agents i, j and index k. The original statement is proved
for goods in [Bouveret and Lemâıtre, 2016] and [Barman and Krishnamurthy,
2020], which is then adapted to chores in [Huang and Lu, 2021].

Lemma 2 ([Huang and Lu, 2021]) Suppose that there is an algorithm that
runs in T (n,m) time and returns an α-MMS allocation for all IDO instances.
Then, there is an algorithm running in time T (n,m) +O(nm logm) outputing
an α-MMS allocation for all instances that are not necessarily IDO.

We provide some high-level ideas for this proof as follows, and a formal one
can be found in [Huang and Lu, 2021]. For any instance I with parameters
N,M, c, σ that is not IDO, we create a corresponding IDO instance I ′ on the
same sets of agents N and items M , but with different cost functions. The costs
are defined as c′ij = ci,σi(j) for all i ∈ N and j ∈M . In other words, in I ′, item
1 is the most costly and m is the least costly to every agent. Consequently, the
resulting instance is IDO; moreover, the MMS values do not change. Suppose
we have an α-approximation algorithm for IDO instances I ′. Let πj ∈ N be
the agent that receives item j in the allocation. Then we have a length-m
sequence of “picking ordering” of agents (πm, . . . , π1). Going back to I, if we
let agent πj pick her favorite unselected item (with lowest cost) in M in the
order of j = m,m − 1, . . . , 2, 1, each agent’s cost will not be higher than her
cost in I ′ and thus the resulting allocation is also α-MMS.

Accordingly, in the following, it suffices to only focus on IDO instances,
and assume items are ordered non-increasingly regarding their costs: for any
agent i ∈ N , we have

ci1 ≥ ci2 ≥ . . . ≥ cim.

To simplify our statements, in this section, we assume that m is sufficiently
larger than n. Note that this is also without loss of generality as we can
append a sufficiently large number of items with cost 0 for everyone to M .
The remaining part of this section focuses on the computation of an allocation
sequence π ∈ Nm (a length-m sequence of agents), where πj is the agent
that receives item j. Since an allocation algorithm is uniquely defined by an
allocation sequence, we use the terms “allocation algorithm” and “allocation
sequence” interchangeably.



8 Haris Aziz, Bo Li and Xiaowei Wu

Allocation Sequence. One of the most well-known allocation sequences is round-
robin, where the sequence is defined as [1, . . . , n, 1, . . . , n, . . .]. That is, for
j = 1, 2, . . . ,m, we allocate item j to agent ((j − 1) mod n) + 1, until all
items are allocated. Observe that we can compactly represent the round-robin
sequence as π = [1, . . . , n]∗, which means that π is obtained by repeating the
pattern [1, . . . , n] until the sequence has length m (and the last replica may not
be complete). Like round-robin, in this paper we also focus on sequences with
a certain pattern p ∈ Nk, for some k ≤ m. Formally speaking, the allocation
sequence π ∈ Nm with pattern p ∈ Nk is obtained by repeating the pattern
p until π has length m, and again the last replica may not be complete. We
denote the full sequence as π = p∗, and call it a periodic allocation sequence.

Recall that the round-robin algorithm achieves a (2 − 1
n ) approximation

ratio [Aziz et al., 2017c]. In the following, we improve this approximation via
a carefully designed periodic allocation sequence.

3.2 Upper Bounds

In this section, we define the desired allocation sequences, and prove the ap-
proximation ratios (of MMS). We first show the following technical lemma,
which will be useful later in the analysis.

Lemma 3 Consider a sequence of items S = {j1, j2, . . . , jk}, ordered in non-
increasing order of costs. Suppose an agent i receives two items {jx, jk} from
S, where x ≥ k

2 . Then we have ci,jx + ci,jk ≤ 2
k · ci(S).

Proof For convenience, let a = ci,jx and b = ci,jk , where a ≥ b. We have

ci(S) ≥ x · a+ (k − x) · b,

which implies

ci,jx + ci,jk
ci(S)

≤ a+ b

x · a+ (k − x) · b
=

a+ b

k · b+ x · (a− b)
≤ a+ b

k · b+ k
2 · (a− b)

=
2

k
,

where the second inequality follows from x ≥ k
2 . ut

Next, we define a periodic allocation algorithm, called Sesqui-Round Robin
(SesquiRR), where the length of the repeating pattern is roughly 1.5n.

Sesqui-Round Robin (SesquiRR). Define the pattern of the periodic allocation
sequence as

p =
[
1, 2, . . . , n− 1, n, n, n− 1, . . . ,

⌊n
2

⌋
+ 1
]
.

For example, for n = 2, the full sequence is π = [1, 2, 2]∗; for n = 3, the
sequence is π = [1, 2, 3, 3, 2]∗. Intuitively, within each pattern, (1) each agent
from 1 to n is assigned an item and this part is the same with round-robin;
(2) then each agent in the second half of [n] is assigned one more item but
according to the reverse order because they have an advantage in (1). The
pseudocode is provided in Algorithm 1.
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Algorithm 1: Sesqui-Round Robin Algorithm.

1 Input: IDO instance with ci1 ≥ ci2 ≥ . . . ≥ cim for all i ∈ N .
2 Initialize: Xi = ∅ for all i ∈ N .

3 Set p =
[
1, 2, . . . , n− 1, n, n, n− 1, . . . , bn

2
c+ 1

]
.

4 for j = 1, 2, . . . ,m do
5 a = (j − 1 mod |p|) + 1 and Xp(a) = Xp(a) ∪ {j}.

6 Output: Allocation X = (X1, . . . , Xn).

Theorem 1 (Approximation Ordinal Algorithms) Algorithm SesquiRR
returns an allocation that is

– 4/3-approximate MMS for n = 2;
– 7/5-approximate MMS for n = 3;
– 5/3-approximate MMS for any n ≥ 4.

We prove Theorem 1 by proving the following three lemmas.

Lemma 4 SesquiRR is 4/3-approximate MMS for n = 2.

Proof For n = 2, SesquiRR has repeating pattern [1, 2, 2]. That is, we assign
to agent 1 item set X1 = {1, 4, 7, . . .} = {3k + 1 | k ∈ N0} ∩M and assign to
agent 2 item set X2 = {2, 3, 5, 6, 8, 9 . . .} = {3k + 2, 3k + 3 | k ∈ N0} ∩M .2

Recall that items are indexed in descending order of costs. Let us first
consider agent 1 and define f := c11/MMS1. By the second statement in
Lemma 1, we have MMS1 ≥ c11 and thus f ∈ [0, 1]. Note that after receiving
item 1, agent 1 gets the last one out of every three consecutive items. Since
c1,3j−1 ≥ c1,3j ≥ c1,3j+1 for all j = 1, . . . , bm−13 c, then

3 ·
bm−1

3 c∑
j=1

c1,3j+1 ≤
bm−1

3 c∑
j=1

(c1,3j−1 + c1,3j + c1,3j+1) = c1(M)− c11.

Thus

c1(X1) = c11 +

bm−1
3 c∑
j=1

c1,3j+1 ≤ f ·MMS1 +
1

3
· (c1(M)− c11) .

By the first statement in Lemma 1, we have c1(M) ≤ 2 ·MMS1 and thus

c1(X1) ≤
(
f +

1

3
· (2− f)

)
·MMS1 =

2

3
(1 + f) ·MMS1 ≤

4

3
·MMS1.

Next, we consider agent 2, who receives two items (of smallest costs) out
of every three consecutive items, and c2,3j−2 ≥ c2,3j−1 ≥ c2,3j for all j =
1, . . . , bm3 c, we have

c2(X2) ≤ 2

3
· c2(M) ≤ 4

3
·MMS2,

where the inequality also comes from c2(M) ≤ 2 ·MMS2 . ut
2 N0 represents the set of all non-negative integers {0, 1, 2, . . .}.
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Next, we consider the case when n = 3.

Lemma 5 SesquiRR is 7/5-approximate MMS for n = 3.

Proof For n = 3, the allocation sequence has pattern [1, 2, 3, 3, 2]. In the fol-
lowing, we consider the three agents separately and the reasoning is similar to
that of Lemma 4.

Agent 1. Let c11 = f ·MMS1, where f ∈ [0, 1]. Note that after receiving the
first item, agent 1 receives one out of every 5 consecutive items. Hence

c1(X1) ≤ f ·MMS1 +
1

5
· (c1(M)− c11)

≤
(
f +

1

5
· (3− f)

)
·MMS1 ≤

7

5
·MMS1,

where the second inequality holds due to c1(M) ≤ 3 ·MMS1.

Agent 2. Let c22 = f ·MMS2, where f ∈ [0, 1]. Note that after receiving item
2, for every t = 1, 2, . . ., among the 5 consecutive items

{3 + 5(t− 1), 4 + 5(t− 1), . . . , 7 + 5(t− 1)},

agent 2 receives the third item 5 + 5(t− 1) and the last item 7 + 5(t− 1).
By Lemma 3, the total cost of items agent 2 receives after item 2 is at most

2
5 ·
∑m
j=3 c2j . Hence we have

c2(X2) ≤ f ·MMS2 +
2

5
· (c2(M)− c21 − c22)

≤
(
f +

2

5
· (3− 2f)

)
·MMS2 ≤

7

5
·MMS2.

Agent 3. Let c33 + c34 = f · MMS3. Note that among the first four items
{1, 2, 3, 4}, at least two of them must appear in the same bundle of the MMS
allocation of agent 3. Hence we have MMS3 ≥ c33+c34, which implies f ∈ [0, 1].
Also note that c31 + c32 + c33 + c34 ≥ 2 · (c33 + c34) = 2f ·MMS3.

After receiving items 3 and 4, agent 3 receives two items (of smallest costs)
out of every 5 consecutive items. Hence we have

c3(X3) ≤ f ·MMS3 +
2

5
·

c3(M)−
4∑
j=1

c3j


≤
(
f +

2

5
· (3− 2f)

)
·MMS3 ≤

7

5
·MMS3.

Combining three cases, all agents receive a bundle of cost at most 7
5 times

her MMS value, and the lemma follows. ut

Finally, we show that the approximation ratio of SesquiRR is at most 5
3 for

any n ≥ 4.



Approximate and Strategyproof MMS with Ordinal Preferences 11

Lemma 6 SesquiRR is 5/3-approximate MMS for n ≥ 4.

Proof Recall that for arbitrary n, the repeating pattern of the sequence is[
1, 2, . . . , n− 1, n, n, n− 1, . . . ,

⌊n
2

⌋
+ 1
]
.

For convenience, we let k = 2n − bn2 c be the length of the pattern. Note
that we have k = 3n

2 when n is even, and k = 3n+1
2 > 3n

2 when n is odd. Fix
any agent i ∈ N , we show that the set of items Xi agent i receives satisfies
ci(Xi) ≤ 5

3 ·MMSi.

Case-1: i ≤ bn2 c. The algorithm assigns to agent i the following items:

Xi = {i, i+ k, i+ 2k, . . .}.

Let cii = f ·MMSi, where f ∈ [0, 1]. Observe that after receiving item i, agent
i gets the item with minimum cost out of every k items. Hence we have

ci(Xi) ≤ f ·MMSi +
1

k
·

m∑
j=i+1

cij ≤ f ·MMSi +
2

3n
· ci(M)

≤ f ·MMSi +
2

3n
· n ·MMSi =

(
f +

2

3

)
·MMSi ≤

5

3
·MMSi.

Case-2: bn2 c+1 ≤ i ≤ n− k−2
4 . Note that n− k−2

4 is not necessarily an integer.
In this case, agent i first receives item i, and then for every t = 1, 2, . . ., among
the k consecutive items

St = {i+ (t− 1)k + 1, i+ (t− 1)k + 2, . . . , i+ t · k},

agent i receives item i+ (t− 1)k + 2(n− i) + 1 (the (2(n− i) + 1)-th item in
St) and item i+ t · k (the last item in St). See Figure 1 for an illustration.

1

𝑛

𝑛 −
𝑘 − 2

4

1

agents

items

𝑖 𝑖 + 2 𝑛 − 𝑖 + 1 𝑖 + 𝑘

𝑖

𝑺𝟏

𝑛

2

Fig. 1: Illustration of Case 2 in the proof of Lemma 6. The solid black lines represent the
allocation of the first 2k items and the red points represent the items allocated to agent i.

Observe that for i ≤ n− k−2
4 ,

2(n− i) + 1 ≥ k − 2

2
+ 1 =

k

2
.
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Hence by Lemma 3, for every t = 1, 2, . . . we have

ci,i+(t−1)k+2(n−i)+1 + ci,i+t·k ≤
2

k
· ci(St).

As before, let cii = f ·MMSi, where f ∈ [0, 1]. We have

ci(Xi) ≤f ·MMSi +
2

k
·

m∑
j=i+1

cij = f ·MMSi +
2

k
·

ci(M)−
i∑

j=1

cij


≤f ·MMSi +

2

k
· (n ·MMSi − i · f ·MMSi)

=

(
2n

k
+ (1− 2i

k
) · f

)
·MMSi.

If 2i > k then we have

ci(Xi) ≤
2n

k
·MMSi ≤

4

3
·MMSi.

Otherwise (2i ≤ k), we have

ci(Xi) ≤
(

2n

k
+ (1− 2i

k
) · f

)
·MMSi ≤

(
1 +

2(n− i)
k

)
·MMSi.

For k = 2n − bn2 c ≥
3n
2 and i ≥ bn2 c + 1 ≥ n

2 , we have n−i
k ≤

1/2·n
3/2·n = 1

3 ,

which implies

ci(Xi) ≤
(

1 +
2

3

)
·MMSi =

5

3
·MMSi.

Case-3: i > n− k−2
4 . Note that agent i receives items

Xi = {i, 2n− i+ 1, i+ k, 2n− i+ 1 + k, i+ 2k, 2n− i+ 1 + 2k, . . .}.

In other words, agent i receives items i and 2n− i+ 1 first, and then for every
t = 1, 2, . . ., among the k consecutive items

St = {2n− i+ 2 + (t− 1)k, 2n− i+ 3 + (t− 1)k, . . . , 2n− i+ 1 + t · k},

agent i receives item i + t · k (the (k − 2(n − i) − 1)-th item in St) and item
2n− i+ 1 + t · k (the last item in St). See Figure 2 for an illustration.

Since i > n− k−2
4 , we have

k − 2(n− i)− 1 > k − 2× k − 2

4
− 1 =

k

2
.

Hence by Lemma 3, for every t = 1, 2, . . ., the two items agent i receives
from St have total cost at most 2

k ·ci(St). Next, we bound the total cost ci(Xi)
of agent i, taking into account the first two items agent i receives.

Let cii = f1 ·MMSi and ci,2n−i+1 = f2 ·MMSi, where 1 ≥ f1 ≥ f2 ≥ 0.
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1

1

items

𝑖 𝑖 + 𝑘

𝑖

𝑺𝟏

2𝑛 − 𝑖 + 1

𝑛

𝑛 −
𝑘 − 2

4

agents

𝑛

2

Fig. 2: Illustration of Case 3 in the proof of Lemma 6. The solid black lines represent the
allocation of the first 2k items and the red points represent the items allocated to agent i.

Claim 2 We have either f1 + f2 ≤ 1 or f2 ≤ 1
3 .

For continuity of presentation, we defer the proof of Claim 2 to the end of this
subsection. By definition of f1 and f2 we have

ci(Xi) ≤ f1 ·MMSi + f2 ·MMSi +
2

k
·

m∑
j=2n−i+2

cij

≤ (f1 + f2) ·MMSi +
2

k
·

n ·MMSi −
2n−i+1∑
j=1

cij

 .

Note that for all j ≤ 2n− i+ 1, we have cij ≥ f2 ·MMSi; for all j ≤ i, we
have cij ≥ f1 ·MMSi. Hence we have

2n−i+1∑
j=1

cij ≥
(
i · f1 + (2n− 2i+ 1) · f2

)
·MMSi. (3)

Now, Inequality (3) implies

ci(Xi)

MMSi
≤ f1 + f2 +

2

k
·
(
n− i · f1 − (2n− 2i+ 1) · f2

)
=

2n

k
+
k − 2i

k
· f1 +

k − 2(2n− 2i+ 1)

k
· f2.

Observe that the coefficient of f2 is always positive since

2n− 2i+ 1 < 2n− 2(n− k − 2

4
) + 1 =

k

2
.

If 2i ≥ k, then the coefficient of f1 is non-positive, and thus the maximum
of RHS is achieved when f1 = f2. Note that when f1 = f2, by Claim 2, we
have f2 ≤ 1

2 , which implies

ci(Xi)

MMSi
≤ 2n

k
+

2k − 4n+ 2i− 1

k
· f2

≤ 4n

2k
+

2k − 4n+ 2i− 1

2k
= 1 +

2i− 1

2k
< 1 +

2n

1.5n
=

5

3
.
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If 2i < k, then using the fact that i > n− k−2
4 , we have

ci(Xi)

MMSi
≤ 2n

k
+
k − 2i

k
· f1 +

k − 2(2n− 2i+ 1)

k
· f2

<
2n

k
+
k − 2n+ k−2

2

k
· f1 +

k − 2(2n− k + 1)

k
· f2

=
2n

k
+

3k − 4n− 2

2k
· f1 +

3k − 4n− 2

k
· f2

≤ 4

3
+

1

6
· f1 +

1

3
· f2 =

4

3
+

1

3
· (f1

2
+ f2),

where the last inequality holds since k ≥ 1.5n. It not difficult to check that by

Claim 2, f1
2 + f2 ≤ 1, which implies ci(Xi)

MMSi
≤ 4

3 + 1
3 = 5

3 . ut

Combining Lemmas 4, 5 and 6, we have proved Theorem 1. It remains to
prove Claim 2.

Proof of Claim 2 We call items {1, 2, . . . , i} heavy items and items {i+ 1, i+
2, . . . , 2n − i + 1} light items. Note that every heavy item must have cost at
least f1 ·MMSi and every light item must have cost at least f2 ·MMSi. Now
consider the MMS allocation of agent i. If there exists a bundle containing
both heavy and light items, or two heavy items, then we have

MMSi ≥ f1 ·MMSi + f2 ·MMSi,

which implies f1 + f2 ≤ 1. Otherwise, we know that if a bundle contains a
heavy item, then it is a singleton. Note that there are i heavy items, 2(n−i)+1
light items and n bundles. Hence we must have i < n. Moreover, there must
exist a bundle containing three light items, which implies MMSi ≥ 3f2 ·MMSi
and thus f2 ≤ 1

3 . ut

3.3 Lower Bounds

In the following, we give the lower-bound results showing that the approx-
imation ratios we obtained for n ≤ 3 are optimal for deterministic ordinal
algorithms.

Theorem 3 (Lower Bound for Deterministic Algorithms) No deter-
ministic ordinal algorithm has approximation ratio (w.r.t. MMS) smaller than

– 4/3 for n = 2;
– 7/5 for n = 3.

Proof We first give a counter example for n = 2. Consider the instance in which
the two agents have identical ranking on m = 4 items {1, 2, 3, 4}. Without loss
of generality, assume the first item (with maximum cost) is given to agent 1.
If agent 1 is allocated only one item, then for the case when c2 = (1, 1, 1, 1),
the approximation ratio is 3

2 since agent 2 has total cost 3 while MMS2 = 2.
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Otherwise (agent 1 gets ≥ 2 items), for the case when c1 = (3, 1, 1, 1), the
approximation ratio is at least 4

3 , as agent 1 has total cost at least 3 + 1 = 4
while MMS1 = 3.

Next, we consider the case when n = 3. Suppose there exists an allocation
that is strictly better than 7/5 = 1.4-approximate. Let 1.4− ε be the approxi-
mation ratio of the algorithm, where 0 < ε < 0.4. In the following we consider
a few instances with m ≥ 2

ε items, in which the three agents have identical
ranking. For convenience of discussion, we fix m to be an odd number.

First, observe that the first three items must be allocated to three differ-
ent agents, otherwise the approximation is at least 2. Without loss of gener-
ality, suppose item i ∈ {1, 2, 3} is allocated to agent i. Then item 4 must
be allocated to agent 3, as otherwise when all agents have cost function
(2, 2, 1, 1, 0, . . . , 0), the approximation ratio is 1.5. Next, we consider how the
items M ′ = {5, 6, . . . ,m} are allocated. Let y1, y2 and y3 be the number of
items in M ′ allocated to agent 1, 2 and 3, respectively.

Agent-1. Consider the instance in which the cost function of agent 1 is

c1 = (1,
2

m− 1
,

2

m− 1
, . . . ,

2

m− 1
).

Note that since m is odd, we have MMS1 = 1. To ensure an approximation
ratio of 1.4− ε, we have c1(X1) = 1 + 2·y1

m−1 ≤ 1.4− ε, which implies

y1 ≤
m− 1

2
· (0.4− ε) < 0.2 ·m− 0.5 · ε.

Agent-2. Now consider the instance in which

c2 = (1, 1,
1

m− 2
,

1

m− 2
, . . . ,

1

m− 2
).

Note that MMS2 = 1. To ensure an approximation ratio of 1.4 − ε, we have
c2(X2) = 1 + y2

m−2 ≤ 1.4− ε, which implies

y2 ≤ (m− 2) · (0.4− ε) < 0.4 ·m− ε ·m ≤ 0.4 ·m− 2,

where the last inequality follows from m ≥ 2
ε .

Agent-3. Finally, we consider the instance in which

c3 = (
1

2
,

1

2
,

1

2
,

1

2
,

1

m− 3
,

1

m− 3
, . . . ,

1

m− 3
).

Since there are m− 4 items with cost 1
m−3 , and m is odd, we can verify that

MMS3 = 1. To ensure an approximation ratio of 1.4 − ε, we have c3(X3) =
1 + y3

m−3 ≤ 1.4− ε, which implies

y3 ≤ (m− 3) · (0.4− ε) < 0.4 ·m− ε ·m ≤ 0.4 ·m− 2.

However, observe that now we have y1 + y2 + y3 < m − 4, which is a
contradiction since there are m− 4 items in M ′. ut
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Combining Theorems 1 and 3, we have shown that our algorithm is optimal
for n = 2 and n = 3. It would be natural to conjecture that the algorithm
achieves optimal approximation ratios for larger n. Unfortunately, this is not
true. We defer this discussion to Section 6.

4 Strategyproof Maximin Share Allocations

In this section, we take a mechanism design perspective and design strate-
gyproof algorithms that approximately achieve MMS fairness. We first note
that periodic sequential picking algorithms, e.g., the round robin algorithm,
are not necessarily strategyproof. The following example shows that round-
robin is not strategyproof even for two agents.

Example 1 Suppose there are two agents and four items. The first agent has
ranking c11 < c12 < c13 < c14 on the items, in the ascending order of costs.
The second agent has ranking c24 < c22 < c21 < c23. Suppose that both
agents report truthfully then the algorithm allocates items {1, 2} to agent 1
and items {3, 4} to agent 2. However, if the second agent reports differently as
c22 < c24 < c21 < c23, then the algorithm will allocate items {1, 3} to agent 1
and items {2, 4} to agent 2. In other words, agent 2 receives a strictly better
allocation by misreporting, and hence the algorithm is not strategyproof.

4.1 Deterministic Algorithm

We present a deterministic sequential picking algorithm that is O(log m
n )-

approximate and strategyproof. Recall that when items are goods, Amanatidis
et al. [2016] gave a deterministic O( 1

m−n )-approximate strategyproof ordinal
algorithm. In the following, we show that if all the items are chores, the ap-
proximation ratio is O(log m

n ). Observe that by Lemma 1, it is trivial to achieve
approximation ratio m

n by assigning m
n arbitrary items to each agent; it is triv-

ial to achieve approximation ratio n by assigning all items to a single agent.
Hence in the remaining part of the paper we assume that min{n, mn } = ω(1).
Moreover, we assume log m

n < n
4 , as otherwise the n-approximation algorithm

is also O(log m
n )-approximate. Equivalently, we have m < n · 2n/4.

Theorem 4 There exists a deterministic strategyproof ordinal algorithm with
approximation ratio O(log m

n ).

We first define a special class of sequential picking algorithms, where each
agent has a single chance to select items.

ConsecutivePick. Fix a sequence of integers a1, . . . , an such that
∑
i≤n ai = m.

Order the agents arbitrarily. For i = n, n − 1, . . . , 1, let agent i pick ai items
from the remaining items. We do not restrict which items each agent should
pick, but of course strategic agents want to select items with smallest costs.
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Algorithm 2: ConsecutivePick Algorithm.

1 Parameters: Integers a1, . . . , an such that
∑

i≤n ai = m.

2 Input: The ordinal preference σ of agents.
3 Initialize: Xi = ∅ for all i ∈ N .
4 for i = n, n− 1, . . . , 1 do
5 for j = 1, 2, . . . , ai do

6 Let e∗ = arg maxe∈M{σ−1
i (e)}; Set Xi = Xi ∪ {e∗} and M = M \ {e∗}.

7 Output: Allocation X = (X1, . . . , Xn).

The pseudocode is provided in Algorithm 2. Recall that σi(1) is the least
preferred item of agent i with largest cost, and σi(m) is the most preferred.

We note that as long as the ai’s do not depend on the reported preferences
of agents, the rule discussed above is the serial dictatorship rule for multi-unit
demands. When it is agent i’s turn to pick items, it is easy to see that her
optimal strategy is to pick the top-ai items with the smallest costs among the
remaining items. Hence immediately, we have the following lemma.

Lemma 7 For any {ai}i≤n, ConsecutivePick is strategyproof.

It remains to prove the approximation ratio.

Lemma 8 There exists a sequence {ai}i≤n such that the approximation ratio
of ConsecutivePick is O(log m

n ).

Proof We first establish an upper bound on the approximation ratio in terms
of {ai}i≤n. Then we show how to fix the numbers appropriately to get a small
ratio. Denote by r the approximation ratio of the algorithm.

Consider the moment when agent i needs to pick ai items. Recall that at
this moment, there are

∑
j≤i aj items, and the ai ones with the smallest cost

will be chosen by agent i. Let δ be the average cost of items agent i picks, i.e.,
ci(Xi) = δ · ai. On the other hand, each of the

∑
j≤i−1 aj items left has cost

at least δ. Thus we have MMSi ≥ δ ·
⌈
a1+...+ai−1

n

⌉
and

r = max
i∈N

{
ci(Xi)

MMSi

}
≤ max

i∈N

 ai⌈
a1+...+ai−1

n

⌉
 .

It suffices to compute a sequence of a1, . . . , an that sum to m and minimize
this ratio. Fix K = d2 log m

n e. Recall that we assume w.l.o.g. that log m
n < n

4 .
Hence we have 1� K < n. Let

ai =

{
2, i ≤ n

2 ,

min{m−
∑
j<i aj ,

⌈
K · (1 + K

n )i−
n
2−1

⌉
}, i > n

2 .

The first term in min{·, ·} is to guarantee that the summation of ai’s does
not exceed m. Note that truncating ai is only helpful for minimizing the ap-
proximation ratio and thus it suffices to consider the case when ai equals the
second term of min{·, ·}. In the following, we show that
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1. all items are picked:
∑
i∈N ai = m;

2. for every i > n
2 : ai ≤ K ·

⌈
a1+...+ai−1

n

⌉
.

Note that for i ≤ n
2 , since agent i receives 2 items, the approximation ratio

is trivially guaranteed. The first statement holds because

n
2∑
i=1

2 +

n∑
i=n

2 +1

(
K · (1 +

K

n
)i−

n
2−1

)

=

n
2∑
i=1

(
K · (1 +

K

n
)i−1

)
+ n = (1 +

K

n
)

n
2 · n− n+ n > 2

K
2 · n > m,

where the first inequality is because 1 + K
n > 2

K
n for K

n < 1 and the second
inequality is by the definition of K. Thus ai’s will be truncated when their
sum exceeds m.

For i > n
2 , observe that (let l = i− n

2 − 1)

1

n

i−1∑
j=1

aj = 1 +
1

n

l∑
j=1

K · (1 +
K

n
)j−1 = 1 + (1 +

K

n
)l − 1 = (1 +

K

n
)l.

Thus we have

ai ≤
⌈
K · (1 + K

n )l
⌉
≤ K ·

⌈
(1 + K

n )l
⌉
≤ K ·

⌈
a1+...+ai−1

n

⌉
,

as claimed. ut

We conclude this section by showing that our approximation ratio is asymp-
totically optimal for all ConsecutivePick algorithms.

Lemma 9 (Limits of ConsecutivePick) The ConsecutivePick algorithm (with
any {ai}i∈N ) has approximation ratio Ω(log m

n ).

Proof Fix K = 1
4 log m

n < n
16 . Suppose there exists a sequence of {ai}i∈N such

that the algorithm is K-approximate. Then the last agent to act must receive
at most K items, i.e., a1 ≤ K. Next, we show by induction on i = 2, 3, . . . , n
that ai ≤ K(1 + 2K

n )i−1 for all i ∈ N . Suppose the statement is true for

a1, . . . , ai. Then if ai+1 > K(1 + 2K
n )i, we have

ai+1

a1 + . . .+ ai+1
>

K(1 + 2K
n )i

K · n
2K ((1 + 2K

n )i+1 − 1)
≥ K

n
,

which is a contradiction with the algorithm being K-approximate. Thus∑n
i=1 ai ≤ K ·

(
(1 + 2K

n )n − 1
)
≤ n ·

(
e2K − 1

)
< m,

which means not all items are allocated and completes the proof. ut



Approximate and Strategyproof MMS with Ordinal Preferences 19

4.2 Randomized Algorithm

Via a carefully designed ConsecutivePick algorithm, we obtained a logarithmic
approximation for the problem. However, the algorithm may still have poor
performance when the number of items is much larger than the number of
agents, e.g., m = 2n. In this section, we present a randomized O(

√
log n)-

approximation ordinal algorithm, which is strategyproof in expectation.
Basically, if we randomly allocate all the items, one is able to show that the

algorithm achieves an approximation of O(log n). Since items are allocated in a
uniformly-at-random manner, the expectation for the cost of every agent i ∈ N
is 1

n · ci(M) ≤ MMSi. Using a standard measure concentration bound, e.g.,

the Chernoff Bound, one can show that E
[
maxi∈N{ ci(Xi)

MMSi
}
]

= O(log n). The

drawback of this näıve randomized algorithm is that it totally ignores the rank-
ings of agents. In the following, we show that if the agents have opportunities
to decline some “bad” items, the performance of this randomized algorithm im-
proves toO(

√
log n). Note that since we already have anO(log m

n )-approximate
deterministic algorithm for the ordinal model, it suffices to consider the case
when m ≥ n log n.

RandomDecline. Let K = bn
√

log nc. Based on the ordering of items submitted
by agents, for each agent i, we label the K items with the largest cost as
“large”, and the remaining to be “small”. It can also be regarded as each
agent reports a set Mi of large items with |Mi| = K. The algorithm operates
in two phases.

– Phase 1: every item is allocated to a uniformly-at-random chosen agent,
independently. After all allocations, gather all the large items assigned to
every agent into set Mb. Note that Mb is also a random set.

– Phase 2: Redistribute the items in Mb evenly to all agents: every agent gets
|Mb|/n random items.

The pseudocode is provided in Algorithm 3.

Algorithm 3: RandomDecline Algorithm.

1 Input: The ordinal preference σ of agents.
2 Initialize: Xi = ∅ for all i ∈ N and Mb = ∅.
3 For each i ∈ N : let Mi = {σi(1), σi(2), . . . , σi(K)}, where K = bn

√
lognc.

4 for j = 1, 2, . . . ,m do
5 Randomly and uniformly select an agent i and set Xi = Xi ∪ {j}.
6 for i = 1, 2, . . . , n do
7 Set Mb = Mb ∪ (Mi ∩Xi) and Xi = Xi \Mi.

8 Randomly divide Mb into n bundles (Y1, . . . , Yn), each with size |Mb|/n.
9 for i = 1, 2, . . . , n do

10 Set Xi = Xi ∪ Yi.
11 Output: Allocation X = (X1, . . . , Xn).
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Theorem 5 There exists a randomized strategyproof ordinal algorithm with
approximation ratio O(

√
log n).

We prove Theorem 5 by showing the following Lemmas 10 and 11.

Lemma 10 In expectation, RandomDecline achieves O(
√

log n)-approximation.

Proof We show that with probability at least 1 − 2
n , every agent i receives a

collection of items of cost at most O(
√

log n) ·MMSi. Fix any agent i. Without
loss of generality, we order the items according to agent i’s ranking, i.e., σi(j) =
j for any j ∈M and ci1 ≥ . . . ≥ cim.

For ease of analysis, we rescale the costs such that3

ci1 + ci2 + . . .+ cim = n
√

log n = K.

Note that after the scaling, agent i’s maximin share is MMSi ≥
√

log n.
Let xij denote the random variable indicating the contribution of item j to
the cost of agent i in Phase 1. Then for j > K, xij = cij with probability 1

n ,
and xij = 0 otherwise. For j ≤ K, xij = 0 with probability 1. Note that

E[

m∑
i=1

xi] =
1

n
·

m∑
i=K+1

cij ≤
K

n
=
√

log n.

Moreover, we have cij ≤ 1 for j > K, as otherwise we have the contradic-

tion that
∑K
j=1 cij > K. Note that {xij}j≤m are independent random variables

taking value in [0, 1]. Hence by Chernoff bound we have

Pr[

m∑
j=1

xij ≥ 7
√

log n ·MMSi] ≤ Pr[

m∑
j=1

xij ≥ 7 log n]

≤ exp

(
−1

3
·
(

7 log n

E[
∑m
i=1 xi]

− 1

)
·E[

m∑
i=1

xi]

)
<

1

n2
.

Then by union bound over the n agents, we conclude that with probability
at least 1− 1

n , every agent i receives a bundle of items of cost at mostO(
√

log n)·
MMSi in Phase 1.

Now we consider the items received by an agent in the second phase.
Recall that the items Mb will be reallocated evenly. By the second argu-
ment of Lemma 1, to show that every agent i receives a bundle of items of
cost O(

√
log n) · MMSi in the second phase, it suffices to prove that |Mb| =

O(n
√

log n) (with probability at least 1− 1
n ).

Let yj ∈ {0, 1} be the random variable indicating whether item j is con-
tained in Mb. For every item j, let bj = |{k : j ∈ Mk}| be the number of

3 Here we dropped the floor in the definition of K = bn
√

lognc for convenience of notation.
This is without loss of generality as we are only interested in an asymptotic bound.
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agents that label item j as “large”. Then we have yj = 1 with probability
bj
n .

Since every agent labels exactly n
√

log n items, we have

E[|Mb|] = E[

m∑
i=1

yi] =
1

n

m∑
i=1

bi = n
√

log n.

Applying Chernoff bound we have

Pr[

m∑
i=1

yi ≥ 2n
√

log n] ≤ exp

(
−n
√

log n

3

)
<

1

n
.

Thus, with probability at least 1 − 2
n , every agent i receives a bundle of

items with cost O(
√

log n · MMSi) in the two phases combined. Since in the
worse case, i receives a total cost of at most n · MMSi, in expectation, the
approximation ratio is (1− 2

n ) ·O(
√

log n) + 2
n · n = O(

√
log n). ut

Lemma 11 RandomDecline is strategyproof in expectation.

Proof To prove that the algorithm is strategyproof in expectation, it suffices to
show that for every agent, the expected cost she is assigned is minimized when
she is truthful. Let K = n

√
log n and fix any agent i. Suppose ci1, . . . , ciK are

the costs of items labelled “large” by the agent; and ci,K+1, . . . , cim are the
remaining items. Then the expected cost assigned to the agent in the first phase
is given by 1

n

∑m
j=K+1 cij , as every item is assigned to her with probability 1

n .
Next, we consider the cost incurred to agents in the second phase.

Recall that the expected total cost of items to be reallocated in the second
phase is E[

∑
j∈Mb

cij ] =
∑m
j=1 cij ·

bj
n , where bj is the number of agents that

label item j “large”. Let E be this expectation when agent i does not label
any item “large”. By labelling ci1, . . . , ciK “large”, agent i increases the prob-
ability of each item j ≤ K being included in Mb by 1

n . Thus it contributes an
1
n

∑K
j=1 cij increase to the expectation of total cost of Mb. In other words,

E[
∑
j∈Mb

cij ] = E +
1

n

K∑
j=1

cij .

Since a random subset of |Mb|
n items from Mb will be assigned to agent i,

the expected total cost of items assigned to her in the two phases is given by

1

n

m∑
j=K+1

cij +
1

n
·

E +
1

n

K∑
j=1

cij

 .

Obviously, the expression is minimized when ci1 + . . .+ ciK is maximized.
Hence every agent minimizes her expected cost by telling the true ranking. ut
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5 Related Works

The study of computing fair allocations of resources has a long history. Ar-
guably, two of the most widely studied solution concepts are envy-freeness
and proportionality, whose existence is guaranteed when the items are divisi-
ble, i.e., the cake cutting problem [Brams and Taylor, 1996, Stromquist, 2008,
Aziz and Mackenzie, 2016]. The problem becomes tricky when the items are
indivisible, because exact envy-free or proportional allocations barely exist
and are hard to approximate. In order to characterize the extent to which
fairness can be guaranteed in the indivisible setting, several relaxations have
been proposed, such as envy-free up to one item (EF1) [Lipton et al., 2004],
envy-free up to any item (EFx) [Caragiannis et al., 2019], and maximin share
fair (MMS) [Budish, 2011], whose relations have been discussed by Amanatidis
et al. [2018]. Among these relaxations, MMS is one of the most widely studied.

It has been conjectured that an MMS allocation is guaranteed to exist
until Kurokawa et al. [2018] identified a counter-example. Recently, Feige et al.
[2021] further proved that a better than 39/40-MMS allocation may not exist.
There are rich works for the design of approximate MMS allocations. The first
constant factor approximation algorithm was given by Kurokawa et al. [2018],
whose approximation ratio is 2/3 but its running time can be exponential in
the number of agents. Later, Amanatidis et al. [2017] refined the algorithm
in [Kurokawa et al., 2018] and guaranteed the same approximation with a
polynomial running time. The same approximation is also obtained in [Garg
et al., 2019, Barman and Krishnamurthy, 2020]. Ghodsi et al. [2018] improved
these results by giving a 3/4 approximation algorithm whose running time may
be exponential. More recently, Garg and Taki [2021] designed a polynomial
time algorithm to find a 3/4-approximate MMS allocation and proved the
existence of (3/4 + 1/12n)-MMS allocation, breaking the barrier of 3/4.

Although most of the works on fair allocation of items are for the case of
goods, recently, fair allocation of chores [Aziz et al., 2017c] or combinations
of goods and chores [Aziz et al., 2019a, Kulkarni et al., 2021] have received
much attention. Aziz et al. [2017c] proved that MMS allocations do not always
exist but can be easily 2-approximated. Later, Barman and Krishnamurthy
[2020] presented a 4/3-approximation algorithm for MMS allocation of chores,
and Huang and Lu [2021] further improved this ratio to 11/9. Aziz et al.
[2019b] extended the definition of MMS to the weighted version that deals
with asymmetric agents.

Distortion. Our work is also inspired by the growing literature on the distor-
tion in voting, where voters express ordinal preferences (instead of numerical
utilities) over candidates [Procaccia and Rosenschein, 2006, Boutilier et al.,
2015, Caragiannis et al., 2017, Mandal et al., 2020]; and matching, where only
the edge ranking is known instead of the exact weights [Anshelevich and Sekar,
2016b, Anshelevich, 2016, Anshelevich and Sekar, 2016a]. The goal is to use
partial information to find solutions that maximize the social welfare, and dis-
tortion is the measure to evaluate the worst-case multiplicative loss in social
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welfare due to this lack of information. A major focus of our work is identify-
ing what approximation guarantees of fairness can be achieved by only using
ordinal information, which is naturally connected to the work on distortion.

There has been a substantial amount of work on using ordinal preferences
in fair allocation of indivisible goods. For example, Aziz et al. [2015] considered
the question of checking the existence of allocations that possibly or necessar-
ily satisfy certain fairness guarantees such as envy-freeness given only ordinal
preferences of the agents over the goods. Bouveret et al. [2010] studied similar
questions, but given partial ordinal preferences of the agents over bundles of
goods. More closely related to ours are the papers that use ordinal allocation
rules (such as picking sequence rules) in settings with cardinal valuations. For
example, Aziz et al. [2016b] focused on the complexity of checking what social
welfare such rules can possibly or necessarily achieve. Amanatidis et al. [2016]
sought to use picking sequence rules to obtain an approximation of the MMS
fairness, and Halpern and Shah [2021] showed that there is an algorithm us-
ing ordinal preferences to guarantee O(1/ log n)-MMS fairness when items are
goods. Recently, following our work, Li et al. [2021] studied how to use ordinal
preferences to allocate chores under the fairness notion of proportionality up
to any item.

Mechanism Design without Money. Strategyproofness is a challenging prop-
erty to satisfy for fair division algorithms. For the cake cutting problem, Chen
et al. [2013] and Bei et al. [2017] studied the conditions under which there ex-
ist strategyproof algorithms to fairly allocate a cake to agents with piece-wise
uniform or linear valuations. Maya and Nisan [2012] provided a characteriza-
tion of strategyproof algorithms for the case of two agents. When items are
indivisible, Caragiannis et al. [2009] and Lipton et al. [2004] have discussed
how to elicit true information from the agents while ensuring some degree
of envy-freeness. More recently, Amanatidis et al. [2016] initiated the work on
strategyproof allocation of goods with respect to MMS fairness. One important
algorithm class is sequential picking, which is a generalization of round-robin.
The strategic aspect of sequential picking have been studied in [Kohler and
Chandrasekaran, 1971, Bouveret and Lang, 2014, Aziz et al., 2017a,b]. There
are also works on the approximation of social welfare that can be achieved by
strategyproof algorithms for the allocation of divisible items (e.g., [Aziz et al.,
2016a, Cole et al., 2013]).

6 Discussion and Conclusion

SesquiRR is Not Optimal for Larger n. As we have proved in Section 3, our
algorithm SesquiRR achieves optimal approximation ratios for n = 2 and n = 3.
However, it fails to return an optimal solution when n = 4. Actually, following
similar analysis for n = 2 and n = 3, one can show that the approximation ratio
of our algorithm is 1.5 for n = 4. However, we are aware of an algorithm that
performs strictly better than 1.499-approximate. Furthermore, we are aware
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of an instance with n = 4, for which no ordinal algorithm performs better than
1.405-approximate. Therefore, we conjecture that the optimal approximation
ratio r∗(n) (with n agents) is an increasing function of n. In this paper we
have shown that

r∗(2) =
4

3
≈ 1.333, r∗(3) =

7

5
= 1.4, and ∀n, r∗(n) ≤ 5

3
≈ 1.667.

We can also show that 1.405 < r∗(4) < 1.499.4 We leave it as future work to
analyze the optimal ratio r∗(n) for n ≥ 4.

Constant Approximations for Our Strategyproof Algorithm. We have shown
in Section 4.1 a deterministic strategyproof algorithm that is O(log(m/n))-
approximate MMS. However, in many applications, it is desirable to obtain
constant approximation ratios. While our algorithm has constant approxima-
tion ratios when m = O(n), it is not clear how large the constant is. In partic-
ular, if we need to guarantee an approximation ratio r, what is the maximum
number of items we can handle? In the following, we show how to answer
this question. Following the analysis of Section 4.1, in order to guarantee an
approximation ratio of r, we can set a1 = r, and for each i = 2, . . . , n, we

set ai = r ·
⌈
a1+...+ai−1

n

⌉
. To guarantee that all items are allocated, we have

m ≤
∑n
i=1 ai. For example, if r = 2, we have

a1 = . . . = an
2

= 2, an
2 +1 = . . . = a 3n

4
= 4,

a 3n
4 +1 = . . . = a 11n

12
= 6, a 11n

12 +1 = . . . = an = 8.

Hence we have m ≤
∑n
i=1 ai = 11

3 n ≈ 3.67n. Similarly, to guarantee an
approximation of r = 3, we can let the first n

3 values of ai be 3; the next n
6

values of ai be 6; then the next n
9 values of ai be 9, etc. Following similar

calculations, one can verify that the maximum number of items the algorithm
can handle to guarantee r = 3 is m ≈ 10.26n; for r = 4, we have m ≈ 30.15n.
It would also be interesting to study lower bounds on the approximation ratio.
For example, it remains unknown whether super-constant lower bounds exist
for the approximation ratio of ordinal strategyproof mechanisms.

Conclusion. In this paper, we initiated the study of approximate and strate-
gyproof maximin fair algorithms for chore allocation using ordinal preferences.
Our study leads to several new questions. Two of the most obvious research
questions are to find the optimal ordinal algorithm for an arbitrary number
of agents, and to improve the approximation or study the lower bounds of
strategyproof algorithms. At present, we have two parallel lines of research for
goods and chores. It is important to consider similar questions for combina-
tions of goods and chores [Aziz et al., 2019a]. Finally, it is interesting to extend
our work to the case of asymmetric agents [Aziz et al., 2019b], where agents
possess different weights and a fair allocation should respect their weights.

4 Since we are not able to obtain the exact ratio, we did not include the analysis here.
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Ariel D. Procaccia, editors, Handbook of Computational Social Choice, pages 284–
310. Cambridge University Press, 2016. doi: 10.1017/CBO9781107446984.013. URL



Approximate and Strategyproof MMS with Ordinal Preferences 27

https://doi.org/10.1017/CBO9781107446984.013.
Steven J. Brams and Alan D. Taylor. Fair division - from cake-cutting to dispute resolution.

Cambridge University Press, 1996. ISBN 978-0-521-55644-6.
Eric Budish. The combinatorial assignment problem: Approximate competitive equilib-

rium from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011. doi:
10.1086/664613. URL https://doi.org/10.1086/664613.

Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos, and Maria Ky-
ropoulou. On low-envy truthful allocations. In Francesca Rossi and Alexis Tsoukiàs, ed-
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