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Abstract. Research into personalisation issues in product catalogs has mainly
been focused on recommender systems and the needs for building adaptive cata-
logs have been largely ignored. Catalogs are designed by system designers who
have a priori expectations for how catalogs will be explored by users. It is nec-
essary to consider how users are using catalogs since they may have different
expectations. WebCatalogPers proposed a design and an implementation of a
system through which integrated product catalogs are continuously adapted and
restructured within a dynamic environment. The adaptation of integrated catalogs
is based on the observation of customers’ interaction patterns. In this paper, we
extend the idea further by introducing the notion of liked minded people, where
the same design principle of WebCatalogPers is applied to a group of people
who share similar interests.

1 Introduction

The proliferation of product catalogs offered via the Web has brought about high
competition between the sellers, not just in terms of providing better quality prod-
ucts/services, but also, in terms of efforts to attract more and more “loyal” customers.
There are constant demands from consumers to have services that can deliver tailored
Web experience. The experience can be something as casual as browsing the web, or as
significant as trading stocks or purchasing goods [12].

Research into personalisation issues in product catalogs has mainly been focused
on recommender systems (i.e., recommending products that a customer may want to
buy) [3, 11, 1]. There has not been much effort into building adaptive product catalog
which is able to reorganise itself based on the customers’ needs. This is important is-
sue because product catalogs are usually structured in a category–based hierarchy and
designed in a “one–view–fits–all” fashion by a system designer who has a priori expec-
tations for how catalogs will be explored by customers. However, customers may have
different intuitions and interests. If the the expectation of the system designer differs
from customers’, the customers may easily be lost in the network of hyper-links, or
bored by taking many access hops.

In WebCatalogPers [13], we have addressed this issue by introducing the notion of
communities and customer interaction patterns. In WebCatalogPers, product catalogs
from various sources are integrated and the resulting integrated catalogs are continu-
ously adapted and restructured based on the observation of how customers are using the



catalogs. For example, in a catalog for computer parts, assume that it is repeatedly ob-
served that many users always used product category RAM right after using category CPU.
If the administrator merges the two categories and creates a new category CPU&RAM,
users now only need to visit this new category once for information of both products.

Although the approach presented in [13] allows organisation of product catalogs to
evolve over time by restructuring themselves continuously, there is still “one–view” of
product catalogs for all of the customers. In this paper, we extend the idea presented
in WebCatalogPers by using the notion of “like minded” people. We recognise the
fact that users have different background of knowledge, level of expertise, level of in-
terests on certain information domain. Hence, from navigation behaviour of users, we
can identify group of people who have similar interests. Once such groups have been
identified, we can apply the same restructuring methodology proposed in [13] to each
group, which will result in each group having its own view of product catalog organ-
isation. This enable us to have a higher degree of system adaptability by specifically
focusing on certain group of people, instead of the population of the user as a whole.
The objective is to have multiple views of product catalog organisation for customers
with different interests rather than forcing a single view to all.

The rest of the paper is organised as follows: Section 2 briefly summarises what
has been proposed in WebCatalogPers. Section 3 introduces the concept of multiple
views of product catalogs, and the next two sections discuss the techniques to identify
like minded people. Finally we present some related work and conclusion.

2 Overview of WebCatalogP ers

Before going into the details of the extended idea, we briefly present, in this section,
what has been done in [13] to make the paper self–contained.

2.1 Catalog Communities and Catalog Registration

A catalog community1 is a container of catalogs which offer products of a common
domain (e.g., community of Laptops). It provides a description of desired products
without referring to actual sellers (e.g., a seller of IBM Laptops). We illustrate catalog
communities with computers and related services domain (see Fig.1).

There are two types of relationships defined between catalog communities:
SubCommunity–Of and PeerCommunity–Of. SubCommunity–Of relationships repre-
sent specialisation between domains of two catalog communities (e.g., Printer is a
sub–community of Peripherals). We assume that, each catalog community has at
most one super–community. PeerCommunity–Of relationships are viewed as a referral
mechanism in that when the user can not find (or is not satisfied with) information from
a catalog community, s/he can refer to other communities that the catalog community
consider as its peers (e.g., community Display is a peer community of VideoCard)
2. A weight (a real value between 0 and 1) is attached to each PeerCommunity–Of re-
lationship to represent the degree of relevancy as a peer. Note that communities can

1 We use the terms catalog community and community interchangeably.
2 It should be noted that, we do not assume that the opposite (i.e., VideoCard is a peer commu-

nity of Display) systematically holds.
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Fig. 1. eCatalogs–Net: Organising catalog communities

also forward queries to each other via PeerCommunity–Of relationship. We call this or-
ganisation of catalog communities eCatalogs–Net. Any catalog community that is not a
sub–community of any other community is related to AllCatalogvia SubCommunity–
Of relationship. Each catalog community has a set of attributes that can be used to
query the underlying catalogs. We refer to the set of attributes as community product
attributes. For example, catalog community that represents “CDRead/Writers” would
have community product attributes such as Maker, ReadWriteSpeed, Price, etc.

In order to be accessible through a community, product sellers need to register their
catalogs with the community. A catalog provider is known to a community by providing
(i) a wrapper, (ii) an exported interface, and (iii) a mapping between exported interface
and community product attributes. The wrapper translates WebCatalogPers queries
to local queries, and output of the local queries are translated back to the format used
by WebCatalogPers. The exported interface defines the local product attributes for
querying information at the local catalog. A local catalog supplier also should provide
operations, such as ordering or payment for the products. However, the focus of this
paper is not on specifying transactional operations. Detailed description on provisioning
such operations in the context of Web services is presented in [4]. Users may use a
community to express queries that require extracting and combining product attributes
from multiple underlying product catalogs (e.g., price comparison). We refer to this
type of queries as global queries. Global querying is achieved by using community
product attributes which do not directly correspond to product attributes. Therefore,
when a product catalog is registered with a community, the catalog provider should
also define mapping between local product attributes and community attributes. We call
this mapping Source–Community mapping. Note that a community can be registered
with another community. By doing so, the members of the first community also become
members of the second community.

2.2 Permissible User Actions

Users in WebCatalogPers will typically be engaged in two–step information seeking
activity: (i) navigating communities for product catalogs location and semantic explo-
ration (e.g., get communities that are relevant to selling laptops) and (ii) querying se-



lected communities or catalogs for products information (e.g., compare product prices).
Users would have a specific task to achieve (e.g., product items they wish to purchase,
a category of products they want to investigate) when using product catalogs. Based on
this, we modelled the permissible actions for exploring eCatalogs–Net (see Table 1).
By modelling user interaction actions, the system can capture them for future use.

Table 1. Permissible User Actions A in eCatalogs–Net

Action Name Description

NavigateToSub(Community c) navigate from the current community to one of its subs, c.
NavigateToSuper() navigate from the current community to its super.
NavigateToPeer(Community c) navigate from the current community to one of its peers, c.
LeaveCatalogCommunity() leave the current community. The user is taken to AllCatalog.
ShowMembers(Constraint s) list members of the current community matching constraint s.
SubmitQuery(Query q) submits the query q to the current catalog community. It could

be a global query using the community product attributes,
or a source query concerning one member of the community.

Every time a user invokes one of the permissible actions at a catalog community,
WebCatalogPers keeps that event in the system log file. Each entry in the log file con-
tains the name of an action, a user identifier (UID), a time stamp (TS), and parameters
of the action. For example, the first log file entry below shows that the user, whose UID
is 987, was at Hardware catalog community, then navigated down to its sub-community
Modem on 15/08/2001 13:05:40 system time, etc.

(NavigateToSub, UID=987, TS=15082001130540, C FROM=Hardware, C TO=Modem)
(NavigateToSuper, UID=811, TS=15082001130542, C FROM=IBM, C TO=Retailers)

The log file is, later, organised into sessions and for each SubmitQuery action in a session,
all of the product attributes selected by the query are identified. A session in WebCatalogPers

is an ordered sequence of actions performed by a single user, where the time difference between
any two consecutive actions in the sequence should be within a time threshold, Tthreshold defined
by an administrator.

2.3 Restructuring Operations and Predefined Interaction Sequences

The main idea is to restructure eCatalogs–Net based on the observation of user’s usage behaviour.
In WebCatalogPers, we have proposed a set of restructuring operations on eCatalogs–Net.
These operations are used, for example, to change the relationships between catalog commu-
nities, remove a catalog community, or merge catalog communities. They can be performed at
an administrator’s own discretion, but we also proposed predefined interaction sequences (PIS)
which provide means to observe the user’s interaction patterns with eCatalogs–Net. Predefined
interaction sequences represent foreseeable user’s interaction behaviour, therefore can be prede-
fined. In our approach, we use these sequences of actions to help identify situations where the
organisation of an eCatalogs–Net may be improved through restructuring operations. Any par-
ticular sequence of actions with prevalent occurrences should be recognised as a recurring user



interaction pattern. Each interaction pattern identified suggests a restructuring operation. The
observation of the pattern will help decide which operation to perform in order to improve the
organisation of eCatalogs–Net.

For example, we have defined an operation mergeCatComm() which merges two communities
into one (see Figure 2). An administrator will perform the operation when one of the PIS pattern
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Fig. 2. Merging two catalog communities

PISmerge1 appears frequently in the log file. PISmerge1 identifies two sub–communities of the same
super–community which are always accessed together and formally presented as follows (see
Figure 3):

PISmerge1 = 〈 SubmitQuery(ci , q1), NavigateToSuper(ci , ck),

NavigateToSub(ck , cj), SubmitQuery(cj , q2) 〉

where ci, cj, ck are communities in eCatalogs–Net and (ci, ck), (cj, ck) have the
SubCommunity–Of relationship.
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3 Advanced Features of WebCatalogP ers

One of the key aspects of a personalisation system is the ability to be adaptive and actively respon-
sive to the ways the user interacts with the system. We introduced the concept of eCatalogs–Net



and how the way eCatalogs–Net is structured can be adaptively change over time based on the
access pattern of users.

We used, for example, user’s interaction actions traced in the log file to judge whether an
existing relationship is sensible, or whether there is a need for a new relationship (or deletion of
an existing relationship) between two communities. Because, if we were to decide whether com-
munity C is related to community C

′ or not, it makes more sense to observe what majority of users
(who are actually using them) think, than to depend on subjective opinion’s of an administrator.

In this section, we discuss how we can improve what we have shown so far by taking the
notion of “like-minded” users into consideration. The approach in previous sections treats the
whole population of users as one group and every user in the system gets the same view of the
eCatalogs–Net. Whenever the system administrator updates eCatalogs–Net structure, the old view
of eCatalogs–Net is disregarded and the updated version is loaded for users. However, because
people have different ways of reasoning, different level of expertise or interests on a particular
subject, when we observe the user’s behaviour, it will be desirable to consider these differences
in individual users. The differences will be reflected in users’ interaction actions, hence, in the
log file.
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Fig. 4. Adaptive evolution of eCatalogs-net

Figure 4 illustrates the idea of adaptive evolution of eCatalogs–Net based on how a group of
users perceive the structure. For example, notice that PeerCommunity-Of relationships are dif-
ferent from one group’s view to another and also the number of communities. The new structure
will reflect the user’s intuition within the group. Eventually, each group would have its own view
of eCatalogs–Net structure; the structure that is considered to be sensible and meaningful by the
users in the group rather than by the system designer. Also, that structure itself may change over
time as its population of the group changes.

Although it is likely that the user’s background would reflect their interests, we can not simply
rely on users’ demographic data to decide like-minded groups, because it may well lead to false
conclusion (e.g., not all teenagers are interested in Internet chatting). Therefore, we rely on the
users’ behaviour presented in the system log file as the basis for the grouping.



4 User Groups

This section of the paper is dedicated to explaining the process involved in finding the like-minded
groups. Obviously, to find such groups, we first have to understand the mind of individuals. Note
that we have processed the original log file into sessionised log file at this stage. The follow-
ing subsections describe how we further process the sessionised log file to derive interests of
individuals, and from there, identify like-minded groups among the individuals.

4.1 Building Individual User Profile

From the sessionised log file, we build individual user profiles. Building a user profile means un-
derstanding what the user’s interests and preferences are when it comes to using eCatalogs–Net. It
is done by finding out what the users have done in the past (i.e., from the actions they performed).
This implicit gathering of user preferences allows the system to be less biased than using infor-
mation gathered explicitly from user questionnaires, which tends to be incorrect, incomplete and
subjective [5].

In our work, the Individual User Profile (IUP) contains a list of communities that the user
has visited, along with an associated number indicating the level of interests for each of them3.
We only include communities whose associated number is higher than a predefined threshold in
the IUP. One can understand the individual user profile in our system as a summarisation of the
user’s action trend reflected in the sessionised log file. The actual process of deriving individual
user profiles are explained in the following paragraphs.

Extracting Interest Action Set (IAS) The interests of users are measured by looking at the
following actions; ShowMembers and SubmitQuery. We will call them the Interest–Action–Set
or IAS in short4. Among all the permissible actions defined in the eCatalogs-Net, we consider
these particular actions as an indication of user’s strong interest in a community, because these
actions are not normal navigation actions (hence, just passing by), rather, they are actions that
require explicit and deliberate interaction with a community (e.g., submitting a query, listing a
member for further investigation).

A different number value is assigned to each of these actions in IAS as a form of weight,
ranging from 0 to 1. Because not all of the actions present the same level of interest of the user,
we use the weight to indicate the ability of an action to reflect the user’s interest. What number
is assigned to which action is decided by the system designer. For example, for the two actions
in the IAS used in this work, SubmitQuery is considered to be a stronger indication of user’s
interests than ShowMembers action, hence the SubmitQuery action receives a higher weight
than ShowMembers action.

The IAS actions are used in a query which is applied to the sessionised log file. The queries
extract all communities on which the IAS actions are performed. Using the UIDs, we would find
out which communities are accessed by whom and what kind of actions are performed on them.
The query that will extract all IAS actions is written as follows5

SELECT UID, Action.From AS Community, Action.Name, Count(Action.Name) AS ActCnt
FROM Sessionised Log File
MATCH 〈 ShowMember—SubmitQuery 〉
GROUP BY UID, Action.From, Action.Name

3 We call the level of interests as popularity of a community to the user.
4 More actions can be defined. Here, we only use the two.
5 The details of query language, C-QL, is not presented in this paper.



The MATCH-clause matches any line in the log file that contains ShowMember or
SubmitQuery action, GROUPBY-clause groups the output by UID, the community on
which the action is performed (i.e., Action.From) and then, by action name. The system
function Count() counts Action.Name which will present the number of rows (i.e.,
Action) in each group of tuples returned. From this query, we see that how many times
each of the IAS actions has been performed on a given community by a given user.
Figure 2 shows part of the result (e.g., A result on Research community by the user 987).
The complete results would have outputs illustrated in Table 2 for every community that
a user has visited. The result of the query is called IAS-Query-Result (for clarity reason,
we added descriptive headings to returned tuple).

Table 2. IAS-Query-Result

UID Community Action ActCnt
−−− −−−−−− −−−− −−−−
987 Research ShowMembers 3
987 Research SubmitQuery 15
987 Modem ShowMembers 1
987 Modem SubmitQuery 3
137 Research SubmitQuery 30
... ... ... .

Deriving Popularity Using the values in ActCnt in the IAS-Query-Result, the popu-
larity is derived for each community visited by a given user. The process is to indicate
the level of the user’s interests on a particular community. The popularity of a given
community c, by user u is denoted as Pop(u,c) and is calculated as follows:

Pop(u,c) =
n∑

k=1

(Countak
· Wak

)

where:

– ak is an action in the IAS (1 ≤ k ≤ n}).
– Countak

is number of times the action (ak) is performed on community c, given
from the IAS-Query-Result (i.e., ActCnt).

– Wak
is the predefined weight of the action ak, given by an admin.

For example, let us assume that, for user u, and for the community Research,
the counting process of IAS-Query-Result has returned what is shown in Figure 2. The
popularity of community Research by user 987 is calculated as follows given that Wak

for each action is ShowMembers = 0.5 and SubmitQuery = 1.

Pop(987,Research) = (3 · 0.5) + (15 · 1) = 16.5



In other approaches (e.g., [17, 12]), popularity of subject items (e.g., a web page,
or a product) are indicated by number of “counts” on accesses to each web page (or
a category). In this paper, however, we consider not only the frequency of the subject
item (i.e., community), but also the actions that are performed on it. The calculation is
designed to give more weight to communities on which; (i) more significant actions,
that is, actions with higher Wk, are performed, (ii) such actions are performed large
number of times. The more weight a community is assigned to, the higher interests of
the user is in the community.

After deriving the popularity, which calculates Pop(u,c) for all communities that u

has visited, we can obtain an individual user profile for u.

Definition 1 (Individual User Profile). An individual user profile (IUP) for a user u,
is denoted as Pu and defined as follows:

Pu = {(c, Pop(u,c))|c ∈ C, 0 ≤ Pop(u,c) ≤ Popthreshold}

– c denotes a community.
– C is all communities in eCatalogs–Net.
– Pop(u,c) is the popularity of the community for user u.
– Popthreshold is the minimum popularity acceptable for a community to become

part of IUP. It is given by the system designers. 2

For example, a user profile for the user with ID 987 can be;

P987 ={(Internet, 26), (Data Recovery, 55), (Display, 45), (Digital Camera, 36)
(Memory, 35), (Processors, 33), (Modem, 26)}

given that, Wthreshold = 25.

4.2 Grouping Like Minded Users

Using the individual user profiles, we can now measure similarities between users to
determine the like-minded people. The idea is to partition the user profiles into clusters
so that users within a cluster are close (i.e., the popularities of common communities
are similar). To identify input dataset for a clustering, we arrange the individual user
profiles so that they are organised as a table of tuples (like shown in Table 3). All
communities that exist in the log file will be listed in the column heading. Popularity
for the communities that do not appear in a user’s profile are ‘0’, i.e., for example,
community System has never been visited by user 754. Table 3 is a sample input dataset
to the clustering algorithm.

There are various clustering algorithms available, we chose K-mean [7]. We have
defined our input data set for a general clustering already, hence, any algorithm can
be applied. K-mean algorithm splits a set of objects into a selected number of groups.
The basic idea of K-mean is to find a single partition of the data which has K number
of clusters such that objects within clusters are close to each other in some sense, and
those in different clusters are distant. The object of clustering, in our case, is the users
and the basis of determining a cluster is the popularity of communities visited by each



Table 3. Clustering Input

community\ Hardware Software Internet System Storage RAID Display Printer
UID

987 11 29 1 33 0 15 22 0
754 8 30 1 0 11 8 13 5
342 13 21 1 35 29 6 2 37
675 12 27 1 55 0 31 31 2
807 6 31 2 30 8 12 27 29
145 4 29 1 0 2 37 60 21
678 5 36 1 54 8 78 60 0
759 5 37 2 77 63 55 12 8

. . . . . . . . . . . . . . . . . . . . . . . . . . .

user. Hence, users (represented by UIDs) within the same cluster will be “close”, in the
sense that users within a same cluster would have similar popularity for communities.

From K-mean clustering, we will have K number of clusters6. We can presume that
users belonging to the same cluster have the same kind of interests and information-
seeking pattern when it comes to querying communities in eCatalogs–Net. For example,
the final pass of the algorithm produces the clustering of (343), (754, 675, 987), (807,
678, 759, 145), which are UIDs, from the sample input.

4.3 Revisiting pre-process of the log file

Original Log
File

Sessionised  /
Grouped
Log Files

Build Individual User Profile ( IUP )

Sessionising  Log File

do / Sessionising

exit /
output ( Sessionised  Log File)

Extract IAS

do / Query( C−QL )

entry /
input ( Sessionised  Log File)

exit /
output (Individual User Profile)

exit /
output ( IASQueryResult )

Weighting

do / CalculateWeight

entry /
input ( IASQueryResult )

exit /
output ( K  Clusters of IUP )

Clustering

do / Clustering ( K  clusters)

entry /
input ( Individual User Profiles )

Fig. 5. Pre-process of the log file

Figure 5 summarises the pre-process of the log file; the original log file undergoes
data preparation period, where it is sessionsed and global query attributes are extracted.

6 The value of K is given by an administrator, but it also can be heuristically determined.



Further to accommodate advanced features of WebCatalogPers, we build user pro-
files based on the sessionised log file. Actions in IAS are extracted, result of which
is referred to as IAS-Query-Result and the popularity of a community is calculated to
finalise individual user profiles. Finally, through clustering of individual user profiles,
the like-minded group of people are identified.

The final stage of the processed log file puts users into their similar-thinking groups,
thus, it is now possible to identify each user with a group ID. Based on the group ID,
we can break the sessionised log file into several sessionised log files, that is, if there is
K number of groups, we can generate K number of sessionised log files, one for each
group. This way, each sessionised log file concerns only the users belong to the same
group. We will call these files Sessionised Grouped Log Files (SG-Log files).

5 Exploring the Actions of Like-Minded Users

A SG-Log file is unique to each group, holding past actions of users belonging to the
group. The same methodology presented in Sect.2.3 is applied, but this time, to the in-
dividual SG-Log files. Even though the same predefined interaction sequences are used
for querying SG-Log files, the returned result from each SG-Log file will be different.
The differences are caused by different group of people having different interests of
subjects, and different ways of reasoning about the relationships between communities.

Let us assume that we have two different groups. To illustrate our concept, let us
simply assert that one group is mainly interested in domains of ‘Computer Proces-
sors’, the other, in ‘Computer Accessaries’. Inside eCatalogs–Net, those domains are
be represented by various communities, and users from each group would search such
community, and those information-seeking activities are reflected in their interactions.
Hence, for a sequence like PISmerge1 whose definition is:

PISmerge1 = 〈 SubmitQuery(ci, q1), NavigateToSuper(ci, ck),

NavigateToSub(ck, cj), SubmitQuery(cj, q2) 〉

where ci, cj, ck are communities in eCatalogs–Net and (ci, ck), (cj, ck) have the
SubCommunity–Of relationship.

When we query this sequence to the log file associated with each group, even though
we used the same sequence, actual communities accessed via these actions (i.e., ci, cj)
will reflect each group’s main interests, that is, from one group, we would get commu-
nities that are mainly concerned with ‘Computer Processors’ such as community CPU or
community Memory. From other group, DigitalCamera, Scanner etc. This, of course,
means that communities that will be merged as a result of searching for patterns will be
different from one group to the other.

The differences explained above would have significant impact on which commu-
nities the system administrator is going to change and what kind of relationships are
affected for each group. This is why using separate SG-Log files, it is possible to de-
velop a separate view of the eCatalogs–Net (Figure 4). Using the same patterns and
query language as the original approach that we have discussed initially, now a differ-
ent view of the eCatalogs–Net can be constructed through operating different updates



to each group, based on the pattern discovered from each SG-Log file. Hence, each
group has a unique view of the eCatalogs–Net, which ultimately people in the group
participated in creating it.

As in the original approach, the system administrator performs the pattern discovery
task periodically, this means that the unique view of eCatalogs–Net for each group will
change over time as well. In previous case, we assumed that new updates will replace
the old view, hence there is always single view available at any time. We could make the
same assumption here, that is, there is only single unique view per group at any time.
However, we would like to explore the possibility of letting the system administrator
decide whether to create a new version each time new updates are performed, or over-
write the existing view. Keeping the old version may be advantageous over destroying
it, because the users may want to refer to the old one at some stage, or feel comfortable
with the version and do not want to see any changes to it anymore.

If there are users who do not share common interests or reasoning behaviour with
others, hence difficult to identify groups they belong to, we offer a default view of
eCatalogs–Net. Also, it is possible to predict a situation where we have different
groups, but their SG-Log files are similar, which could result in a very similar view
of eCatalogs–Net. We do not consider merging the groups in such case. It is because
adaptation and restructuring of eCatalogs–Net is a periodic and ongoing process. We
do need to observe convincing evidence of the similarity between groups (e.g., groups
demonstrating consistant similarity over a certain period of time), before they can be
combined into one.

6 Related work and Conclusion

Current active approaches in personalised information delivery (in electronic forms) can
be categorised in four different areas based on how the system learns individual user’s
preferences. They are content-based, collaborative filtering, rule-based and web usage
mining. Our work is mainly related to web usage mining and collaborative filtering. We
will briefly discuss the main features of each approach, then look into more specific
approaches that are related to our work.

First, content-based approach has its roots in development at the mixture of infor-
mation retrieval and machine learning technology [3, 11]. In this approach, the system
searches for (and recommends) items similar to those the user prefers based on a com-
parison of content using text-learning methods. This approach, however, has difficulty
capturing different types of content (e.g., images or video clips etc.) and has a prob-
lem of over-specialisation. When the system recommends items scoring highly against
user’s preferences, the user is restricted to seeing items similar to those already rated.

Collaborative filtering mechanism works on a foundation that, rather than finding
items similar to a user has liked in the past, it searches items that other similar users
have liked. Hence, this approach compute the similarity of users instead of items them-
selves [10, 15]. Pure collaborative filtering can solve most problems of pure content-
based approach; the content is not limited to text documents because the items are
recommended based on the ratings, rather than content similarity, so items could be
anything (e.g., movies, books, articles etc.). Also, by selecting items liked by similar



users, the risk of being over-specialised against a single user can be reduced. How-
ever, if the number of users is small relative to the volume of items to be rated, it is
possible that the coverage of ratings become very sparse and this leads to reduction of
recommendable items. Another problem is that for a user whose taste is unusual com-
pared to the rest of the user population, would not get high quality recommendation,
because there are not enough similar users. Recent personalisation systems use mixture
of both content-based and collaborative filtering so that they can take advantages of the
approaches and overcome disadvantages of each other [3, 2].

Rule-based approach [6, 16] uses demographic or other kind of purposely collected
data of users to build user profiles and then define a set of rules to tailor the content de-
livery based on the facts specified in the user profiles. This is direct, simple and straight
forward way of personalising a web site for delivering highly relevant information.
However, creation and maintenance of rules are generally manual, as the system gets
complicated, there will be difficulties managing it without conflict of logics.

The effort to learn about users behavioural patterns and preferences without relying
on data explicitly gathered from users (e.g., questionnaire at registration time, feedback
forms) has been made in the area of web usage mining, which mines the log file pro-
duced by Web servers to discover user access patterns of Web pages. The some of the
main advantages of web usage mining in personalisation area are; first, the input is not a
subjective description of users (by the users themselves), thus is less likely to be biased.
Secondly, since the user profiles are dynamically obtained from user’s click-stream, the
system performance does not suffer from “old user profile”.

The application of web usage mining is diverse. The work presented in [12] uses
web usage mining for recommender systems. It attempts to improve scalability of tradi-
tional collaborative filtering techniques by clustering similar user sessions based on oc-
currence patterns of URL references, and focus the search only in the matching clusters.
Similarly, in [8], data mining association rules is used to predict presentation resource
demands in interactive multimedia e-commerce catalogs. In [9], user’s access histories
in Web log file are clustered on a dissimilarity basis and each cluster represents a par-
ticular traversal pattern. When a user logs in, the Web server determines which cluster
of traversal pattern the user belongs to and then, present links to web pages that the
user is likely to visit. Also, another adaptive web server work in [14], uses data min-
ing approach to find co-occurring pages in user visits to build index pages. But it goes
further to cluster the co-occurring pages into a set of links that are conceptually related.
That is, each cluster comprises index pages that both pure (containing no inappropriate
links regards to the concept that the cluster is representing) and complete (containing
all links that accord with the concept).

The salient differences between the above works and ours are three folds: First,
we specifically model permissible actions of users to track them dynamically. Hence,
the log file is not a series of web pages access (which cannot give semantic meaning
behind the access to the page), rather it is a series of user actions. Using user actions
carrying explicit meaning of them enables us to infer more precise semantics behind
their behavioural pattern. Secondly, although it is possible to feed our log file data to
data mining algorithm to discover patterns that may exists in the data, we use quite
the opposite approach, in which we have pre-defined patterns that we are interested in



searching and query those to see if pre-defined patterns exist. This allows us to develop
fast personalisation system which reacts to the user navigation patterns. Finally, we
used the user navigation mining concept in a novel application domain, re-organising
product catalogs based on the user’s access patterns.
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