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Abstract: In our work on frequency estimation based on local signal behavior [15] for testing purposes we needed
a signalφ(t) which over some disjoint intervals of (continuous) timeIn is equal to a corresponding linear combi-
nationfn(t) of up toN sine waves, possibly damped and phase shifted, of (normalized) frequencies smaller than
π. The signal should also satisfy the following constraints:φ(t) should contain a minimal amount of out-of-band
energy, i.e., the energy of its Fourier transform̂φ(ω) outside interval[−π, π] should be as small as possible;φ(t)
should fit within an as narrow envelope as possible;φ(t) should also have a finite support in the time domain, which
is as short as possible. Clearly, these are mutually conflicting requirements and we want to look for a compromise
solution which is nevertheless good in all of these respects. A computationally efficient method for producing such
a signal can be useful for designing novel digital modulation schemas which satisfy stringent conditions on out of
band leakage and envelope properties of the generated signal. The method we propose in this paper employs some
special, numerically robust linear differential operators, called the chromatic derivatives, which were introduced
relatively recently, and which we believe hold yet unexplored promise in signal and image processing.

Key–Words:numerical differentiation, chromatic derivatives, localsignal representation, signal interpolation, dig-
ital modulation

1 Introduction

Assume thatF1(t), F2(t), . . . , Fn(t) areπ-band lim-
ited signals; thus, their corresponding Nyquist rate
sampling interval is of unit length.1 Let alsoI1, I2,
. . ., In be disjoint intervals of time and letχIj(t)
denote the characteristic function of the intervalIj,
1 ≤ j ≤ n. Thus, χIj(t) = 1 for t ∈ Ij and
χIj(t) = 0 outsideIj .

We denote byfj(t) the section ofFj(t) on the
corresponding interval of timeIj, i.e., for all1 ≤ j ≤
n let fj(t) = Fj(t) on Ij andfj(t) = 0 outsideIj.
Thus,fj(t) = Fj(t)χIj (t) and the supportsupp(fj)
of fj satisfiessupp(fj) ⊆ Ij .

For simplicity of our presentation we will assume
that intervalsI1, I2, . . ., In are of equal duration ofT
Nyquist rate intervals and that they are equally spaced
N Nyquist rate intervals apart; it is straightforward to
adapt our method to more general cases. In particular,

1These signals might belong to the spaceBL(π) of π-band
limited signals of finite energy, i.e., the space of continuousL2

functions whose Fourier transform is supported within[−π, π].
However, they can also be of infinite energy and with a Fourier
transform which exists only as a generalized function. As itwill
be observed later, our method applies to an even broader subset of
analytic functions.
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Figure 1:Pieces of three exponentially modified sine
waves of duration T spaced N unit intervals apart.

let us also assume thatIj = [(j−1)T+jN, j(T+N)]
for all 1 ≤ j ≤ n; see Figure 1.

Let c = nT + (n + 1)N ; our goal is to pro-
duce an interpolation signalφ(t) with finite support
supp(φ) = [0, c], which has the following properties:
(1) for all 1 ≤ j ≤ n we haveφ(t) = fj(t) for all
t ∈ supp(fj); (2) φ(t) has minimal out of band leak-
age, i.e., the Fourier transform̂φ(ω) of φ(t) is such
that

∫
|ω|>π |φ̂(ω)|2dω is as small fraction of the to-

tal energy ofφ̂(ω) as possible; (3)φ(t) fits within



an as narrow envelope as possible; thus, between dis-
joint intervalsIj the signal should not have transients
of large amplitude. Clearly, computationally efficient
methods which produce such signals can be useful
for designing digital modulation schemes which sat-
isfy stringent requirements on out of band leakage and
tightness of the envelope of the generated signal.2 In-
terpolation produced by our algorithm for fragments
shown on Figure 1 is shown on Figure 2.
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Figure 2:Interpolation for fragments on Figure 1.

We now sketch the main idea which we will refine
to obtain our method. We do not provide the details,
because they will be provided for the actual construc-
tion described in Section 3.

We will define a signalφ(t) supported on[0, c]
extending all offj(t), (1 ≤ j ≤ n), such thatφ(t) has
continuous derivatives of orders up toN − 1 and such
thatφ(k)(0) = φ(k)(c) = 0 for all k < N . Thus, if
we extendφ to the entireR by setting it equal to zero
outside[0, c], the resulting function isN − 1 times
continuously differentiable onR and, since it is also
finitely supported,φ, φ′, . . . , φ(N−1) all belong toL1.
Low out of band leakage ofφ(t) can now be shown to
follow from the following well known theorem (see,
for example [2]):

Theorem 1 Assume thatφ is n times continuously
differentiable and thatφ, φ′, . . . , φ(n) ∈ L1. Then
the Fourier transform(φ(n))̂(ω) of φ(n)(t) satis-
fies |(φ(n))̂(ω)| ≤ M for someM ≥ 0, and
lim|ω|→∞(φ(n))̂(ω) = 0. Moreover, the Fourier

transformφ̂(ω) of φ(t) satisfies

|φ̂(ω)| ≤ |(φ(n))̂(ω)|
|ω|n ≤ M

|ω|n

and consequently decreases rapidly as|ω| → ∞.

To obtain such interpolationφ(t) we will first prove
the following “pulse shaping” extrapolation theorem.

2An early version of this method was used at author’s startup
Kromos Technology Inc.,to design a digital transceiver.

Theorem 2 Let a ∈ R be arbitrary and letf(t) =
F (t)χ[a+N,a+N+T )(t) be a fragment of aπ band lim-
ited signalF (t) on an interval[a + N, a + N + T ].
Then there exist correspondingGL, GR ∈ BL(π)

such that fork < N : G(k)
L (a) = 0; G(k)

L (a + N) =

F (k)(a+N); G(k)
R (a+N +T ) = F (k)(a+N +T );

G
(k)
R (a+2N+T ) = 0. LetgL(t) = GL(t)χ[a,a+N)(t)

and gR(t) = GR(t)χ[a+N+T,a+2N+T )(t); then
φf (t) = gL(t) + f(t) + gR(t) has support con-
tained in [a, a + 2N + T ], coincides withf(t) on
[a+N, a+N +T ] and hasN −1 continuous deriva-
tives onR.

Let supp(fj) = [(j − 1)T + jN, j(T + N)] be
the supports of fragmentsfj(t), (1 ≤ j ≤ n) and

let functionsg
fj
L , g

fj
R be as provided by the above the-

orem, with aj = (j − 1)(T + N). Then, setting
f0(t) = fn+1(t) = 0 for all t ∈ R, we can define

φ(t) =
∑n+1

j=0 g
fj
L (t) + fj(t) + g

fj
R (t) to obtain an

N − 1 times continuously differentiable function with
supportsupp(φ) = [0, c] which extends eachfj(t),
1 ≤ j ≤ n.

FunctionsGf
L, G

f
R satisfying the conditions of

Theorem 2 exist and are supplied in the course of
the proof of a special case of Papoulis’ Sampling
Theorem, see [3, 4, 11], which extends Shannon’s
Sampling Theorem,3 and which states that aπ band
limited signal f(t) of finite energy is uniquely de-
termined by the samples of the derivativesf (k)(tj),
0 ≤ k ≤ N − 1, taken everyN Nyquist rate intervals,
i.e., such thattj+1 − tj = N . Such special case of
Papoulis’ theorem represents a band limited signal in
the form

f(t) =
∞∑

n=−∞

N−1∑

k=0

f (k)(Nn)φk(t− nN) (1)

where interpolation functionsφk(t) satisfyφ(m)
k (0) =

δ(m − k) andφ(m)
k (nN) = 0 for all 0 ≤ m,k <

N and all n 6= 0. Functionsφk(t) can be ob-
tained by suitably choosing polynomialsPk(t) of
degree at mostN − 1 in the expressionφk(t) =
Pk(t) [sinc (t/N)]N . Given aπ band limited frag-
ment f(t) supported within[a + N, a + N + T ],
functionsGL(t) and GR(t) whose existence is as-
serted by Theorem 2 can now be obtained by setting
GL(t) =

∑N−1
k=0 f

(k)(a + N)φk(t − (a + N)) and
GR(t) =

∑N−1
k=0 f

(k)(a+N+T )φk(t−(a+N+T )).
Unfortunately, such functionsφk(t) obtained

from Papoulis’ Sampling Theorem do not produce
functionsGL(t) andGR(t) which can be used to de-
fine interpolationφ(t) which also satisfies condition

3Shannon stated the theorem forN = 2 (i.e., forf andf ′) in
his seminal paper [1], without a proof.
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Figure 3: Interpolation based on the Papoulis Sam-
pling Theorem shown on two scales for they-axis.

(3) mentioned at the beginning of the paper, i.e., an
interpolation which fits in an as narrow envelope as
possible. A closer look reveals that some ofφk(t)
attain very large amplitudes in the interval[−N,N ].
For example, forN = 16, the corresponding func-
tion φ5(t) attains values larger than69. Thus, inter-
polation functionsGL andGR defined from suchφk
might have transients of very large amplitudes in in-
tervals[a, a+N ] and(a+N +T, a+2N +T ]. Fig-
ure 3 shows interpolation functionφf (t) for f(t) =
sin(7/8π t)χ[N,2N ](t) with N = T = 16 anda = 0;
such interpolation attains values larger than200.

This problem can be solved by observing that we
do not need the “global” features ofφk(t), namely that

φ
(m)
k (nN) = 0 for all 0 ≤ k,m < N and alln 6= 0;

we only need

φ
(m)
k (0) = δ(m− k); φ

(m)
k (N) = 0; (2)

for all 0 ≤ k,m < N , without any constraints on
values att = nN for integersn 6= 0, 1. Then for ev-
ery particularf(t) = F (t)χ[a+N,a+N+T ](t) the cor-

responding functionsGf
L(t), G

f
R(t) can be defined by

Gf
L(t) =

∑N−1
k=0 f

(k)(a+N)(−1)kφk(a+N− t) and

Gf
R(t) =

∑N−1
k=0 f

(k)(a+N+T )φk(t−(a+N+T )).
With so relaxed constraints, we can now look for

interpolation functionsφk(t) with much smaller max-
imal amplitudes.

To obtain such functionsφk(t) we need a
“generic” representation ofφk(t) which is in a form
convenient for numerical evaluation of its derivatives,
and which involves parameters that can be chosen to
meet the requirements (1) - (3) in the best possible
way. Preferably, the method should be applicable to
signalsF (t) given by their sampled values, rather than
by their corresponding analytic expressions.

This is a non trivial task because of the prob-
lems associated with numerical evaluation of deriva-
tives of high order; it can be elegantly achieved us-
ing some special, numerically robust differential op-
erators calledthe chromatic derivatives, introduced in
[6], and their corresponding local signal expansions
akin to the Taylor expansion, calledthe chromatic
expansions, introduced in [7] and first published in
[8, 9, 10]. A comprehensive presentation can be found
in [12, 13, 14].

2 Chromatic derivatives and chro-
matic expansions

As is well known, truncations of the expansion of
band limited signals provided by the Whittaker–
Kotelnikov–Nyquist–Shannon Sampling Theorem
f(t) =

∑∞
n=−∞ f(n) sinc (t − n) do not provide

good local signal approximations, because, for a fixed
t, the values of interpolation functionssinc (t − n)
decay slowly as|n| grows. Thus, to achieve a good
local approximation a very large number of samples
f(n) are necessary.

On the other hand, signalsf ∈ BL(π) are ana-
lytic functions; thus they can be locally represented
by the truncations of the Taylor expansionf(t) =∑∞

n=0 f
(n)(0) tn/n!. Taylor’s expansion is local in

nature, because the values of the derivativesf (n)(0)
are determined by the values of the signal in an arbi-
trarily small neighborhood of zero.

However, Taylor’s formula has an extremely lim-
ited use in signal processing because accurate eval-
uation of derivatives of higher orders from discrete
noisy samples of a signal is essentially impossible.
Moreover, the functions used in the expansion, i.e.,
the monomialstn/n!, do not correspond to band lim-
ited signals; the approximation is unbounded, it con-
verges non-uniformly and its error increases rapidly
when moving away from the center of expansion.

Chromatic derivatives and chromatic expansions
were introduced to provide a framework for local ap-
proximations of band limited signals which do not
suffer from any of the above problems.

2.1 Chromatic derivatives
Chromatic derivatives are linear differential operators
with constant coefficients obtained from suitably cho-
sen families of orthogonal polynomials.4 Thus, let
polynomialsPn(ω) satisfy∫ π

−π
Pn(ω)Pm(ω)w(ω)dω = δ(m− n), (3)

wherew(ω) is a non-negative symmetric weight func-
tion andδ the Kronecker delta function. It can be
shown that, if the weight functionw(ω) is symmetric,
then each polynomialPn(ω) contains only powers of
the same parity asn, and that such polynomials satisfy
the recurrence relation

Pn+1(ω) =
1

γn
ω Pn(ω)−

γn−1

γn
Pn−1(ω) (4)

for some positive constantsγn. We define linear
differential operators associated with such family of

4See [12, 14] for details regarding which families of or-
thogonal polynomials produce satisfactory families of chromatic
derivatives.



ortho-normal polynomials by the operator polynomi-
als

Kn = (−j)nPn

(
j
d

dt

)
. (5)

Thus,Kn is obtained by replacingωk in Pn(ω) by
jk dk

dtk
f(t).

For example, letPL

n (ω) be obtained by re-scaling
and re-normalizing the Legendre polynomials so that
1/(2π)

∫ π
−π P

L
n (ω)P

L
m(ω)dω = δ(m − n), i.e., such

thatPL
n (ω) are orthonormal with respect to the con-

stant weight functionw(ω) = (2π)−1. Then it
is easily computed thatPL

0 (ω) = 1, PL

1 (ω) =√
3ω/π, PL

2 (ω) =
√
5(3ω2 − π2)/2π2 andPL

3 (ω) =√
7(5ω3 − 3ωπ2)/2π3. Consequently, the substitu-

tion given by (5) yieldsK0[f ](t) = f(t), K1[f ](t) =√
3f ′(t)/π, K2[f ](t) =

√
5(3f ′′(t) + π2f(t))/2π2

andK3[f ](t) =
√
7(5f ′′′(t)− 3π2f ′(t))/2π2.

For symmetric weight functionsw(ω) in (3) the
corresponding operatorsKn have real coefficients,
eachKn contains only derivatives of the same parity
asn andKn satisfy the three term recurrence relation

Kn+1 =
1

γn
(d ◦ Kn) +

γn−1

γn
Kn−1, (6)

with the same coefficientsγn as in (4). Using (4) and
(6), it is easy to verify that

Kn
t [e

j ωt] = jnPn(ω) e
j ωt. (7)

Thus, iff ∈ BL(π) andf̂(ω) is its Fourier transform,
then

Kn[f ](t) =
1

2π

∫ π

−π
jnPn(ω)f̂(ω)e

j ωtdω. (8)

In comparison, if we normalize the “standard”
derivatives so that the magnitude of their frequency
response is bounded uniformly inn within [−π, π],
we get

f (n)(t)

πn
=

1

2π

∫ π

−π

jn
(
ω

π

)n

f̂(ω)ej ωtdω. (9)

Figure 4 compares the plots of(ω/π)n (left), which
are the transfer functions of the normalized deriva-
tives 1/πn dn/dtn (modulo a factor ofjn) with the
plots of the transfer functionsPL

n (ω) of the chromatic
derivativesKn associated with the Legendre polyno-
mials (right). Plots on the left reveal why numeri-
cal evaluation of higher order derivatives from signal
samples makes no practical sense. Multiplication of
the Fourier transform of a signal by the transfer func-
tion of a derivative of higher order essentially obliter-
ates the spectrum of the signal, leaving only its edges,
which in practice contain mostly noise. Figure 4 (left)
also shows that the graphs of the transfer functions of
the normalized derivatives of high orders and of the
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Figure 4:Graphs of(ω/π)n (left) andPL

n (ω) (right)
for n = 15 to n = 18.

same parity cluster so tightly together that are essen-
tially indistinguishable. Thus, from a numerical per-
spective, the set of the derivatives{f, f ′, f ′′, . . .} is
a very poor base of the vector space of linear differ-
ential operators with real coefficients. On the other
hand, the right plot on Figure 4 shows that the trans-
fer functions of the chromatic derivativesKn form a
family of well separated, interleaved and increasingly
refined comb-like filters. Instead of obliterating, such
operators encode the spectral features of the signal.
For this reason, we call operatorsKn the chromatic
derivatives.

-Π -

Π

2

Π

2
Π

-3

-2

-1

1

2

3

Figure 5: The transfer functions of the operatorK15

(black) and of its transversal filter (gray).

While introducing chromatic derivatives amounts
to simply replacing the usual base{f, f ′, f ′′, . . .} of
the vector space of linear differential operators with
an orthonormal base, it turns out that such a base has
some remarkable properties.5

First of all, evaluation of chromatic derivatives
from samples of the signal taken at twice the usual
Nyquist rate is very accurate and noise robust. Fig-
ure 5 shows the transfer function of a digital transver-
sal filterA[f ](t) =

∑64
i=−64 ci f(t − i/2) which ap-

proximates the chromatic derivativeK15 (gray) asso-
ciated with the Legendre polynomials, and the trans-
fer function of the ideal filter corresponding toK15

5It was shown in [12] that one can introduce a scalar product
on the vector space of linear differential operators with constant
coefficients which makes operators{Kn}n∈N orthonormal.



(black). The filter was designed using the Remez ex-
change method [5], and has 129 taps, spaced two taps
per Nyquist rate interval. Thus, the transfer function
of the corresponding ideal filterK15 is PL

15(2ω) for
|ω| ≤ π/2 and zero outside this interval. The pass-
band of the filter is 90% of the interval[−π/2, π/2],
and the transition region extends 10% of the band-
width π/2 on each side of the boundaries−π/2 and
π/2. Outside the transition region the error of approx-
imation is less than1.3 × 10−4. Implementations of
filters for operatorsKn of orders0 ≤ n ≤ 30 have
been tested in practice and proved to be both accurate
and noise robust, as expected from the above consid-
erations.

Secondly, chromatic derivatives can be used to
produce local approximations of band limited signals
which do not suffer from the mentioned shortcomings
of the Taylor expansion.

Proposition 3 Let Kn be the chromatic derivatives
associated with the Legendre polynomials, and let
f(t) be any function analytic onR; then for allt ∈ R,

f(t) =
∞∑

n=0

(−1)n Kn[f ](u) Kn[sinc ](t− u) (10)

If in addition f ∈ BL(π), then the series converges
uniformly onR and in the spaceBL(π).

The series in (10) is calledthe chromatic expan-
sion off associated with the Legendre polynomials;
a truncation of this series is called achromatic ap-
proximationof f . Just like a Taylor approximation,
a chromatic approximation is also a local approxima-
tion: its coefficients are the values of differential oper-
atorsKm[f ](u) at a single instantu, and for allk ≤ n,

f (k)(u) =

dk

dtn

[
n∑

m=0

(−1)m Km[f ](u) Km[sinc ](t− u)

]

t=u

.

Figure 6 compares the behavior of the chromatic
approximation (black) of a signalf ∈ BL(π) (gray)
with the behavior of the Taylor approximation off(t)
(dashed). Both approximations are of order sixteen,
and the signalf(t) is defined using the Nyquist ex-
pansion, with randomly generated samples{f(n) :
|f(n)| < 1, −32 ≤ n ≤ 32}.

By Proposition 3, the chromatic expansion of
such a signal converges uniformly onR, and the
plot reveals that, when approximating a signalf ∈
BL(π), a chromatic approximation has a much gen-
tler error accumulation when moving away from the
point of expansion than the Taylor approximation of
the same order.
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Figure 6: A signalf ∈ BL(π) (gray) and its chro-
matic and Taylor approximations (black, dashed).

The error of chromatic approximation of a func-
tion f(t) ∈ BL(π) is given by

∣∣∣f(t)−
N−1∑

n=0

(−1)n Kn[f ](u) Kn[sinc ](t− u)
∣∣∣
2

≤ ‖f‖2
(
1−

N−1∑

k=0

Kn[sinc ](t− u)2
)

(11)

The error bound term in the brackets on the right-hand
side of (11) for the case of the chromatic expansion as-
sociated with the Legendre polynomials forN = 16
is shown on Figure 7; note that in this case the ap-
proximation is highly accurate on the interval[−4, 4].
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Figure 7:Behavior of the error term of chromatic ap-
proximation forN = 16.

FunctionsKn[sinc ](t) in the chromatic expan-
sion associated with the Legendre polynomials are
given by Kn[sinc ](t) = (−1)n

√
2n+ 1 jn(πt),

wherejn is the spherical Bessel function of the first
kind of ordern.

Unlike the monomials that appear in the Taylor
formula, functionsKn[sinc ](t) belong toBL(π) and
satisfy|Kn[sinc ](t)| ≤ 1 for all t ∈ R. Consequently,
the chromatic approximations are bounded onR and
belong toBL(π). Since by Proposition 3 the chro-
matic approximation of a signalf ∈ BL(π) con-
verges tof in BL(π), if A is a filter, thenA commutes



with the differential operatorsKn and thus

A[f ](t) =
∞∑

n=0

(−1)n Kn[f ](0) Kn[A[ sinc ]](t)

for everyf ∈ BL(π). Note that this is fully analogous
to the representation of the actions of such operators
via the Nyquist expansion:

A[f ](t) =
∞∑

n=0

(−1)n f(n) A[sinc ]](t− n).

Thus, while local, chromatic expansions possess the
features which make the Nyquist expansion so useful
in signal processing. This, together with numerical
robustness of chromatic derivatives, makes chromatic
approximations applicable in fields involving empiri-
cally sampled data, such as digital signal and image
processing.

The next proposition demonstrates another re-
markable property of chromatic derivatives relevant to
signal processing.

Proposition 4 Let Kn be the chromatic derivatives
associated with the (rescaled and normalized) Leg-
endre polynomials, andf, g ∈ BL(π). Then for all
t ∈ R,6

∞∑

n=0

Kn[f ](t)2 =

∫ ∞

−∞
f(x)2dx;

∞∑

n=0

Kn[f ](t)Kn[g](t) =

∫ ∞

−∞
f(x)g(x)dx;

∞∑

n=0

Kn[f ](t)Kn
t [g(u − t)] =

∫ ∞

−∞
f(x)g(u − x)dx.

Moreover, if a functionf is analytic onR and satisfies∑∞
n=0K

n[f ](0)2 < ∞, then suchf must belong to
BL(π).

Note that the sums in the above theorem pro-
vide local representations of the usual norm, the scalar
product and the convolution, respectively, which are
defined inBL(π) globally, as improper integrals. We
now return to the main aim of this paper.

3 Band Limited Signal Interpolation
We now refine the ideas presented in the Introduction.
We first show that fragmentsgL(t) andgR(t), whose
existence is claimed in Theorem 2 (for simplicity we
seta = 0), can be chosen so that the resulting signal
φf (t) = gL(t)+ f(t)+ gR(t) has both very small out
of band energy and fits in a narrow envelope.

Let Kn denote the chromatic derivatives associ-
ated with the Legendre polynomials. We first produce

6Thus, the sums on the left hand side of the above equations do
not depend on the choice of the instantt; see [12, 14] for details.

functionsφk(t) which for all 0 ≤ m,k < N instead
of conditions (2) satisfy7

Km[φk](0) = δ(m− k); Km[φk](N) = 0. (12)

We can then defineGL(t) andGR(t) as

GL(t) =
N−1∑

j=0

Kj [f ](N)(−1)jφj(N − t); (13)

GR(t) =
N−1∑

j=0

Kj [f ](N + T )φj(t− (N + T )).

To explain why an approach using the chromatic
derivatives associated with the Legendre polynomials
is better than the one based on the “standard” deriva-
tives, we note that (8) implies that forf ∈ BL(π),

|Kn[f ](t)|2 ≤ 1

2π

∫ π

−π
PL

n (ω)
2dω

∫ π

−π
|f̂(ω)|2dω.

Since polynomialsPL

n (ω) are orthonormal with the
weight function (2π)−1, we get that|Kn[f ](t)| ≤
‖f‖2 for all t ∈ R, i.e., chromatic derivatives of sig-
nalsf ∈ BL(π) are bounded uniformly inn andt.

Similar is true for a large class of signalsf which
do not have a finiteL2 norm. For example, (7) implies
that |Kn

t [e
j ωt]| = |PL

n (ω)|, and polynomialsPL
n (ω)

satisfy that for every0 ≤ b < π there existsM > 0
such that|PL

n (ω)| < M for all n and all|ω| ≤ b. For
example, for|ω| < .99π we have|PL

n (ω)| < 3.01.
Thus, unlike the standard derivatives ofej ωt

whose absolute values grow rapidly for frequen-
cies larger than1 and vanish rapidly for frequencies
smaller than1, the chromatic derivatives always at-
tain values in a range which insures that our con-
strained optimizations described below will be numer-
ically stable.8 More over, the values of chromatic
derivatives off(t) = F (t)χ[N,N+T ](t) at the end
points of the support off(t) and which appear in (13)
can be obtained in a noise robust way from sampled
values ofF (t), thus eliminating the need for any ana-
lytic differentiation.

We want now to choseφk(t) so thatGL(t) and
GR(t) given by (13) are such that the of out of band
energy of the corresponding extrapolationφ(t) =
gL(t) + f(t) + gR(t) whose existence is asserted in
Theorem 2 is as small fraction of the total energy

7Note that, since chromatic derivatives are linear combinations
of the “standard” derivatives,Kn[f ](t0) = Kn[g](t0) holds for
all n < N if and only iff (n)(t0) = g(n)(t0) holds for alln < N .

8We note that we will use the fact that fragmentsfi come
from π band limited signals only to conclude that their chromatic
derivatives associated with the Legendre polynomials do not have
values much larger than their amplitude. Thus, or method applies
to all analytic functions having such property



of φ as possible, as well as thatgL(t) and gR(t) on
their corresponding supports have as small amplitude
as possible.

To achieve the first objective we note that (8) im-
plies that

|φ̂(ω)| = |(KN−1[φ])̂(ω)|
|PL

N−1(ω)|

Sinceφ is finitely supported andN−1 times continu-
ously differentiable,|(KN−1[φ])̂(ω)| is bounded and
converges to zero as|ω| → ∞. More over, since all
the zeros ofPL

N−1(ω) are within interval[−π, π], out-
side this interval the value of|PL

N−1(ω)| grows very
rapidly. Thus, if we ensure that|(KN−1[φ])̂(ω)|
is bounded with a reasonably small bound,φ̂(ω)
will have very low energy outside[−π, π]. Since

|(KN−1[φ])̂(ω)| =
∣∣∣
∫ 2N+T
0 KN−1[φ](t)ej ωtdt

∣∣∣ ≤
∫ 2N+T
0 |KN−1[φ](t)|dt, to make |(KN−1[φ])̂(ω)|

uniformly small, it is enough to keep|KN−1[φ](t)|
as small as possible for allt. Since the value of
|KN−1[φ](t)| is equal to|KN−1[f ](t)| in the inter-
val [N,N + T ], we have to make sure that the val-
ues of |KN−1[gL](t)| on [0, N ] and the values of
|KN−1[gR](t)| on [N + T, 2N + T ] are not much
larger. This will be accomplished by keeping the val-
ues ofKN−1[φk](t) small on[0, N ] for all 0 ≤ k <
N .

Similarly, we will limit the maximal value of
|gL(t)| and|gR(t)| by limiting the maximal values of
all |φk(t)|.

We note that controlling the out of band energy as
well as the maximal amplitude ofφ on [0, 2N + T ]
by controlling the same features of allφk is subopti-
mal; applying our minimization techniques togfL and
gfR directly gives better results. However, this requires
running optimization algorithms for eachf separately,
while the above approach uses optimization only to
obtain the family{φk(t)}0≤k<N ; the corresponding
gfL and gfR can then be obtained for everyf as sec-
tions of linear combinations (13); this results in a very
efficient interpolation algorithm.

To obtain an appropriate familyφm(t) we con-
sider a “generic” chromatic expansion associated with
the Legendre polynomials, centered att = N/2, of
the form

ψ(t) =
3N∑

n=0

Xk Kn[sinc ](t−N/2))

=
3N∑

n=0

Xk jn(π(t−N/2) (14)

whereXk are variables. The chromatic expansion
associated with the Legendre polynomials is a good

choice, because it provides a rapidly converging uni-
form approximation of exactly allBL(π) signals. The
upper limit of summation was chosen to allow suf-
ficient “degrees of freedom” of the resulting generic
approximation, based on the type of constraints we
will impose and the properties of the error function
of the chromatic approximation given by (11), which,
due to lack of space, we cannot detail here.

Chromatic derivatives ofψ(t) are of the form
Km[ψ](t) =

∑3N+m
n=0 (−1)n YnKn[sinc ](t) whereYn

are linear combinations ofXk with reasonable coeffi-
cients. This is due to the fact that (8) implies

(Km◦Kn)[sinc ](t) =
jn+m

2π

∫ π

−π
PL

n (ω)P
L

m(ω)ej ωtdω,

andPL
n (ω)P

L
m(ω) =

∑m+n
k=|m−n| ckP

L

k (ω), with ck =

(2π)−1
∫ π
−π P

L

n (ω)P
L

m(ω)PL

k (ω)dω. Note also that
for n ≤ 3N ,

Kn[ψ](N/2) = (−1)nXn, (15)

andKn[ψ](N/2) = 0 for n > 3N .
Let us now fix anm < N ; to obtainφm(t) we

start by imposing the following2N constraints on
such generic expansionψ: for all 0 ≤ k < N ,

Kk[ψ](0) = δ(m− k); Kk[ψ](N) = 0. (16)

As we have just explained, we need to find val-
ues ofXk for which the maximal values of both
|KN−1[ψ](t)| and |ψ(t)| on the interval[0, N ] are as
small as possible.

To ensure that the maximal value of|KN−1[ψ](t)|
is small we use the fact that the first equality of The-
orem 4 implies that for everyψ ∈ BL(π) the sum∑∞

k=0Kn[ψ](t)2 does not depend ont. Thus, it is
enough to make this sum small for one value oft to
obtain a small upper bound for the absolute values of
all chromatic derivatives ofψ(t) for all values oft.
Using (15), this will be accomplished by minimizing9

S =
∑3N

k=0X
2
n.

To ensure that the maximal value of|ψ(t)| is
small, we first note that the behavior ofψ around
the end points of the interval[0, N ] is already deter-
mined by (16); to control the maximal amplitude ofψ
in the interior of this interval we chose a sufficiently
dense set of equally spaced pointssj such thatN/4 ≤
sj ≤ 3N/4 (we usedsj+1 − sj = 1/8) and impose
for each suchsj linear conditionsψ(sj) < Bm and
ψ(sj) > −Bm. HereBm is a positive bound that has
to be obtained first; the values ofψ(sj) are expressed
in terms of the variablesXk, 0 ≤ k < 3N using (14).

9One can use more explicit bound on|KN−1[ψ](t)| on [0, N ],
along the lines below used to keep|ψ(t)| small. However, this
does not produce significantly better results, mainly because the
above minimization already produces excellent results.



To obtainBm we solve the following linear pro-
gramming optimization problem.10 We introduce an
additional variable X, and minimize the objective
F (X,X0, . . . ,X3N ) = X, subject to linear con-
straints on variablesX0, . . . ,X3N which follow from
(16), plus linear constraintsψ(sj) ≤ X andψ(sj) ≥
−X, with one such pair for eachsj, and finally,
X > 0. For each0 ≤ m < N the corresponding
boundBm is now obtained by slightly relaxing (in-
creasing) the minimal value of the objectiveX.11

Having obtainedBm, we can now solve the fol-
lowing quadratic minimization problem: Minimize
the objectiveF (X0, . . . ,X3N ) =

∑3N
k=0X

2
k subject

to 2N linear constraints (2) plus linear constraints
ψ(sj) < Bm andψ(sj) > −Bm for eachsj.

Figure 3 shows extrapolation for the fragment
f(t) = sin(7/8πt)χ[16,32](t), with N = T = 16
anda = 0, obtained using functionsφk produced by
the above algorithm; compare it with the interpola-
tion of the same fragment produced with the functions
φk provided by the Papoulis Theorem, shown on Fig-
ure 3.

10 20 30 40
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-1

1

2

Figure 8: Interpolation for the same fragment as
shown on Figure 3.

Note that fragmentf(t) is supported only on
[16, 32] (between the solid grid lines); however, the
extrapolation accurately approximatesf [t] on the in-
terval [12, 36]. This is due to the fact that, by (16),
15 derivatives of the extrapolation at end points of the
support off are equal to the corresponding15 deriva-
tives off . Thus, as it can be seen on Figure 7, the ap-
proximation is accurate over about four Nyquist rate
intervals on both sides of the support off .

If the supports of the fragmentsfi(t) degener-
ate to a single pointti, interpolationsGfi

L (t), G
fi
R (t)

can still be chosen such that(Gfi
L )

(n)(ti) =

(Gfi
R )

(n)(ti) = f
(n)
i (ti). The resulting interpola-

10All our optimization problems are easily solved using any of
the standard numerical software packages.

11We found that increasing the minimal value ofX for only
about20% allows excellent simultaneous optimization for both
condition (i) and (ii).

tion φ(t) will be a good approximation of eachfi(t)
over intervals centered atti of approximate length
N/2. Figure 9 shows interpolationφ(t) (black) whose
derivatives of orders up to15 at t1 = 16 are equal to
the corresponding derivatives off1(t) = sin(3π/4 t)
and whose derivatives of the same orders att2 = 32
are equal to the corresponding derivatives off2(t) =
sin(π/4 (t− 1)) (f1 andf2 are shown in gray). While
the supports off1, f2 are only the single pointst1 =
16 and t2 = 32 (at the solid grid lines), the corre-
sponding interpolationGf1

R (t) + Gf2
L (t) is accurate

within intervals between the dashed grid lines, each
of length of about8 Nyquist rate intervals.
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Figure 9: Interpolation (black) for two single point
fragments (gray).

Thus, about half of the length of the spacing be-
tween the supports of the fragments is actually used
for approximation of these fragments. Note that such
approximation is accurate on the continuous time do-
main; thus, there is absolutely no “inter-symbol in-
terference” between the fragments. This fact can be
used for modulation schemas in which detection of
the fragments (symbols) is achieved using local signal
behavior in the continuous time domain, as encoded
by the (discrete) values of the chromatic derivatives
of the signal, obtained by sampling a corresponding
filter bank; see [10] and [15].12

For evaluation we ran our interpolation method
on sequences of1000 fragments of signals which
were sums of two exponentially damped or expand-
ing sine waves, with randomly generated frequencies
0 < ω < 3 and damping factors−0.03 < d < 0.03.
Both the duration of these fragments and their spacing
was16 Nyquist rate intervals. The maximal amplitude
of these fragments was about2.1. The resulting inter-
polation had maximal amplitude of about6.5, achiev-
ing such value very infrequently and mostly staying
within the maximal amplitude of the signal, see Fig-
ure 8 (left). Such interpolation was sampled twice per
Nyquist rate interval and the corresponding discrete
Fourier transform was computed. We found that the

12Some of the references as well as ourMathematicasimula-
tions are available at http://www.cse.unsw.edu.au/˜ ignjat/diff.



ratio of out of band energy, contained in frequencies
aboveπ and the total energy of the signal was about
10−5, see Figure 8 (right).

Figure 10:The envelope and the Fourier transform of
an interpolation.

This demonstrates that our method produces an
interpolation signal with both a tight envelope and an
extremely low out of band leakage. We believe that,
when combined with a detection of symbols based
on local signal behavior as captured by the sampled
values of several chromatic derivatives of the signal,
our method could be used for novel digital modula-
tion techniques satisfying very stringent requirements
for out of band leakage and envelope properties of the
generated signal.

4 Conclusion
We have shown that chromatic derivatives and chro-
matic expansions allow control of local signal behav-
ior, otherwise poorly captured by Nyquist rate sam-
ples. They also allow control of global signal fea-
tures, by either controlling the smoothness of the sig-
nal or by using the fact that the values of the chromatic
derivatives att = 0 provide coefficients of the expan-
sion of the Fourier transform of the signal in series of
orthogonal polynomials (see [14]):

f̂(ω) =
∞∑

n=0

(− j)nKn[f ](0)PL

n (ω).

Finally, we would like to stress that, while the in-
terpolation method presented in this paper is interest-
ing in its own right, our main aim has been to hint
at the practical relevance and the potential of chro-
matic derivatives and chromatic expansions in signal
processing. Since this is an entirely unexplored area,
we hope that this paper as well as [15] might motivate
the signal processing community to investigate further
these notions and their potential applications.
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