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Abstract—Given a band limited signal which over some dis-
joint intervals of time In behaves as a corresponding linear
combination fn(t) of up to N damped sinusoids, we present
a method which detects intervalsIn, determines the number of
the sinusoidal components over each interval and estimatestheir
frequencies, with high accuracy and in the presence of noise
which is not necessarily white. IntervalsIn can have very short
duration of just a dozen Nyquist rate intervals, thus insufficient
for use of the Fourier transform based methods. Our method
operates entirely in the time domain; to be applicable, the signal
must be sampled at twice the Nyquist rate. It is based on
analyzing local signal behavior using special, numerically robust
linear differential operators, called the chromatic derivatives,
which were introduced relatively recently, and which hold an
unexplored promise in signal and image processing.

I. I NTRODUCTION

Estimation of frequencies of several sinusoids in the pres-
ence of noise usually relies on evaluation of some form of
the Fourier transform of a section of the signal. However,
“viewing” the signal through a window distorts its Fourier
transform, by convolving it with the Fourier transform of the
window. As a consequence, the resulting side lobes of strong
sinusoidal components and the noise can mask the main lobes
of the weaker components.

Unlike the Fourier transform methods which allow spectral
analysis of a vast class of signals, our approach uses a method
which is applicable only to signals which, over intervals of
interest, are sums of a small number of (possibly damped)
sinusoids. Such highly specific method allows accurate estima-
tion of frequencies of the sinusoidal components even if their
duration is only a dozen or so Nyquist rate intervals and in the
presence of colored noise, provided that the signal is sampled
at twice the Nyquist rate. The method is based on the following
well known fact: A function f is a linear combination of
n exponentially damped and phase shifted sinusoids over an
interval I if and only iff satisfies onI a homogeneous linear
differential equation with constant coefficients of order2n.

Thus, we design our algorithm by refining the following
basic idea. We sequentially examine sections of the signal over
short intervals of time, looking for the smallestn ≤ N for
which there is a differential equation of order2n which is
satisfied by such section of the signal, modulo an error which
is commensurate with the level of the noise present.Note that
the fact that the signal is analyzed over short intervals of time
has no negative consequences similar to those associated with

the use of windowing in the Fourier transform based methods,
because whether a signalf(t) satisfies a differential equation
at a particular instant in time is a purely local feature of
the signal, determined by its behavior in an arbitrarily small
neighborhood around this instant.

The above strategy, however, immediately raises a concern:
if we are looking for sections of the signal which are sums of,
say, four sine waves, this would involve evaluating differential
operators of order eight, applied to a noisy signal. As is well
known, numerical differentiation of such high order results
in insurmountable numerical problems.This is where the
chromatic derivatives crucially intervene. Chromatic deriva-
tives are special linear differential operators with constant
coefficients whose numerical evaluation is highly accurateand
noise robust, even for operators of very high orders (> 20).

II. A BRIEF SUMMARY OF CHROMATIC DERIVATIVES

As is well known, truncations of the expansion of aπ-band
limited signal of finite energy,f ∈ BL(π), provided by the
Sampling Theorem,f(t) =

∑
∞

n=−∞
f(n) sinc (t−n), do not

provide good local signal approximations, because the values
of sinc (t− n) decay slowly as|n| grows. Thus, to achieve a
good local approximation, a very large number of the Nyquist
rate samplesf(n) are required.

On the other hand,BL(π) signals are analytic functions
which can be locally represented by the truncations of the
Taylor expansionf(t) =

∑
∞

n=0 f
(n)(0) tn/n!. Note that

Taylor’s expansion is local in nature, because the values of
the derivativesf (n)(0) are determined by the values of the
signal in an arbitrarily small neighborhood of zero.

However, Taylor’s formula has found very limited use in
signal processing. This is due to the fact that an accurate
evaluation of derivatives of higher orders from discrete noisy
samples of a signal is essentially impossible. Moreover, the
functions used in the expansion, i.e., the monomialstn/n!,
do not correspond to band limited signals; the approximation
is unbounded, it converges neither uniformly nor inL2 and
its error increases rapidly when moving away from the center
of expansion. Chromatic derivatives and chromatic expansions
were introduced in [1] and [2], respectively, to provide a
numerically feasible framework for numerical differentiation
and for local approximation of band limited signals which do
not suffer from the above problems. They were first published
in [3]–[5]; their properties were examined in detail in [6]–[8].



1) Chromatic derivatives:Chromatic derivatives are linear
differential operators with constant coefficients obtained from
suitably chosen families of orthonormal polynomials.1 Thus,
let polynomialsPn(ω) satisfy

∫ π

−π Pn(ω)Pm(ω)w(ω)dω = δ(m− n), (1)

wherew(ω) is a non-negative symmetric weight function. We
define linear differential operators associated with such family
of orthonormalpolynomials by the operator polynomials

Kn = (−j)nPn

(
j d

dt

)
. (2)

Thus,Kn is obtained by replacingωk in Pn(ω) by jk dk

dtk
f(t).

It is easy to verify that

Kn
t [e

j ωt] = jnPn(ω) e
j ωt. (3)

Thus, if f ∈ BL(π) and f̂(ω) is its Fourier transform, then

Kn[f ](t) = 1
2π

∫ π

−π
jnPn(ω)f̂(ω)e

j ωtdω. (4)

PolynomialsPn(ω) satisfy that for everya < π there exists
M > 0 such that|Pn(ω)| < M for all n and all |ω| ≤ a.
In comparison, if we normalize the “standard” derivatives so
that the magnitudes of their frequency responses are bounded
uniformly in n, we get

f(n)(t)
πn = 1

2π

∫ π

−π
jn

(
ω
π

)n
f̂(ω)ej ωtdω. (5)

Figure 1 compares the plots of the transfer functions(ω/π)n

of the normalized derivatives1/πn dn/dtn (modulo a factor
of jn) with the plots of the transfer functionsPL

n (ω) of the
chromatic derivativesKn associated with the (normalized and
re-scaled) Legendre polynomials (right).2 Plots on the left
reveal why numerical evaluation of higher order derivatives
from signal samples makes no practical sense: multiplication
of the Fourier transform of a signal by the transfer function
of a derivative of high order essentially obliterates the spec-
trum of the signal, leaving only its edges, which in practice
contain mostly noise. Note also that the graphs of the transfer
functions of the normalized derivatives of high orders and of
the same parity cluster together tightly, becoming essentially
indistinguishable.

In comparison, Figure 1 (right) shows that the transfer
functions of the chromatic derivativesKn form a family of
well separated, interleaved and increasingly refined comb-
like filters. Instead of obliterating, such operators encode the
spectral features of the signal and for this reason we call
operatorsKn the chromatic derivatives.

Chromatic derivatives replace the usual base{f, f ′, f ′′, . . .}
of the vector space of linear differential operators with an
orthonormal base which has many remarkable properties.

First of all, chromatic derivatives can be evaluated using
FIR filters operating on samples of the signal taken at twice
the Nyquist rate. Such filters can be designed using the

1See [8] for the details regarding which families of orthogonal polynomials
produce satisfactory families of chromatic derivatives.

2Such polynomials are obtained by taking forw(ω) appearing in (1) the
constant weight functionw(ω) = (2π)−1 .
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Fig. 1. Graphs of(ω/π)n (left) andPL

n
(ω) (right) for n = 15 to n = 18.

Remez exchange method and are both very accurate and noise
robust. For example, a129 tap transversal filter approximating
differential operatorK15 corresponding to the re-scaled and
normalized Legendre polynomial of order 15, with pass-band
occupying 90% of the interval[−π/2, π/2] and the transition
region extending 10% of the bandwidthπ/2 on each side of
the boundaries−π/2 and π/2, outside the transition region
has an error of approximation smaller than1.3× 10−4.

2) Chromatic approximations:Chromatic derivatives can
be used to produce local approximations of band limited
signals which do not suffer from the mentioned shortcomings
of the Taylor expansion; we formulate here only the special
case corresponding to the Legendre polynomials normalized
and rescaled to[−π, π]; for the general case see [7] or [8].

Proposition 2.1:Let Kn be the chromatic derivatives as-
sociated with the Legendre polynomials, and letf(t) be any
function analytic onR; then for all t ∈ R,

f(t) =
∑

∞

n=0(−1)n Kn[f ](u) Kn[sinc ](t− u).

If in addition f ∈ BL(π), then the series converges uniformly
on R and in theL2 norm.

The series in (6) is calledthe chromatic expansion off
associated with the Legendre polynomials; a truncation of this
series to firstn+1 terms is called achromatic approximation
of f of ordern. Just as Taylor’s approximation, a chromatic
approximation is also a local approximation: its coefficients
are the values of differential operatorsKm[f ](u) at a single
instant u, and the values of its derivatives of orders up to
n at instantu are equal to the values of the corresponding
chromatic derivatives off(t). However, unlike the monomials
in the Taylor formula, expansion functionsKn[sinc ](t) are
band limited signals, and the above theorem indicates that the
approximation error accumulates much slower than the error
of the Taylor approximation of the same order.

III. F REQUENCYESTIMATION

Assume that aBL(π/2) signalf(t) is sampled at integers,
thus at twice the Nyqist rate, and that such samplesf(i) are
corrupted by a zero mean WSS stochastic noiseν(i), with
an autocorrelation functionr(k). The power spectral density
of the noise is thenS(ω) =

∑
∞

k=−∞
r(k)e− j ωk. Let ρ2 =∫ π/2

−π/2 S(ω)dω; Thus,ρ is equal to the RMS value of the noise
component which is within the bandwidth off(t).

Let χπ/2(ω) = 1 for |ω| ≤ π/2 and zero otherwise,
and let Pn(ω) be the family of polynomials orthonormal
on [−π, π] with respect to the weight functionw(ω) =



1/(2πρ2)S(ω)χπ/2(ω), i.e., such that

1
2π

∫ π

−π Pn(ω)Pm(ω)S(ω)χπ/2(ω)dω = δ(m− n)ρ2. (6)

This is equivalent to saying thatPn(ω/2) are orthonormal
on [−π, π] with respect to the weight functionw∗(ω) =
1/(2πρ2)S(ω/2). Let Kn be the chromatic derivatives which
correspond to the polynomialsPn(ω/2) via (2).

Let B =
∑N

n=0 XnK
n be any differential operator of

order N , represented in the base of chromatic derivatives
Kn, such that its coefficients satisfy

∑N
n=0 X

2
n = 1. Let also

κn[f ](t) =
∑L

p=−L λn
pf(t + p) be a2L + 1 tap transversal

filter approximation ofKn[f ](t), and letb =
∑N

n=0 Xnκ
n be

the corresponding FIR approximation ofB. Then (4) implies
∑L

p=−L λn
p e

− j ωp ≈ jnPn(ω)χπ/2(ω) (7)

for all |ω| < π and thus (6) implies

1
2π

∫ π

−π

∑L
p=−L

∑L
q=−L λn

pλ
m
q

∑
∞

k=−∞
r(k)e− j ω(q−p−k)dω

≈ jn−mδ(m− n)ρ2. (8)

Integrating term by term and collecting the non zero terms,
∑L

p=−L

∑L
q=−L λn

pλ
m
q r(q − p) ≈ δ(m− n)ρ2. (9)

SinceE[ν(t+ p)ν(t+ q)] = r(q − p), (9) impies

E
[∑L

p=−L

∑L
q=−L λn

pν(t+ p)λm
q ν(t+ q)

]
≈ δ(m− n)ρ2,

i.e., E [κn(ν)(t)κm(ν)(t)] ≈ δ(m− n)ρ2. (10)

Thus, if the filters are chosen to correspond to the power
spectral density of the noise, then the noise errors of filters
evaluating chromatic derivatives of different orders are essen-
tially uncorrelated and have an RMS value equal to the RMS
value of theπ/2 in-band component of the noise.

Since b[ν](t) is a finite linear combination of samples of
ν(t) and sinceν is of zero mean,b[ν](t) is also of zero mean.
Using linearity ofb, it is easy to see that this yields

E
[
(b[f + ν](t))2

]
= (b[f ](t))2 + E

[
(b[ν](t))2

]
.

This implies, with assumption that
∑N

n=0 X
2
n = 1, (10) and

E
[
b[ν](t)2

]
= E

[∑M
n=0

∑M
m=0 XnXmκn[ν](t)κm[ν](t)

]
,

E
[
(b[f + ν](t))2

]
= (b[f ](t))2 + ρ2. (11)

This is a remarkable fact, because it shows that, if the
chromatic derivatives are chosen to correspond to the power
spectral density of the noise via (6), then the RMS impact
of the noise on any differential operatorB =

∑M
n=0 XnK

n is
independent of the values of the coefficientsXn, and is always
equal to the RMS value of the in band component of the noise.

Let Q be any fixed natural number,t a fixed instant of time
and ~X = (X0, . . . , XN). If we set

R( ~X) = 1/(Q+ 1)
∑Q

p=0(b[f + ν](t+ p))2, (12)

then, by (11),

E
[
R( ~X)

]
= 1/(Q+ 1)

∑Q
p=0(b[f ](t+ p))2 + ρ2. (13)

Clearly, E
[
R( ~X)

]
≥ ρ2 and, since the transversal filters

κn are close approximations of differential operatorsKn,
E
[
R( ~X)

]
≈ ρ2 if and only if f(t) satisfies the differential

equationB[f ](x) = 0 at instantsx = t, . . . t+Q.
Thus, to determine iff satisfies a differential equation of

orderN over[t, t+Q], we should find~X which minimizes the
value ofR( ~X) and see if such value is approximately equal
to ρ2. To find the minimum ofR( ~X) subject to the constraint∑N

n=0 X
2
n = 1, we apply the Lagrangian multipliers and set to

zero the partial derivatives with respect to a new variableβ and
variablesX0, . . . , XN , of the objectiveR( ~X)− β

∑N
n=0 X

2
n.

Lettingfν(t) = f(t)+ν(t), this gives the following equations:
‖ ~X‖2 = 1, plus for eachm, 0 ≤ m ≤ N ,

−βXm +

Q∑

p=0

N∑

n=0

Xnκ
n[fν ](t+ p)κm[fν ](t+ p) = 0. (14)

Let C[m,n] = 1
1+Q

∑Q
p=0 κ

n[fν ](t+ p)κm[fν ](t+ p) and let
C = (C[m,n])m,n=1..N be the corresponding matrix; then the

above equations becomeC ~X = β ~X , i.e,β is an eigenvalue of
C and ~X is the corresponding eigenvector of a unit norm. Note
that (12) impliesR( ~X) =

∑N
m=0

∑N
n=0 XmXnC[m,n]; thus,

R( ~X) = 〈C ~X, ~X〉. SinceR( ~X) ≥ ρ2 > 0, C is a symmetric
positive definite matrix and so all of its eigenvalues are positive
reals. If ~X is the unit eigenvector for the eigenvalueβ, then
R( ~X) = 〈C ~X, ~X〉 = 〈β ~X, ~X〉 = β; thus, to minimizeR( ~X)
we must choose the unit eigenvector~X corresponding to the
smallest eigenvalueβm. Consequently, we conclude that, with
high probability,f(t) satisfies a differential equation of the
form

∑N
n=0 XnK

n[f ](t) = 0 over the interval[t, t + Q] just
in case the smallest eigenvalueβm of C is approximately equal
to ρ2, i.e., just in caseβm < cρ2 wherec > 1 andc ≈ 1.

If βm ≈ ρ2, to find the fundamental solutions of the
corresponding differential equation

∑N
n=0 XnK

n[f ](t) = 0
with the coefficients(X0, . . . , XN ) coming from the eigen-
vector corresponding to the smallest eigenvalueβm of
C, we numerically solve the associated algebraic equation∑N

n=0 Xn(−j)nPn(−jz) = 0. The imaginary part of each
conjugate pair of solutionszi, zi of this equation is the
frequencyωi and the real part is the damping factorδi of
its fundamental solutionseδit sin(ωit) and eδit cos(ωit); a
linear combination of these fundamental solutions gives the
ith sinusoidal component of the signal; to obtain the amplitude
and the phase of such component (if needed) one must use
initial conditions given byN+1 particular values ofKn[f ](u)
for some1 ≤ n ≤ N , u ∈ [t, t+Q].

3) Test results:To tests or frequency estimation algorithm,
we have used a method described in [10] to join fragments
of linear combinations of up to4 damped or expanding
sinusoids of frequencies of up to.47π. Thus, for such class
of sinusoids, sampling at integers is twice the Nyquist rate.
These fragments of various durations were spaced at least 32
unit intervals apart. They were joined by fragments ofπ/2
band limited signals produced using chromatic approximations
(Proposition 2.1), in a way which ensured that the resulting



interpolated signal has continuous derivatives of all orders up
to fifteen. Such a smooth signal is guaranteed to have a very
low content in frequencies aboveπ/2 due to a version of
a classical theorem in Harmonic Analysis, see [10]. In our
experiments out of band energy of such signals was less than
10−5 of the total signal energy. The signal is then sampled at
integers, the samples are corrupted by white Gaussian noise
ν, and passed through the filter bank{κn}8n=0 corresponding
to the Legendre polynomials.3 Signals with a low out of
band content can be accurately differentiated using chromatic
derivative filter banks, even in the presence of significant noise.

We then calculate for every sampling point the correspond-
ing valuesC[m,n] for all m,n ≤ 8, with a value ofQ between
12 and20, depending on the maximal number of sinusoids to
be detected, and form matrices(C[m,n])2km,n=0, 1 ≤ k ≤ 4.
We now look for the smallestk ≤ 4, if it exists, such that the
smallest eigenvalue of(C[m,n])2km,n=0 is smaller than1.1ρ2.

Figure 2 shows the plots of the values of the square root
of the smallest eigenvalue of(C[m,n])4m,n=0 (top), and of
(C[m,n])2m,n=0 (bottom), for the case where each fragment
was either a single damped sinusoid or sum of two such
sinusoids, with the corresponding time supports represented
by the gray rectangles of height 1 or 2, respectively. The
horizontal line corresponds to the threshold1.1ρ for the S/N
of 25 db. The above plots show that the algorithm correctly
identifies fragmentsIn as well as the number of sinusoids over
each fragment. More over, it also indicates that we do not
need to know in advance the signal to noise ratio, because the
regions where the corresponding eigenvalues are consistently
small over an interval can be identified and used to determine
the signal to noise ratio.

We now summarize the results of our preliminary testing of
a very direct implementation of the algorithm, which leaves
much room for further improvement.

We first generated a signal consisting of fragments of single
sinusoids with supports of length of only eight sampling
intervals. Since these fragments are joined into a fifteen times
differentiable signal, the interpolation functions provide a
close approximation over additional intervals of length about
eight sampling intervals on each side of the support interval.
Thus the total duration of a fragment is about twenty four
sampling intervals. Since we sample twice the Nyquist rate,the
total duration over which the signal is a close approximation of
a corresponding single sinusoid is only about twelve Nyquist
rate intervals. The samples are corrupted with white Gaussian
noise, with S/N= 25 db. The algorithm correctly finds the
corresponding support intervals, missing on average less than
2% of the total number of intervals and falsely detecting about
as many spurious intervals. The frequency of the sinusoids is
estimated with an RMS error consistently smaller than0.01
radians, despite duration of only twelve Nyquist rate intervals;
compare such accuracy with the resolution of the FFT over
only twelve Nyqist rate intervals.

3This is an extremely recent piece of work and we had no time to implement
the filters needed to test the case of colored noise.
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Fig. 2. The smallest eigenvalue of(C[m,n])4
m,n=0

(top, black) and of
(C[m,n])2

m,n=0
(bottom, black). Markers showing the position and the

number of components of fragments in gray.

With signals consisting of linear combinations of at most
two sinusoids of equal amplitude and with supports of16
sampling intervals the number of misses or spurious inter-
vals was less than%5, with the RMS error of frequency
estimation again smaller than0.01 radians. The same results
were achieved with signals which are linear combinations of
at most three sinusoids and with supports of length of24
sampling intervals. Finally, signals with four componentshad
supports of32 sampling intervals, thus with total duration of
about48 samples, i.e.,24 Nyquist rate intervals. In this case
the number of misclassified intervals was about10% and the
accuracy of frequency estimation was about0.02 radians. The
programs used in simulations and the references can be found
at http://www.cse.unsw.edu.au/˜ ignjat/diff.
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