Signal interpolation using numerically robust differential operators
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Abstract: In our work on frequency estimation based on local signabiien [15] for testing purposes we needed
a signale(t) which over some disjoint intervals of (continuous) tithgeis equal to a corresponding linear combi-
nation f,,(t) of up to N sine waves, possibly damped and phase shifted, of (noreddlfeequencies smaller than
7. The signal should also satisfy the following constraint&:) should contain a minimal amount of out-of-band
energy, i.e., the energy of its Fourier transfcxﬁ(rw) outside interval—m, | should be as small as possibig)
should fit within an as narrow envelope as possible) should also have a finite support in the time domain, which
is as short as possible. Clearly, these are mutually canflicequirements and we want to look for a compromise
solution which is nevertheless good in all of these respdctomputationally efficient method for producing such
a signal can be useful for designing novel digital modutasohemas which satisfy stringent conditions on out of
band leakage and envelope properties of the generated. sigiegamethod we propose in this paper employs some
special, numerically robust linear differential operataralled the chromatic derivatives, which were introduced
relatively recently, and which we believe hold yet unexgtbpromise in signal and image processing.

Key—Words:numerical differentiation, chromatic derivatives, losanal representation, signal interpolation, dig-
ital modulation

1 Introduction -

Assume thatty (t), Fa(t),. .., F,(t) arewr-band lim-
ited signals; thus, their corresponding Nyquist rate
sampling interval is of unit length. Let also/;, I,

..., I, be disjoint intervals of time and le;, (t)
denote the characteristic function of the interva|

1 < j < n. Thus, ij(t) = 1fort € I; and
x1,(t) = 0 outsidel;.

We denote byf;(t) the section ofF};(¢) on the
corresponding interval of timé;, i.e., foralll < j < ) f1.(9) 2 (1 3 (1
n let f;(t) = F;(t) onI; and f;(t) = 0 outsidel;.
Thus, f;(t) = Fj(t)xy,(t) and the supportupp(f;)
of fj SatiSﬁeSBupp(fj) - Ij.

For simplicity of our presentation we will assume
that intervalsly, I, .. ., I, are of equal duration df
Nyquist rate intervals and that they are equally spaced
N Nyquist rate intervals apart; it is straightforward to
adapt our method to more general cases. In particular,

Figure 1:Pieces of three exponentially modified sine
waves of duration T spaced N unit intervals apart.

letus also assume that= [(j—1)T+jN, j(T+N)]
forall 1 < j < n; see Figure 1.

Let¢c = nT + (n + 1)N; our goal is to pro-
duce an interpolation signal(t) with finite support
supp(¢) = [0, ¢], which has the following properties:

These signals might belong to the spd&(r) of w-band

limited signals of finite energy, i.e., the space of contumid,
functions whose Fourier transform is supported withinr, ).

(1) forall1 < j < n we haveg(t) = f;(t) for all
t € supp(f;); (2) ¢(t) has minimal out of band leak-

However, they can also be of infinite energy and with a Fourier age, i.e., the Fourier transfor&e(w) of gb(t) is such

transform which exists only as a generalized function. Agilit
be observed later, our method applies to an even broadestaafbs
analytic functions.

that [, [6(w)|*dw is as small fraction of the to-
tal energy ofp(w) as possible; (3)5(¢) fits within



an as narrow envelope as possible; thus, between dis-Theorem 2 Leta € R be arbitrary and letf(¢) =

joint intervals; the signal should not have transients
of large amplitude. Clearly, computationally efficient
methods which produce such signals can be useful
for designing digital modulation schemes which sat-
isfy stringent requirements on out of band leakage and
tightness of the envelope of the generated sigrat.
terpolation produced by our algorithm for fragments
shown on Figure 1 is shown on Figure 2.

i

i

Figure 2:Interpolation for fragments on Figure. 1

We now sketch the main idea which we will refine
to obtain our method. We do not provide the detalils,
because they will be provided for the actual construc-
tion described in Section 3.

We will define a signalp(t) supported or0, ]
extending all off;(¢), (1 < j < n), such that(t) has
continuous derivatives of orders upAd— 1 and such
that p*)(0) = ¢(*)(c) = 0 for all k < N. Thus, if
we extendyp to the entireR by setting it equal to zero
outside|0, ¢], the resulting function iSV — 1 times
continuously differentiable olR and since it is also
finitely supportedg, ¢/, . .., V=1 all belong toL;.
Low out of band Ieakage @;f( ) can now be shown to
follow from the following well known theorem (see,
for example [2]):

Theorem 1 Assume thaty is n times continuously
differentiable and thaw, ¢’,...,#™ € L;. Then
the Fourier transform(¢(™)~(w) of ¢(™(t) satis-
fies |(¢) " (w)] < M for someM > 0, and
lim||00(¢™)~(w) = 0. Moreover, the Fourier
transforme(w) of ¢(t) satisfies

and consequently decreases rapidlyj@as— co.

To obtain such interpolatios(¢) we will first prove
the following “pulse shaping” extrapolation theorem.

2An early version of this method was used at author’s startup
Kromos Technology Incto design a digital transceiver.

F(t)X[a+N,a4+N+1) (t) be a fragment of & band lim-
ited signal F'(¢) on an intervalla + N,a + N + T].
Then there exist corresponding., Gr € BL(7)
such that fork < N: G (a) = 0; G (a + V) =
F®(a+N); G (a+N+T)=F®(a+N+T);
GW(a+2N+T) = 0. Letgr(t) = GL()X[aatn) (t)
and gg(t) GR(t)X[a+ N+T,ar2n+7)(t); then
or(t) = gu(t) + f(t) + gr(t) has support con-
tained in[a,a + 2N + T, coincides withf(¢) on
[a+ N,a+ N +T]and hasN — 1 continuous deriva-
tives onRR.

Letsupp(f;) = [(j — )T + jN,j(T + N)| be
the supports of fragmentg;(¢t), (1 < j < n) and
let functionSg{j ) g{g be as provided by the above the-
orem, witha; = (j — 1)(T" + N). Then, setting
fo(t) = frnta(t ) = 0 for all t € R, we can define

6(t) = X150 g7 (t) + fi(t) + g7 (¢) to obtain an
N — 1 times continuously differentiable function with
supportsupp(¢) = [0, c| which extends eaclf;(t),
1<7<n.

Functions G, GJ, satisfying the conditions of
Theorem 2 exist and are supplied in the course of
the proof of a special case of Papoulis’ Sampling
Theorem, see [3, 4, 11], which extends Shannon’s
Sampling Theorem,and which states that a band
limited signal f(¢) of finite energy is uniquely de-
termined by the samples of the derivative$)(t;),

0 <k < N —1, taken everyV Nyquist rate intervals,
i.e., such that; .1 —¢t; = N. Such special case of
Papoulis’ theorem represents a band limited signal in
the form

co N-1
> Y O (Nn)g(t — i)
n=—00 k=0
where interpolation functiongy (¢) satisfy¢>,(€m) 0) =
S(m — k) and¢,(€m)(nN) =0forall 0 < mk <
N and alln # 0. Functions¢g(t) can be ob-
tained by suitably choosing polynomialBy(t) of
degree at mosfV — 1 in the expressionp,(t) =
Py (t) [sinc (¢/N)]N. Given a7 band limited frag-
ment f(¢) supported withinja + N,a + N + T],
functions G (t) and Gr(t) whose existence is as-
serted by Theorem 2 can now be obtained by setting
Gr(t) = Y5 fM(a + N)gw(t — (a + N)) and
Gilt) = S0 B0+ N+ T)u(t—(a+ N +T)).
Unfortunately, such functionsp,(¢) obtained
from Papoulis’ Sampling Theorem do not produce
functionsGy,(t) andGr(t) which can be used to de-
fine interpolationg(t) which also satisfies condition

(1)

3Shannon stated the theorem f§r= 2 (i.e., for f and f') in
his seminal paper [1], without a proof.
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Figure 3: Interpolation based on the Papoulis Sam-
pling Theorem shown on two scales for ghaxis.

(3) mentioned at the beginning of the paper, i.e., an
interpolation which fits in an as narrow envelope as
possible. A closer look reveals that somedof(t)
attain very large amplitudes in the intenfal N, N].
For example, forN = 16, the corresponding func-
tion ¢5(t) attains values larger tha#9. Thus, inter-
polation functionsG;, andGr defined from suchy
might have transients of very large amplitudes in in-
tervalsfa,a + N]and(a + N +T,a+ 2N + T). Fig-
ure 3 shows interpolation functiop(t) for f(t) =
sin(7/8 7 t)x(n,2n](t) With N = T' = 16 anda = 0;
such interpolation attains values larger tizan.

This problem can be solved by observing that we
do not need the “global” features ¢f (¢), namely that

™ (nN) = 0forall 0 < k,m < N and alln # 0;
we only need

¢ (0) = 5(m — k); o™ (N) = 0; 2)

forall 0 < k,m < N, without any constraints on
values at = nN for integersn # 0,1. Then for ev-
ery particularf(t) = F(t)X[atn,a+n+7)(t) the cor-
responding function&] (t), G4, (t) can be defined by
GL(t) = XN f® (a4 N)(~1)*¢p(a+ N —t) and
Gh(t) = SN f®P (a+ N+T)r(t—(a+N+T)).

With so relaxed constraints, we can now look for
interpolation functiongy (¢) with much smaller max-
imal amplitudes.

To obtain such functionsg,(t) we need a
“generic” representation ab(¢) which is in a form
convenient for numerical evaluation of its derivatives,

and which involves parameters that can be chosen to tion an

meet the requirements (1) - (3) in the best possible
way. Preferably, the method should be applicable to
signalsF'(t) given by their sampled values, rather than
by their corresponding analytic expressions.

This is a non trivial task because of the prob-
lems associated with numerical evaluation of deriva-
tives of high order; it can be elegantly achieved us-
ing some special, numerically robust differential op-
erators calledhe chromatic derivativesntroduced in
[6], and their corresponding local signal expansions
akin to the Taylor expansion, calleitte chromatic
expansionsintroduced in [7] and first published in

2 Chromatic derivatives and chro-
matic expansions

As is well known, truncations of the expansion of
band limited signals provided by the Whittaker—
Kotelnikov—Nyquist—-Shannon Sampling Theorem
f(t) Yoo o f(n) sinc(t — n) do not provide
good local signal approximations, because, for a fixed
t, the values of interpolation functionsnc (t — n)
decay slowly agn| grows. Thus, to achieve a good
local approximation a very large number of samples
f(n) are necessary.

On the other hand, signajs € BL(x) are ana-
Iytic functions; thus they can be locally represented
by the truncations of the Taylor expansigitt)
%0, £M(0) t7/n!. Taylor's expansion is local in
nature, because the values of the derivatif&s(0)
are determined by the values of the signal in an arbi-
trarily small neighborhood of zero.

However, Taylor's formula has an extremely lim-
ited use in signal processing because accurate eval-
uation of derivatives of higher orders from discrete
noisy samples of a signal is essentially impossible.
Moreover, the functions used in the expansion, i.e.,
the monomialg™ /n!, do not correspond to band lim-
ited signals; the approximation is unbounded, it con-
verges non-uniformly and its error increases rapidly
when moving away from the center of expansion.

Chromatic derivatives and chromatic expansions
were introduced to provide a framework for local ap-
proximations of band limited signals which do not
suffer from any of the above problems.

2.1 Chromatic derivatives

Chromatic derivatives are linear differential operators
with constant coefficients obtained from suitably cho-
sen families of orthogonal polynomidls.Thus, let
polynomialsP,, (w) satisfy

/_ 7; Py () P (w)w(w)dew = 6(m — 1), (3)

wherew(w) is a non-negative symmetric weight func-
dé the Kronecker delta function. It can be
shown that, if the weight functiom(w) is symmetric,
then each polynomiaP,, (w) contains only powers of
the same parity as, and that such polynomials satisfy
the recurrence relation

1 n—
—w Pp(w) — In=1

n Tn

Pn-l—l(w)

Pia(w) (4

for some positive constants,. We define linear
differential operators associated with such family of

4See [12, 14] for details regarding which families of or-
thogonal polynomials produce satisfactory families ofochatic

[8, 9, 10]. A comprehensive presentation can be found derivatives.

in [12, 13, 14].



ortho-normal polynomials by the operator polynomi-
als

k= (=3P (55 ).

Thus, K" is obtained by replacing” in P, (w) by
-k dk

J mf(t)-

For example, leP’(w) be obtained by re-scaling
and re-normalizing the Legendre polynomials so that
1/(2m) [T Pr(w)Pk(w)dw = §(m — n), i.e., such
that P-(w) are orthonormal with respect to the con-
stant weight functionw(w) (2m)~t. Then it
is easily computed thafj (w) = 1, P (w)
V3w/m, Pf(w) = v5(3w? — 72)/27% and P§ (w)
VT(5w? — 3wn?) /273, Consequently, the substitu-
tion given by (5) yieldsC®[f](t) = f(t), K [f](t) =
V3f'(t)/m, KPFI(t) = VBBf(t) + 72 f(t) /27
andC?[f](t) = VT(5f"(t) — 37> f'(t)) /2m*.

For symmetric weight functions(w) in (3) the
corresponding operatorE™ have real coefficients,
eachC™ contains only derivatives of the same parity
asn and"™ satisfy the three term recurrence relation

(6)

with the same coefficientg, as in (4). Using (4) and
(6), it is easy to verify that

KPled @) = jn P, (w) el @t

(5)

lcn-i-l — i (d ° ICn) + Yn—1 ’Cn_l,

Tn Tn

(7)

Thus, if f € BL(7) and f (w) is its Fourier transform,
then

K10 = 5 [ P@F @ . @

In comparison, if we normalize the “standard”
derivatives so that the magnitude of their frequency
response is bounded uniformly ta within [—7, 7],

we get
™
I

ARG
™ 2

Figure 4 compares the plots @b /)™ (left), which
are the transfer functions of the normalized deriva-
tives1/x"™ d™/dt™ (modulo a factor ofj") with the
plots of the transfer functionB (w) of the chromatic
derivativesK™ associated with the Legendre polyno-
mials (right). Plots on the left reveal why numeri-
cal evaluation of higher order derivatives from signal
samples makes no practical sense. Multiplication of
the Fourier transform of a signal by the transfer func-
tion of a derivative of higher order essentially obliter-
ates the spectrum of the signal, leaving only its edges,
which in practice contain mostly noise. Figure 4 (left)
also shows that the graphs of the transfer functions of
the normalized derivatives of high orders and of the

7 (2) Fweds. @

s

Figure 4:Graphs of(w/m)™ (left) and PX(w) (right)
forn =15ton = 18.

same parity cluster so tightly together that are essen-
tially indistinguishable. Thus, from a numerical per-
spective, the set of the derivativég, /', f”,...} is

a very poor base of the vector space of linear differ-
ential operators with real coefficients. On the other
hand, the right plot on Figure 4 shows that the trans-
fer functions of the chromatic derivativés® form a
family of well separated, interleaved and increasingly
refined comb-like filters. Instead of obliterating, such
operators encode the spectral features of the signal.
For this reason, we call operatok$® the chromatic
derivatives

I
V)

Figure 5: The transfer functions of the operatgi'®
(black) and of its transversal filter (gray).

While introducing chromatic derivatives amounts
to simply replacing the usual bas¢, ', f”,...} of
the vector space of linear differential operators with
an orthonormal base, it turns out that such a base has
some remarkable properties.

First of all, evaluation of chromatic derivatives
from samples of the signal taken at twice the usual
Nyquist rate is very accurate and noise robust. Fig-
ure 5 shows the transfer function of a digital transver-
sal filter A[f](t) = 2% ¢, ¢ f(t —/2) which ap-
proximates the chromatic derivativé'® (gray) asso-
ciated with the Legendre polynomials, and the trans-
fer function of the ideal filter corresponding 16'°

%It was shown in [12] that one can introduce a scalar product
on the vector space of linear differential operators withstant
coefficients which makes operatdiK™ }.c orthonormal.



(black). The filter was designed using the Remez ex-
change method [5], and has 129 taps, spaced two taps

per Nyquist rate interval. Thus, the transfer function
of the corresponding ideal filte€'® is Pk (2w) for

|w| < m/2 and zero outside this interval. The pass-
band of the filter is 90% of the intervéh-r /2, 7 /2],
and the transition region extends 10% of the band-
width 7 /2 on each side of the boundariesr/2 and
/2. Outside the transition region the error of approx-
imation is less thari.3 x 10~%. Implementations of
filters for operatordC™ of orders0 < n < 30 have

been tested in practice and proved to be both accurate
and noise robust, as expected from the above consid-

erations.

Secondly, chromatic derivatives can be used to
produce local approximations of band limited signals
which do not suffer from the mentioned shortcomings
of the Taylor expansion.

Proposition 3 Let K™ be the chromatic derivatives
associated with the Legendre polynomials, and let
f(t) be any function analytic oR; then for allt € R,

[e.e]

> (=1)" K"[f](u) K"[sinc](t —u) (10)

n=0

f(t)

If in addition f € BL(n), then the series converges
uniformly onR and in the spac®L().

The series in (10) is calletihe chromatic expan-
sion of f associated with the Legendre polynomjals
a truncation of this series is calledchAromatic ap-
proximationof f. Just like a Taylor approximation,
a chromatic approximation is also a local approxima-
tion: its coefficients are the values of differential oper-
atorsK™[f](u) at a single instant, and for allk < n,

AR
dk
dn

> (=)™ K™ [f](uw) K™ [sine](t — u)

m=0 t=u

Figure 6 compares the behavior of the chromatic
approximation (black) of a signgl € BL() (gray)
with the behavior of the Taylor approximation fft)
(dashed). Both approximations are of order sixteen,
and the signalf(¢) is defined using the Nyquist ex-
pansion, with randomly generated samp{ggn)
lf(n)] <1, =32 <n <32}

By Proposition 3, the chromatic expansion of
such a signal converges uniformly dR, and the
plot reveals that, when approximating a sigfalke
BL(7), a chromatic approximation has a much gen-
tler error accumulation when moving away from the
point of expansion than the Taylor approximation of
the same order.

Figure 6: A signal f € BL(x) (gray) and its chro-
matic and Taylor approximations (black, dashed).

The error of chromatic approximation of a func-
tion f(t) € BL(n) is given by

N-1 9
£ = 3 (=) K"[f](w) K"[sine](t - u)
n=0
N-1
< |I£l2 (1 — Y K"[sinc](t - u)z) (11)
k=0

The error bound term in the brackets on the right-hand
side of (11) for the case of the chromatic expansion as-
sociated with the Legendre polynomials i§r = 16
is shown on Figure 7; note that in this case the ap-
proximation is highly accurate on the interyal4, 4].

0.8
0.6-
0.4r

0.2r

-10 -5 5 10

Figure 7:Behavior of the error term of chromatic ap-
proximation forN = 16.

Functions K" [sinc|(t) in the chromatic expan-
sion associated with the Legendre polynomials are
given by K"[sinc|(t) = (—1)"v2n+1 j,(nt),
wherej,, is the spherical Bessel function of the first
kind of ordern.

Unlike the monomials that appear in the Taylor
formula, functionsC" [sinc () belong toBL(7) and
satisfy|C"[sinc|(¢)| < 1forallt € R. Consequently,
the chromatic approximations are boundedpand
belong toBL(7). Since by Proposition 3 the chro-
matic approximation of a signagf € BL(w) con-
verges tof in BL(7), if Ais afilter, thenA commutes



with the differential operator&£™ and thus
AIf)() = S (=1)" K" [£](0) K"[A[sine]|(t)
n=0
for everyf € BL(7). Note that this is fully analogous
to the representation of the actions of such operators
via the Nyquist expansion:

oo
ALt = S (—1)" f(n) Alsine]](t - n).
n=0
Thus, while local, chromatic expansions possess the
features which make the Nyquist expansion so useful
in signal processing. This, together with numerical
robustness of chromatic derivatives, makes chromatic
approximations applicable in fields involving empiri-
cally sampled data, such as digital signal and image
processing.
The next proposition demonstrates another re-

markable property of chromatic derivatives relevant to
signal processing.

Proposition 4 Let K™ be the chromatic derivatives
associated with the (rescaled and normalized) Leg-
endre polynomials, and, g € BL(w). Then for all
teR®

> KA = [ fla)de
n=0 o0

> K IOK a0 = [ gl
n=0 —00

o0

> KRR o] = [~ Flgtu —x)da
n=0

— 00

Moreover, if a functiory is analytic onR and satisfies
>, K™[f](0)2 < oo, then suchf must belong to
BL(7).

Note that the sums in the above theorem pro-
vide local representations of the usual norm, the scalar
product and the convolution, respectively, which are
defined inBL() globally, as improper integrals. We
now return to the main aim of this paper.

3 Band Limited Signal Interpolation

We now refine the ideas presented in the Introduction.
We first show that fragmentg, (¢) andgr(t), whose
existence is claimed in Theorem 2 (for simplicity we
seta = 0), can be chosen so that the resulting signal
or(t) = gr(t) + f(t) + gr(t) has both very small out
of band energy and fits in a narrow envelope.

Let K" denote the chromatic derivatives associ-
ated with the Legendre polynomials. We first produce

Thus, the sums on the left hand side of the above equations do
not depend on the choice of the instangee [12, 14] for details.

functions ¢y (t) which for all0 < m,k < N instead
of conditions (2) satisfy

K™[¢r](0) = 6(m — k);  K™[¢x](N) = 0. (12)
We can then defin€'.,(t) andGg(t) as
N-1
GL(t) = Y KIfIN)(=1)¢;(N —t); (13)
=0
v
Gr(t) = K AN +T)¢;(t — (N +1T)).

J=0

To explain why an approach using the chromatic
derivatives associated with the Legendre polynomials
is better than the one based on the “standard” deriva-
tives, we note that (8) implies that fgre BL(),

K0P < o= [ Pr@Pdo [ 1) Pl
Since polynomialsP! (w) are orthonormal with the
weight function (27)~!, we get that|K"[f](t)] <

|| fll2 for all ¢ € R, i.e., chromatic derivatives of sig-
nalsf € BL(w) are bounded uniformly in andt.

Similar is true for a large class of signgisvhich
do not have a finitd., norm. For example, (7) implies
that |KC[e/ “!]| = |PE(w)|, and polynomialsP’ (w)
satisfy that for every) < b < = there exists\ > 0
such that Pk (w)| < M for all n and all|w| < b. For
example, forlw| < .99 we have| Pk (w)| < 3.01.

Thus, unlike the standard derivatives ef“!
whose absolute values grow rapidly for frequen-
cies larger tharl and vanish rapidly for frequencies
smaller thanl, the chromatic derivatives always at-
tain values in a range which insures that our con-
strained optimizations described below will be numer-
ically stable® More over, the values of chromatic
derivatives of f(t) = F(t)x(n,n+r(t) at the end
points of the support of (¢) and which appear in (13)
can be obtained in a noise robust way from sampled
values ofF'(t), thus eliminating the need for any ana-
Iytic differentiation.

We want now to chosey(t) so thatGy(t) and
Gr(t) given by (13) are such that the of out of band
energy of the corresponding extrapolatigt)
gr(t) + f(t) + gr(t) whose existence is asserted in
Theorem 2 is as small fraction of the total energy

"Note that, since chromatic derivatives are linear combnat
of the “standard” derivativesC" [ f](to) = K"[g](to) holds for
alln < Nifand only if £ (o) = g™ (t) holds foralln < N.

8We note that we will use the fact that fragmenftscome
from 7 band limited signals only to conclude that their chromatic
derivatives associated with the Legendre polynomials ddnaee
values much larger than their amplitude. Thus, or methotiegpp
to all analytic functions having such property



of ¢ as possible, as well as that () and gr(t) on
their corresponding supports have as small amplitude
as possible.

To achieve the first objective we note that (8) im-

plies that
(KN p]) ™ (w)]
PRy (W)

Sinceg is finitely supported andv — 1 times continu-
ously differentiable| (N ~1[#])~(w)| is bounded and
converges to zero g&| — oo. More over, since all
the zeros ofPf;_, (w) are within interval—, 7], out-
side this interval the value dfPy_, (w)| grows very

rapidly. Thus, if we ensure thd(lCN_l[qﬁ])AA(w)\
is bounded with a reasonably small boung(w)
will have very low energy outsid¢—m,w]. Since

(KN~ (w)] = ’ JENFT [N =1 ]()ejwtdt’ <

o IICN 1[ ¢l(t)|dt, to make |(KN'[¢])"(w)|
unlformly small, it is enough to keeffCN—1[¢](t)|
as small as possible for all Since the value of
IKN=1[¢](t)| is equal to|KN~1[f](t)| in the inter-
val [N, N + T], we have to make sure that the val-
ues of [ICN=1[g.](t)| on [0, N] and the values of
IKN=1[gr](t)] on [N + T,2N + T] are not much
larger. This will be accomplished by keeping the val-
ues of CV~1[¢.](¢) small on[0, N] forall 0 < k <
N.

Similarly, we will limit the maximal value of
lgr(t)] and|ggr(t)| by limiting the maximal values of
all |¢r(¢)].

We note that controlling the out of band energy as
well as the maximal amplitude @f on [0,2N + T
by controlling the same features of al} is subopti-
mal; applying our minimization techniquesgé and
gf,; directly gives better results. However, this requires
running optimization algorithms for eaghseparately,
while the above approach uses optimization only to
obtain the family{¢(t) }o<r<n; the corresponding

g{ and gf,; can then be obtained for everyas sec-
tions of linear combinations (13); this results in a very
efficient interpolation algorithm.

To obtain an appropriate family,,(t) we con-
sider a “generic” chromatic expansion associated with
the Legendre polynomials, centeredtat: N/2, of
the form

P(t)

|$(w)] =

3N

ZXk K"[sinc|(t — N/2))
n=0

ZXk]n

where X, are variables. The chromatic expansion
associated with the Legendre polynomials is a good

(t— N/2) (14)

choice, because it provides a rapidly converging uni-
form approximation of exactly aBL(x) signals. The
upper limit of summation was chosen to allow suf-
ficient “degrees of freedom” of the resulting generic
approximation, based on the type of constraints we
will impose and the properties of the error function
of the chromatic approximation given by (11), which,
due to lack of space, we cannot detail here.
Chromatic derivatives of)(t) are of the form
K] (t) = 3N ™ (—1)" Y, K [sinc|(t) whereY,,
are linear combinations of;, with reasonable coeffi-
cients. This is due to the fact that (8) implies

n—+m T )
(K™oK™)[sinc](t) = 5 / PE(w)PE (w)e? “tdw,
7T -7
and PE(w)PE (w) = Z:T;ﬁb_n' e Pl (w), with ¢, =
(2m)~! [T PI(w)PEL(w)PF(w)dw. Note also that

forn < 3N,

KMPI(N/2) = (=1)" Xy, (15)
andK"[¢](N/2) = 0forn > 3N.

Let us now fix anm < N; to obtain¢,, (t) we
start by imposing the followin@ N constraints on

such generic expansiaft forall0 < k < N,
KF[(0) = 8(m — k); KF[Q](N) = 0. (16)

As we have just explained, we need to find val-
ues of X, for which the maximal values of both
|KN=1[](t)| and |+ ()| on the interval0, N] are as
small as possible.

To ensure that the maximal value|&f™ —1[+](¢)|
is small we use the fact that the first equality of The-
orem 4 implies that for every € BL(7) the sum
S o K w](t)? does not depend oh Thus, it is
enough to make this sum small for one valuet o6
obtain a small upper bound for the absolute values of
all chromatic derivatives of)(¢) for all values oft.
Using (15), this will be accomplished by minimizihg
S = X

To ensure that the maximal value @f(t)| is
small, we first note that the behavior gf around
the end points of the interval, N|] is already deter-
mined by (16); to control the maximal amplitudewf
in the interior of this interval we chose a sufficiently
dense set of equally spaced poigfsuch thatV/4 <
s; < 3N/4 (we useds;j;; — s; = 1/8) and impose
for each suchs; linear conditionsy(s;) < B,, and
Y(s;) > —Bp,. HereB,, is a positive bound that has
to be obtained first; the values ¢fs;) are expressed
in terms of the variableX;, 0 < k < 3N using (14).

°One can use more explicit bound B&" ~*[¢/](t)| on [0, N],
along the lines below used to kegp(t)| small. However, this
does not produce significantly better results, mainly bseabe
above minimization already produces excellent results.



To obtainB,,, we solve the following linear pro-
gramming optimization probleff. We introduce an
additional variable X, and minimize the objective
F(X,Xop,...,X3n) = X, subject to linear con-
straints on variableXy, . .., X3y which follow from
(16), plus linear constraint(s;) < X andy(s;) >
—X, with one such pair for each;, and finally,
X > 0. Foreach0 < m < N the corresponding
bound B,,, is now obtained by slightly relaxing (in-
creasing) the minimal value of the objectisg!

Having obtainedB,,,, we can now solve the fol-
lowing quadratic minimization problem: Minimize
the objectiveF (X, ..., Xsn) = Y3, X7 subject
to 2N linear constraints (2) plus linear constraints
Y(s;) < B, andi)(s;) > —B,, for eachs;.

Figure 3 shows extrapolation for the fragment
f(t) = sin(7/87rt)x[16732](t), with N = T = 16
anda = 0, obtained using functiong, produced by
the above algorithm; compare it with the interpola-
tion of the same fragment produced with the functions
¢, provided by the Papoulis Theorem, shown on Fig-
ure 3.

Figure 8: Interpolation for the same fragment as
shown on Figure 3.

Note that fragmentf(¢) is supported only on
[16,32] (between the solid grid lines); however, the
extrapolation accurately approximatgg] on the in-
terval [12,36]. This is due to the fact that, by (16),
15 derivatives of the extrapolation at end points of the
support off are equal to the corresponding deriva-
tives of f. Thus, as it can be seen on Figure 7, the ap-
proximation is accurate over about four Nyquist rate
intervals on both sides of the support faf

If the supports of the fragments(¢) degener-

ate to a single point;, interpolationsG¥ (¢), G4 (t)
can stil be chosen such thatGl)™(t;) =
(@™ () = f™(t;). The resulting interpola-

10A|l our optimization problems are easily solved using any of
the standard numerical software packages.

we found that increasing the minimal value &f for only
about20% allows excellent simultaneous optimization for both
condition (i) and (ii).

tion ¢(t) will be a good approximation of eacfy(t)
over intervals centered a of approximate length
N/2. Figure 9 shows interpolatiop(t) (black) whose
derivatives of orders up to5 at¢; = 16 are equal to
the corresponding derivatives ¢f(t) = sin(37/41t)
and whose derivatives of the same orders,at 32
are equal to the corresponding derivativesfg(ft) =
sin(7/4 (t —1)) (f1 and f, are shown in gray). While
the supports off{, fo are only the single points =
16 andty = 32 (at the solid grid lines), the corre-
sponding interpolatiorGﬂ1 (t) + G’E (t) is accurate
within intervals between the dashed grid lines, each
of length of abouB Nyquist rate intervals.

[
I
: 30 35, 40
B

Figure 9: Interpolation (black) for two single point
fragments (gray).

Thus, about half of the length of the spacing be-
tween the supports of the fragments is actually used
for approximation of these fragments. Note that such
approximation is accurate on the continuous time do-
main; thus, there is absolutely no “inter-symbol in-
terference” between the fragments. This fact can be
used for modulation schemas in which detection of
the fragments (symbols) is achieved using local signal
behavior in the continuous time domain, as encoded
by the (discrete) values of the chromatic derivatives
of the signal, obtained by sampling a corresponding
filter bank; see [10] and [15F

For evaluation we ran our interpolation method
on sequences of000 fragments of signals which
were sums of two exponentially damped or expand-
ing sine waves, with randomly generated frequencies
0 < w < 3 and damping factors-0.03 < d < 0.03.
Both the duration of these fragments and their spacing
was16 Nyquist rate intervals. The maximal amplitude
of these fragments was abadui. The resulting inter-
polation had maximal amplitude of abdub, achiev-
ing such value very infrequently and mostly staying
within the maximal amplitude of the signal, see Fig-
ure 8 (left). Such interpolation was sampled twice per
Nyquist rate interval and the corresponding discrete
Fourier transform was computed. We found that the

1250me of the references as well as dlathematicasimula-
tions are available at http://www.cse.unsw.edu.au/agdiff.



ratio of out of band energy, contained in frequencies
abover and the total energy of the signal was about
10~?, see Figure 8 (right).

Figure 10:The envelope and the Fourier transform of
an interpolation.

This demonstrates that our method produces an
interpolation signal with both a tight envelope and an
extremely low out of band leakage. We believe that,
when combined with a detection of symbols based
on local signal behavior as captured by the sampled
values of several chromatic derivatives of the signal,
our method could be used for novel digital modula-
tion techniques satisfying very stringent requirements
for out of band leakage and envelope properties of the
generated signal.

4 Conclusion

We have shown that chromatic derivatives and chro-
matic expansions allow control of local signal behav-
ior, otherwise poorly captured by Nyquist rate sam-
ples. They also allow control of global signal fea-
tures, by either controlling the smoothness of the sig-
nal or by using the fact that the values of the chromatic
derivatives at = 0 provide coefficients of the expan-
sion of the Fourier transform of the signal in series of
orthogonal polynomials (see [14]):

[e.e]
Flw) =3 (= )"E"[f1(0) Py (w).
n=0
Finally, we would like to stress that, while the in-
terpolation method presented in this paper is interest-
ing in its own right, our main aim has been to hint
at the practical relevance and the potential of chro-
matic derivatives and chromatic expansions in signal
processing. Since this is an entirely unexplored area,
we hope that this paper as well as [15] might motivate

the signal processing community to investigate further
these notions and their potential applications.
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