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Changes  in version  2: (1) now no need to specify the SNR in  the detection  part  of the algorithm - it  is  determined automatically  (by a rough but

reasonably accurate  hack  which will be improved later) from the noisy signal  alone, assuming  that  there are at  least a few legitimate fragments;  (2)

counters in the previous version were off and showed more errors than actually present; (3) much faster implementation with much less memory used. 

To do: (1) to clean up and include a new part of the code which increases noise robustness of the algorithm in a way explained further in the tutorial; (2)

to implement colored noise environment; (3) to implement all of this and morre in Matlab, hopefully in August after I come back from a trip home. 

Introduction

This is a tutorial, which, besides implementing the frequency estimation algorithm from the paper [1] "Frequency estimation

using time domain methods based on robust differential operators", available at http://www.cse.unsw.edu.au/~ignjat/d-
iff/ is designed to illustrate along the way some useful and important properties of chromatic derivatives. Thus, there are lots of

things calculated which are unnecessary for the frequency estimation algorithm (and slow down everything a lot), but whose

values and plots highlight various features of chromatic derivatives. After the first reading, you might want to comment out the
parts of the code needed for plots, to have the program run much faster. Soon (hopefully in August) we will provide at at

http://www.cse.unsw.edu.au/~ignjat/diff/ a  much faster Matlab implementation, as well as several improvements of the basic

algorithm implemented in this file, most notably one that makes the algorithm much more noise robust and can handle colored
noise, see later in this file.

Before each run you must quit the Mathematica kernel to clear all the variables; the last command  Quit[ ]  in this file does this
automatically after each run, but you lose the values computed but not printed out or plotted; if you comment it out, remember to
quit the kernel manually before each new run!

The paper we mentioned above, together with all other papers mentioned in this file and listed at the bottom of this tutorial, is

available at http://www.cse.unsw.edu.au/~ignjat/diff/. 

The theory of chromatic derivatives is described in most detail  in  [2] "Chromatic Derivatives,  Chromatic Expansions and
Associated Spaces", East Journal on Approximations, Volume 15, Number 3 (2009), 263-302, or, in a more condensed form, in
[3] "Chromatic derivatives and local approximations", IEEE Transactions on Signal Processing, Volume 57, Issue 8, 2009. 
A good way to start is to read sections I and II of that paper and then go through this tutorial up to the "Generating the Input
Signal" section, to see how the theory of chromatic derivatives works in practice (simulations). Then one can read  [4] "Signal
interpolation using numerically robust differential operators", to understand how we generate the input signal and then read/exe-
cute  this tutorial up to "Frequency Estimation Section". Then one can read [1]  "Frequency estimation using time domain
methods based on robust differential operators" and finally finish going through this tutorial.

At the moment, only the white noise environment is implemented. Thus, since the power spectrum density function of the noise is
constant, the corresponding family of chromatic derivatives are  the (normalized and rescaled) Legendre polynomials; see [1] for
the details. We will soon post a version for colored noise which first generates the right family of orthogonal polynomials from
the power spectrum density of the noise, as explained in [1]. This version also involves adapting the Remez exchange algorithm
to generate the FIR approximations of the corresponding differentiation filters.

* * * * * * * * * * * * * * * * * * * *
IMPLEMENTATION 
********************



* * * * * * * * * * * * * * * * * * * *
IMPLEMENTATION 
********************

We provide here some examples which we have used in testing. Choose which one you want to run by setting the value of "case";

see below for the range provided in this file.Each parameter is explained just before its use.  NOTE: the parameters used for the
detection and estimation algorithm for a given minimal duration of segments minLength , such as INT[i] have NOT been opti-
mized at all, due to lack of time.

In[1]:= case = 5; H* 1 - 6, see below *L
minimum = 1; H* minimal number of sinusoidal

components in fragments to be generated in a randomized way *L
maximum = detect; H* maximal number of sinusoidal components in fragments

to be generated; "detect" H£ 4L is the maximal number of components

which the algorithm can detect Hat the momentL; fragments containing

more than "detect" many sinusoids will be classified as transients *L
number = 30; H* total number of segments of signals to be detected *L

*******************  A  CHOICE OF SOME EXAMPLES  ****************************

Example: detecting pieces of length of only 2 Nyquist rate intervals which are single sinusoids, in SNR of 35db. 

Note: Since the signal interpolation generates a 15 times continuously differentiable function, it produces on each side of a signal
support additional intervals of length 3-4 Nyquist rate intervals where the interpolated signal is still quite an accurate extrapola-
tion of the original signal as defined over its support; see [4] for details and the plots at the very end of this file.  Thus, in case 1,
the signal support of 2 Nyquist rate intervals produces in effect approximately 8 - 10 Nyquist rate intervals long section of single

sinusoids. In fact, one can even set minLength to 0, which gives a support consisting of a single point; however, the (smoothnes
of) interpolation still produces an interval of lenth 6 to 8  (3-4 on each side of the single point of support)  over which the signal is
a good approximation of a sine wave. If you set minLength to 0, set treshold to 3.5 and see what happens; however, the Fourier
Transform plots might be off in this extreme case, showing incorect measured frequency due to a small bug I have no time to
correct now...
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In[3]:= If@case � 1, 8
detect = 1; H* maximal number of sinusoids to be detected;

it can range from 1 to four, at the moment;

higher values of detect and more noise naturally need segments of longer duration *L
minLength = 0; H* minimal length of the support

of each segment to be detected *L
maxLength = minLength; H* maximal length of supports of fragments to be generated;

does not impact detection. *L
minFreq = .3; H* minimal frequency of sinusoidal components in all fragments;

at the moment we cannot handle DC but this can be fixed with

more complexity by looking at operators of odd order as well *L
maxFreq = 3; H* maximal frequency of sinusoidal components in all fragments *L
NDB = 25; H* Signal to Noise; noise is white Gaussian;

since the signal is twice oversampled and the noise is WGA,

the bandwidth of the noise is twice the signal bandwidth;

thus, signal to in-band noise is 3db higher *L
INT@1D = 4; H* the number of points over which the signal has to

satisfy a second order differential equation is equal to 2INT@1D+1;

if we are detecting more sinusoids we need higher order differential operators

and they need different, longer supports so we will have bellow INT@2D, INT@3D,...*L
treshold = 3.5; H* the constant giving the multiple of the RMS of the

noise which bounds the square root of the minimal eigenvalue of the

normalized correlation matrix; to be explained later and in the paper @1D *L
guard = 0; H* number of points to throw away on the edges of detected

intervals to reduce the error and the false positives in detection stage *L
ampModify = 1; H* decrease of the amplitudes of the sinusoidal components;

if equal to 1, all components have the same amplitude *L<D;
Example: detecting pieces of length of only 4 Nyquist rate interval which are single sinusoids with SNR = 25db  (thus,
together with a subsection of the interpolation between the fragments, in total about 10 - 12 Nyquist rate intervals long)

In[4]:= If@case � 2, 8
detect = 1;

minLength = 4;

maxLength = minLength;

minFreq = .3;

maxFreq = 3;

NDB = 25;

treshold = 1.6;

INT@1D = 6;

guard = 0;

ampModify = 1;<D;
***************************************************************************************

Example: detecting pieces of length only 8 Nyquist rate intervals which are linear combinations of at most two sinusoids;
(thus, together with a part of interpolation, in total about 14 - 16 Nyquist rate intervals long)
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In[5]:= If@case � 3, 8detect = 2;

minLength = 8;

maxLength = minLength;

minFreq = .3;

maxFreq = 3;

NDB = 25;

treshold = 1.6;

guard = 4;

INT@1D = 6;

INT@2D = 10;

ampModify = 1; <D
*****************

Example: detecting pieces of length 16 Nyquist rate intervals which are linear combinations of at most three sinusoids

In[6]:= If@case � 4, 8detect = 3;

minLength = 16;

maxLength = minLength;

minFreq = .3;

maxFreq = 3;

NDB = 30;

treshold = 1.8;

guard = 5;

INT@1D = 8;

INT@2D = 12;

INT@3D = 16;

ampModify = 1; <D;
*****************

Example: detecting pieces of length 24 Nyquist rate intervals which are linear combinations of at most three sinusoids
with attenuation of amplitude

In[7]:= If@case � 5, 8detect = 3;

minLength = 24;

maxLength = minLength;

minFreq = .3;

maxFreq = 3;

NDB = 30;

treshold = 1.8;

guard = 5;

ampModify = .5;

INT@1D = 12; H* 6,8,12 *L
INT@2D = 16;

INT@3D = 20;<D;
*****************

Example: detecting pieces of length 32 Nyquist rate intervals which are linear combinations of at most four sinusoids
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Example: detecting pieces of length 32 Nyquist rate intervals which are linear combinations of at most four sinusoids

In[8]:=

If@case � 6, 8detect = 4;

minLength = 32;

maxLength = minLength;

minFreq = .3;

maxFreq = 3;

NDB = 35;

treshold = 2;

guard = 10;

ampModify = 1;

INT@1D = 8;

INT@2D = 16;

INT@3D = 20;

INT@4D = 24;<D;
***************************************************************************

Loading Filters:

We start by specifying which filterbanks of chromatic derivatives we are going to use. 

Note:
1) Filters are applied to twice oversampled signals; 
2) The Legendre polynomials correspond to the white Gaussian noise; later we will extend the simulation to colored noise.  

We define the corresponding recursion coefficients, the corresponding orthogonal polynomials and the corresponding chromatic

derivatives; please reffer to [3] or [2].

First we give the three term recursion coefficients for two families; one ( cfc[n]  ) for the "clean" signals  with bandwidth Π
(produced by a double precission evaluation of analytic expressions),  and another ( cfn[n] ) for the "real world" sampled noisy
signals with an extended bandwidth up to extend/100 Π  = 1.1Π, which allow accurate differentiation of signals with a slight out
of band content, and in the presence of noise (with out of band content as well). 

In[9]:= name = "legen"; H* specifies the Legendre polynomials;

we need it as a variable to be able to hanle in the future the case

of colored noise *L
In[10]:= extend = 110;H* specifies how much the bandwidth of the filters for the noisy inputs has been

extended - such bandwidth is extend�100 Π = 1.1 Π; thus, it is a

ten percent

extension for the present implementation filters *L
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In[11]:= IfBname � "legen", :cfn@n_D =
extend � 100 Π Hn + 1L

4 Hn + 1L2 - 1

; cfc@n_D =
Π Hn + 1L

4 Hn + 1L2 - 1

; >,
8Print@"ERROR"D; Quit@D;<F;

Orthogonal polynomials for the bandwidth  Π:

In[12]:= TC@0, w_D = 1; TC@1, w_D =
w

cfc@0D ;
TC@deg_, w_D := TC@deg, wD =

w

cfc@deg - 1D TC@deg - 1, wD -
cfc@deg - 2D
cfc@deg - 1D TC@deg - 2, wD;

Orthogonal polynomials for the bandwidth extend/100 Π = 1.1 Π: (thus, cfn[i] in place of cfc[i])

In[14]:= TN@0, w_D = 1; TN@1, w_D =
w

cfn@0D ;
TN@deg_, w_D := TN@deg, wD =

w

cfn@deg - 1D TN@deg - 1, wD -
cfn@deg - 2D
cfn@deg - 1D TN@deg - 2, wD;

Chromatic derivatives, for functions with one free parameter (variable) m and for both families: (I) with the bandwidth Π:

In[16]:= KC@f_, 0, m_, t_D := f@m, tD;
KC@f_, 1, m_, t_D :=

1

cfc@0D ¶t f@m, tD;
KC@f_, n_, m_, t_D :=

KC@f, n, m, tD = ExpandB 1

cfc@n - 1D ¶tKC@f, n - 1, m, tD +
cfc@n - 2D
cfc@n - 1D KC@f, n - 2, m, tD F;

and  (II) with the bandwidth extend/100 Π = 1.1 Π:

In[19]:= KN@f_, 0, m_, t_D := f@m, tD;
KN@f_, 1, m_, t_D :=

1

cfn@0D ¶t f@m, tD;
KN@f_, n_, m_, t_D :=

KN@f, n, m, tD = ExpandB 1

cfn@n - 1D ¶tKN@f, n - 1, m, tD +
cfn@n - 2D
cfn@n - 1D KN@f, n - 2, m, tD F;

The transfer functions of these  ideal operators,  see again [3] or [2]:

In[22]:= Do@P@k, w_D = Piecewise@88TN@k, 2 wD, -1.1 Π � 2 £ w £ 1.1 Π � 2<, 80, w > 1.1 Π � 2<, 80, w < -1.1 Π � 2 <<D, 8k, 0, 8<D;
Do@PP@k, w_D = Piecewise@88TC@k, 2 wD, -Π � 2 £ w £ Π � 2<, 80, w > Π � 2<, 80, w < Π � 2 <<D,8k, 0, 15<D;

We use normalized frequencies (in radians); thus, for the  bandwidth Π, sampling at integers is a Nyquist rate sampling.  We

will sample signals at half integers, thus at twice the Nyquist rate. 

We use two types of filterbanks for evaluation of chromatic derivatives: filters U for the noisy inputs with bandwidth extend/100

Π and filters W for clean signals with bandwidth Π, both designed using the Remez exchange method for producing equiripple
filters. (On the mentioned website one can find also filters of higher orders than those we provide here and with different cut-off
and transition frequencies;  as  well  as  the  ijmplementation of the  corresponding Remez exchange  algorithm; see  one of the
Mathematica file on the website.)

The pass band of the filters is given by the value of the "pass" variable as the percentage of the "refernce"  bandwidth Π; For
filters U we take pass = 105 (in % of Π). The width of the transition band for filters in U is 10% of the bandwidth, thus from
1.05Π to 1.15Π; this is chosen by the value of the variable tran = 10 (also in % of Π). The filters approximate transfer functions of
chromatic derivatives for a bandwidth of extend/100 Π = 1.1Π. Thus, with such filters we will be able to differentiate accurately
signals with a banwidth of up to 1.05Π and yet reject the noise component above 1.15 Π. The behavior over the transition region is
such that it will not amplify the component of the noise with frequencies within the transition region, as we will demonstrate this
later.  We have provided here such filters of orders up to 8, but the Remez exchange implementation on the website can be used
all the way up to 30 (and probably above, with an appropriate number of taps chosen). 

Filters W for differentiation of the "clean" signals approximate the transfer function of the chromatic derivatived for the band-
width Π, have passband [- Π, Π] and a transition region of width 20% Π (thus between Π and 1.2 Π ). We have provided such filters
for orders up to 15. 

We set the directories appropriately and read the files, assembling them into a matrix U for numerical differentiation of noisy

signals and a matrix W for differentiation of  the "clean" signals. Coefficients of the filters are stored as integers obtained by

rounding off 1015 times the real coefficients, so they are re-normalized by dividing them with 1015.  If you have decompressed the
zip file straight to your "C" drive, you do not have to change the directory paths. 
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We use two types of filterbanks for evaluation of chromatic derivatives: filters U for the noisy inputs with bandwidth extend/100
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filters. (On the mentioned website one can find also filters of higher orders than those we provide here and with different cut-off
and transition frequencies;  as  well  as  the  ijmplementation of the  corresponding Remez exchange  algorithm; see  one of the
Mathematica file on the website.)

The pass band of the filters is given by the value of the "pass" variable as the percentage of the "refernce"  bandwidth Π; For
filters U we take pass = 105 (in % of Π). The width of the transition band for filters in U is 10% of the bandwidth, thus from
1.05Π to 1.15Π; this is chosen by the value of the variable tran = 10 (also in % of Π). The filters approximate transfer functions of
chromatic derivatives for a bandwidth of extend/100 Π = 1.1Π. Thus, with such filters we will be able to differentiate accurately
signals with a banwidth of up to 1.05Π and yet reject the noise component above 1.15 Π. The behavior over the transition region is
such that it will not amplify the component of the noise with frequencies within the transition region, as we will demonstrate this
later.  We have provided here such filters of orders up to 8, but the Remez exchange implementation on the website can be used
all the way up to 30 (and probably above, with an appropriate number of taps chosen). 

Filters W for differentiation of the "clean" signals approximate the transfer function of the chromatic derivatived for the band-
width Π, have passband [- Π, Π] and a transition region of width 20% Π (thus between Π and 1.2 Π ). We have provided such filters
for orders up to 15. 

We set the directories appropriately and read the files, assembling them into a matrix U for numerical differentiation of noisy

signals and a matrix W for differentiation of  the "clean" signals. Coefficients of the filters are stored as integers obtained by

rounding off 1015 times the real coefficients, so they are re-normalized by dividing them with 1015.  If you have decompressed the
zip file straight to your "C" drive, you do not have to change the directory paths. 

In[24]:= H* filters U for the noisy inputs up to the order 8 *L
In[25]:= pass = 105;

tran = 10;

In[27]:= string = StringJoin@name, "_", IntegerString@extendDD;
SetDirectory@StringJoin@"c:�ChromaticDerivatives�filterbanks�", stringDD;
U = 8<; Do@8filename = StringJoin@string, "_pass_", IntegerString@passD,

"_tran_", IntegerString@tranD, "_imp_", IntegerString@dgD, ".txt"D;
U = Join@U, 8Flatten@Import@filename, "Table"DD<D<, 8dg, 0, 8<D;
U = N@U � 10^15D;

In[31]:= H* filters W for the "clean signals"Hobtained by a double precission evaluation of analytic expressionsL
up to the order 15 *L

In[32]:= SetDirectory@StringJoin@"c:�ChromaticDerivatives�filterbanks�", name, "Q"DD;
In[33]:= W = 8<; Do@8filename = StringJoin@name, "_imp_", IntegerString@dgD, ".txt"D;

W = Join@W, 8Flatten@Import@filename, "Table"DD<D<, 8dg, 0, 15<D;
W = N@W � 10^15D;

We set L to be such that 2L + 1 is the number of taps of the U filters used; LL is such that 2LL + 1 is  the number of taps of the W
filters used; 
in our case LL = L= (129 - 1) / 2 = 64. 
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We set L to be such that 2L + 1 is the number of taps of the U filters used; LL is such that 2LL + 1 is  the number of taps of the W
filters used; 
in our case LL = L= (129 - 1) / 2 = 64. 

In[35]:= L = HDimensions@UD@@2DD - 1L � 2; LL = HDimensions@WD@@2DD - 1L � 2;

We now compare the transfer function of the ideal filter of order 8 and of the filter from the filterbanks U of the same order.
We also compare the transfer function of the ideal filter of order 15 and of the filter from the filterbank W  of the same order.
One can compare filters of other odres by changing the values kk and mm below.

In[36]:= mm = 8;

kk = 15;

H* transfer function of the filter from U of order p *L
TransFcnClean@p_, w_D := ReB â

k=-LL

LL H-ILp W@@p + 1, LL + 1 + kDD E I k wF;
H* transfer function of the filter from W of order p *L
TransFcnNoisy@p_, w_D := ReB â

k=-L

L H-ILp U@@p + 1, L + 1 + kDD E I k wF;

The       following                 plotting              is    very         slow;          you        might           want         to     comment                it    out       after         the      first        reading:
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In[40]:=

PLC1 = Plot@8PP@kk, wD, TransFcnClean@kk, wD<, 8w, -1.05 Π, 1.05 Π<,
PlotRange ® All, PlotStyle ® 88Red, Thickness@.008D<, Blue<,
GridLines ® 888-Π � 2, Red<, 8-1.2 Π � 2, Blue<, 8Π � 2, Red<, 81.2 Π � 2, Blue<<, 8<<,
Ticks ® 88-Π, -Π � 2, Π � 2, Π<, 8-50, 50<<D;

PLC2 = Plot@8PP@kk, wD, TransFcnClean@kk, wD<, 8w, -Π, Π<, PlotRange ® 8-3, 3<,
PlotStyle ® 88Red, Thickness@.008D<, Blue<, GridLines ® 88Π � 2, Black<, 8<<,
Ticks ® 88-Π, -Π � 2, Π � 2, Π<, 8-3, -2, -1, 0, 1, 2, 3<<D;

PLC3 = Plot@8PP@kk, wD, TransFcnClean@kk, wD<, 8w, .8 Π � 2, 1.3 Π � 2<,
PlotRange ® 8-4, 4<, PlotStyle ® 88Red, Thickness@.008D<, Blue<,
GridLines ® 888Π � 2, Red<, 81.2 Π � 2, Blue<<, 8<<,
Ticks ® 88-Π, -Π � 2, Π � 2, Π<, 8-3, -2, -1, 0, 1, 2, 3<<D;

PLN1 = Plot@8P@mm, wD, TransFcnNoisy@mm, wD<, 8w, -Π, Π<,
PlotRange ® All, PlotStyle ® 88Red, Thickness@.008D<, Blue<, GridLines ®888-1.05 Π � 2, Red<, 8-1.15 Π � 2, Blue<, 81.05 Π � 2, Red<, 81.15 Π � 2, Blue<<, 8<<,
Ticks ® 88-Π, -Π � 2, Π � 2, Π<, 8-3, -2, -1, 0, 1, 2, 3<<D;

PLN2 = Plot@8P@mm, wD, TransFcnNoisy@mm, wD<, 8w, -Π, Π<, PlotRange ® 8-3, 3<,
PlotStyle ® 88Red, Thickness@.008D<, Blue<, GridLines ® 88Π � 2, Black<, 8<<,
Ticks ® 88-Π, -Π � 2, Π � 2, Π<, 8-3, -2, -1, 0, 1, 2, 3<<D;

PLN3 = Plot@8P@mm, wD, TransFcnNoisy@mm, wD<, 8w, .8 Π � 2, 1.2 Π � 2<,
PlotRange ® 8-4, 4<, PlotStyle ® 88Red, Thickness@.008D<, Blue<,
GridLines ® 888Π � 2, Black<, 81.05 Π � 2, Red<, 81.15 Π � 2, Blue<<, 8<<,
Ticks ® 88-Π, -Π � 2, Π � 2, Π<, 8-3, -2, -1, 0, 1, 2, 3<<D;

GraphicsGrid@88PLC2, PLC3, PLC1<, 8PLN2, PLN3, PLN1<<, ImageSize ® 600D
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Compare the transfer  functions of the filterbank W for the clean signals and the filterbank U for the noisy signals with the
transfer functions of their corresponding ideal filters. Remember that both filters operate on twice oversampled signals; thus the
bandwidth  [-Π, Π] corresponds to  [-Π/2, Π/2] on the oversampled scale:

The filterbank W (the top row of plots) is nearly perfectly accurate for the entire bandwidth [-Π/2, Π/2], even for the operator of
order 15 (left plot); the mid plot above shows the behavior in a narrow interval [.4 Π, .65 Π] around Π/2, with the red gridline set at
Ω = Π/2 and the blue gridline set at 1.2 Π/2 = .6 Π.  The right plot shows that over the transition region [Π/2, .6 Π] the transfer
function attains a very large peak very accurately approximated by the following calculation on a grid with spacing of only .001:
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Compare the transfer  functions of the filterbank W for the clean signals and the filterbank U for the noisy signals with the
transfer functions of their corresponding ideal filters. Remember that both filters operate on twice oversampled signals; thus the
bandwidth  [-Π, Π] corresponds to  [-Π/2, Π/2] on the oversampled scale:

The filterbank W (the top row of plots) is nearly perfectly accurate for the entire bandwidth [-Π/2, Π/2], even for the operator of
order 15 (left plot); the mid plot above shows the behavior in a narrow interval [.4 Π, .65 Π] around Π/2, with the red gridline set at
Ω = Π/2 and the blue gridline set at 1.2 Π/2 = .6 Π.  The right plot shows that over the transition region [Π/2, .6 Π] the transfer
function attains a very large peak very accurately approximated by the following calculation on a grid with spacing of only .001:

In[47]:= Max@Table@Abs@TransFcnClean@15, Π � 2 + Π � 2 w � 1000DD, 8w, 0, 200<DD
Out[47]= 91.7551

Thus, such filter greatly ampifies the noise within the transition region [Π/2, 1.2 Π/2 ] and thus cannot be used to evaluate the
chromatic derivatives of noisy signals. However, for signals obtained by evaluating analytic expressions with a double precission
this is clearly not an issue.

Filter of order 8 from the filterbank U for the noisy signals is shown on the second row of plots. It is accurate with very high
precission over the bandwidth [-1.05Π/2, 1.05Π/2] as it can be seen from the left and the central plots. The black gridline on the
central plot is at Π/2; the red is the bandpass of the filter at 1.05Π/2 and the blue gridline is at the edge  1.15Π/2  of the transition
region.  As one can see, in the transition region the maximal amplitude of the transfer function is only
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In[48]:= Max@Table@Abs@TransFcnNoisy@8, 1.1 Π � 2 + Π � 2 w � 1000DD, 8w, 0, 100<DD
Out[48]= 1.08737

Consequently, such filter  does not amplify the noise from the transition region and removes it entirely above it; thus, it  is
extremely noise robust. This means that we can evaluate chromatic derivatives of signals with slight out of band content (up to

1.05Π) both very accurately and in a very noise robust way. We will numerically verify these conclusions below.

***************************************************************

GENERATING THE INPUT SIGNAL
***************************************************************

We first generate an input signal by joining sections of band limited signals in a way that ensures that the resulting signal will
have very low out of band energy. The method is described in detail in the paper [4]  "Signal interpolation using numerically
robust differential operators".

The  segments of  the  signals  f[i,t]  will  be  linear  combinations of  numsin[i]  many exponentially modified sinusoids,  where  
minimum  £   numsin[i]    £ maximum  , 
with 1 £ minimum   and   maximum £ detect£ 4,  plus separating fragments which are linear combinations of max = detect + 12 

fragments (12 is entirely arbitrary, just to insure max >> detect.)

The program will detect those segments which are linear combinations of up to detect £ 4 sinusoids; those with more than detect

sinusoids will be classified as "transients". 
However, the actual number of sinusoidal components in the signal generated can be chosen to be any between  minimum  and 

maximum , where  1 £ minimum  £  maximum £ detect .
This is handy for testing of the detection algorithm

There are number many such "legitimate" segments of functions interleaved with the same number of "spacing" signals; thus,
altogether, there will be 
num = 2 number fragments in total, plus "patches" between them, which keep the interpolated signal extremely smooth, i.e.,  15
times continuously differntiable. 
 This guarantees extremely low out of band content; see [4] for details and proofs.

The i-th  function will have as a support an interval of length size[i],  centered  at  centerf[i],  1 £  i  £  num. The sizes of the
"legitimate fragments", to be detected, can vary randomly between  integer lengths minLength and maxLength;  however, for easy
comparison with the FFT, we chose size[i]  to be of even integer length. In this implementation the separating segments are of
lenght chosen randomly between 16 and 64, but this is not at all essential; they can be either longer or ommitted, but in this case
if two consecutive fragmets come from the same function they can be misclassified as a single segment. To prevet this we include
separating fragments which have higher number of components then what the system can detect. 

The i-th function is a linear combination of numsin[i]  many exponentially modified sine waves of frequencies freq[j, i], 1 £ j £

numsin[i], either damped by a factor edamp@ j,iD Ht - center@iDL (if damp[j,i] < 0), or expanding (if damp[j,i] > 0). The value damp[i,j]

is in the range - damping < damp[i,j] < damping.

Such maximal value must be chosen so that the signal f[i,t] cannot totally vanish or "explode" over the length of its support. The
multiplier  edamp@ j,iD Ht -center@iDL  has  been  centered  at  the mid point centerf[i]  of the support interval;  for that  reason we chose

damping = MinB 2 Log@2D
maxLength+8

, 0.05F  which ensures that over the half of the length of the longest support (which is approxi-

mately one half of maxLength + 8), in either direction from the central point centerf[i]  the signal at most halves or doubles its

max amplitude. This can be altered into trippling by choosing damping = MinB 2 Log@3D
maxLength+8

, 0.05F; limit 0.05 comes into play

only if maxLength is quite small, to avoid extreme situations.

 The frequencies are also chosen randomly from the range minFreq and maxFreq.  At the moment the program cannot handle DC,
because  we  do  not  look  at  differential  operators  of  odd  degrees,  necessary  to  detect  fragments  which  are  of  the  form
edamp@ j,iD Ht -center@iDL  corresponding to an exponentially modified DC. Thus, we limit minFreq to .3 in this implementation. If the
segment consists of several frequencies, we order them in a decreasing order for easy book keeping.

The amplitude of j-th component of the i-th function f[i,t]  is A[j, i]. The j-th amplitude is set to A[j, i] = a[j] = ampModify j-1.

As a default,  ampModify = 1; thus, all components are of the same amplitude, but setting ampModify = .5 makes the amplitudes
decrease by halving as in one of the above examples; setting it to ampModify = 2 cause the amplitudes to double. The fragments
are then re-normalized so that all of them have the RMS over their supports equal to 1.
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numsin[i], either damped by a factor edamp@ j,iD Ht - center@iDL (if damp[j,i] < 0), or expanding (if damp[j,i] > 0). The value damp[i,j]

is in the range - damping < damp[i,j] < damping.

Such maximal value must be chosen so that the signal f[i,t] cannot totally vanish or "explode" over the length of its support. The
multiplier  edamp@ j,iD Ht -center@iDL  has  been  centered  at  the mid point centerf[i]  of the support interval;  for that  reason we chose

damping = MinB 2 Log@2D
maxLength+8

, 0.05F  which ensures that over the half of the length of the longest support (which is approxi-

mately one half of maxLength + 8), in either direction from the central point centerf[i]  the signal at most halves or doubles its

max amplitude. This can be altered into trippling by choosing damping = MinB 2 Log@3D
maxLength+8

, 0.05F; limit 0.05 comes into play

only if maxLength is quite small, to avoid extreme situations.

 The frequencies are also chosen randomly from the range minFreq and maxFreq.  At the moment the program cannot handle DC,
because  we  do  not  look  at  differential  operators  of  odd  degrees,  necessary  to  detect  fragments  which  are  of  the  form
edamp@ j,iD Ht -center@iDL  corresponding to an exponentially modified DC. Thus, we limit minFreq to .3 in this implementation. If the
segment consists of several frequencies, we order them in a decreasing order for easy book keeping.

The amplitude of j-th component of the i-th function f[i,t]  is A[j, i]. The j-th amplitude is set to A[j, i] = a[j] = ampModify j-1.

As a default,  ampModify = 1; thus, all components are of the same amplitude, but setting ampModify = .5 makes the amplitudes
decrease by halving as in one of the above examples; setting it to ampModify = 2 cause the amplitudes to double. The fragments
are then re-normalized so that all of them have the RMS over their supports equal to 1.

In[49]:= H* maximal range of the damping HexpandingL factor; chosen so that the signal

can at most halve�double in amplitude within the support of the signal *L
damping = MinB 2 Log@2D

maxLength + 8
, 0.05F;

In[50]:= max = detect + 12;H* This is kind of arbitrary, just to make the separating segments look

different from segments which are sums of up to "detect" many sinusoids. *L
num = 2 number;H* The total number of segments, including the separating ones. *L
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In[52]:= size@0D = 0; size@num + 1D = 0;H* For technical reasons we add trivial 0-th and Hn+1L-st functions,

both identically 0. *L
Do@If@EvenQ@iD, size@iD = 2 RandomInteger@8Round@minLength � 2D, Round@maxLength � 2D<D,

size@iD = RandomInteger@816, 64<D D, 8i, 1, num<D; H* 4 *L
H* Thus,

the "legitimate segments to be detected Hwith an even indexL are between "minLength" and

"maxLength" long; separating segments Hodd
indicesL are 16 - 64 unit Hthus Nyquist rate intervalsL long. *L

Do@
If@EvenQ@iD, numsin@iD = RandomInteger@8minimum, maximum<D, numsin@iD = maxD, 8i, 1, num<D ;

Do@damp@j, iD = If@EvenQ@iD, RandomReal@8-damping, damping<D, 0D, 8i, 1, num<, 8j, 1, max<D;
H* The "legitimate" fragmenst are linear combinations of

"minimum" to "maximum" many sinusoides, with "maximum £ detect",

and with the number of sinusoids chosen randomly for each segment;

the damping factor for each sinusoid in the legitimate

fragments is chosen randomly from the interval @-damping, dampingD;
the sinewaves in the separating fragments are not damped. *L
a@j_D := ampModifyj-1;

Do@A@j, 2 iD = a@jD, 8i, 1, number<, 8j, 1, numsin@2 iD<D;
Do@A@j, 2 i + 1D = RandomReal@8.1, 1<D, 8i, 0, number - 1<, 8j, 1, numsin@2 i + 1D<D;
H* the values of amplitudes A@j,iD are chosen so that they decrease

or increase by the corresponding jth power of the factor "ampModify". If

ampModify = .5 then the amplitude of the Hj+1Lth component

is one half of the amplitude of the jth component;

if ampModify = 2 then the amplitude of the Hj+1Lth component

is twice the amplitude of the jth component

The amplitudes can also be randomized, but then one has to worry what

the "local" signal to noise ratio is for each particular component. *L
H* We initialize the values of frequencies to zero *L
Do@freq@j, iD = 0, 8j, 1, max<, 8i, 1, num<D;

The particular values of the frequencies are chosen depending on what we want to test. For general purpose tests of the accuracy
of frequency estimation we split the range [minFreq,  maxFreq] into 2 numsin[i]  - 1  bins, thus depending on the number of
components numsin[i]  to be chosen.  We then chose frequencies from the highest to the lowest, by picking a frequency from a
bin and then skipping a bin.
Clearly, to test how well the method separates close frequencies we must do that in a different way (as we do in the next file), but
the above is good for initial tests. 

In[60]:= Do@8delta@iD = HmaxFreq - minFreqL � H2 numsin@iD - 1L;
Do@freq@j, iD = RandomReal@8minFreq + 2 Hnumsin@iD - jL delta@iD,

minFreq + H2 Hnumsin@iD - jL + 1L delta@iD<D, 8j, 1, numsin@iD<D<, 8i, 1, num<D;
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In[61]:= Do@shift@i, jD = RandomReal@8-Π, Π<D, 8i, 1, num<, 8j, 1, numsin@iD<D;H* We chose randomly the phase shifts of the sinusoidal components. *L
We now set spacing between fragments to distance = 16. Note that segments which are linear combinations of max many sine
waves will be rejected. Thus the spacing between the "legitimate" fragments is in total 16 + 8 + 16 = 40 Nyquist rate intervals. 

In[62]:= distance = 16; NN = distance;H* This cannot be changed at the moment,

because each value requires a different syththesis filterbank for

producing the patches between segments of signals. The patching over

an interval of length "distance = NN = 16" ensures that the resulting

signal will have continuous derivatives of orders up to NN - 1 = 15. *L
We now calculate the positions of supports of f[i,t]. We start with an interval of length L/2= 32 where the signal will be zero, just
to be able to evaluate the chromatic derivatives over the entire length of the signal support using filters with half support L = 64
taps = 32 Nyquist rate intervals.  

A spacing of distance = NN points precedes the first signal support. The the supports of the signal fragments f[i,t] alternate with a
spacing equal to distance. At the end of the signal is a final spacing and another interval of length 32 where the signal is set to
zero. 

 Thus, the positions of the centers centerf[i] of segments are given by:  

In[63]:=

centerf@0D = 0; centerf@num + 1D = 0;

DoBcenterf@iD = L � 2 + distance + â
j=1

i-1 Hsize@jD + distance L + size@iD � 2, 8i, 1, num<F;

We now define  segments of band limited signals f[i, t]; first we calculate some normalization factors:

In[65]:= DoBmx@iD =

RootMeanSquareBTableB â
j=1

numsin@iD
A@j, iD Edamp@j,iD Ht-centerf@iDL Sin@freq@j, iD t + shift@i, jDD �.

t ® Hcenterf@iD + u � 2L, 8u, -size@iD - 8, size@iD + 8<FF, 8i, 1, num<F;

Thus,  mx[i]   is  the  RMS  of

the function Új=1
numsin@iD A@j, iD Edamp@j,iD Ht-centerf@iDL Sin@freq@j, iD t + shift@i, jDD  over  the

support interval  [centerf[i] - size[i]/2, centerf[i] + size[i]/2]; we now use its reciprocal value to normalize f[i,t] so that the SNR
is equal across all segments.

In[66]:= f@0, t_D = 0; f@num + 1, t_D = 0; DoB f@i, t_D =

1

mx@iD â
j=1

numsin@iD
A@j, iD Edamp@j,iD Ht-centerf@iDL Sin@freq@j, iD t + shift@i, jDD, 8i, 1, num<F;

These signals will be truncated to their supports of size[i], centered  at centerf[i]; 
thus their supports are intervals  [centerf[i] - size[i]/2, centerf[i] + size[i]/2] . We verify that they are properly normalized: 

14   frequency_estimation_tutorial.nb



These signals will be truncated to their supports of size[i], centered  at centerf[i]; 
thus their supports are intervals  [centerf[i] - size[i]/2, centerf[i] + size[i]/2] . We verify that they are properly normalized: 

In[67]:= RootMeanSquare@Flatten@Table@f@i, centerf@iD + t � 2D, 8i, 1, num<, 8t, -size@iD, size@iD<DDD
Out[67]= 0.986585

We also check their maximal amplitude:

In[68]:= Max@Flatten@Table@f@i, centerf@iD + t � 2D, 8i, 1, num<, 8t, -size@iD, size@iD<DDD
Out[68]= 3.00575

We have to interpolate the signal over the interval of length distance = NN = 16 between two consecutive fragments. This is done
so that the values of derivatives of orders up to NN - 1 = distance -1 = 15  of the interpolation at the right end point of the support
of f[i,t], i.e., at the point centerf[i]+size[i]/2  match the corresponding values of the derivatives of f[i,t] at that point, and that the
derivatives of the interpolation at the left end point of the support of f[i+1,t] i.e., at the point  center[i+1] - size[i+1]/2   match
the values of the corresponding derivatives of f[i+1,t]  at that point. In this way we ensure that the resulting interpolated signal
will have continuous derivatives of orders 0 to 15, and this in turn ensures very low energy outside the bandwidth [-Π, Π], see [4] . 

Such interpolation is obtained by evaluating the chromatic derivatives of the signals f[i,t] using the filterbank W for differentia-
tion of clean signals for orders 0 - 15. The vector of values of the chromatic derivatives of f[i,t] at the left end point centerf[i] -
size[i]/2  of the support of f[i,t] is denoted by SigL[i]  and the vector of values of the chromatic derivatives of f[i,t] at the right
end point  centerf[i] + size[i]/2  of the support of f[i,t] is denoted by SigR[i]; thus  SigL[i] and SigR[i] are vectors of length 16
(orders 0 - 15). To obtain the values of these derivatives we do not need any analytic differentiation; instead we find the appropri-
ate samples of f[i,t] and apply the filters W:

In[69]:= SAMPL = Table@f@i, centerf@iD - size@iD � 2 + j � 2D, 8j, -LL, LL<, 8i, 0, num + 1<D;
SAMPR = Table@f@i, centerf@iD + size@iD � 2 + j � 2D, 8j, -LL, LL<, 8i, 0, num + 1<D;
SigL = Transpose@W.SAMPLD; SigR = Transpose@W.SAMPRD;

We can now compare the values SigL[i] obtained using numerical differentiation via our FIR filterbank W with the analytically
computed values SigLA[i]:

In[71]:= SigLA = Table@KC@f, j, i, tD �. t ® Hcenterf@iD - size@iD � 2L , 8i, 0, num + 1<, 8j, 0, NN - 1<D;
SigRA = Table@KC@f, j, i, tD �. t ® Hcenterf@iD + size@iD � 2L , 8i, 0, num + 1<, 8j, 0, NN - 1<D;H* The values of the chromatic derivatives obtained by analytic differentiation *L

In[72]:= ED = Transpose@Join@Abs@SigL - SigLAD, Abs@SigR - SigRADDD;
Below is the table of the RMS values of the chromatic derivatives of the signal, RMS values of the error of the chromatic
derivatives, SNR in db,  as well as the mean,  median and maximal values of the errors of  the derivatives of orders 0 - 15,
showing that our filters are extremely accurate: 
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In[73]:= GridBJoinBTranspose@88"degree"<, 8"RMS of CD"<, 8"RMS error"<,8"SNR db"<, 8"Mean error"<, 8"Median error"<, 8"Max error"<<D,
TableB:j, RootMeanSquare@Transpose@SigLAD@@j + 1DDD, RootMeanSquare@ED@@j + 1DDD,

20 LogB10 , RootMeanSquare@Transpose@SigLAD@@j + 1DDD
RootMeanSquare@ED@@j + 1DDD F, Mean@ED@@j + 1DDD,

Median@ED@@j + 1DDD, Max@ED@@j + 1DDD >, 8j, 0, NN - 1<F F, Frame ® AllF

Out[73]=

degree RMS of CD RMS error SNR db Mean error Median error Max error

0 0.894518 5.9492 ´ 10-6 103.543 4.47032 ´ 10-6 3.10615 ´ 10-6 0.0000193719

1 1.12534 0.000011238 100.012 8.15741 ´ 10-6 5.79369 ´ 10-6 0.0000423444

2 1.00353 0.0000173372 95.251 0.0000130165 9.06913 ´ 10-6 0.0000559452

3 1.01959 0.000026207 91.8001 0.0000190002 0.0000134186 0.0000982268

4 0.864756 0.0000387115 86.9811 0.0000289895 0.0000208017 0.000122529

5 0.926997 0.0000599836 83.7809 0.0000434088 0.000030668 0.000223296

6 0.940109 0.0000869737 80.6758 0.0000647696 0.0000486428 0.000269819

7 0.95365 0.000138001 76.7901 0.0000996136 0.0000708931 0.000509538

8 1.05567 0.000194589 74.6882 0.000144013 0.000108307 0.000601609

9 1.06035 0.000314545 70.5554 0.000226345 0.000156132 0.0011491

10 0.862971 0.000428978 66.0712 0.000316017 0.000242214 0.00133197

11 0.923778 0.000548208 64.5324 0.0004225 0.000378164 0.00194787

12 0.915158 0.000943864 59.7317 0.00070811 0.000507942 0.00291552

13 1.14805 0.00108272 60.5088 0.000831803 0.000730093 0.00369425

14 1.0489 0.00191329 54.7791 0.00143347 0.00103631 0.00605803

15 0.971584 0.00205306 53.5016 0.00157323 0.00141556 0.00697388

We now download synthesis filters for the interpolation ("patching");  the coefficients  are  again stored as integers so we re-

normalize them by dividing them with 1015:

In[74]:= SetDirectory@"c:�ChromaticDerivatives�filterbanks�patch"D;
In[75]:= Patch = 8<; Do@8filename = StringJoin@"patch_", IntegerString@dgD, ".txt"D;

Patch = Join@Patch, 8Flatten@Import@filename, "Table"DD<D<, 8dg, 0, 15<D;
Patch = N@Patch � 10^15D;

We use the values from the Patch file to generate the values of the interpolation functions for left side and right side of the
interpolation "patch", see [4]:

In[77]:= PatchL = Take@Transpose@PatchD, 82, 32<D;
PatchR = Table@H-1Lm Patch@@m + 1, 33 - tDD, 8t, 1, 31<, 8m, 0, NN - 1<D;

Interpolation between functions f[i,t] and f[i+1,t] is obtained at every half integer (because we are producing twice oversampled
signal) using the synthesis filters, as 
 PatchL . SigRA[i - 1] + PatchR . SigL[i]; see [4] for explanation. Essentially, we represent the interpolation over the interval [tL,
tR] between the supports of fi  and fi+1 as

 Új=0
15 K j[ fi](tL)B j(t-tL) +  Új=0

15 K j[ f j](tR)H-1L jB j(tR-t) , where B j(t) satisfy K j[Bm](0) = ∆ (j-m) and K j[Bm](distance) = 0. 

 

 Finally, we can create our test signal:
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In[79]:= Signal =

Join@Table@0, 8k, 1, L + 1<D, Flatten@Table@Join@PatchL.SigR@@iDD + PatchR.SigL@@i + 1DD,
Table@f@i, centerf@iD + t � 2D, 8t, -size@iD, size@iD<DD, 8i, 1, num<D D,

PatchL.SigR@@num + 1DD + PatchR.SigL@@num + 2DD, Table@0, 8k, 1, L<DD;
We now check the max value of the interpolated signal and plot its values:

In[80]:= Max@SignalD
Out[80]= 7.23493

In[81]:= length = Dimensions@SignalD@@1DD;
In[82]:= ListPlot@Signal, Joined ® True, PlotRange ® All, ImageSize ® 600D

Out[82]=

1000 2000 3000 4000 5000

-6

-4

-2

2

4

6

To check its out of band content, make sure you ran the program with number  = 100 or larger so that the FFT has a sufficient
resolution to represent extremely small out of band content accurately;  the green grid lines are set at the ±þ band limit and the
red gridlines at ±1.05þ:

In[83]:= FT1 = Abs@Fourier@SignalDD;
df = Dimensions@FT1D@@1DD;
FT = Join@Table@8i - Round@df � 2D, FT1@@df � 2 + iDD<, 8i, 1, Round@df � 2D<D,

Table@8i, FT1@@iDD<, 8i, 1, Round@df � 2D<DD;
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In[86]:=

ListPlot@FT, Joined ® True, PlotRange ® All,

GridLines ® 888Round@-1.05 df � 4D, Red<, 8Round@-df � 4D, Green<,8Round@df � 4D, Green<, 8Round@1.05 df � 4D, Red<<, 8<<, ImageSize ® 500D

Out[86]=
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We now compute the fraction of energy of the signal outside the bandwidth [-Π, Π], and the fraction of energy outside [-1.05Π,
1.05Π]
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In[87]:= GridBJoinB88"out of @-Π,ΠD energy�total signal energy", "in db"<<,
:: SumAFT1@@iDD2, 8i, Round@df � 4D, Round@3 df � 4D<E

SumAFT1@@iDD2, 8i, 1, df<E ,

10 LogB10 , SumAFT1@@iDD2, 8i, Round@df � 4D, Round@3 df � 4D<E
SumAFT1@@iDD2, 8i, 1, df<E F >,

8"**************************************************", "*******"<>,88"out of @-1.05Π, 1.05ΠD energy�total signal energy", "in db"<<,
:: SumAFT1@@iDD2, 8i, Round@1.05 df � 4D, Round@.95 ´ 3 df � 4D<E

SumAFT1@@iDD2, 8i, 1, df<E ,

10 LogB10 , SumAFT1@@iDD2, 8i, Round@1.05 df � 4D, Round@.95 ´ 3 df � 4D<E
SumAFT1@@iDD2, 8i, 1, df<E F >>F, Frame ® AllF

Out[87]=

out of @-Π,ΠD energy�total signal energy in db

0.0000823258 -40.8446
************************************************** *******

out of @-1.05Π, 1.05ΠD energy�total signal energy in db

1.775 ´ 10-6
-57.508

Thus, the energy out of  [-1.05 Π, 1.05 Π] bandwidth is about or less than 1/10 of the energy which is out of [-Π, Π] bandwidth,
showing that out of band energy decays extremely fast; for all practical purposes, our interpolated signal is [-1.05 Π , 1.05 Π] band
limited. For this reason, as we will see below, our chromatic derivative filters with a pass band  [-1.05 Π , 1.05 Π] are extremely
accurate when applied to signals produced by our "smooth patching" of pieces of unrelated band limited signals.

We now corrupt signal with the white Gaussian noise; NDB sets signal to noise ratio in db; we compute the RMS of the signal
and of the noise generated to get the multiplicative scaling constant noise which sets the signal to noise ratio to exactly the
prescribed NDB value in db. 

In[88]:= NOISE = Table@RandomReal@NormalDistribution@0, 1DD, 8k, 1, length<D;
In[89]:= noise =

RootMeanSquare@SignalD
RootMeanSquare@NOISED 10-

NDB

20

Out[89]= 0.03904

We compare SNR with the signal to noise ratio for the  [-Π,Π]  signal component and [-Π,Π]  noise component; the later is the
relevant signal to noise ratio for our experiments.

In[90]:= FTN = Abs@Fourier@noise NOISEDD;
In[91]:= SN =

SumAFT1@@iDD2, 8i, 1, df<E
SumAFTN@@iDD2, 8i, 1, df<E ;

InbandSN =
SumAFT1@@iDD2, 8i, 1, Round@df � 4D<E + SumAFT1@@iDD2, 8i, Round@3 df � 4D, df<E
SumAFTN@@iDD2, 8i, 1, Round@df � 4D<E + SumAFTN@@iDD2, 8i, Round@3 df � 4D, df<E ;
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In[92]:= Grid@Join@88"SNR in db", "@-Π,ΠD signal�@-Π,ΠD noise in db"<<,8810 Log@10 , SND, 10 Log@10 , InbandSND<<D, Frame ® AllD
Out[92]=

SNR in db @-Π,ΠD signal�@-Π,ΠD noise in db

30. 32.8573

We now apply the filterbank to the signal + noise samples:

In[93]:= SAMP = Table@Signal@@p + jDD + noise NOISE@@p + jDD, 8j, -L, L<, 8p, L + 1, length - L<D ;

In[94]:= DER1 = Transpose@U.SAMPD;
We now check the accuracy of differentiation using filters for noisy inputs. Thus, we also apply the filterbanks to the signal and
the noise separately.

In[95]:= SAMPS = Table@Signal@@p + jDD, 8j, -L, L<, 8p, L + 1, length - L<D ;

DERS = U.SAMPS;

SAMPN = Table@noise NOISE@@p + jDD, 8j, -L, L<, 8p, L + 1, length - L<D ; DERN = U.SAMPN;

We now collect the values of the chromatic derivatives of orders 0 - 8 of the signal without any noise over the support intervals
we will patch together:

In[98]:= Do@DSig@jD = Flatten@Table@Table@DERS@@1 + j, 1 + 2 centerf@iD - L + pDD,8p, -size@iD, size@iD - 1<D, 8i, 1, num<DD, 8j, 0, 8<D;
We compare these values with the analytically obtained values of the chromatic derivatives of the signal pieces f[i, t]:

In[99]:= Do@DSigA@jD =

Flatten@Table@Table@KN@f, j, i, tD �. t ® Hcenterf@iD + p � 2L,8p, -size@iD, size@iD - 1<D, 8i, 1, num<DD, 8j, 0, 8<D;
The table below gives the RMS value of each chromatic derivative of the signal over these supports, the RMS value of the error
of the filterbanks compared to the true values as obtained from the analytic expressions for f[i, t], the corresponding SNR in db,
as well as the mean error, median error and the maximal error. Note how extraordinarily accurate are the values obtained using
our filterbank U.
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In[100]:= GridBJoinBTranspose@88"degree"<, 8"RMS"<, 8"RMS error"<,8"SNR db"<, 8"Mean error"<, 8"Median error"<, 8"Max error"<<D,
TableB:j, RootMeanSquare@DSigA@jDD, RootMeanSquare@DSigA@jD - DSig@jDD,

20 LogB10 , RootMeanSquare@DSigA@jDD
RootMeanSquare@DSigA@jD - DSig@jDD F, Mean@Abs@DSig@jD - DSigA@jDDD,

Median@Abs@DSig@jD - DSigA@jDDD, Max@Abs@DSig@jD - DSigA@jDDD>, 8j, 0, 8<FF, Frame ® AllF

Out[100]=

degree RMS RMS error SNR db Mean error Median error Max error

0 0.983596 0.000758227 62.2603 0.000585635 0.00048 0.00411871

1 0.971168 0.00133028 57.267 0.0010257 0.000814942 0.00695157

2 0.788108 0.0017128 53.2576 0.0013225 0.00106847 0.00939617

3 0.787179 0.00207539 51.5795 0.00159841 0.00125986 0.0111335

4 0.854329 0.00234488 51.2301 0.00181075 0.00145043 0.0130665

5 0.972509 0.00268381 51.1828 0.00206022 0.00163537 0.0149841

6 0.941073 0.00289039 50.2533 0.00222952 0.00179186 0.0159978

7 0.881443 0.00324834 48.6707 0.00248107 0.00195836 0.0187386

8 0.835506 0.00342896 47.7357 0.0026182 0.00211175 0.0226674

In[101]:= H* Note that the supports of the signals are only minLenght intervals long: *L
minLength

Out[101]= 24

while the supports of the differentiation filters are 64 intervals long (129 taps, spaced two per unit interval), Thus, filters "see"
values far outside of the support of the function being differentiated. However, the smoothness of the interpolated signal
ensures that even the high order derivatives are remarkably accurate!!

We now look at the impact of the noise on the accuracy of differentiation. We fist find the SNR of the in-band signal versus in-
band noise component:

In[102]:= H* in-band signal to in-

band noise ratio compared to the entire signal to the entire noise ratio *L
PrintBGridB:8"signal�noise", "in-band signal�in-band noise",

"in-band signal�in-band noise as obtained by filters"<,
: 20 LogB10 , RootMeanSquare@SignalD

RootMeanSquare@noise NOISED F, 10 Log@10 , InbandSND,
20 LogB10 , RootMeanSquare@DERS@@1DDD

RootMeanSquare@DERN@@1DDD F>>, Frame ® AllFF;
signal�noise in-band signal�in-band noise in-band signal�in-band noise as obtained by filters

30. 32.8573 32.602

This is consistent with the fact that the signal has very little out of band energy, while half the energy of the noise is out of band;
thus in-band signal to in-band noise ratio should be about 3 db higher than total signal to total noise ratio. 

Thus, below is a very good estimate of the signal to noise ratios for all derivatives of order up to eight:
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In[103]:= PrintBGridBTransposeBJoinB88" degree", "in-band SNR db"<<,
TableB:j, 20 LogB10 , RootMeanSquare@DERS@@1 + jDDD

RootMeanSquare@DERN@@1 + jDDD F>, 8j, 0, 8<FFF, Frame ® AllFF;
degree 0 1 2 3 4 5 6 7 8

in-band SNR db 32.602 32.4313 29.6974 31.4902 32.3246 32.2574 32.5751 31.7862 31.8915

Thus, the SNR of all chromatic derivatives are essentially the same and equal to the in-band signal to in-band noise ratio! 
This empirically demonstrates extraordinary accuracy and noise robustness of evaluation of chromatic derivatives using a FIR
filterbank. 

*******************************************************************************************************

*******************************************************************************************************

In[104]:= Signal1 = Take@Signal, 8L + 1, Dimensions@SignalD@@1DD - L<D;
In[105]:= length1 = Dimensions@Signal1D@@1DD; dist1 = L;

FREQENCY ESTIMATION

The algorithm below uses only the noisy signal samples, and has no access to any other signal parameters, not even the signal to
noise ratio, which is estimated from the signal samples.

In[106]:=

Do@8Prod1@k, mD = Table@DER1@@iDD@@k + 1DD DER1@@iDD@@m + 1DD, 8i, 1, length1<D;
Prod1@m, kD = Prod1@k, mD;<, 8m, 0, 2 detect<, 8k, 0, m<D;

DoB:QuietB Tble = RecurrenceTableB:CO@iD == CO@i - 1D -

Prod1@k, mD@@INT@detectD + i - 1 - INT@qD DD + Prod1@k, mD@@INT@detectD + i + INT@qDDD,
CO@1D � â

j=- INT@qD
INT@qD

Prod1@k, mD@@INT@detectD + 1 + jDD>, CO,

8i, 1, length1 - 2 INT@detectD<F;F; crl2@q, k, mD = Tble;

crl2@q, m, kD = Tble; Clear@TbleD;> , 8q, 1, detect<, 8m, 0, 2 q<, 8k, 0, m<F;
In[108]:= Signal2 = Take@Signal1, 8INT@detectD + 1, Dimensions@Signal1D@@1DD - INT@detectD<D;

length2 = Dimensions@Signal2D@@1DD; dist2 = dist1 + INT@detectD;
We now for each point i in the domain of the input signal evaluate the smallest eigenvalues Λ j of the matrices  [crl[i, k, m]:  0 £ k

£2  j, 0 £ m £ 2 j].

In[110]:= DoAeigenV2@jD =

TableA,H1 � H2 INT@jD + 1L Chop@Eigenvalues@Table@crl2@j, k, mD@@iDD, 8k, 0, 2 j<,8m, 0, 2 j<D, -1D@@1DDDL, 8i, 1, length2<E, 8j, 1, detect<E;
We filter out some noise by replacing the calculated value eigV[j, i ] with the median of these values over the interval [i-cl, i+cl].
(This is not essential but it appears to improve accuracy).

In[111]:= cl = 8;

In[112]:= Do@eigenVF3@jD = Table@Median@Table@eigenV2@jD@@i + kDD, 8k, -cl, cl<DD,8i, cl + 1, length2 - cl<D, 8j, 1, detect<D;
We shorten the signal again:
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We shorten the signal again:

In[113]:= Signal3 = Take@Signal2, 8cl + 1, length2 - cl<D;
In[114]:= length3 = Dimensions@Signal3D@@1DD; dist3 = dist2 + cl;

We now approximately determine the signal to noise (SNR).  The plot below shows the distribution of the smallest eigenvalues;
the RMS of the noise is the RMS of the flat part of the low end of the graph, approximated bt the variable cut:  ww[[1]] is the
minimal number of sinusoidal components present  

In[115]:= Do@mini@jD = Min@eigenVF3@jDD, 8j, 1, detect<D;
In[116]:= Do@selm@jD = Median@Select@eigenVF3@jD, ð < 2 mini@jD &DD, 8j, 1, detect<D;
In[117]:= Do@sorted3@jD = Sort@eigenVF3@jDD, 8j, 1, detect<D;
In[118]:= s = Table@selm@jD, 8j, 1, detect<D;
In[119]:= ww = SortBy@Select@Table@8j, selm@jD<, 8j, 1, detect<D, ð@@2DD < 2 Min@sD &D, ð@@1DDD@@1DD;
In[120]:= Table@mini@jD, 8j, detect<D
Out[120]= 80.0105144, 0.008215, 0.00731686<
In[121]:= Do@sorted@jD = Sort@eigenVF3@jDD, 8j, 1, detect<D;
In[122]:= ListPlot@Table@sorted3@jD, 8j, 1, detect<D, Joined ® TrueD

Out[122]=
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In[123]:= cut = RootMeanSquare@Select@sorted3@ww@@1DDD, ð < 2 ww@@2DD &DD
Out[123]= 0.0252497

In[124]:= ww@@1DD
Out[124]= 1

comparing the RMS of the inband comonent of the noise noise � 2  and the approximated value  cut as established by the

algorithm:
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In[125]:= :cut , noise � 2 >
Out[125]= 80.0252497, 0.0276054<
In[126]:= Nums = Join@Table@0, 8i, 1, L + 1<D,

Flatten@Table@Join@Table@0, 8i, 1, 31<D, Table@Sign@max - numsin@iDD numsin@iD,8t, -size@iD, size@iD<DD, 8i, 1, num<DD, Table@0, 8i, 1, 31<D, Table@0, 8k, 1, L<DD;
In[127]:= Nums3 = Take@Nums, 8dist3 + 1, length - dist3<D;
In[128]:= nf3 = Table@0, 8i, 1, length3<D;
In[129]:= Do@8p = 1; nf3@@iDD = p; While@p < detect + 1 && eigenVF3@pD@@iDD ³ treshold cut,8nf3@@iDD = Sign@detect - pD Hp + 1L; p++;<D<, 8i, 1, length3<D;
We now for each point i in the domain of the input signal evaluate the smallest eigenvalues Λ j of the matrices  [COR[i, k, m]:  0 £

k £2  j, 0 £ m £ 2 j].
The code below is wasteful evaluating some unnecessary things, but it provides plots of various quantities which are helpful to
understand the behavior of the algorithm.

nf3[[i]] is the number of components at a point i : We now for each point i in the domain of the input signal evaluate the smallest
eigenvalues Λ j of the matrices  [COR[i, k, m]:  0 £ k £2  j, 0 £ m £ 2 j].

For each point i we look for the smallest value of  j £ detect such that eigV @ j, iD = Λ j � H2 INT@ jD + 1L  < treshold noise;

variable nf[i] gives the number of sinusoidal components present over the interval [i-INT, i+INT].

NOTE: This is really not the right way of doing it; instead of comparing the eigenvalues with a  fixed treshold value, the decis-
sion should be made by comparing the eigenvalues of matrices of several orders. I'll post such algorithm after I return from my
trip, sometimes in early August.

To avoid errors present at the ends of the supports of the functions we take only those i which lie inside detected intervals at least
guard many sampling points:

In[130]:= nfc3 = Table@0, 8i, 1, length3<D;
In[131]:= jj = 1; kk = jj; left = 8<; right = 8<; nc = 8<;

While@kk < length3, 8 While@nf3@@kkDD � 0 && kk < length3, kk++D; xx = kk;

yy = kk; While@nf3@@yyDD ¹ 0 && yy < length3, yy++D; zz = Round@1 � 2 Hxx + yyLD;
pp = 0; qq = 0; While@zz - pp > xx && nf3@@zz - Hpp + 1LDD == nf3@@zzDD, pp++D;
While@zz + qq < yy && nf3@@zz + 1DD == nf3@@zzDD, qq++D;
If@pp ³ guard && qq ³ guard, 8Do@nfc3@@zz - rDD = nf3@@zzDD, 8r, 0, pp - guard<D;

Do@nfc3@@zz + rDD = nf3@@zzDD, 8r, 1, qq - guard<D; left = Append@left, zz - Hpp - guardLD;
right = Append@right, zz + Hqq - guardLD; nc = Append@nc, nf3@@zzDDD;<D; kk = yy;<D;

In[132]:= Do@LIMIT@jD = Table@treshold cut, 8i, 1, length3<D, 8j, 1, detect<D
The plot below compares the number of components as established by the algorithm (nfc3) and the true number Nums  obtained
from the definition of the signal:
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In[133]:= ListPlot@8nfc3, 1.1 Nums3<, Joined ® True, PlotRange ® All, ImageSize ® 600D

Out[133]=
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Plotting the smallest eigenvalues of the matrices [COR[i, k, m]:  0 £ k £2  j, 0 £ m £ 2 j] and comparing them with the treshold
value  treshold cut;  regions where the minimal eigenvalues dip bellow the value treshold  cut  correspond to intervals detected
by the algorithm, and the smallest rank of the matrix  [COR[i, k, m]:  0 £ k £2  j, 0 £ m £ 2 j] for which this happens determines
the number of components, because it is equal to  

In[134]:= NC = Table@numsin@2 jD, 8j, 1, number<D;
LEFT@add_D := TableB-add + L + 1 + 31 + 2 size@1D + 1 +

31 + 1 + â
j=1

k-1 H2 size@2 jD + 1 + 31 + 2 size@2 j + 1D + 1 + 31L, 8k, 1, number<F;
RIGHT@add_D := TableBadd + L + 1 + 31 + 2 size@1D + 1 + 31 + 2 size@2 kD + 1 +

â
j=1

k-1 H2 size@2 jD + 1 + 31 + 2 size@2 j + 1D + 1 + 31L, 8k, 1, number<F;
FREQ = Table@Table@freq@j, 2 kD, 8j, 1, numsin@2 kD<D, 8k, 1, number<D;
DAMP = Table@Table@damp@j, 2 kD, 8j, 1, numsin@2 kD<D, 8k, 1, number<D;

In[139]:=

In[140]:=

Do@ PLT1@jD = ListPlot@8eigenVF3@jD, LIMIT@jD, .1 Nums3<,
PlotStyle ® 8Red, Blue, Green, Orange<, Joined ® TrueD, 8j, 1, detect<D;

GraphicsColumn@Table@PLT1@jD, 8j, 1, detect<D, ImageSize ® 600D

Out[140]=
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Out[140]=
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Out[140]=
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We now find the eigenvector which corresponds to the appropriate minimal eigenvalue, see paper [1] for the details

In[141]:= MR3 = Table@2 detect + 1, 8i, 1, length3<D;
In[142]:= Do@MR3@@iDD = 2 nfc3@@iDD + H2 detect + 1L H1 - Sign@nfc3@@iDDDL, 8i, 1, length3<D;
In[143]:= P3 = Table@0, 8i, 1, length3<D;
In[144]:= Do@P3@@iDD = If@MR3@@iDD < 2 detect + 1, Table@crl2@nfc3@@iDD, k, mD@@i + clDD,8k, 0, Min@MR3@@iDD, 2 detectD<, 8m, 0, Min@MR3@@iDD, 2 detectD<DD, 8i, 1, length3<D;
In[145]:= F3 = G3 = SolZ3 = solB3 = TZB3 = TZD3 = Table@0, 8i, 1, length3<D;
In[146]:= Do@If@MR3@@iDD < 2 detect + 1,

F3@@iDD = Chop@Eigenvectors@P3@@iDD, -1DD@@1DDD, 8i, 1, length3<D;
In[147]:= Do@If@MR3@@iDD < 2 detect + 1, G3@@iDD =

Table@X@kD ® F3@@iDD@@k + 1DD, 8k, 0, Min@8MR3@@iDD, 2 detect<D<DD, 8i, 1, length3<D;
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In[148]:= im@t_D = Im@tD;
Finally, to retrieve the frequencies we solve the corresponding algebraic equation and isolate the imaginary parts (frequencies)
and the real parts (damping factors):

In[149]:= DoBIfBMR3@@iDD < 2 detect + 1,

:SolZ3@@iDD = SolveB â
k=0

MR3@@iDD
X@kD NAH-ILk TN@k, -I zDE � 0 �. G3@@iDD, zF;

solB3@@iDD = Table@z �. SolZ3@@iDD@@jDD, 8j, 1, Dimensions@SolZ3@@iDDD@@1DD<D;
TZB3@@iDD = Table@-Im@SortBy@solB3@@iDD, imDD@@jDD,8j, 1, Round@Dimensions@solB3@@iDDD@@1DD � 2D<D;
TZD3@@iDD = Table@Re@SortBy@solB3@@iDD, imDD@@jDD,8j, 1, Round@Dimensions@solB3@@iDDD@@1DD � 2D<D; >,

8 TZB3@@iDD = Table@80<, 8m, 1, detect<D; TZD3@@iDD = Table@80<, 8m, 1, detect<D<F, 8i,
1, length3<F;

In[150]:= NFC3 = Table@If@nfc3@@iDD - j ³ 0, 1, 0D, 8j, 1, detect<, 8i, 1, length3<D;
In[151]:= Do@FREQQ3@jD = Flatten@Flatten@

Table@If@nfc3@@iDD - j ³ 0, TZB3@@iDD@@jDD, 0D, 8i, 1, length3<DDD, 8j, 1, detect<D;
In[152]:= Do@

DMP3@jD = Flatten@Flatten@Table@If@nfc3@@iDD - j ³ 0, TZD3@@iDD@@jDD, 0D, 8i, 1, length3<DDD,8j, 1, detect<D;
In[153]:= Do@FREQQ3@jD = FREQQ3@jD NFC3@@jDD, 8j, 1, detect<D;

Do@DMP3@jD = DMP3@jD NFC3@@jDD, 8j, 1, detect<D;
The rest of the code is just for counting the hits, misses of itervals sought, the number of itervals which got split or merged
together and intervals over which a large error of frequency of estimation was made.

In[155]:= Do@Markers@wD = Join@Table@0, 8i, 1, L + 1<D, Flatten@Table@Join@Table@0, 8i, 1, 31<D,
Table@Sign@max - numsin@iDD freq@w, iD, 8t, -size@iD, size@iD<DD, 8i, 1, num<DD,

Table@0, 8i, 1, 31<D, Table@0, 8k, 1, L<DD, 8w, 1, max - 1<D;
In[156]:= Do@Markers3@wD = Take@Markers@wD, 8dist3 + 1, length - dist3<D, 8w, 1, max - 1<D;
In[157]:= Do@DMarkers@wD = Join@Table@0, 8i, 1, L + 1<D, Flatten@Table@Join@Table@0, 8i, 1, 31<D,

Table@Sign@max - numsin@iDD damp@w, iD, 8t, -size@iD, size@iD<DD, 8i, 1, num<DD,
Table@0, 8i, 1, 31<D, Table@0, 8k, 1, L<DD, 8w, 1, detect<D;

In[158]:= Do@DMarkers3@wD = Take@DMarkers@wD, 8dist3 + 1, length - dist3<D, 8w, 1, detect<D;
In[159]:= dmp3 = fr3 = Table@0, 8k, 1, detect<, 8i, 1, length3<D;
In[160]:= Do@NFC3@@k, 1DD = 0, 8k, 1, detect<D;
In[161]:= Do@8x = 8<; s = 8<;

Do@8If@NFC3@@k, iDD == 1, 8If@NFC3@@k, i - 1DD == 0, y = iD; x = Append@x, FREQQ3@kD@@iDDD;
s = Append@s, DMP3@kD@@iDDD; If@NFC3@@k, i + 1DD == 0, 8

m = Median@xD; n = Median@sD;
Do@8fr3@@k, jDD = m; dmp3@@k, jDD = n<, 8j, y, i<D; x = 8<; s = 8<;<D<,8fr3@@k, iDD = 0; dmp3@@k, iDD = 0;<D<, 8i, 2, length3 - 1<D<, 8k, 1, detect<D;

28   frequency_estimation_tutorial.nb



In[162]:= left3 = Join@left, 8¥<D; right3 = Join@right, 8¥<D; LEFT3 = Join@LEFT@0D - dist3, 8¥<D;
RIGHT3 = Join@RIGHT@0D - dist3, 8¥<D; nc3 = Join@nc, 8¥<D; NC3 = Join@NC, 8¥<D;
FREQ3 = Join@FREQ, 8¥<D; DAMP3 = Join@DAMP, 8¥<D;
FoundF = 8<; count = Table@i, 8i, 1, number<D;
hits = spur = miss = split = fused = misclassified = 0; Index = 8<;H* MatrixForm@8left3,right3,nc3<D
MatrixForm@8LEFT3,RIGHT3,NC3,FREQ3<D
Table@fr3@@k,left3@@1DD+1DD,8k,1,nc3@@1DD<D8hits,miss,spur,misclassified, split,fused<
Index *L

In[165]:=

In[166]:= While@left3 ¹ 8¥< ÈÈ LEFT3 ¹ 8¥<,
If@Max@left3@@1DD, LEFT3@@1DDD £ Min@right3@@1DD, RIGHT3@@1DDD,8While@left3@@2DD £ RIGHT3@@1DD,8left3 = Rest@left3D; right3 = Rest@right3D; nc3 = Rest@nc3D; split++<D;

While@LEFT3@@2DD £ right3@@1DD, 8LEFT3 = Rest@LEFT3D; RIGHT3 = Rest@RIGHT3D;
NC3 = Rest@NC3D; FREQ3 = Rest@FREQ3D;
DAMP3 = Rest@DAMP3D; count = Rest@countD; fused++<D;

If@nc3@@1DD == NC3@@1DD , 8hits++; Index = Append@Index, count@@1DDD;
FoundF = Append@FoundF, Table@fr3@@k, left3@@1DDDD, 8k, 1, nc3@@1DD<DD;
errF@hitsD = Table@Abs@fr3@@k, left3@@1DDDD - FREQ3@@1, kDDD, 8k, 1, nc3@@1DD<D;
errD@hitsD = Table@Abs@dmp3@@k, left3@@1DDDD + DAMP3@@1, kDDD, 8k, 1, nc3@@1DD<D<,

misclassified ++D;
left3 = Rest@left3D; right3 = Rest@right3D; LEFT3 = Rest@LEFT3D;
RIGHT3 = Rest@RIGHT3D; nc3 = Rest@nc3D; NC3 = Rest@NC3D;
FREQ3 = Rest@FREQ3D; DAMP3 = Rest@DAMP3D; count = Rest@countD;<D;

If@right3@@1DD < LEFT3@@1DD,8spur++; right3 = Rest@right3D; left3 = Rest@left3D; nc3 = Rest@nc3D;<D
If@RIGHT3@@1DD < left3@@1DD, 8miss++; RIGHT3 = Rest@RIGHT3D; LEFT3 = Rest@LEFT3D;

NC3 = Rest@NC3D; FREQ3 = Rest@FREQ3D; DAMP3 = Rest@DAMP3D; count = Rest@countD;<D; D;H* MatrixForm@8left3,right3,nc3<D
MatrixForm@8LEFT3,RIGHT3,NC3,FREQ3<D
Table@fr3@@k,left3@@1DDDD,8k,1,nc3@@1DD<D8hits,miss,spur,misclassified, split,fused<
Index

count *L
In[167]:= Do@errorF@kD = 8<; ErrorD@kD = 8<;

Do@If@Dimensions@errF@iDD@@1DD ³ k, 8errorF@kD = Append@errorF@kD, errF@iD@@kDDD;
ErrorD@kD = Append@ErrorD@kD, errD@iD@@kDDD;<D, 8i, 1, hits<D, 8k, 1, detect<D;

Do@ErrorFR@kD = Select@errorF@kD, ð < .3 &D, 8k, 1, detect<D;
Do@GrossErrorFR@kD = Select@ErrorFR@kD, ð ³ .3 &D, 8k, 1, detect<D;

In[170]:= adt = 8;
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In[171]:= Do@SIG1add@kD = Take@Signal + noise NOISE, 8LEFT@adtD@@kDD, RIGHT@adtD@@kDD - 1<D,8k, 1, number<D;
Do@SIG2add@kD = Take@Signal + noise NOISE, 8LEFT@2 adtD@@kDD, RIGHT@2 adtD@@kDD - 1<D,8k, 1, number<D;
Do@F1add@kD = Table@f@2 k, centerf@2 kD + m � 2D, 8m, -size@2 kD - adt, size@2 kD + adt - 1<D,8k, 1, number<D;
Do@F2add@kD = Table@f@2 k, centerf@2 kD + m � 2D, 8m, -size@2 kD - 2 adt, size@2 kD + 2 adt - 1<D,8k, 1, number<D;
GR0 = Grid@88"total number of segments"<, 8number<<, Frame ® AllD;
GR2 = Grid@88"hits", "misses", "spurious", "misclassified", "split", "fused"<,8hits, miss, spur, misclassified, split, fused<<, Frame ® AllD;
GR1 = Grid@8Join@8"number of components"<, Table@i, 8i, 1, detect<DD,

Join@8"number of segments"<,
Table@Dimensions@Select@Table@numsin@iD, 8i, 1, num<D, Hð == kL &DD@@1DD,8k, 1, detect<DD<, Frame ® AllD;

GR3 = Grid@Join@88"error RMS", "error mean", "error median",

"error maximum", "gross error maximum"<<,
Table@8RootMeanSquare@Join@ErrorFR@kD, 80<DD, Mean@Join@ErrorFR@kD, 80<DD,

Median@Join@ErrorFR@kD, 80<DD, Max@Join@ErrorFR@kD, 80<DD,
Max@Join@GrossErrorFR@kD, 80<DD <, 8k, 1, detect<DD, Frame ® AllD;

Do@8
LSP1@nnD = ListPlot@Table@8j, Take@Abs@Fourier@SIG1add@Index@@nnDDDDD,81, Round@Dimensions@Fourier@SIG1add@Index@@nnDDDDD@@1DD � 4D + 1<D@@j + 1DD<,8j, 0, Round@Dimensions@Fourier@SIG1add@Index@@nnDDDDD@@1DD � 4D<D,

ImageSize ® 400, PlotRange ® 80, Max@Abs@Fourier@SIG1add@Index@@nnDDDDDD + .5<,
GridLines ® 8Join@88Pi Dimensions@SIG1add@Index@@1DDDD@@1DD � H4 PiL, 8Orange<<<,

Table@8FREQ@@Index@@nnDD, jDD Dimensions@SIG1add@Index@@nnDDDD@@1DD � H4 PiL, 8Red<<,8j, 1, numsin@2 Index@@nnDDD<D,
Table@8FoundF@@nn, jDD Dimensions@SIG1add@Index@@nnDDDD@@1DD � H4 PiL,8Blue, Dashed<<, 8j, 1, numsin@2 Index@@nnDDD<DD, 8<<,

PlotMarkers ® 8Automatic, Medium<, Axes ® True, PlotLabel -> "DFT"D ;

LSP2@nnD =

ListPlot@8SIG2add@Index@@nnDDD, F2add@Index@@nnDDD<, GridLines ® 888adt, 8Blue, Thick<<,82 adt, 8Red, Thick<<, 8Dimensions@SIG2add@Index@@nnDDDD@@1DD - adt, 8Blue, Thick<<,8Dimensions@SIG2add@nnDD@@1DD - 2 adt, 8Red, Thick<<<, 8<<,
Joined ® True, PlotLabel -> "Signal segment", ImageSize ® 400D;

GR6@nnD = Grid@88LSP1@nnD<, 8LSP2@nnD<<, Spacings ® 85<D;
GR4@nnD = Grid@Transpose@

Join@88"component", "actual frequency", "measured frequency", "absolute error"<<,
Table@8j, FREQ@@Index@@nnDD, jDD, FoundF@@nn, jDD, Abs@FREQ@@Index@@nnDD, jDD -

FoundF@@nn, jDDD<, 8j, 1, numsin@2 Index@@nnDDD<DDD, Frame ® AllD;
GR5@nnD = Grid@88"index", "segment index", "ð of components"<,8StringJoin@IntegerString@ nnD, " H<", IntegerString@Dimensions@IndexD@@1DDD, "L"D,

Index@@nnDD, numsin@2 Index@@nnDDD<<, Frame ® AllD;<, 8nn, 1, Dimensions@IndexD@@1DD<D;
EXPLANATION OF TABLES AND PLOTS:

First         table: total number of functions  (segments of) and their corresponding supports:
Second              table:  number  of  segments  with  the  given  number  of  components  as
CORRECTLY identified by the algorithm;
Third           table: the number of correctly found segments (hits), the number of segments algo-
rithm has missed (misses); the number of spurious segments, i.e, segments not originally
inserted by the signal generation algorithm but which happen to look like ones; this can
hapopen in the patches between legitimate segments.

PLOTS: You can stroll through correctly identified segments using the 4 "arrow buttons" above
the plots (the left corner of the "slide view"). The first plot gives the modulus of the DFT over
the entire segment where the approximation is good, see the second plot. Thus: on the second
plot  the  vertical  red grid  lines  correspond  to  the  support  boundaries  of  each signal  segment
joined into the input signal; the blue gridlines correspond to the boundaries of the interpolation
over which the signal remains a good approximation. For our chosen degree of smoothenes as
ensured by interpolation  (15) this is about 4 Nyquist rate unit  intervals;  since we oversample
twice, this provides about 8 additional sampling pints on each side of the support,  see [4] for
details.

Inside the slide view the first table gives the ordinal number of each correctly identified interval,
its index in the sequence of signals and its number of sinusoidal components; the second table
gives actual frequency of each component, the corresponding  measured frequency as obtained
by the algorithm and the absolute error.  the secon plot  gives the waveform of the true signal
component f[i,t] which is a sum of several sinewaves  (red), the waveform of the noisy signal as
obtained by patching these pieces together, corrupting them with noise and sampling them.

Second plot shows DFT part which is within the signal bandwidth (orange grid line), red grid-
lines shows the true frequncies of each component, the blue gridlines the established frequency
estimates.

Second plot shows DFT part which is within the signal bandwidth (orange grid line), red grid-
lines shows the true frequncies of each component, the blue gridlines the established frequency
estimates.
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First         table: total number of functions  (segments of) and their corresponding supports:
Second              table:  number  of  segments  with  the  given  number  of  components  as
CORRECTLY identified by the algorithm;
Third           table: the number of correctly found segments (hits), the number of segments algo-
rithm has missed (misses); the number of spurious segments, i.e, segments not originally
inserted by the signal generation algorithm but which happen to look like ones; this can
hapopen in the patches between legitimate segments.

PLOTS: You can stroll through correctly identified segments using the 4 "arrow buttons" above
the plots (the left corner of the "slide view"). The first plot gives the modulus of the DFT over
the entire segment where the approximation is good, see the second plot. Thus: on the second
plot  the  vertical  red grid  lines  correspond  to  the  support  boundaries  of  each signal  segment
joined into the input signal; the blue gridlines correspond to the boundaries of the interpolation
over which the signal remains a good approximation. For our chosen degree of smoothenes as
ensured by interpolation  (15) this is about 4 Nyquist rate unit  intervals;  since we oversample
twice, this provides about 8 additional sampling pints on each side of the support,  see [4] for
details.

Inside the slide view the first table gives the ordinal number of each correctly identified interval,
its index in the sequence of signals and its number of sinusoidal components; the second table
gives actual frequency of each component, the corresponding  measured frequency as obtained
by the algorithm and the absolute error.  the secon plot  gives the waveform of the true signal
component f[i,t] which is a sum of several sinewaves  (red), the waveform of the noisy signal as
obtained by patching these pieces together, corrupting them with noise and sampling them.

Second plot shows DFT part which is within the signal bandwidth (orange grid line), red grid-
lines shows the true frequncies of each component, the blue gridlines the established frequency
estimates.

Second plot shows DFT part which is within the signal bandwidth (orange grid line), red grid-
lines shows the true frequncies of each component, the blue gridlines the established frequency
estimates.
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First         table: total number of functions  (segments of) and their corresponding supports:
Second              table:  number  of  segments  with  the  given  number  of  components  as
CORRECTLY identified by the algorithm;
Third           table: the number of correctly found segments (hits), the number of segments algo-
rithm has missed (misses); the number of spurious segments, i.e, segments not originally
inserted by the signal generation algorithm but which happen to look like ones; this can
hapopen in the patches between legitimate segments.

PLOTS: You can stroll through correctly identified segments using the 4 "arrow buttons" above
the plots (the left corner of the "slide view"). The first plot gives the modulus of the DFT over
the entire segment where the approximation is good, see the second plot. Thus: on the second
plot  the  vertical  red grid  lines  correspond  to  the  support  boundaries  of  each signal  segment
joined into the input signal; the blue gridlines correspond to the boundaries of the interpolation
over which the signal remains a good approximation. For our chosen degree of smoothenes as
ensured by interpolation  (15) this is about 4 Nyquist rate unit  intervals;  since we oversample
twice, this provides about 8 additional sampling pints on each side of the support,  see [4] for
details.

Inside the slide view the first table gives the ordinal number of each correctly identified interval,
its index in the sequence of signals and its number of sinusoidal components; the second table
gives actual frequency of each component, the corresponding  measured frequency as obtained
by the algorithm and the absolute error.  the secon plot  gives the waveform of the true signal
component f[i,t] which is a sum of several sinewaves  (red), the waveform of the noisy signal as
obtained by patching these pieces together, corrupting them with noise and sampling them.

Second plot shows DFT part which is within the signal bandwidth (orange grid line), red grid-
lines shows the true frequncies of each component, the blue gridlines the established frequency
estimates.

Second plot shows DFT part which is within the signal bandwidth (orange grid line), red grid-
lines shows the true frequncies of each component, the blue gridlines the established frequency
estimates.

In[180]:= Grid@88GR0<, 8GR1<, 8GR2<, 8GR3<<D

Out[180]=

total number of segments

30

number of components 1 2 3

number of segments 11 7 12

hits misses spurious misclassified split fused

29 0 0 1 0 0

error RMS error mean error median error maximum gross error maximum

0.00164239 0.000999475 0.000695868 0.00694469 0

0.0110914 0.00569946 0.00254822 0.0356536 0

0.0295155 0.0219122 0.0168158 0.0758692 0
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In[181]:= SlideView@Table@Grid@88GR5@iiD<, 8GR4@iiD<, 8GR6@iiD<<D, 8ii, 1, Dimensions@IndexD@@1DD<DD

Out[181]=

  Ç Å ¡

index segment index ð of components

5 H<29L 5 2

component 1 2

actual frequency 2.3232 0.728625

measured frequency 2.32487 0.733689

absolute error 0.00166883 0.00506362
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ENJOY playing with chromatic derivatives and PLEASE do not hesitate to get in touch with
me if you have ANY questions or comments. I am leaving Sydney in two hours time going to
Serbia and Greece; will be back at the end of July; I might have internet access whle at home in
Serbia. 
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