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Abstract—Given a band limited signal which over some dis- the use of windowing in the Fourier transform based methods,
joint intervals of time I,, behaves as a corresponding linear pecause whether a signglt) satisfies a differential equation
combination f..(t) of up to N damped sinusoids, we present o 5 particular instant in time is a purely local feature of

a method which detects intervalsl,,, determines the number of the si | det ined by its behavior i bitrarily 9
the sinusoidal components over each interval and estimataheir € signal, determined by Its behavior in an arbitrarily a

frequencies, with high accuracy and in the presence of noise N€ighborhood around this instant.
which is not necessarily white. IntervalsZ,, can have very short The above strategy, however, immediately raises a concern:
duration of just a dozen Nyquist rate intervals, thus insufficient  if we are looking for sections of the signal which are sums of,
for use of the Fourier transform based methods. Our method g4y f6r sine waves, this would involve evaluating diffeial
operates entirely in the time domain; to be applicable, the ignal ; . . - .
must be sampled at twice the Nyquist rate. It is based on operators of or_der e!ght, aF_’p'!ed to a noisy .S|gnal. As is wel
analyzing local signal behavior using special, numericafi robust ~Known, numerical differentiation of such high order result
linear differential operators, called the chromatic derivatives, in insurmountable numerical problem3his is where the
which were introduced relatively recently, and which hold &  chromatic derivatives crucially interven€hromatic deriva-
unexplored promise in signal and image processing. tives are special linear differential operators with canst
coefficients whose numerical evaluation is highly accuasig
noise robust, even for operators of very high ordefr2().
Estimation of frequencies of several sinusoids in the pres-
ence of noise usually relies on evaluation of some form of !l- A BRIEF SUMMARY OF CHROMATIC DERIVATIVES
the Fourier transform of a section of the signal. However, As is well known, truncations of the expansion of-#and
“viewing” the signal through a window distorts its Fouriedimited signal of finite energyf € BL(r), provided by the
transform, by convolving it with the Fourier transform okth Sampling Theoremf(t) = >°° ___ f(n) sinc (¢ —n), do not
window. As a consequence, the resulting side lobes of strop@vide good local signal approximations, because theegalu
sinusoidal components and the noise can mask the main lobésinc (¢ — n) decay slowly agn| grows. Thus, to achieve a
of the weaker components. good local approximation, a very large number of the Nyquist
Unlike the Fourier transform methods which allow spectrahte sampleg(n) are required.
analysis of a vast class of signals, our approach uses a thethoOn the other handBL(r) signals are analytic functions
which is applicable only to signals which, over intervals ofvhich can be locally represented by the truncations of the
interest, are sums of a small number of (possibly dampeMylor expansionf(t) = >.°°, f™(0) t"/n!. Note that
sinusoids. Such highly specific method allows accuratenesti Taylor’'s expansion is local in nature, because the values of
tion of frequencies of the sinusoidal components even if thehe derivativesf(™ (0) are determined by the values of the
duration is only a dozen or so Nyquist rate intervals and é tlsignal in an arbitrarily small neighborhood of zero.
presence of colored noise, provided that the signal is sednpl However, Taylor’s formula has found very limited use in
at twice the Nyquist rate. The method is based on the follgwirsignal processing. This is due to the fact that an accurate
well known fact: A function f is a linear combination of evaluation of derivatives of higher orders from discretésyo
n exponentially damped and phase shifted sinusoids over semples of a signal is essentially impossible. Moreoves, th
interval I if and only if f satisfies ol a homogeneous linear functions used in the expansion, i.e., the monomi&l4n!,
differential equation with constant coefficients of order. do not correspond to band limited signals; the approximatio
Thus, we design our algorithm by refining the followings unbounded, it converges neither uniformly noriip and
basic idea. We sequentially examine sections of the sigral oits error increases rapidly when moving away from the center
short intervals of time, looking for the smallest< N for of expansion. Chromatic derivatives and chromatic exmanssi
which there is a differential equation of ord2n which is were introduced in [1] and [2], respectively, to provide a
satisfied by such section of the signal, modulo an error whiclumerically feasible framework for numerical differetide
is commensurate with the level of the noise presiote that and for local approximation of band limited signals which do
the fact that the signal is analyzed over short intervalsrokt not suffer from the above problems. They were first published
has no negative consequences similar to those associatied i [3]—[5]; their properties were examined in detail in [

I. INTRODUCTION



differential operators with constant coefficients obtdifimm
suitably chosen families of orthonormal polynomi&ihus,

let polynomialsP, (w) satisfy f _é E
S Pa(@) P (w)w(w)dw = §(m — n), 1) —0.5+

1) Chromatic derivativesChromatic derivatives are linear \ k
05

wherew(w) is a non-negative symmetric weight function. We
define linear differential operators associated with sachilfy Fig. 1. Graphs ofw/m)™ (left) and P (w) (right) for n = 15 to n = 18.

of orthonormalpolynomials by the operator polynomials Remez exchange method and are both very accurate and noise

K'=(=)"Pn (7 &) (2) robust. For example, 829 tap transversal filter approximating
N differential operatorkC*® corresponding to the re-scaled and
Thus,K" is obtained by replacing” in P, (w) by j* <= f(t). normalized Legendre polynomial of order 15, with pass-band
It is easy to verify that occupying 90% of the intervdl-7/2, 7/2] and the transition
nlajwt] _ in j wt region extending 10% of the bandwidtty2 on each side of
Kile? ]A_ J" Palw) &7 ® the boundaries-7/2 and /2, outsid:ttr:le transition region
Thus, if f € BL(n) and f(w) is its Fourier transform, then has an error of approximation smaller thag x 10~%.
n T . > - 2) Chromatic approximations:Chromatic derivatives can
K1) = 55 7 3" Pa(w) f(w)e? < duw. ) pe used to produce local approximations of band limited
PolynomialsP, (w) satisfy that for everys < 7 there exists signals which do not suffer from the mentioned shortcomings
M > 0 such that|P,(w)| < M for all n and all |w| < a. ©f the Taylor expansion; we formulate here only the special
In comparison, if we normalize the “standard” derivatives scase corresponding to the Legendre polynomials normalized
that the magnitudes of their frequency responses are bdunded rescaled to—, 7|; for the general case see [7] or [8].

uniformly in n, we get Proposition 2.1:Let K™ be the chromatic derivatives as-
(n) R sociated with the Legendre polynomials, and fét) be any
20 = L7 (2)" fw)ed “dw. (5)  function analytic onR; then for allt € R,
Figure 1 compares the plots of the transfer functi " ) n n o
g P P ongr) F0) = S3y(~1)" K™{f)(u) K" [sinc](t — u).

of the normalized derivatives/7™ d™/d¢™ (modulo a factor

of ;") with the plots of the transfer function8}(w) of the |f in addition f € BL(x), then the series converges uniformly
chromatic derivative&" associated with the (normalized anthn R and in theL, norm.
re-scaled) Legendre polynomials (rightpPlots on the left  The series in (6) is callethe chromatic expansion of
reveal why numerical evaluation of higher order derivativeyssociated with the Legendre polynomjasgruncation of this
from signal samples makes no practical sense: multipinatiseries to first: + 1 terms is called @hromatic approximation
of the Fourier transform of a signal by the transfer functiogs f of ordern. Just as Taylor's approximation, a chromatic
of a derivative of high order essentially obliterates thecsp approximation is also a local approximation: its coeffitgen
trum of the signal, leaving only its edges, which in practicgre the values of differential operatok@™[f](u) at a single
contain mostly noise. Note also that the graphs of the teainsfstant v, and the values of its derivatives of orders up to
functions of the normalized derivatives of high orders afd ¢, t instantu are equal to the values of the corresponding
the same parity cluster together tightly, becoming esalti chromatic derivatives of (t). However, unlike the monomials
indistinguishable. in the Taylor formula, expansion functior§”[sinc](t) are

In comparison, Figure 1 (right) shows that the transfgjang limited signals, and the above theorem indicates tieat t
functions of the chromatic derivatives™ form a family of  approximation error accumulates much slower than the error

well separated, interleaved and increasingly refined comyythe Taylor approximation of the same order.
like filters. Instead of obliterating, such operators erctite

spectral features of the signal and for this reason we call IIl. FREQUENCYESTIMATION

operatorsKC™ the chromatic derivatives . . .
Chromatic derivatives replace the usual bégef’, f”,...} Assume that 8BL(7/2) signal f(t) is sampled at integers,

of the vector space of linear differential operators with affius at twice the Nygist rate, and that such samples are
orthonormal base which has many remarkable properties. COTTupted by a zero mean WSS stochastic neigg, with
First of all, chromatic derivatives can be evaluated usirgI autocorrelation function(k). The power spectral density
FIR filters operating on samples of the signal taken at twi@} the noise is therb(w) = > 0= r(k)e 7wk, Let p? =
the Nyquist rate. Such filters can be designed using ttfér,/j2 S(w)dw; Thus,p is equal to the RMS value of the noise

component which is within the bandwidth ¢ft).

1See [8] for the details regarding which families of orthoglopolynomials Let (w) — 1 for |w| < 7.‘./2 and zero otherwise
produce satisfactory families of chromatic derivatives. X /2 L . ’
2Such polynomials are obtained by taking fofw) appearing in (1) the and let Pn(w) be the fam'ly of p0|ynom|als orthonormal

1

constant weight functiom(w) = (27) 1. on [—m,m] with respect to the weight functiom(w) =



1/(27p?)S(w)Xr/2(w), i.e., such that Clearly, £ {R()?)] > p? and, since the transversal filters
™ " lose approximations of differential operatdcs,
L™ Py(w) P (w)S(w) X j2(w)dw = 8(m —n)p?. (6) " AEE
27 S Pnl@) P (@) S(@)xr2 (@) = 3(m =)o (8) E |R(X)| ~ p? if and only if f(t) satisfies the differential
This is equivalent to saying tha®,(w/2) are orthonormal equationB[f](z) = 0 at instantsz = £,...¢ + Q.
on [—7727 7| with respect to the weight functiom™(w) = Thus, to determine iff satisfies a differential equation of
1/(2mp”)S(w/2). Let K™ be the chromatic derivatives whichorger N over|t, t+@Q)], we should find¥ which minimizes the
correspond to the polyn2m|a&(w/2)_ via (2). value of R(X) and see if such value is approximately equal
(Ij_et ]5 = 2in=0 )fjnlc Ee S”y dlf;erintlal qpe(;atqr 9f to 2. To find the minimum of(X) subject to the constraint
e, oo n e b f comate S~ ey h Lapanganmulplers and et
' . n=0“‘n . zero the partial derivatives with respect to a new varighéed
RS = 2= L Apf(t+p) be a2l + 1 tap transversal yariablesX,, ..., Xy, of the objectiveR(X) — 83N X2.
filter approximation of™[f](¢), and letb = Zﬁ;o X, k" be Letting £, () = f(t)+v(¢), this gives the following equations:
the corresponding FIR approximation 8f Then (4) implies || X||? = 1, plus for eachm, 0 < m < N,

Soro_p AeT TP & 7 P (W)X 2 (w) (7) Q N
o 2 X+ 30 Xk L+ PR+ p) = 0. (14)

for all |w| < = and thus (6) implies 7=0 m0

1 (T L L nym —jw(g—p—k)
2 Jow 2t D p AN Do TR o ) = L 59 (1] 4 )R (¢ 4p) and et
~ §" T (m = n)p?. (8) C = (C[m,n]),,,—,.y be the corresponding matrix; then the

Integrating term by term and collecting the non zero terms 200ve equations beconieX = (X, i.e, 7 is an eigenvalue of
L . - ) C andX is the corrgspond|?vg e|ge]|\‘]1vector of a unit norm. Note
2= 2= AT = p) R S(m —n)p®. (9)  that (12) impliesk(X) = Y1 _y >o0_o X X C[m, n]; thus,
Since E[v(t + p)v(t + q)] = r(q — p), (9) impies R(X) = (C X, X). SinceR(X) > p* > 0, C'is a symmetric
positive definite matrix and so all of its eigenvalues ardtpes
E [Z£:—L ZqL:—L Av(t+p)Av(t +q)| = 6(m —n)p?,  reals. If X is_the unit eigenvector for the eigenvalge then
. n m R(X)={(CX,X)=(8X,X) = g; thus, to minimizeR(X)
le.,  B[r"@)()r™@)(#)] & §(m —n)p®. (10) Wé rr)lust<choose>the<unit eigenvecﬁrcorresponding t(o the
Thus, if the filters are chosen to correspond to the pow&mallest eigenvalug,,. Consequently, we conclude that, with
spectral density of the noise, then the noise errors of diltetigh probability, () satisfies a differential equation of the
evaluating chromatic derivatives of different orders assem- form 27" X,,K"[f](t) = 0 over the intervalt,t + Q] just
tially uncorrelated and have an RMS value equal to the RM&case the smallest eigenvalfig of C is approximately equal
value of therr/2 in-band component of the noise. to p?, i.e., just in cases,, < cp? wherec > 1 andc ~ 1.
Sinceb[v|(t) is a finite linear combination of samples of If 3, ~ p? to find the fundamental solutions of the
v(t) and sincev is of zero meanb[v](t) is also of zero mean. corresponding differential equatioﬁjﬁ[:o XK f]#) = 0

Using linearity ofb, it is easy to see that this yields with the coefficients(Xy, ..., Xx) coming from the eigen-
9 9 9 vector corresponding to the smallest eigenvaldg of
E[(lf +vI(1))°] = Ol10))° + B [(0[](1)*] - C, we numerically solve the associated algebraic equation

This implies, with assumption thgt"_, X2 = 1, (10) and g)ir::j_uog)a({le(_pjazitp gf(_sjoil)nizngz' Teo;rrlﬁ?slnzayu;)glétr\ Oifse;feh
M M n m iy Zi
E [bM(t)Q] =k [Z”ZO 2om=o Xn X" [V](t)r [V](t)}’ frequencyw; and the real part is the damping fact@r of
2] _ 2, 2 its fundamental solutions’:*sin(w;t) and e%* cos(w;t); a
E [(b[f+ vI(8)) ] = (A" + 07 (11) linear combination of these fundamental solutions gives th
This is a remarkable fact, because it shows that, if th& sinusoidal component of the signal; to obtain the amplitude
chromatic derivatives are chosen to correspond to the povegrd the phase of such component (if needed) one must use
spectral density of the noise via (6), then the RMS impaititial conditions given byN + 1 particular values oK™ [f](u)
of the noise on any differential operatBr= """ X,K" is for somel <n < N, u € [t,t + Q).
independent of the values of the coefficiekifs and is always  3) Test results:To tests or frequency estimation algorithm,
equal to the RMS value of the in band component of the noisge have used a method described in [10] to join fragments
Let @ be any fixed natural numbera fixed instant of time of linear combinations of up tol damped or expanding
and X = (Xo,...,Xn). If we set sinusoids of frequencies of up td7x. Thus, for such class
> of sinusoids, sampling at integers is twice the Nyquist.rate
R(X)=1/(Q+ 1) 2 o0lf +vl(t+p)%  (12) These fragments of various durations were spaced at least 32
then, by (11), unit intervals apart. They were joined by fragmentsnof2
. band limited signals produced using chromatic approxiomati
E [R(X)} =1/(Q+1) X2 (blf1(t +p)2 + p*. (13) (Proposition 2.1), in a way which ensured that the resulting



interpolated signal has continuous derivatives of all csdg 20} - .
to fifteen. Such a smooth signal is guaranteed to have a very H H H H H
low content in frequencies abowve/2 due to a version of L5
a classical theorem in Harmonic Analysis, see [10]. In our
experiments out of band energy of such signals was less than YHL T
10~° of the total signal energy. The signal is then sampled at sl
integers, the samples are corrupted by white Gaussian noise M
v, and passed through the filter bafk™}$_, corresponding o R s o
to the Legendre polynomiafs.Signals with a low out of
band content can be accurately differentiated using chtioma 3.0
derivative filter banks, even in the presence of significamnen 250
We then calculate for every sampling point the correspond- . - e
ing valuesC[m, n] for all m, n < 8, with a value of@Q between H H H H H
12 and 20, depending on the maximal number of sinusoids to e
be detected, and form matricé§'[m,n])2F o, 1 < k < 4. 1oL M 0
We now look for the smallest < 4, if it exists, such that the 05 | i |
smallest eigenvalue oiC[m,n])2* _, is smaller thanl.1p. e e =0
d 200 400 600 800 100C

Figure 2 shows the plots of the values of the square root
of the smallest eigenvalue dfC[m,n]);, ,_, (top), and of Fig. 2. The smallest eigenvalue ¢€[m, n))4, n—o (top, black) and of
(C[m7n])3n,n20 (bottom), for the case where each fragmen©[m,n])?%, ,_, (bottom, black). Markers showing the position and the

was either a single damped sinusoid or sum of two su@HMPer of components of fragments in gray.

sinusoids, with the corresponding time supports represent \wjith signals consisting of linear combinations of at most

by the gray rectangles of height 1 or 2, respectively. Th@o sinusoids of equal amplitude and with supports16f

horizontal line Corresponds to the threShOIG’p for the S/N Samp”ng intervals the number of misses or Spurious inter-

of 25 db. The above plots show that the algorithm correcthals was less thar%5, with the RMS error of frequency

identifies fragment$,, as well as the number of sinusoids ovegstimation again smaller than01 radians. The same results

each fragment. More over, it also indicates that we do n@fere achieved with signals which are linear combinations of

need to know in advance the signal to noise ratio, because fiemost three sinusoids and with supports of lengtr2of

regions where the corresponding eigenvalues are contdysteBampling intervals. Finally, signals with four componehési

small over an interval can be identified and used to determiggpports of32 sampling intervals, thus with total duration of

the signal to noise ratio. about48 samples, i.e.24 Nyquist rate intervals. In this case
We now summarize the results of our preliminary testing @he number of misclassified intervals was abdiif; and the

a very direct implementation of the algorithm, which leavegccuracy of frequency estimation was abowe radians. The

much room for further improvement. programs used in simulations and the references can be found
We first generated a signal consisting of fragments of singie http://www.cse.unsw.edu.au/” ignjat/diff.
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