Frequency estimation using chromatic derivatives

Aleksandar Ignjatovic 2010 ©
Version 2.0, July 8, 2010.

Changes in version 2: (1) now no need to specify the SNR in the detection part of the algorithm - it is determined automatically (by a rough but
reasonably accurate hack which will be improved later) from the noisy signal alone, assuming that there are at least a few legitimate fragments; (2)
counters in the previous version were off and showed more errors than actually present; (3) much faster implementation with much less memory used.
Todo: (1) to clean up and include a new part of the code which increases noise robustness of the algorithm in away explained further in the tutorial; (2)
to implement colored noise environment; (3) to implement al of this and morrein Matlab, hopefully in August after | come back from atrip home.

I ntroduction

Thisis atutorial, which, besides implementing the frequency estimation algorithm from the paper [1] "Freguency estimation
using time domain methods based on robust differential operators', available at http://www.cse.unsw.edu.au/~ignjat/d-
iff/ is designed to illustrate along the way some useful and important properties of chromatic derivatives. Thus, there are lots of
things calculated which are unnecessary for the frequency estimation algorithm (and slow down everything a lot), but whose
values and plots highlight various features of chromatic derivatives. After the first reading, you might want to comment out the
parts of the code needed for plots, to have the program run much faster. Soon (hopefully in August) we will provide at at
http://www.cse.unsw.edu.au/~ignjat/diff/ a much faster Matlab implementation, as well as several improvements of the basic
algorithm implemented in this file, most notably one that makes the algorithm much more noise robust and can handle colored
noise, see later in thisfile.

Before each run you must quit the Mathematica kernel to clear all the variables; the last command Quit[] inthisfile doesthis
automatically after each run, but you lose the values computed but not printed out or plotted; if you comment it out, remember to
quit the kernel manually before each new run!

The paper we mentioned above, together with all other papers mentioned in this file and listed at the bottom of this tutorial, is
available at http://www.cse.unsw.edu.au/~ignjat/diff/.

The theory of chromatic derivatives is described in most detail in [2] "Chromatic Derivatives, Chromatic Expansions and
Associated Spaces', East Journal on Approximations, Volume 15, Number 3 (2009), 263-302, or, in a more condensed form, in
[3] "Chromatic derivatives and local approximations', IEEE Transactions on Signal Processing, Volume 57, Issue 8, 2009.

A good way to start isto read sections | and Il of that paper and then go through this tutorial up to the "Generating the Input
Signal" section, to see how the theory of chromatic derivatives works in practice (simulations). Then one can read [4] "Signal
interpolation using numerically robust differential operators’, to understand how we generate the input signal and then read/exe-
cute this tutorial up to "Frequency Estimation Section". Then one can read [1] "Frequency estimation using time domain
methods based on robust differential operators' and finally finish going through this tutorial.

At the moment, only the white noise environment is implemented. Thus, since the power spectrum density function of the noiseis
constant, the corresponding family of chromatic derivatives are the (normalized and rescaled) Legendre polynomials; see [1] for
the details. We will soon post a version for colored noise which first generates the right family of orthogonal polynomialsfrom
the power spectrum density of the noise, as explained in [1]. This version aso involves adapting the Remez exchange algorithm
to generate the FIR approximations of the corresponding differentiation filters.

2 | frequency_estimation_tutorial.nb

* % * * % % *x *x * % % *x * * % * *x * * *

IMPLEMENTATION

khkkkkkkkhkkhkkhkkikkikkk*k

We provide here some examples which we have used in testing. Choose which one you want to run by setting the value of "case";
see below for the range provided in this file.Each parameter is explained just before its use. NOTE: the parameters used for the
detection and estimation algorithm for a given minimal duration of segments minLength , such as INT[i] have NOT been opti-
mized at all, due to lack of time.

1= case =5; (* 1 - 6, see below x)
mnimum=1; (* mninml nunber of sinusoidal
conponents in fragnents to be generated in a random zed way =x)
maxi mum = detect; (= maxi mal nunber of sinusoidal conponents in fragnents
to be generated; "detect" (< 4) is the maxi mal nunber of conponents
whi ch the algorithm can detect (at the nmonent); fragnents containing
nore than "detect"” many sinusoids will be classified as transients =x)
nunber = 30; (» total number of segnments of signals to be detected x)

*kkhkkkkkkkkhkkkhkkhxkhkxkx A CHO'CE OF SOMEEXAMPLES kkkhkkkhkkhkhkhkhkkdxhxhhkrkhxdxhxx

Example: detecting pieces of length of only 2 Nyquist rate intervals which are single sinusoids, in SNR of 35db.

Note: Since the signal interpolation generates a 15 times continuously differentiable function, it produces on each side of a signal
support additional intervals of length 3-4 Nyquist rate intervals where the interpolated signal is still quite an accurate extrapola-
tion of the original signal as defined over its support; see [4] for details and the plots at the very end of thisfile. Thus, in case 1,
the signal support of 2 Nyquist rate intervals produces in effect approximately 8 - 10 Nyquist rate intervals long section of single
sinusoids. In fact, one can even set minLength to 0, which gives a support consisting of a single point; however, the (smoothnes
of) interpolation still produces an interval of lenth 6 to 8 (3-4 on each side of the single point of support) over which the signal is
a good approximation of a sine wave. If you set minLength to 0, set treshold to 3.5 and see what happens; however, the Fourier
Transform plots might be off in this extreme case, showing incorect measured frequency due to a small bug | have no time to
correct now...

frequency_estimation_tutorial.nb |3

nEp= | f [case =1, {
detect =1; (» maxi mal nunber of sinusoids to be detected;
it can range from1 to four, at the nonent;
hi gher val ues of detect and nore noise naturally need segnents of |onger duration =)
m nLength = 0; (» mnimal length of the support
of each segnment to be detected «)
maxLength = mi nLength; (= maximal |ength of supports of fragnents to be generated;
does not inpact detection.)
m nFreq = . 3; (» mnimal frequency of sinusoidal conponents in all fragnents;
at the nmonment we cannot handle DC but this can be fixed with
nore conplexity by |ooking at operators of odd order as well x)
maxFreq = 3; (» maxi mal frequency of sinusoidal conponents in all fragments x)
NDB = 25; (» Signal to Noise; noise is white Gaussian;
since the signal is twice oversanpled and the noise is WGA,
the bandwi dth of the noise is twice the signal bandw dth;
thus, signal to in-band noise is 3db higher «)
INT[1] = 4; (» the nunber of points over which the signal has to
satisfy a second order differential equation is equal to 2INT[1]+1;
if we are detecting nore sinusoids we need higher order differential operators
and they need different, longer supports so we will have bellow INT[2], INT[3],... %)
treshold = 3.5; (» the constant giving the multiple of the RVS of the
noi se whi ch bounds the square root of the mninmal eigenvalue of the
normal i zed correlation matrix; to be explained later and in the paper [1] =*)

guard = 0; (» number of points to throw away on the edges of detected
intervals to reduce the error and the false positives in detection stage x)
ampModi fy = 1; (» decrease of the anplitudes of the sinusoidal conponents;

if equal to 1, all components have the sane anplitude x)
I

Example: detecting pieces of length of only 4 Nyquist rate interval which are single sinusoids with SNR = 25db (thus,
together with a subsection of the interpolation between the fragments, in total about 10 - 12 Nyquist rate intervals long)

4= | f [case = 2, {
det ect = 1;
m nLength = 4;
maxLengt h = m nLengt h;
m nFreq = . 3;
maxFreq = 3;
NDB = 25;
treshold = 1. 6;
INT[1] = 6;
guard = 0;
ampModi fy = 1;
I3

LR R SR SRS EEEEEEEE R E R EE R E T E R EEEEEE R RS

Example: detecting pieces of length only 8 Nyquist rate intervals which are linear combinations of at most two sinusoids;
(thus, together with a part of interpolation, in total about 14 - 16 Nyquist rate intervals long)

4 | frequency_estimation_tutorial.nb

nep= | f [case = 3, {detect = 2;
m nLength = 8;
maxLengt h = m nLengt h;
mnFreq = . 3;
maxFreq = 3;

NDB = 25;
treshold = 1. 6;
guard = 4;

INT[1] = 6;
INT[2] = 10;
ampModi fy =1; }]

*hkkkkkhkkhkxhkhrkhkkkx

Example: detecting pieces of length 16 Nyquist rate intervals which arelinear combinations of at most three sinusoids

= | f [case == 4, {detect = 3;
m nLength = 16;
maxLength = m nLengt h;
m nFreq = . 3;
maxFreq = 3;

NDB = 30;
treshold = 1. 8;
guard = 5;

INT[1] = 8;

INT[2] = 12;

I NT[3] = 16;
anphodi fy =1; }1;

kkkhkkkkkkkhxhkkkhkxk

Example: detecting pieces of length 24 Nyquist rate intervals which are linear combinations of at most three sinusoids
with attenuation of amplitude

7= |1 f [case =5, {detect = 3;
m nLengt h = 24,
maxLength = m nLengt h;
m nFreq = . 3;
maxFreq = 3;

NDB = 30;

treshold = 1. 8;

guard = 5;

anpModi fy =.5;

INT[1] = 12; (* 6,8,12 x)
INT[2] = 16;

INT[3] = 20;
I

*hkkkkkhkkkxhkkrhhkxkx

frequency_estimation_tutorial.nb |5

Example: detecting pieces of length 32 Nyquist rateintervals which arelinear combinationsof at most four sinusoids

In[8]:=

| f [case = 6, {detect =4;
m nLength = 32;
maxLength = m nLengt h;
m nFreq = . 3;

maxFreq = 3;
NDB = 35;
treshold = 2;
guard = 10;
anmp©odi fy = 1;
INT[1] = 8;
INT[2] = 16;
INT[3] = 20;
I NT[4] = 24,
I

kA A A A A hhhh Ak hkhhkhhkhhkhhhkhhkhhkhhhkhhkhhkhhhhhkhhhhhhhhhhhrhrhhhdrdrhhrdhrdrhhrdhxdx

Loading Filters:

We start by specifying which filterbanks of chromatic derivatives we are going to use.

Note:

1) Filtersare applied to twice oversampled signals;

2) The Legendre polynomials correspond to the white Gaussian noise; later we will extend the simulation to colored noise.

We define the corresponding recursion coefficients, the corresponding orthogonal polynomialsand the corresponding chromatic
derivatives; please reffer to[3] or [2].

First we give the three term recursion coefficients for two families; one (cfc[n]) for the "clean" signals with bandwidth 7
(produced by a double precission evaluation of anaytic expressions), and another (cfn[n]) for the "real world" sampled noisy
signals with an extended bandwidth up to extend/100 = = 1.1x, which alow accurate differentiation of signals with a slight out
of band content, and in the presence of noise (with out of band content as well).

o= name ="l egen"; (* specifies the Legendre polynom als;
we need it as a variable to be able to hanle in the future the case
of col ored noise x)

in[0):= extend = 110;
(» specifies how much the bandwidth of the filters for the noisy inputs has been
extended - such bandwidth is extend/100 = = 1.1 = thus, it is a
ten percent
extension for the present inplenentation filters x)

6 | frequency_estimation_tutorial.nb

extend /100 x (n + 1) s (n+1)
inaag= | f [name ="l egen", {cfn[n_] = ; cfe[n.] =2 —m8 ———; }

Va4 m+1)?-1 Va4 me1?-1

{Print ["ERROR"1; Quit [1;}];

Orthogonal polynomiasfor the bandwidth x:

w
mpzp= TC[O, w_] =1; TC[1, w_] = :
cfc[0]
w cfc[deg - 2]
TC[deg_, w_] :=TC[deg, W] = ————— TC[deg -1, W] - ————— TC[deg - 2, w];
cfc[deg -1] cfc[deg -1]

Orthogonal polynomialsfor the bandwidth extend/100 7 = 1.1 x: (thus, cfn[i] in place of cfc[i])

w
In[14]:= TN[O, w_] =1; TN[1, w_] = ;
cfn[0]
w cfn[deg - 2]
TN[deg_, w_] : = TN[deg, W] = ——— TN[deg -1, W] - ——— — TN[deg - 2, w];
cfn[deg - 1] cfn[deg - 1]

Chromatic derivatives, for functions with one free parameter (variable) mand for both families: (1) with the bandwidth 7:

6= KCIf_, 0, m, t_]:=f[m t];

1
KCIf_, 1, m,t_] := o f[m tl;
cfc[0]
KCIf_, n_, m, t_] :=
1 cfc[n-2]
KC[f, n, m t] =Expand[[—6tKC[f, n-1, mt] + —— KC[f, n-2, m t]]];
cfc[n-1] cfc[n-1]
and (I1) with the bandwidth extend/100 7 = 1.1 7:
npo)= KN[f_, O, m, t_1:=f[m t1];
1
KN[f_, 1, m, t_] := o f[mtl;
cfn[0]
KN[f_, n_, m,t_1]:=
1 cfnin-2]
KN[f, n, m t] =Expand[[—atKN[f, n-1, mt]+ ——— KN[f, n-2, m t])];
cfnin-1] cfnin-1]

The transfer functions of these ideal operators, see again[3] or [2]:

in2):= DO [P[k, w_] = Pi ecew se[
{{TN[k, 2w], -1.17x/2< ws<1l.1xn/2}, {0, w>1.1xn/2}, {0, w<-1.1x/21}}1, {k, O, 8}1;
Do[PP[k, w_] = Piecewise[{{TC[k, 2w], -n/2< ws<n/2}, {0, w>n/2}, {0, w<n/2}}1],
{k, 0, 15}1;

frequency_estimation_tutorial.nb |7

We use normalized frequencies (in radians); thus, for the bandwidth 7, sampling at integersis a Nyquist rate sampling. We
will sample signals at half integers, thus at twice the Nyquist rate.

We use two types of filterbanks for evaluation of chromatic derivatives: filters U for the noisy inputs with bandwidth extend/100
7 and filters W for clean signals with bandwidth 7, both designed using the Remez exchange method for producing equiripple
filters. (On the mentioned website one can find a so filters of higher orders than those we provide here and with different cut-off
and transition frequencies; as well as the ijmplementation of the corresponding Remez exchange algorithm; see one of the
Mathematica file on the website.)

The pass band of the filters is given by the value of the "pass" variable as the percentage of the "refernce” bandwidth ; For
filters U we take pass = 105 (in % of x). The width of the transition band for filtersin U is 10% of the bandwidth, thus from
1.05x to 1.15x; thisis chosen by the value of the variable tran = 10 (also in % of 7). The filters approximate transfer functions of
chromatic derivatives for a bandwidth of extend/100 = = 1.1x. Thus, with such filters we will be able to differentiate accurately
signals with a banwidth of up to 1.057 and yet reject the noise component above 1.15 7. The behavior over the transition region is
such that it will not amplify the component of the noise with frequencies within the transition region, as we will demonstrate this
later. We have provided here such filters of orders up to 8, but the Remez exchange implementation on the website can be used
all the way up to 30 (and probably above, with an appropriate number of taps chosen).

Filters W for differentiation of the "clean" signals approximate the transfer function of the chromatic derivatived for the band-
width 7, have passhand [- 7, 7] and atransition region of width 20% n (thus between 7 and 1.2 7). We have provided such filters
for orders up to 15.

We set the directories appropriately and read the files, assembling them into a matrix U for numerical differentiation of noisy
signals and a matrix W for differentiation of the "clean" signals. Coefficients of the filters are stored as integers obtained by
rounding off 10'° timesthereal coefficients, so they are re-normalized by dividing them with 10%°. If you have decompressed the
zip file straight to your "C" drive, you do not have to change the directory paths.

inpaj= (* filters U for the noisy inputs up to the order 8)

In[25]:= pPass = 105;
tran = 10;

in271:= string = StringJoin[nane, "_", IntegerString[extend]];
SetDirectory [StringJoin["c: /ChromaticDerivatives /filterbanks/", stringll;

U= {}; Do[{filenane = StringJoin[string, "_pass_", IntegerString[pass],

" tran_", IntegerString[tran], " _inp_", IntegerString[dg], ".txt"7];
U=Jdoin[U, {Flatten[lnport [filename, "Table"11}1}, {dg, O, 8}1;
U=N[U/107157;

(» filters Wfor the "clean signals"
(obtai ned by a double precission evaluation of analytic expressions)
up to the order 15 %)

in321= SetDirectory [StringJoin["c: /ChromaticDerivatives /filterbanks/", nane, "Q'11;

nE3= W= {}; Do[{filenane = StringJoin[name, "_inp_", IntegerString[dg], ".txt"];
W=Join[W {Flatten[lnport [fil enane, "Table"11}1}, {dg, O, 15}7;
W= N[W/ 10~ 157;

8 | frequency_estimation_tutorial.nb

We set L to be such that 2L + 1 isthe number of taps of the U filters used; LL issuch that 2LL + 1 is the number of taps of the W
filters used;

inourcaseLL=L=(129-1)/2= 64.

n@s)= L = (Dinensions [U1[[2]] -1) /2; LL = (Dimensions [W [[2]] -1) /2;

We now compare the transfer function of theideal filter of order 8 and of the filter from the filterbanks U of the same order.
We also compare the transfer function of theideal filter of order 15 and of the filter from the filterbank W of the same order.
One can compare filters of other odres by changing the values kk and mm below.

In[36):= M= 8;
kk = 15;

(» transfer function of the filter fromU of order p)

LL
TransFcnO ean[p_, w_] : = Re[Z (-1)PWp+1, LL+1+k]]E' kw];
k=-LL

(» transfer function of the filter from Wof order p =)

L
TransFcnNoi sy [p_, w_] : = Re[Z (-1)PUL[p+1, L+1+k]] Elkw];
k=L

The following plotting is very slow; you might want to comment it out after the first reading:

frequency_estimation_tutorial.nb |9

In[40]:=

PLC1l = Pl ot [{PP[kk, w], TransFcnd ean [kk, w]}, {w, -1.05x, 1.05 x},
Pl ot Range -» All, PlotStyle -» {{Red, Thickness[.008]}, Blue},
GidLines » {{{-n7/2, Red}, {-1.27x/2, Blue}, {x/2, Red}, {1.27x/2, Blue}}, {}},
Ticks » {{-m, -x/2, n/2, n}, {-50, 50}}1;

PLC2 = Pl ot [{PP[kk, w], TransFcnd ean [kk, w]}, {w, -, =}, PlotRange » {-3, 3},
PlotStyle -» {{Red, Thi ckness[.008]}, Blue}, GidLines » {{x/2, Black}, {}},
Ticks » {{-m, -n/2, /2, n}, {-3, -2, -1, 0, 1, 2, 3}}1;

PLC3 = Pl ot [{PP[kk, w], TransFcnd ean [kk, w]}, {w, .8x/2, 1.3 x/2},
Pl ot Range » {-4, 4}, PlotStyle » {{Red, Thi ckness[.008]}, Bl ue},
GidLines » {{{wx/2, Red}, {1.27x/2, Blue}}, {}},

Ticks » {{-m, -n/2, /2, n}, {-3, -2, -1, 0, 1, 2, 3}}1;

PLN1 = Pl ot [{P[nm w], TransFcnNoisy[mm w]}, {w, -m, 7},
Pl ot Range - All, PlotStyle » {{Red, Thickness[.008]}, Blue}, GidLines »
{{{-1.05x/2, Red}, {-1.15x/2, Blue}, {1.05x/2, Red}, {1.15x/2, Blue}}, {}},
Ticks » {{-m, -n/2, /2, n}, {-3, -2, -1, 0, 1, 2, 3}}1;

PLN2 = Pl ot [{P[mm w], TransFcnNoisy[mm w]}, {w, - =}, PlotRange » {-3, 3},
PlotStyle » {{Red, Thi ckness[.008]}, Blue}, GidLines » {{x/2, Black}, {}},
Ticks » {{-m, -n/2, /2, n}, {-3, -2, -1, 0, 1, 2, 3}}1;

PLN3 = Pl ot [{P[nm w], TransFcnNoisy[mm w]}, {w, .8x/2, 1.2xn/2},
Pl ot Range -» {-4, 4}, PlotStyle » {{Red, Thi ckness[.008]}, Blue},
GidLines » {{{wx/2, Black}, {1.05x/2, Red}, {1.15x/2, Blue}}, {}},
Ticks » {{-m, -n/2, /2, n}, {-3, -2, -1, 0, 1, 2, 3}}1;

G aphi csGid [{{PLC2, PLC3, PLC1}, {PLN2, PLN3, PLN1}}, | mageSi ze - 600]

2+ 50

50+

out[46]=

10| frequency_estimation_tutorial.nb

Compare the transfer functions of the filterbank W for the clean signals and the filterbank U for the noisy signals with the
transfer functions of their corresponding ideal filters. Remember that both filters operate on twice oversampled signals; thus the
bandwidth [-r, 7] correspondsto [-7/2, #/2] on the oversampled scale:

The filterbank W (the top row of plots) is nearly perfectly accurate for the entire bandwidth [-7/2, 7/2], even for the operator of
order 15 (left plot); the mid plot above shows the behavior in a narrow interval [.4 , .65 n] around 7/2, with the red gridline set at
w = 71/2 and the blue gridline set at 1.2 /2 = .6 &. The right plot shows that over the transition region [#/2, .6 n] the transfer
function attains a very large peak very accurately approximated by the following calculation on a grid with spacing of only .001:

in471:= Max [Tabl e [Abs [TransFcnCl ean [15, x/2+x/2 w/1000]], {w, O, 200}]]

outa71= 91. 7551

Thus, such filter greatly ampifies the noise within the transition region [#/2, 1.2 z/2] and thus cannot be used to evaluate the
chromatic derivatives of noisy signals. However, for signals obtained by evaluating analytic expressions with a double precission
thisis clearly not an issue.

Filter of order 8 from the filterbank U for the noisy signals is shown on the second row of plots. It is accurate with very high
precission over the bandwidth [-1.057/2, 1.057/2] as it can be seen from the left and the central plots. The black gridline on the
central plotis at #/2; the red is the bandpass of the filter at 1.057/2 and the blue gridline is at the edge 1.154/2 of the transition
region. Asone can seeg, in the transition region the maximal amplitude of the transfer function is only

frequency_estimation_tutorial.nb | 11

inj48):= Max [Tabl e [Abs [TransFcnNoi sy [8, 1.1x/2+x/2 w/1000]], {w, O, 100}1]

outf4g]= 1. 08737

Consequently, such filter does not amplify the noise from the transition region and removes it entirely above it; thus, it is
extremely noise robust. This means that we can evaluate chromatic derivatives of signals with slight out of band content (up to
1.05n) both very accurately and in a very noiserobust way. Wewill numerically verify these conclusions below.

khkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhkhhkhhkhhkhhhhhhkhhhhhhhhhhhhkhhkhhhhkdxhkdrhkdhkxxx

GENERATING THE INPUT SIGNAL

dhkkhkkkhkkhhkhhkdhkkhhkhhhhhkhhkdhkhhhdhhhhhhhkdhkxhhhdhkrhrhhrhhxhrkd

We first generate an input signal by joining sections of band limited signals in a way that ensures that the resulting signal will
have very low out of band energy. The method is described in detail in the paper [4] "Signal interpolation using numerically
robust differential operators’.

The segments of the signals f[i,t] will be linear combinations of numsin[i] many exponentially modified sinusoids, where
minimum < numsin[i] < maximum ,

with 1 < minimum and maximum < detect< 4, plus separating fragments which are linear combinations of max = detect + 12
fragments (12 is entirely arbitrary, just to insure max >> detect.)

The program will detect those segments which are linear combinations of up to detect < 4 sinusoids; those with more than detect
sinusoidswill be classified as "transients’.

However, the actual number of sinusoidal componentsin the signal generated can be chosen to be any between minimum and
maximum , where 1 < minimum < maximum < detect .

Thisishandy for testing of the detection algorithm

There are number many such "legitimate" segments of functions interleaved with the same number of "spacing” signas; thus,
atogether, there will be

num = 2 number fragmentsin total, plus "patches’ between them, which keep the interpolated signal extremely smooth, i.e., 15
times continuoudly differntiable.

This guarantees extremely low out of band content; see [4] for details and proofs.

The i-th function will have as a support an interval of length size[i], centered at centerf[i], 1 < i < num. The sizes of the
"legitimate fragments”, to be detected, can vary randomly between integer lengths minLength and maxLength; however, for easy
comparison with the FFT, we chose size[i] to be of even integer length. In this implementation the separating segments are of
lenght chosen randomly between 16 and 64, but thisis not at all essential; they can be either longer or ommitted, but in this case
if two consecutive fragmets come from the same function they can be misclassified as a single segment. To prevet this we include
separating fragments which have higher number of components then what the system can detect.

12 | frequency_estimation_tutorial.nb

The i-th function is alinear combination of numsin[i] many exponentially modified sine waves of frequencies freq[j, i], 1 <j <
numsin[i], either damped by a factor ef@mLiil - centerliD (if dampl[j,i] < 0), or expanding (if damp[j,i] > 0). The value damp[i j]
isin the range - damping < damp[i,j] < damping.

Such maximal value must be chosen so that the signal f[i,t] cannot totally vanish or "explode" over the length of its support. The

multiplier edampLiilt-centerlil) hag heen centered at the mid point centerf[i] of the support interval; for that reason we chose
2Log[2]
maxLengt h+8 "’

damping= M n 0. 05| which ensures that over the half of the length of the longest support (which is approxi-

mately one half of maxLength + 8), in either direction from the centra point centerf[i] the signal a most halves or doubles its
2 Log[3]
maxLengt h+8"’

max amplitude. This can be atered into trippling by choosing damping= M n 0. 05 ; limit 0.05 comesinto play

only if maxLengthis quite small, to avoid extreme situations.

The frequencies are also chosen randomly from the range minFreq and maxFreg. At the moment the program cannot handle DC,
because we do not look at differential operators of odd degrees, necessary to detect fragments which are of the form
gdamplj.il (t-centerli]) corresponding to an exponentialy modified DC. Thus, we limit minFreq to .3 in this implementation. If the
segment consists of several frequencies, we order them in a decreasing order for easy book keeping.

The amplitude of j-th component of the i-th function f[i,t] isA[j, i]. The j-th amplitudeis set to A[j, i] = a[j] = ampModify! 2.
Asadefault, ampModify = 1; thus, al components are of the same amplitude, but setting ampModify = .5 makes the amplitudes
decrease by halving as in one of the above examples; setting it to ampModify = 2 cause the amplitudes to double. The fragments
are then re-normalized so that al of them have the RM S over their supports equal to 1.

9= (* maximal range of the danping (expanding) factor; chosen so that the signal
can at nost hal ve/double in anplitude within the support of the signal =)

2 Log[2]

darrping:Mn[,0.05];

maxLength + 8
in[s0]:= Max = detect +12;
(» This is kind of arbitrary, just to make the separating segnents | ook
different from segnents which are suns of up to "detect" many sinusoids. =x)

num = 2 nunber ;
(» The total nunber of segnments, including the separating ones. =x)

frequency_estimation_tutorial.nb |13

in[s2):= Size[0] =0; size[num+1] =0;
(» For technical reasons we add trivial 0-th and (n+1l)-st functions,
both identically 0. x)

Do[lf [EvenQIi], size[i] = 2 Random nt eger [{Round [m nLength /2], Round [maxLength /2]1}1,
size[i] = Random nteger [{16, 64}1 1, {i, 1, num}]; (» 4 x)

(*» Thus,
the "legitimate segments to be detected (with an even index) are between "minLength" and
"maxLengt h" |ong; separating segnments (odd

indices) are 16 - 64 unit (thus Nyquist rate intervals) |ong. *)

Dol
I f [EvenQIi], numsin[i] = Randonl nteger [{m ni mum naxi mum}], nunsin[i] = max], {i, 1, num}];
Do[damp[j, i] =If [EvenQ[i], RandonReal [{-danpi ng, danping}], 01, (i, 1, num}, {j, 1, max}];

(» The "legitimate" fragnenst are |inear conbinations of

"mni mum' to "maxi mum' many sinusoides, with "maxi num < detect",
and with the nunber of sinusoids chosen randomy for each segnent;
the danping factor for each sinusoid in the legitimte

fragments is chosen randomy fromthe interval [-danping, danpingl;
the sinewaves in the separating fragnents are not danped. x)

a[j _1:= anmpModifyi?;
Do[A[j, 2i1=a[j], {i, 1, nunber}, {j, 1, nunsin[2i]}];
Do[A[j, 2i +1] = RandonReal [{.1, 1}1, {i, O, nunber -1}, {j, 1, nunsin[2i +11}];

(» the values of anplitudes A[j,i] are chosen so that they decrease
or increase by the corresponding jth power of the factor "anpMdify". If
anmpMbdify = .5 then the anplitude of the (j+1)th conponent
is one half of the anplitude of the jth conponent;
if anpMbdify = 2 then the anplitude of the (j+1)th conponent
is twice the anplitude of the jth conponent

The anplitudes can also be random zed, but then one has to worry what
the "local" signal to noise ratio is for each particular conponent. =x)

(» We initialize the values of frequencies to zero =)

Do[freq[j, i]1=0, {j, 1, max}, {i, 1, num}];

The particular values of the frequencies are chosen depending on what we want to test. For general purpose tests of the accuracy
of frequency estimation we split the range [minFreq, maxFreq] into 2 numsin[i] - 1 bins, thus depending on the number of
components numsin[i] to be chosen. We then chose frequencies from the highest to the lowest, by picking a frequency from a
bin and then skipping a bin.

Clearly, to test how well the method separates close frequencies we must do that in a different way (as we do in the next file), but
the aboveisgood for initial tests.

neo;= Do[{deltali] = (maxFreq -m nFreq) / (2nunsin[i]-1);
Do[freq[j, i] = RandonReal [{m nFreq +2 (nunmsin[i]-j) deltali],
mnFreq + (2 (nunsin[i]-j)+21)deltali]}], {J, 1, nunmsin[i]}1}, {i, 1, num}];

14| frequency_estimation_tutorial.nb

ine1:= Do[shift [i, j]1 = RandonReal [{-x, x}], {i, 1, num}, {j, 1, nunsin[i]1}];
(» W& chose randomy the phase shifts of the sinusoidal conponents. =)

We now set spacing between fragments to distance = 16. Note that segments which are linear combinations of max many sine
waves will be rejected. Thus the spacing between the "legitimate" fragmentsisin total 16 + 8 + 16 = 40 Nyquist rate intervals.

ine2;:= di stance = 16; NN = di stance;
(» This cannot be changed at the nonent,
because each value requires a different syththesis filterbank for
produci ng the patches between segnents of signals. The patching over
an interval of length "distance = NN = 16" ensures that the resulting
signal will have continuous derivatives of orders up to NN - 1 = 15. x)

We now calculate the positions of supports of f[i,t]. We start with an interval of length L/2= 32 where the signal will be zero, just
to be able to evaluate the chromatic derivatives over the entire length of the signal support using filters with half support L = 64
taps = 32 Nyquist rate intervals.

A spacing of distance = NN points precedes the first signal support. The the supports of the signal fragments f[i,t] alternate with a
spacing equal to distance. At the end of the signal is afina spacing and another interval of length 32 where the signal is set to
zero.

Thus, the positions of the centers centerf[i] of segmentsare given by:

In[63]:=
centerf [0] =0; centerf [num+ 1] = 0;
i-1
Do[centerf [i]=L/2+distance + Z(size[j] +distance) +size[i] /2, {i, 1, num}];
j=1

We now define segments of band limited signalsf[i, t]; first we calculate some normalization factors:

In[65]:= DO[ITX [i]=

numsi n[i]
Root MeanSquar e [Tabl e[Z A[j, i1 EYam®l il (t-centerflil) Ginrfreqj, iJt + shift[i, j11 /.
i1

t - (centerf[i]l+u/2), {u, -size[i]-8, size[i]+8}”, {, 1, num}];

Thus, mx[i] is the RMS of
t he functi on Z’-’“:”{Ei”“]A[j, i] Edanpli.i] (t-centerf(il) Ginfreq[j, i]t + shift[i, j]] over the

support interval [centerf[i] - size[i]/2, centerf[i] + size[i]/2]; we now useitsreciprocal valueto normalize f[i,t] so that the SNR
isequal across all segments.

mesl= £00, t_1=0; f[nums+1, t_] = 0; Do[f i, t. 1=

1 nunsi n[i]

— >V A[j, i]ERU D Ceentert 0D Singfreqj, i1t + shift(i, j11, {i, 1, num];
mx [] j-1

frequency_estimation_tutorial.nb |15

These signalswill be truncated to their supports of size[i], centered at centerf[i];
thustheir supports are intervals [centerf[i] - size[i]/2, centerf[i] + size[i]/2] . We verify that they are properly normalized:

in67):= Root MeanSquare [Fl atten[Tabl e[f [i, centerf [i]1+t /2], {i, 1, num}, {t, -size[i], size[i]}]]]

ouf67]= 0. 986585

We also check their maximal amplitude:
nes;:= Max [Flatten[Table[f [i, centerf [i]1+t /2], {i, 1, num}, {t, -size[i], size[i]1}]]1]
outssl= 3. 00575

We have to interpolate the signal over the interval of length distance = NN = 16 between two consecutive fragments. Thisis done
so that the values of derivatives of ordersup to NN - 1 = distance -1 = 15 of the interpolation at the right end point of the support
of f[i 1], i.e., at the point centerf[i] +size[i]/2 match the corresponding values of the derivatives of f[i,t] at that point, and that the
derivatives of the interpolation at the left end point of the support of fli+1,t] i.e., a the point center[i+1] - size[i+1]/2 match
the values of the corresponding derivatives of f[i+1,t] at that point. In this way we ensure that the resulting interpolated signa
will have continuous derivatives of orders 0 to 15, and thisin turn ensures very low energy outside the bandwidth [-r,], see [4] .

Such interpolation is obtained by evaluating the chromatic derivatives of the signals f[i,t] using the filterbank W for differentia-
tion of clean signals for orders O - 15. The vector of values of the chromatic derivatives of f[i,t] at the left end point centerf[i] -
size[i]/2 of the support of f[i,t] isdenoted by SgL[i] and the vector of values of the chromatic derivatives of f[i,t] at the right
end point centerf[i] + size[i]/2 of the support of f[i,t] isdenoted by SgR[i]; thus SgL[i] and SgR[i] are vectors of length 16
(orders 0 - 15). To obtain the values of these derivatives we do not need any analytic differentiation; instead we find the appropri-
ate samples of f[i,t] and apply the filters W.

ino]:= SAMPL = Table[f [i, centerf [i]-size[i]l/2+] /2], {j, -LL, LL}, {i, O, num+1}];
SAWVPR = Tabl e[f [i, centerf [i]+size[i]/2+) /2], {j, -LL, LL}, {i, O, num+1}7;
Si gL = Transpose [W SAMPL]; SigR = Transpose [W SAMPR];

We can now compare the values SgL[i] obtained using numerica differentiation via our FIR filterbank W with the anaytically
computed values SgLA[i]:

inf711:= Si gLA = Tabl e [KC[f, j, i, t] /. t » (centerf [i]-size[i]/2), {i, O, num+1}, {j, O, NN-1}7;
Si gRA = Tabl e [KC[f, j, i, t] /. t » (centerf [i]l+size[i]l/2), {i, O, num+1}, {j, 0, NN-1}7;
(» The values of the chromatic derivatives obtained by analytic differentiation =)

inf72):= ED = Transpose [Joi n[Abs [Si gL - Si gLA], Abs[SigR-SigRA]]1];
Below is the table of the RM S values of the chromatic derivatives of the signal, RM S values of the error of the chromatic

derivatives, SNR in db, aswell asthe mean, median and maximal values of the errors of the derivatives of orders 0 - 15,
showing that our filters are extremely accurate:

16| frequency_estimation_tutorial.nb

n73= Grid [Joi n [Tr anspose[{{"degree"}, {"RV5 of CD'}, {"RMS error"},

{"SNR db"},

{"Mean error"},

{"Medi an error"},

{"Max error"}}],

Tabl e [{] , Root MeanSquar e [Transpose [Si gLAJ[[j +11]1], Root MeanSquare [ED[[j +1111,

20 Log [10 ,

Root MeanSquar e [Transpose [Si gLAT[[j +111]

Root MeanSquar e [ED[[j + 1111
Medi an [ED[[j +1]]], Max [ED[[] +1]]]}, G, o, NN-1}]], Frama-»AlI]

]. Mean(EDLj +1111,

degree |RMS of CD| RMS error SNR db Mean error Medi an error Max error
0 0.894518 | 5.9492 x10°® |103.543 |4.47032 x10°° | 3. 10615 x 10°° |0. 0000193719
1 1.12534 0.000011238 |100.012 |8.15741 x10°° |5. 79369 x 10°° | 0. 0000423444
2 1. 00353 |0.0000173372 | 95.251 |0. 0000130165 |9. 06913 x 107° |0. 0000559452
3 1.01959 | 0.000026207 |91.8001 |0.0000190002 |0.0000134186 |0.0000982268
4 0. 864756 |0.0000387115 |86.9811 | 0. 0000289895 | 0. 0000208017 | 0. 000122529
5 0. 926997 |0. 0000599836 |83. 7809 | 0. 0000434088 | 0. 000030668 | 0. 000223296
6 0. 940109 |0. 0000869737 |80. 6758 | 0. 0000647696 |0.0000486428 | 0. 000269819
Out[73]= 7 0.95365 | 0.000138001 |76.7901 | 0.0000996136 |0.0000708931 | 0. 000509538
8 1.05567 | 0.000194589 |[74.6882 | 0.000144013 | 0.000108307 | 0. 000601609
9 1.06035 | 0.000314545 |70.5554 | 0.000226345 | 0.000156132 0. 0011491
10 0.862971 | 0.000428978 |66.0712 | 0.000316017 | 0.000242214 0. 00133197
11 0.923778 | 0.000548208 |64.5324 0. 0004225 0. 000378164 0. 00194787
12 0.915158 | 0.000943864 |59.7317 | 0.00070811 0. 000507942 0. 00291552
13 1. 14805 0.00108272 |60.5088 | 0. 000831803 | 0.000730093 0. 00369425
14 1.0489 0.00191329 |54.7791 | 0.00143347 0. 00103631 0. 00605803
15 0.971584 | 0.00205306 |53.5016 | 0.00157323 0. 00141556 0. 00697388

We now download synthesis filters for the interpolation ("patching”); the coefficients are again stored as integers so we re-
normalize them by dividing them with 101°:

in[741= SetDirectory ["c: /ChromaticDerivatives /filterbanks/patch"];

Pat ch
Patch =
Pat ch

{}; Do[{filenane = StringJoin["patch_", IntegerString[dg], ".txt"1;
Join[Patch, {Flatten[lnport [fil enane, "Table"11}1}, {dg, O, 15}7;
N[Patch /10" 157;

In[75]:=

We use the values from the Patch file to generate the values of the interpolation functions for left side and right side of the
interpolation "patch”, see[4]:

Pat chL =
Pat chR =

Take [Transpose [Patch], {2, 32}];
Table[(-1)™Patch[[m+1, 33-t]], {t, 1, 31}, {m 0, NN-1}1;

In[77]:=

Interpolation between functions f[i,t] and f[i+1,t] is obtained at every half integer (because we are producing twice oversampled
signal) using the synthesisfilters, as

PatchL . SgRA[i - 1] + PatchR . SigL[i]; see [4] for explanation. Essentially, we represent the interpolation over the interval [t
tr] between the supportsof f; and fi,; as

1oKILRT(t)By(t-tL) + X1 KI[f](tr)(—1)'Bj(tr-t) , where Bj(t) satisfy KI[Br] (0) = 6 (j-m) and K[By (distance) = 0.

Finally, we can create our test signal:

frequency_estimation_tutorial.nb |17

inf7o= Signal =
Join[Tabl e[O, {k, 1, L+1}], Flatten[Tabl e[Join[PatchL. SigR[[i]] +PatchR. SigL[[i +1117,
Table[f [i, centerf [i]+t /2], {t, -size[i], size[i]l}1], {i, 1, num}] 1,
Pat chL. SigR[[num+ 1]] + PatchR. Si gL [[num+ 2]], Table[O, {k, 1, L}11;

We now check the max value of the interpolated signal and plot its values:
ingo= Max [Si gnal]

outgo]= 7. 23493

ins1):= | ength = Di mensi ons [Signal J[[1]1];

ing2:= ListPlot [Signhal, Joined - True, PlotRange » All, | mageSi ze -» 600]

out[82]=

| I I

_ A ‘ \ (A A 1| \
[(it ol

To check its out of band content, make sure you ran the program with number = 100 or larger so that the FFT has a sufficient
resolution to represent extremely small out of band content accurately; the green grid lines are set at the 2 band limit and the
red gridlines at +1.05z:

in[s3):= FT1 = Abs [Fourier [Signal 17;
df = Dinmensions [FT11[[1]1];
FT = Join[Table[{i -Round[df /2], FT1[[df /2 +i11}, {i, 1, Round[df /2]}],
Table[{i, FT1[[i 11}, {i, 1, Round[df /2]}]11;

18| frequency_estimation_tutorial.nb

In[86]:=
Li st Pl ot [FT, Joi ned » True, PlotRange » All,
GidLines » {{{Round[-1.05df /4], Red}, {Round[-df /4], G een},
{Round [df /4], Green}, {Round[1.05df /4], Red}}, {}}, | mageSi ze -» 500]
6,
5
Al
out[ss}= 3r
oL
| L | L | |
~2000 ~1000 1000 \ 2000

We now compute the fraction of energy of the signal outside the bandwidth [-7, 7], and the fraction of energy outside [-1.05r,
1.057]

frequency_estimation_tutorial.nb |19

In[87]:= Grid[Joi n[{{"out of [-m] energy/total signal energy", "in db"}},

Sum[FT1[[i 11% ({i, Round[df /4], Round[3df /4]}]

1

Sum[FT1[[i 11% (i, 1, df}]

Sum[FT1[[i 11% {i, Round[df /4], Round[3df /4]}]

10 Log[lo,] }
Sum[FTL[[i 11% (i, 1, df}]
{"kkkkkhkhkhhhhhhhhhkhhhhkhhhhhhhhhhhhkhhhhkhhkhhhhdkk | kkkkkkk }},
{{"out of [-1.05x 1.05x] energy/total signal energy", "in db"}},

Sum[FT1[[i 11%, {i, Round[1.05 df /4], Round[. 95 x 3 df /411]

{{ Sum[FTL[[i 11% (i, 1, df}] ’

Sum[FTL[[i 11% (i, Round[1.05df /4], Round[.95 x3df /4]}]

lOLog[lO,]}}] Frame-»AII]
Sum[FTL[[i 11% (i, 1, df}]
out of [-m;, n] energy/total signal energy in db
0. 0000823258 -40. 8446
OU[[87J: R S I o I R R o S I R I *k Kk kkkk*k
out of [-1.05m 1.05x] energy/total signal energy in db
1.775x10°® -57.508

Thus, the energy out of [-1.05 7, 1.05] bandwidth is about or less than 1/10 of the energy which is out of [-r, 7] bandwidth,
showing that out of band energy decays extremely fast; for all practical purposes, our interpolated signal is[-1.05 7, 1.05 7] band
limited. For this reason, as we will see below, our chromatic derivative filters with a pass band [-1.05 7, 1.05 1] are extremely
accurate when applied to signals produced by our "smooth patching” of pieces of unrelated band limited signals.

We now corrupt signal with the white Gaussian noise; NDB sets signal to noise ratio in db; we compute the RM S of the signal
and of the noise generated to get the multiplicative scaling constant noise which sets the signal to noise ratio to exactly the
prescribed NDB value in db.

inssl:= NOI SE = Tabl e [RandonReal [Nornmal Di stribution [0, 111, {k, 1, length}];

. Root MeanSquar e [Si gnal] NDB
In[89]:= NOI se = 10"
Root MeanSquar e [NO SE]

outgol= 0. 03904

We compare SNR with the signal to noise ratio for the [-m,n] signa component and [-7,n7] hoise component; the later is the
relevant signal to noiseratio for our experiments.

inol:= FTN = Abs [Fourier [noi se NO SE]1];

Sum[FTL[[i 11% (i, 1, df}]

ino1:= SN = ;
Sum[FTN[[i 11%, (i, 1, df}]

Sum[FT1[[i 11% {i, 1, Round[df /4]}] + Sum[FTL1[[i]]% ({i, Round[3df /4], df}]
| nbandSN = ;

Sum[FTN[[i 11%, (i, 1, Round [df /47}] + Sum[FTN[[i 112, {i, Round[3df /4], df}]

20| frequency_estimation_tutorial.nb

2= Grid[Join[{{"SNR in db", " [-m x] signal /[-x] noise in db"}},
{{10 Log[10, SN], 10Log[10, InbandSN]}}1, Frame -» Al |]

SNR in db | [-m, n] signal /[-m, 7] noise in db

outoz}= 30. 32.8573

We now apply the filterbank to the signal + noise samples:
ino3):= SAVP = Tabl e[Signal [[p+]]] +noiseNOSE[[p+j]1], {j, -L, L}, {p, L+1, length-L}];

injo41= DER1 = Transpose [U. SAMP];

We now check the accuracy of differentiation using filters for noisy inputs. Thus, we also apply the filterbanks to the signal and
the noise separately.

ines):= SAMPS = Table[Signal [[p+] 1], {Jj, -L, L}, {p, L+1, length-L}71;
DERS = U. SAWVPS;
SAWPN = Tabl e[noise NO SE[[p+) 1], {j, -L, L}, {p, L+1, length-L}]; DERN= U SAWN,

We now collect the values of the chromatic derivatives of orders O - 8 of the signal without any noise over the support intervals
we will patch together:

inos;:= DO[DSig[j] = Flatten[Tabl e[Tabl e[DERS[[1+], 1+2centerf [i]-L+p]l],
{p, -sizeli], size[i]-1}1, (i, 1, num11, {j, O, 8}1;

We compare these values with the analytically obtained values of the chromatic derivatives of the signal piecesf[i, t]:

injo9):= Do [DSi gA[j 1 =
Fl atten[Tabl e [Tabl e [KN[f, j, i, t]1 /. t » (centerf[i]l+p/2),
{p, -size[i], size[i]l-1}1, {i, 1, num}11, {j, O, 8}];

The table below gives the RM S value of each chromatic derivative of the signal over these supports, the RMS value of the error
of the filterbanks compared to the true values as obtained from the analytic expressions for f[i, t], the corresponding SNR in db,
as well as the mean error, median error and the maximal error. Note how extraordinarily accurate are the values obtained using
our filterbank U.

frequency_estimation_tutorial.nb |21

in[100]= &i d[Joi n[Tr anspose [{{"degree"}, {"RW5"}, {"RV5 error"},
{"SNR db"3}, {"Mean error"}, {“Median error"}, {"Max error"}}],
Tabl e[{j , Root MeanSquar e [DSi gA[j 11, Root MeanSquare [DSi gA[j1-DSiglj11],
Root MeanSquar e [DSi gA[j 1]
Root MeanSquar e [DSi gA[j 1 -DSig[j 11
Medi an [Abs [DSi g [j] - DSi gA[j 111, Max [Abs [DSi g[j] - DSi gA[j]]]}, G, o, 8}”, Frame - Al |]

20 Log[10,,]. Mean[Abs [DSi g[j] - DSi gALj 111,

degree RVS RMS error SNR db | Mean error |Median error | Max error

0 |0. 983596 |0. 000758227 |62. 2603 |0. 000585635 | 0. 00048 |0. 00411871

1 |0.971168 | 0. 00133028 | 57.267 | 0.0010257 | 0. 000814942 |0. 00695157

2 |0.788108 | 0.0017128 |53.2576 | 0.0013225 | 0. 00106847 |0.00939617

3 |0.787179 | 0. 00207539 |51.5795 | 0. 00159841 | 0.00125986 | 0. 0111335

Out{100}= 4 |0.854329 | 0.00234488 |51.2301 | 0.00181075 | 0.00145043 | 0. 0130665
5 |0.972509 | 0. 00268381 |51.1828 | 0. 00206022 | 0.00163537 | 0. 0149841

6 |0.941073 | 0. 00289039 |50. 2533 | 0. 00222952 | 0.00179186 | 0. 0159978

7 |0. 881443 | 0. 00324834 |48. 6707 | 0. 00248107 | 0.00195836 | 0. 0187386

8 |0. 835506 | 0.00342896 |47.7357 | 0.0026182 | 0.00211175 | 0. 0226674

noi:= (* Note that the supports of the signals are only minLenght intervals long:)
m nLengt h

out101]= 24

while the supports of the differentiation filters are 64 intervals long (129 taps, spaced two per unit interval), Thus, filters " see"
values far outside of the support of the function being differentiated. However, the smoothness of the inter polated signal
ensuresthat even the high order derivatives are remarkably accurate!!

We now look at the impact of the noise on the accuracy of differentiation. We fist find the SNR of the in-band signal versusin-
band noise component:

in102]:= (* in-band signal to in-
band noise ratio conpared to the entire signal to the entire noise ratio x)
Print [G'i d [{{"si gnal /noi se", "in-band signal /i n-band noi se",

"in-band signal /i n-band noi se as obtained by filters"},
Root MeanSquar e [Si gnal]

{20Log[1o,], 10 Log [10, I nbandSN],
Root MeanSquar e [noi se NO SE]
Root MeanSquar e [DERS[[1]1]
20 Log[lo,]}}, Frane - All]]
Root MeanSquar e [DERN[[1]1]

si gnal /noi se |i n-band signal /i n-band noi se |i n-band signal /i n-band noi se as obtained by filters
30. 32.8573 32.602

Thisis consistent with the fact that the signal has very little out of band energy, while half the energy of the noise is out of band;
thusin-band signal to in-band noise ratio should be about 3 db higher than total signal to total noiseratio.

Thus, below is avery good estimate of the signal to noiseratios for all derivatives of order up to eight:

22| frequency_estimation_tutorial.nb

in[103):= Print [Gri d [Tr anspose [Joi n [{{" degree"”, "in-band SNR db"}},
Root MeanSquar e [DERS[[1 +] 111

Table[{j, 20Log[10,]} 4. o, 8)]]], Fran‘e-»AII”;

Root MeanSquar e [DERN[[1 +j 111

degree 0 1 2 3 4 5 6 7 8
in-band SNR db [32. 602 |32.4313 |29.6974 |31. 4902 |32. 3246 |32. 2574 [32.5751 |31. 7862 |31. 8915

Thus, the SNR of all chromatic derivatives are essentially the same and equal to the in-band signal to in-band noiseratio!
This empirically demonstrates extraordinary accuracy and noise robustness of evaluation of chromatic derivatives using a FIR
filterbank.

FhAA A AR I A A A A AT A I A Ak h kA kA kh ok hhkhkhkkhkkh kb khkhhk kb khkhhkhkhkkhkhhhkhkdhhhhhkdrhhhhkdrhhhhhdrhrhkhrdrhrrkdrdxhxk

FhAA A AR I R A A A AT A I A Ak h kA kA kh ok hhhkhkhkhhkhkhkhkhhkhkhkkdkhhhkhkdhkhhkhkhkdhhhhhkdrhhhhhkdrhhhdhdrhhhkhrdrhrrkhrdxhxk

in104):= Signal 1 = Take[Signal, {L+1, Dinensions[Signal J[[1]]-L}];

in[1os:= | engthl = Di mensions [Signal 11[[1]]; distl =L;

FREQENCY ESTIMATION

The algorithm below uses only the noisy signal samples, and has no access to any other signal parameters, not even the signal to
noiseratio, which is estimated from the signal samples.

In[106]:=
Do[{Prodl[k, m] = Tabl e[DERL[[i JJ[[k+211 DERL[[i11[[m+111, {i, 1, lengthl}];
Prodl[m k] =Prodl(k, m];}, {m 0, 2detect}, {k, 0, m}];

DO[{QJi et [Tbl e = RecurrenceTabl e [{OO[i == CO[i -1] -
Prodl[k, mI[[INT[detect] +i -1 -INT[q]]]1 +Prodl[k, m[[INT[detect] +i +INT[q]]],
INT[q]
o[1] = . Prodilk, m][[INT[detect]+l+j]]}, o,
j=-INT[q]

{, 1, Iengthl-ZINT[detect]}];]; crl2[q, k, m = Tble;
crl2[q, m k] =Tble; dear [Tble];}, {q, 1, detect}, {m O, 2q}, {k, O, m}];

in[1os;= Signal 2 = Take [Signal 1, {INT[detect] +1, Dinensions[Signal 1][[1]] -INT[detect]}];
| ength2 = Di mensions [Signal 2][[1]]; dist2 =distl+|NT[detect];

We now for each point i in the domain of the input signal evaluate the smallest eigenvalues A; of the matrices [crl[i, k, m]: 0 <k
2j,0=m=<2j].
inii0= Do [ei genVv2[j] =
Tabl e[\/(l / (2INT[j]+1) Chop[Eigenvalues[Tablefcrl2[j, k, m [[i]], {k, O, 2]},
{m 0, 2j3}1, -11[[1111), {i, 1, length2}], {j, 1, detect}];

Wefilter out some noise by replacing the calculated value eigV[j, i] with the median of these values over the interval [i-cl, i+cl].
(Thisis not essential but it appears to improve accuracy).

np11= ¢l = 8;

in112]:= Do[ei genVF3[j] = Tabl e[Medi an[Tabl e[eigenV2[j 1[[i +k]1, {k, -cl, cl}]11,
{i,cl+1, length2 -cl}], {j, 1, detect }];

frequency_estimation_tutorial.nb |23

We shorten the signal again:
in113):= Signal 3 = Take[Si gnal 2, {cl +1, length2 -cl }1;
inp114]:= 1 ength3 = Di mensions [Signal 3]1[[1]]; dist3 =dist2+cl;

We now approximately determine the signal to noise (SNR). The plot below shows the distribution of the smallest eigenvalues;
the RMS of the noiseis the RMS of the flat part of the low end of the graph, approximated bt the variable cut: ww[[1]] isthe
minimal number of sinusoidal components present

np15p= Do[mini [j] = Mn[eigenVF3[j1], {j, 1, detect }];

in116):= Do[sel m[j 1 = Medi an[Sel ect [eigenVF3[j], #<2mni [j] &1, {j, 1, detect}];

np117):= Do[sorted3[j] = Sort [eigenVF3[j 1], {j, 1, detect}];

n11g= S = Table[sel m[j 1, {j, 1, detect }];

in[119]:= Ww = Sort By [Sel ect [Table[{j, selm[j 1}, {j, 1, detect }], #[[2]] <2Mn[s] &I, #[[1111[[1]1];
ini20)= Table[mini [j], {j, detect }]

outj120)= {0. 0105144, 0. 008215, 0.00731686}

inf121)= Do[sorted[j] = Sort [eigenVF3[j 1], {j, 1, detect}];

in[122]:= Li stPl ot [Tabl e[sorted3[j 1, {j, 1, detect }], Joined » True]

10+
out[122]=

051

2000 3000 4000

5000

‘1000‘ |
in[123]:= cut = Root MeanSquar e [Sel ect [sorted3 [ww[[1]]], #<2wWW[[2]] &]]

outj123)= 0. 0252497
In[124]1:= WW[[1]]

outf124]= 1

comparing the RM S of the inband comonent of the noise noi se / /2 and the approximated value cut as established by the
algorithm:

24| frequency_estimation_tutorial.nb

In[125]:= {cut , noi se/ «/2_}

outj125]= {0. 0252497, 0. 0276054}

inf126):= Nums = Join[Tabl e[0, {i, 1, L+1}],
Flatten[Tabl e[Join[Tabl e[0, {i, 1, 31}], Table[Sign[max - nunmsin[i]]1 nunsin[i],
{t, -size[i], size[i]}]1, {i, 1, num}]], Table[O, {i, 1, 31}], Table[O, {k, 1, L}11;

inf127):= Nums3 = Take [Nunms, {dist3 +1, |length -dist3}];
in[12g;= nf3 = Tabl e [0, {i, 1, length3}];

np2o)= DO[{p =1; nf3[[i]] =p; Wile[p <detect +1&&eigenVF3[p][[i]] = treshold cut,
{nf3[[i]] =Sign[detect -p] (p+1); p++;}1}, {i, 1, length3}];

We now for each point i in the domain of the input signal evaluate the smallest eigenvalues A; of the matrices [COR]i, k, m]: 0 <

k<2j,0=m=2j].
The code below is wasteful evaluating some unnecessary things, but it provides plots of various quantities which are helpful to
understand the behavior of the agorithm.

nf3[[i]] is the number of componentsat apoint i : We now for each point i in the domain of the input signal evaluate the smallest
eigenvalues A; of the matrices [COR[i, k,m]: 0<k =<2 j,0=m=<2j].

For each point i we look for the smallest value of | < detect such that eigV[j, i] = \//\J-/(2INT[j] +1) <treshol d noi se;
variable nf[i] givesthe number of sinusoidal components present over the interval [i-INT, i+INT].

NOTE: Thisisreally not the right way of doing it; instead of comparing the eigenvalues with a fixed treshold value, the decis-
sion should be made by comparing the eigenvalues of matrices of severa orders. I'll post such algorithm after | return from my
trip, sometimesin early August.

To avoid errors present at the ends of the supports of the functions we take only thosei which lie inside detected intervals at least
guard many sampling points:

inp30)= nfc3 = Table[0, (i, 1, length3}1];

mps=) =1; kk=jj; left = {}; right = {}; nc = {};
Wil e[kk <l ength3, {Wile[nf3[[kk]] == 0&&Kkk < length3, kk++]; xx = Kkk;

yy = kk; While[nf3[[yy]] # 0&&yy <length3, yy++]; zz = Round[1/2 (XX +YY)1;

pp=0; qq=0; Wile[zz-pp> XX & nf3[[zz - (pp+1)]] ==nf3[[zz]], pp++];

Wiile[zz+qq <yy & nf3[[zz +1]1] ==nf3[[zz]], qQ++];

I f [pp = guard &&qq = guard, {Do[nfc3[[zz-r]1] =nf3[[zz]], {r, O, pp-guard}];
Do[nfc3[[zz+r]] =nf3[[zz]], {r, 1, qg-guard}]; left = Append[left, zz - (pp -guard)];
right = Append[right, zz + (qq -guard)]; nc = Append[nc, nf3[[zz]1]1]; }]; kk =vyy; }1;

inf132]= DO[LIMTI[j] = Tabl e[treshold cut, {i, 1, length3}], {j, 1, detect }]

The plot below compares the number of components as established by the algorithm (nfc3) and the true number Nums obtained
from the definition of the signal:

In[133]:=

out[133]=

frequency_estimation_tutorial.nb |25

ListPlot [{nfc3, 1.1 Nuns3}, Joined » True, PlotRange » All, | mageSi ze -» 600]

2.0} . i . i ||
1.5}
1.0:—— : T T . - : 1

051

1000 2000 3000 4000 5000

Plotting the smallest eigenvalues of the matrices [CORJi, k, m]: 0 <k =2 j, 0 = m < 2j] and comparing them with the treshold

value treshold cut; regions where the minimal eigenvaues dip bellow the value treshold cut correspond to intervals detected

by the algorithm, and the smallest rank of the matrix [COR][i, k, m]: 0 <k =2 j, 0 < m < 2j] for which this happens determines
the number of components, because it is equal to

In[134]:=

In[139]:=

In[140]:=

NC = Tabl e[nunmsin[2 1, {j, 1, nunber}];
LEFT[add_] :=Tab|e[—add+L+1+31+25ize[l] +1+
k-1

31+1+Z(2size[2j]+l+31+23ize[2j +11 +1+31), {k, 1, nunber}];
j=1

RIGHT[add_]:=Tab|e[add+L+1+31+25ize[1]+1+31+Zsize[2k]+1+
k-1
(2size[2j]+1+31+2size[2] +1]+1+31), {k, 1, nun‘oer}];
j=1
FREQ = Tabl e[Tabl e[freq[j, 2k], {j, 1, numsin[2k]}], {k, 1, nunber}];
DAMP = Tabl e [Tabl e[danp[j, 2k], {j, 1, nunsin[2Kk]}], {k, 1, nunber}];

Do[PLT1[j] = ListPlot [{eigenVF3[j]1, LIMT[j1, .1Nuns3},
PlotStyle » {Red, Blue, Green, Orange}, Joined -» Truel], {j, 1, detect}];
Graphi csCol umm [Tabl e [PLT1[j], {j, 1, detect}], | nageSi ze -» 600]

|
I I I | I I I I [I——— el I I I

frequency_estimation_tutorial.nb |27

outf140}= | R \J i

0.4

1000 2000 3000 4000 5000

05

04—

02 - - - s o k

h O I Y

I | | | I I I |
1000 2000 3000 4000 5000

We now find the eigenvector which corresponds to the appropriate minimal eigenvalue, see paper [1] for the details
n[141:= MR3 = Tabl e[2 detect +1, {i, 1, length3}];

in[142):= DO[MR3[[i 1] =2nfc3[[i]1]+ (2detect +1) (1 -Sign[nfc3[[i]1]1]1), {i, 1, length3}1;
in[143= P3 = Table[0, {i, 1, I ength3}];

inf1441:= DO[P3[[i 11 =1f [MR3[[i]] <2detect +1, Table[crl2[nfc3[[i]1], k, m[[i +cl]],
{k, 0, Mn[MR3[[i]], 2detect]}, {m O, Mn[MR3[[i]1], 2detect]}1], {i, 1, length3}1;

in[145):= F3 = G3 = Sol Z3 = sol B3 = TZB3 = TZD3 = Tabl e [0, {i, 1, | ength3}];

infua61= Do [If [MRB[[i]] < 2detect +1,
F3[[i]] = Chop[Ei genvectors [P3[[i]1], -111[[1111, {i, 1, length3}];

na7- Do[If [MR3[[i 1] < 2detect +1, GB[[i]] =
Tabl e [X[k] » F3[[i]1[[k+1]], {k, O, Mn[{MR3[[i]], 2detect }]1}11, {i, 1, length3}];

28| frequency_estimation_tutorial.nb

in[r4g)= i mit_1 =1m[t];

Finally, to retrieve the frequencies we solve the corresponding algebraic equation and isolate the imaginary parts (frequencies)
and the real parts (damping factors):

In[149]:=

In[150]:=

In[151]:=

In[152]:=

In[153]:=

Do[lf [IVR3[[i]] <2detect +1,

MR3[[i 11
{Solzs[[i]] =So|ve[>0 XIKIN[(-1)*TN[K, -1 21] =0 /. G3[[i 11, z];
k=0
sol B3[[i]] =Table[z /. Sol Z3[[i11[[J11, {J. 1, Dimensions[Sol Z3[[i111[[111}1;
TZB3[[i 1] = Table[-Im[SortBy [sol B3[[i 1], im1[[j1].
{J, 1, Round[Di mensions[sol B3[[i111[[11]1/2]1}1;
TZD3[[i 1] = Table[Re[SortBy[sol B3[[i1], im1[[j]1].

{J, 1, Round[Di mensions[sol B3[[i111[[11]1/2]1}1; }
{TZB3[[i]] = Table[{0}, {m 1, detect }]; TzZD3[[i]] = Table[{0}, {m 1, detect}]}], {i,

1, IengthS}];
NFC3 = Tabl e[l f [nfc3[[i]1]1-)] =0, 1, 0], {j, 1, detect}, {i, 1, length3}];

Do[FREQ®B[j] = Flatten[Flatten[
Table[lf [nfc3[[i]11-j =20, TZB3[[i11[[j1], O1, (i, 1, length33}111, {j, 1, detect }1;

Do [
DVMP3[j] =Flatten[Flatten[Table[lf [nfc3[[i]1]-] =20, TZD3[[i11[[j1], O], {i, 1, length3}111,
{j, 1, detect}];

Do [FREQRB[j] = FREQQB[j] NFG[[j 11, {j, 1, detect}];
Do[DWP3[j] = DVP3[j] NFC3[[j 1], {j. 1, detect}I;

The rest of the code is just for counting the hits, misses of itervals sought, the number of itervals which got split or merged
together and intervals over which alarge error of frequency of estimation was made.

In[155]:=

In[156]:=

In[157]:=

In[158]:=

In[159]:=

In[160]:=

In[161]:=

Do[Markers[w] = Join[Table[O, {i, 1, L+1}], Flatten[Tabl e[Join[Table[O, {i, 1, 31}],
Table[Sign[max -nunmsin[i 1] freq[w, i1, {t, -size[i], size[i]}11, {i, 1, num]],
Table[O0, (i, 1, 31}], Table[O, {k, 1, L}1], {w 1, max -1}];

Do [Mar kers3[w] = Take [Markers [w], {dist3+1, length-dist3}], {w, 1, max -1}1;

Do [Dvarkers [w] = Join[Table[O, {i, 1, L+1}], Flatten[Tabl e[Join[Tabl e[0, {i, 1, 31}],
Tabl e [Sign[max -nunmsin[i]] danp[w, i1, {t, -size[i], size[i]}1], {i, 1, num}]],
Table[0, {i, 1, 31}], Table[O0, {k, 1, L}1]1, {w, 1, detect}];

Do [DVar ker s3 [w] = Take [DMvarkers [w], {dist3+1, length-dist3}], {w, 1, detect }];
dmp3 =fr3 = Table[0, {k, 1, detect}, {i, 1, length3}];
Do[NFC3[[k, 111 =0, {k, 1, detect }];

Do[{x = {}; s={}
Do[{If[NFC3[[k, i]]==1, {If[NFC3[[k, i -1]] ==0, y =i
s = Append[s, DMP3[k][[i]1]1]; If [NFC3[I[k, i]
m= Median[x]; n = Median[s];
Do[{fr3[[k, j1]1 =m dnp3[[k, j11=n}, {j, Yy, i}]; x={} s={}131}
{fr3[[k, i11 =0; dnp3[[k, i11=0;3}1} (i, 2, length3-1}1}, (k, 1, detect }1;

X = Append [X, FREQ[kI[[i111;

frequency_estimation_tutorial.nb |29

npez)= left3 =Join[left, {®}]; right3 =Join[right, {o}]; LEFT3 = Joi n[LEFT[0] -dist3, {wo}];
RI GHT3 = Joi n[RIGHT[0] -di st3, {o}]; nc3 =Join[nc, {o}]; NC3 =Joi n[NC, {w}];
FRE@ = Joi n[FREQ, {«}]; DAMP3 = Joi n[DAMP, {w}];
FoundF = {}; count =Tablel[i, {i, 1, nunber}];
hits =spur =mss =split =fused =nmisclassified =0; |ndex = {};
(* Matri xForm[{l eft3,right3, nc3}]
Mat ri xFor m[{LEFT3, RI GHT3, NC3, FREQ3}]
Table[fr3[[k, left3[[1]1]+1]11, {k,1,nc3[[1]]1}]
{hits, m ss,spur,msclassified, split,fused}
I ndex x)

In[165]:=

npeel= While[left3 # {o} || LEFT3 # {o},
If(Max[left3[[1]], LEFT3[[1]]1]1 = Mn[right3[[1]], RRGHT3[[1]]],

{While[left3[[2]] < RIGHT3[[1]1]1,

{left3 =Rest [l eft3]; right3 = Rest [right3]; nc3 = Rest [nc3]; split ++}];

Wi | e [LEFT3[[2]] s right3[[1]1], {LEFT3 = Rest [LEFT3]; RI GHT3 = Rest [RI GHT3];
NC3 = Rest [NC3]; FRE@ = Rest [FREQ3];

DAMP3 = Rest [DAMP3]; count = Rest [count]J; fused ++}];

If[nc3[[1]1] == NC3[[1]], {hits++; I ndex = Append[lndex, count [[1]]];
FoundF = Append [FoundF, Table[fr3[[k, left3[[111]1], {k, 1, nc3[[1]11}1];
errF[hits] = Table[Abs [fr3[[k, left3[[1]1]1]] -FREQ3[[1, k111, {k, 1, nc3[[11]1}];
errD[hits] = Tabl e[Abs [dnp3 [[k, left3[[1]1]1]] + DAMP3[[1, k111, {k, 1, nc3[[1]]1}1},
m scl assified++];

left3 = Rest [l eft3]; right3 = Rest [right3]; LEFT3 = Rest [LEFT3];

RI GHT3 = Rest [RIGHT3]; nc3 = Rest [nc3]; NC3 = Rest [NC31;

FREQB = Rest [FREQ3]; DAMP3 = Rest [DAMP3]; count = Rest [count]; }];

If[right3[[1]] < LEFT3[[1]],

{spur ++; right3 = Rest [right3]; left3 =Rest [l eft3]; nc3 = Rest [nc3]; }]

If [RIGHT3[[11] <left3[[1]], {m ss++; RIGHT3 = Rest [RI GHT3]; LEFT3 = Rest [LEFT37;
NC3 = Rest [NC3]; FREQB = Rest [FREQ3]; DAMP3 = Rest [DAMP3]; count = Rest [count]; }]; 1;

(» MatrixForm[{left3,right3,nc3}]

Mat ri xFor m[{LEFT3, Rl GHT3, NC3, FREQ3}]
Table[fr3[[k,left3[[11111, {k,1,nc3[[1]1]1}]
{hits, m ss,spur,msclassified, split,fused}
I ndex

count %)

inii671= DoferrorF[k] = {}; ErrorD[k] = {};
Do[lf [Dinensions[errF[i11[[1]1] 2k, {errorF[k] = Append[errorF[k], errF[i1[[k]]];
ErrorD[k] = Append [ErrorD[k], errD[i 1[[k111;3}1, {i, 1, hits}], {k, 1, detect}];
Do[Error FR[k] = Sel ect [errorF[k], #< .3 &], {k, 1, detect}];
Do[GrossError FR[k] = Sel ect [Error FR[k], #2> .3 &], {k, 1, detect }];

n[170):= adt = 8;

30| frequency_estimation_tutorial.nb

n171):= Do [SI Gladd [k] = Take [Si gnal +noi se NO SE, {LEFT[adt]1[[k]], RIGHT[adt 1[[k]] -1}]1,
{k, 1, nunber }1];
Do [S| QRadd [k] = Take [Si gnal +noi se NO SE, {LEFT[2adt][[k]], RIGHT[2adt J[[k]] -1}]1,
{k, 1, nunber }1];
Do[Fladd [k] = Tabl e[f [2k, centerf [2k] +m/ 2], {m -size[2k] -adt, size[2k] +adt -1}],
{k, 1, nunber }1];
Do[F2add [k] = Tabl e[f [2k, centerf [2k] +m/ 2], {m -size[2k] -2adt, size[2k] +2adt -1}],
{k, 1, nunber }1];
GRO =Gid[{{"total number of segnents"}, {nunber}}, Frame -» All];
GRR =Gid[{{"hits", "m sses", "spurious", "msclassified", "split", "fused"},
{hits, mss, spur, msclassified, split, fused}}, Frame - Al l];
GRL =Gid[{Join[{"nunber of components"}, Table[i, {i, 1, detect}]],
Join[{"nunber of segments"},
Tabl e [Di mensi ons [Sel ect [Table[nunsin[i], {i, 1, num}], (#== k) & 1[[1]],
{k, 1, detect}]1}, Frane » Al l 1;
CR3 =Gid[Join[{{"error RWM5", "error nean", "error nmedian",
“error maximum', "gross error maxi mm'}},
Tabl e [{Root MeanSquar e [Joi n[Error FR[k], {0}11, Mean[Joi n[Error FR[k], {0}11,
Medi an[Joi n[Error FR[k], {0}1], Max[Join[Error FR[k], {0}1],
Max [Joi n[GrossError FR[k], {0}1]1 3}, {k, 1, detect}]], Frame » Al l];
Do[{
LSP1[nn] = ListPlot [Tabl e[{j, Take[Abs [Fourier [SI Gladd [I ndex[[nn]1]1]1]1,
{1, Round [Di mensi ons [Fourier [SI Gladd[Index [[nn]11]1110[[11]1 /41 +2}1[[j +111},
{J, 0, Round[Di nmensi ons [Fourier [SI Gladd [I ndex[[nn]1]1]1]11([[11]/41}]1,
| mageSi ze - 400, Pl ot Range -» {0, Max [Abs [Fourier [SI Gladd [I ndex[[nn]]111]1] +.5},
GidLines » {Join[{{Pi Dinensions[SIGladd[I ndex[[1]1]1]11[[111/ (4Pi), {Orange}}},
Tabl e [{FREQ[[I ndex[[nn]], j 1] Dimensions [SI Gladd [I ndex[[nn]]1]11[[11]1/ (4Pi), {Red}},
{J, 1, nunmsin[2Index[[nn]]]1}],
Tabl e[{FoundF[[nn, j 1] Dimensions [SI Gladd [I ndex[[nn]]]1]1[[11]1/ (4Pi),
{Bl ue, Dashed}}, {j, 1, nunmsin[2Index[[nn]]1]1}1]1, {}},
Pl ot Markers -» {Automatic, Medium}, Axes - True, Pl otLabel ->"DFT"];

LSP2 [nn] =
Li stPl ot [{SI Radd [I ndex[[nn]]], F2add[Index[[nn]]]}, GidLines -» {{{adt, {Blue, Thick}},
{2 adt, {Red, Thick}}, {Di nmensions[SI&add[Index[[nn]]]]1[[1]] -adt, {Blue, Thick}},
{Di nensi ons [SI Radd [nn]][[1]] -2 adt, {Red, Thick}}}, {}},
Joi ned » True, PlotlLabel ->"Signal segnent", |nmageSize » 4007];

GR6[NN] = Gid[{{LSP1[nn]}, {LSP2[nn]}}, Spacings -» {5}1;

GR4[nn] = Gid[Transpose [
Join[{{"conmponent ", "actual frequency", "nmeasured frequency", "absolute error"}},
Table[{j, FREQ[[Index[[nn]], j11, FoundF[[nn, j1], Abs[FREQ[[Index[[nn]], j1] -
FoundF[[nn, j111}, {J., 1, numsin[2Index[[nn]]1}1]1], Frame - Al l];

GRB[Nn] =Gid[{{"index", "segnment index", "# of conponents"},
{StringJoin[IntegerString[nn], " (<", IntegerString[D nmensions[lndex][[11]], ")"1,
Index[[nn]], nunsin[2Index[[nn]]]1}}, Frame - All];3}, {nn, 1, Dinensions [Index][[1]]

j

EXPLANATION OF TABLESAND PLOTS:

frequency_estimation_tutorial.nb |31

Firgt table: total number of functions (segments of) and their corresponding supports:
Second tablee number of segments with the given number of components as
CORRECTLY identified by the algorithm;

Third table: the number of correctly found segments (hits), the number of segments algo-
rithm has missed (misses); the number of spurious segments, i.e, segments not originally
inserted by the signal generation algorithm but which happen to look like ones; this can
hapopen in the patches between legitimate segments.

PLOTS: You can stroll through correctly identified segments using the 4 "arrow buttons® above
the plots (the left corner of the "dslide view"). The first plot gives the modulus of the DFT over
the entire segment where the approximation is good, see the second plot. Thus: on the second
plot the vertical red grid lines correspond to the support boundaries of each signal segment
joined into the input signal; the blue gridlines correspond to the boundaries of the interpolation
over which the signal remains a good approximation. For our chosen degree of smoothenes as
ensured by interpolation (15) this is about 4 Nyquist rate unit intervals; since we oversample
twice, this provides about 8 additional sampling pints on each side of the support, see [4] for
details.

Inside the slide view the first table gives the ordinal number of each correctly identified interval,
its index in the sequence of signals and its number of sinusoidal components; the second table
gives actual frequency of each component, the corresponding measured frequency as obtained
by the algorithm and the absolute error. the secon plot gives the waveform of the true signal
component f[i,t] which is asum of several sinewaves (red), the waveform of the noisy signal as
obtained by patching these pieces together, corrupting them with noise and sampling them.

Second plot shows DFT part which is within the signal bandwidth (orange grid line), red grid-
lines shows the true frequncies of each component, the blue gridlines the established frequency

estimates.

Second plot shows DFT part which is within the signal bandwidth (orange grid line), red grid-

32| frequency_estimation_tutorial.nb

lines shows the true frequncies of each component, the blue gridlines the established frequency
estimates.

npsol= Gid[{{GRO}, {GRl}, {GR2}, {GR3}}]

total number of segnents
30

nunber of conponents | 1 |2 | 3
nunber of segments |11 |7 |12

Ou[180]= hizgs m soses spur(; ous | m scl aisi fied spIOi t fuzed

error RVS | error mean |error nedian |error maxinmum|gross error maximm

0. 00164239 | 0. 000999475 | 0. 000695868 0. 00694469 0
0. 0110914 | 0. 00569946 | 0.00254822 0. 0356536 0
0. 0295155 | 0.0219122 0. 0168158 0. 0758692

0

frequency_estimation_tutorial.nb |33

nps1):= SlideView[Table[Gid[{{CR5[ii1}, {CRA[ii1}, {CRE[Ii1}}], {ii, 1, Dinensions[lndex][[1]1]1}]]

out[181]=

el

i ndex |segnent

i ndex | of conponents

5 (<29) 5 2
conponent 1 2
actual frequency 2.3232 0. 728625
nmeasur ed frequency 2.32487 0. 733689
absol ute error 0. 00166883 | 0. 00506362
DFT
s | |'
L |
L |
i |
[|
4 I
= I
L |
I |
3 l
r |
I |
o °
I
I |
r |
L I
L ® |
1r | . °
o o ® : Y
L : Y Y ® []
L | L . . L | |
0 5 10 15
Signal segment
4r
3
2f
[|
1 /=\
\ \/\ L \/\ | L L /\ K\ L /\ /\ |
i 0 Y v U 6v \/ 80
_1}
,2}
_3;

34| frequency_estimation_tutorial.nb

ENJOY playing with chromatic derivatives and PLEASE do not hesitate to get in touch with
me if you have ANY questions or comments. | am leaving Sydney in two hours time going to
Serbia and Greece; will be back at the end of July; | might have internet access whle at homein
Serbia.

REFERENCES (all available at http://www.cse.unsw.edu.au/~ignjat/diff/)

[1] A. Ignjatovic: "Freguency estimation using time domain methods based on robust differential operators’, preprint.

[2] "Chromatic Derivatives, Chromatic Expansions and Associated Spaces', East Journal on Approximations,
Volume 15, Number 3 (2009), 263-302.

[3] "Chromatic derivatives and local approximations', IEEE Transactions on Signal Processing, Volume 57,
Issue 8, 20009.

[4] "Signal interpolation using numerically robust differential operators’, 14th WSEAS CSCC Multiconference,

July 22-25, 2010, Corfu Island, Greece.

