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ABSTRACT. Let M be a symmetric positive definite moment functional
and let {PM

n (ω)}n∈N be the family of orthonormal polynomials that corre-
sponds to M. We introduce a family of linear differential operators Kn =
(−i)

nPM

n (i d
dt

), called the chromatic derivatives associated with M, which
are orthonormal with respect to a suitably defined scalar product. We con-
sider a Taylor type expansion of an analytic function f(t), with the values
f (n)(t0) of the derivatives replaced by the values Kn[f ](t0) of these orthonor-
mal operators, and with monomials (t − t0)

n/n! replaced by an orthonormal
family of “special functions” of the form (−1)nKn[m](t − t0), where m(t) =
∑

∞

n=0 (−1)nM(ω2n) t2n/(2n)!. Such expansions are called the chromatic ex-
pansions. Our main results relate the convergence of the chromatic expansions
to the asymptotic behavior of the coefficients appearing in the three term recur-
rence satisfied by the corresponding family of orthogonal polynomials PM

n (ω).
Like the truncations of the Taylor expansion, the truncations of a chromatic
expansion at t = t0 of an analytic function f(t) approximate f(t) locally, in
a neighborhood of t0. However, unlike the values of f (n)(t0), the values of the
chromatic derivatives Kn[f ](t0) can be obtained in a noise robust way from
sufficiently dense samples of f(t). The chromatic expansions have properties
which make them useful in fields involving empirically sampled data, such as
signal processing.

1. Introduction

Let BL(π) denote the set of π-band limited signals of finite energy, i.e., the
set of continuous L2 functions with a Fourier transform supported within the
interval [−π, π]. Nyquist’s expansion, f(t) =

∑∞
n=−∞ f(n) sincπ(t−n), with
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sinc t = sin t/t, represents a signal f ∈ BL(π) using its samples at all inte-
gers. This makes Nyquist’s expansion global in nature. On the other hand,
every f ∈ BL(π) is also an analytic function that can be represented by its
Taylor series, using the values of all derivatives of f at a single instant, say
t0. Since the values of the derivatives of f at t0 are determined by the values
of f in an arbitrarily small neighborhood of t0, Taylor’s expansion is local
in nature. Consequently, these two expansions are complementary, and this
is reflected in a very different behavior of the error terms of approximations
obtained by truncating the two corresponding series.

Unlike the Nyquist expansion that has a most fundamental role in dig-
ital signal processing, the Taylor expansion has found very limited practical
use there, for several reasons. First of all, numerical differentiation is noise
sensitive. As put in [10], “. . . numerical differentiation should be avoided
whenever possible, particularly when the data are empirical and subject to
appreciable errors of observation.” Secondly, truncations of the Nyquist se-
ries of a function f ∈ BL(π) belong to BL(π) and converge to f ; thus,
the action of a continuous linear operator A on a signal f ∈ BL(π) can
be approximated by the action of A on truncations of the Nyquist series
representing f . However, nothing similar is true of the Taylor expansion.

In this paper we develop the theory of chromatic derivatives and the as-
sociated chromatic expansions from a new perspective and in a more general
way than was done in the past, either by the present author who introduced
these notions in [11], or by other contributors; see our references. Chromatic
expansions are of equally local nature as Taylor’s, but do not suffer from any
of the problems mentioned above. They can provide a numerically robust
framework for dealing with phenomena that are most naturally described
using differential operators.

2. Basic Notions

2.1 Moment functionals

Let Mω : Pω → R be a linear functional on the vector space Pω of real
polynomials in the variable ω. Such Mω is called a moment functional and
µn = Mω(ωn) is the moment of Mω of order n. For all m,n ≥ 0, let

∆m
n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

µ0 . . . µn

µ1 . . . µn+1

. . . . . . . . .
µn−1 . . . µ2n−1

µn+m . . . µ2n+m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.1)

Thus, ∆0
n is the Hankel determinant of order n, and we also denote it by

∆n. We will only consider moment functionals satisfying the following three
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conditions:

1. Mω is symmetric, i.e., µ2n+1 = 0 for all n.

2. Mω is positive definite; thus, ∆n > 0 and µ2n > 0 for all n.

3.

lim sup
n→∞

(µn

n!

)1/n
= e lim sup

n→∞

µ
1/n
n

n
< ∞. (2.2)

Given a functional Mω : Pω → R satisfying these three conditions,
we introduce a corresponding linear functional Mt : Dt → R on the vector
space Dt of linear differential operators with constant real coefficients, At =
α0 +α1

d
dt + · · ·+αn

dn

dtn , by Mt(d
n/dtn) = inµn; since Mω is symmetric, Mt

is real valued.1 We will call Mt a moment functional on Dt, and Mt(d
n/dtn)

is the moment of Mt of order n. When no confusion arises, we drop the
subscripts and use M for both Mω and Mt, and D for Dt.

Let {PM

n (ω)}n∈N be the family of orthonormal polynomials that cor-
responds to a symmetric positive definite moment functional M; thus, for
all m,n, M(PM

m (ω)PM

n (ω)) = δ(m − n). We associate with M a family of
linear differential operators {Kn}M

n∈N
defined by the operator polynomial

Kn = (−i)nPM

n

(

i
d

dt

)

. (2.3)

Such operators have real coefficients because M is symmetric. Since poly-
nomials {PM

n (ω)}n∈N are orthonormal, for all n ≥ 0 there exist γn > 0 such
that, if we also set γ−1 = 0 and PM

−1(ω) ≡ 0, the three term recurrence

PM

n+1(ω) =
1

γn
ω PM

n (ω) − γn−1

γn
PM

n−1(ω) (2.4)

holds for all n ≥ 0; see e.g. [2]. On the other hand, operators {Kn}M

n∈N
can

be shown to satisfy the recurrence

Kn+1 =
1

γn
(d ◦ Kn) +

γn−1

γn
Kn−1, (2.5)

with the same coefficients γn as in (2.4), and that for all m and n,

M[Kn ◦ Km] = (−1)nδ(m − n). (2.6)

1 We use the square brackets to indicate the arguments of operators acting on various
function spaces. If A is a linear differential operator, and if a function f(t, ~w) has
parameters ~w, we write At[f ] to distinguish the variable t of differentiation; if f(t)

contains only variable t, we write A[f ] for At[f ] and d
k[f ] for d

kf/dtk.
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Let f, g ∈ C∞; then the equality

d

[

n
∑

m=0

Km[f ]Km[g]

]

= γn (Kn+1[f ]Kn[g] + Kn[f ]Kn+1[g]) (2.7)

corresponds to the Christoffel – Darboux identity for orthogonal polynomials
and can be proved in a similar way, using (2.5) to form a telescopic sum.

From the corresponding properties of orthogonal polynomials, see e.g.
[2], one can show that

Kn =
(− i)

n

(∆n∆n−1)1/2

∣
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∣

∣
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∣

∣

∣
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µ0 . . . µn

µ1 . . . µn+1
...

...
µn−1 . . . µ2n−1

d0 . . . indn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.8)

Assume that M satisfies conditions 1 – 3; we define

m(t) =

∞
∑

k=0

i
kµk

tk

k!
=

∞
∑

k=0

(−1)kµ2k
t2k

(2k)!
. (2.9)

Inequality (2.2) ensures that the interval of convergence of m(t) is nontrivial.
Since m

(n)(t) =
∑∞

k=0 inµn+k (i t)k/k!, we have m
(n)(0) = inµn; thus,

M(A) = A[m ](0) (2.10)

for every A ∈ D. Using (2.6) we get

M[Kn ◦ Km] = (Kn ◦ Km)[m ](0) = (−1)nδ(m − n). (2.11)

One can easily verify that (2.8) and (2.9) imply that for all k, n,

k < n → (d
k ◦ Kn)[m ](0) = 0; (2.12)

(d
n+2k+1 ◦ Kn)[m ](0) = 0; (2.13)

(d
n+2k ◦ Kn)[m ](0) =

(−1)n+k∆2k
n

(∆n∆n−1)1/2
. (2.14)

Thus,

Kn[m ](t) =
∞
∑

k=0

(−1)n+k∆2k
n

(∆n∆n−1)1/2

tn+2k

(n + 2k)!
. (2.15)
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2.2 Examples

We now give a few examples that show that for several families of classical
orthogonal polynomials the corresponding m(t) are some familiar special
functions. The first example below was introduced in [11]; the other ex-
amples were introduced in [3, 8]. The claims are easy consequences of well
known properties of orthogonal polynomials and special functions involved.

Example 1. (Chebyshev polynomials of the first kind/Bessel functions)
For the family of orthonormal polynomials obtained by normalizing the
Chebyshev polynomials of the first kind, Tn(ω), by setting PM

0 (ω) ≡ 1
and PM

n (ω) =
√

2 Tn(ω) for n > 0, the corresponding function (2.9) is
m(t) = J0(t), and Kn[m ](t) = (−1)n

√
2Jn(t), where Jn(t) is the Bessel

function of the first kind of order n. In the recurrence relation (2.5) the
coefficients are given by γ0 = 1/

√
2 and γn = 1/2 for n > 0.

Example 2. (Legendre polynomials/Spherical Bessel functions)
Let Ln(ω) be the Legendre polynomials; if we let PM

n (ω) =
√

2n + 1 Ln(ω)
then m(t) = sinc t and Kn[m ](t) = (−1)n

√

(2n + 1)πjn(t), where jn(t)
is the spherical Bessel function of the first kind of order n, i.e., jn(t) =
Jn+1/2(t)/

√
2 t. The corresponding recursion coefficients are given by γn =

(n+1)/
√

4(n + 1)2 − 1. If we set PM

n (ω) =
√

2n + 1 Ln(ω/π), then m(t) =
sincπt.

Example 3. (Hermite polynomials/Gaussian monomial functions)
Let Hn(ω) be the Hermite polynomials; then the polynomials given by
PM

n (ω) = (2n n!)−1/2 Hn(ω) are orthonormal. The corresponding function
defined by (2.9) is m(t) = e−t2/4 and Kn[m ](t) = (−1)n tne−t2/4/

√
2n n!.

The corresponding recursion coefficients are given by γn =
√

(n + 1)/2.

Example 4. (Herron family)
Let {En}n∈N be the Euler numbers; thus, sech t =

∑∞
n=0 E2n t2n/(2n)! for

|t| < π/2. If the family of orthonormal polynomials is given by L0(ω) ≡ 1,
L1(ω) = ω, and Ln+1(ω) = ω/(n + 1)Ln(ω) − n/(n + 1)Ln−1(ω), then
m(t) =

∑∞
n=0 E2n t2n/(2n)! and the interval of convergence of m(t) is finite,

Im = (−π/2, π/2). In this case Kn[m ](t) = (−1)n sech t tanhn t and γn =
n + 1 for all n ≥ 0. This example is a slight modification of an example due
to Herron [8].

Note that in Example 1 and Example 2 the corresponding functions
m(t) have finitely supported Fourier transforms, while in Example 2 and
Example 3 the corresponding m(t) belong to L2.
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2.3 Numerical robustness of orthonormal differential operators

Using (2.4) and (2.5) we get

Kn
t [eiωt] = inPM

n (ω) eiωt. (2.16)

Thus, if f(t) has a Fourier transform f̂(ω) such that the corresponding
Fourier integral can be differentiated with respect to the variable t under the

integral sign, then the Fourier transform of Kn[f ](t) is inPM

n (ω)f̂(ω). This
fact gives special properties to orthonormal differential operators acting over
spaces of such functions, that the “ordinary” derivatives dn/dtn do not have.

First of all, unlike the values of the derivatives f (n)(t), the values of
orthogonal differential operators Kn[f ](t) can be obtained in an accurate
and noise robust way, either from sufficiently dense samples of f(t), or, if
f(t) is an analog signal, by sampling the output of a bank of analog filters
that correspond to operators Kn. To explain this, we consider Example
1 corresponding to the Chebyshev polynomials and compare the behavior
of the symbols, or, in signal processing terminology, the transfer functions
(i ω)n of the standard derivatives dn/dtn of orders n = 13 and n = 15, with
the transfer functions

√
2 in Tn(ω) of the chromatic derivatives Kn of the

same orders.

-1 0.50.5 1
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0.5

1
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FIGURE 1

The left graph on Figure 1 shows the plots of ω13 (gray) and ω15 (black);
the right graph shows the plots of

√
2 T13(ω) (gray) and

√
2 T15(ω) (black).

While the transfer functions of the derivatives dn/dtn of the same parity
cluster tightly together and obliterate all but the edges of the spectrum (the
Fourier transform) of a BL(1) signal, the transfer functions of the chromatic
derivatives Kn form a family of well separated, interleaved and increasingly
refined comb filters, that instead of obliterating, encode the spectral features
of the signal. For this reason we call orthonormal differential operators the
chromatic derivatives.

Figure 2 (left) compares the transfer function of the “standard” deriva-
tive of order fifteen (gray), restricted to the bandwidth [−π/4, π/4], with the
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FIGURE 2

transfer function of its digital transversal filter implementation (black); Fig-
ure 2 (right) compares the transfer function of the chromatic derivative of
the same order (gray) with the transfer function of its digital transversal fil-
ter implementation (black). Filters in both implementations have 256 taps
spaced four taps per Nyquist rate interval (four times oversampling); their
pass band occupies 90% of the interval [−π/4, π/4] and their transition band
extends 10% on each side of their band limit π/4. Both filters were designed
using the Remez exchange algorithm; see e.g. [16]. Within both the pass
band and the stop band the error of approximation of these filters is less
than 10−4.

The right graph on Figure 2 shows that, if the signal is moderately
oversampled, it is possible to design digital filter banks which, for an input
signal of bandwidth only 10% narrower than the band limit of the filterbank,
provide both accurate and noise robust values of the chromatic derivatives
of the input signal up to quite high orders. Such filter banks accurately
encode the spectral features of the input signal and can be used in practical
applications in fields that involve empirically sampled data, such as signal
processing. On the other hand, from the left graph on Figure 2 it is clear that
digital filters approximating the derivatives dn/dtn of high orders provide
essentially no useful information.

2.4 Chromatic expansions

The chromatic expansion centered at t = u of an analytic function f(t) is
the formal series

CEM[f, u](t) =

∞
∑

n=0

(−1)n Kn[f ](u)Kn[m ](t − u). (2.17)

The truncation of the chromatic expansion to the first n+1 terms is denoted
by CAM[f, n, u](t) and is called the chromatic approximation of f(t) of order
n, centered at t = u,

CAM[f, n, u](t) =

n
∑

k=0

(−1)k Kk[f ](u)Kk[m ](t − u). (2.18)
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The main objective of §3 is to study when a chromatic expansion of
an analytic function f(t) pointwise converges to f(t), while in §4 we study
when a chromatic expansion converges uniformly.

From (2.11) it follows that the chromatic approximation CAM[f, n, u](t)
of order n of an analytic function f(t) for all m ≤ n satisfies

Km
t [CAM[f, n, u](t)]

∣

∣

t=u
=

n
∑

k=0

(−1)kKk[f ](u) (Km ◦ Kk)[m ](0) = Km[f ](u).

Since Km is a linear combination of derivatives dk/dtk for k ≤ m, this
implies that for all m ≤ n,

f (m)(u) =
dm

dtm
[CAM[f, n, u](t)]

∣

∣

t=u
=

n
∑

k=0

(−1)k Kk[f ](u) (d
m ◦ Kk)[m ](0).

(2.19)
Similarly, since dm/dtm

[
∑n

k=0 f (k)(u)(t − u)k/k!
]
∣

∣

t=u
= f (m)(u) for

all m ≤ n, we also have that for all m ≤ n,

Km[f ](u) = Km
t

[

n
∑

k=0

f (k)(u)(t − u)k/k!

]
∣

∣

∣

∣

∣

t=u

=
n
∑

k=0

f (k)(u)Km
[

tk/k!
]

(0).

(2.20)
Equations (2.19) and (2.20) for m = n relate the standard and the

chromatic bases of D,

d
n =

n
∑

k=0

(−1)k (d
n ◦ Kk)[m ](0) Kk; (2.21)

Kn =
n
∑

k=0

Kn
[

tk/k!
]

(0) d
k. (2.22)

Since for j > k all powers of t in Kk
[

tj/j!
]

are positive, we have

j > k → Kk
[

tj/j!
]

(0) = 0. (2.23)

Note that (2.23) and (2.12) imply that the matrices [(−1)k Kk[m(i)](0)]i,k≤n

and [Kk
[

tj/j!
]

(0)]j,k≤n are triangular, while (2.21) and (2.22) imply that
they are inverses of each other.

We now compare the chromatic approximations of analytic functions
with the Taylor approximations. The first equality in (2.19) shows that a
chromatic approximation, just like Taylor’s approximation, is a local approx-
imation. Referring to Example 2 (Legendre polynomials/Spherical Bessel
functions), Figure 3 compares the behavior of the chromatic approximation
(gray) of a signal f ∈ BL(π) (black) with the behavior of the Taylor ap-
proximation of f(t) (dashed). Both approximations are of order sixteen,
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and the signal f(t) is defined using Nyquist’s representation with samples
{f(n) : |f(n)| < 1, −30 ≤ n ≤ 30} that were randomly generated. Figure 3
reveals that, when approximating a signal in BL(π), the chromatic approx-
imation has a much gentler error accumulation when moving away from the
point of expansion than the Taylor approximation of the same order. Also,
unlike the monomials appearing in the Taylor formula, the “special func-
tions” Kn[m ](t) appearing in a chromatic expansion satisfy |Kn[m ](t)| ≤ 1
for all real t (Corollary 5).

In particular, in case of Example 2 we show that the chromatic expan-
sion CAM[f, u](t) of every analytic function f(t) pointwise converges to f(t)
(Corollary 3), and if f(t) is an analytic function that belongs to L2, then the
convergence is also uniform (Proposition 3). Such features of the chromatic
approximations, together with the numerical robustness of the chromatic
derivatives, make the chromatic approximations applicable in fields involv-
ing empirically sampled data.

2.5 Weakly bounded moment functionals

We now consider a broad class of symmetric positive definite moment func-
tionals that contains functionals that correspond to many classical families
of orthogonal polynomials. For such functionals the corresponding recursion
coefficients γn > 0 appearing in (2.5) satisfy the following three conditions:
(i) γn are bounded from below by a positive constant; (ii) the growth rate of
γn is sub-linear in n; and (iii) the quotients γn/γn+1 are bounded from above.
For technical simplicity in the definition below we use a single constant M
in all of these bounds.

Definition 1. Let M be a symmetric positive definite moment functional
and let γn > 0 be such that (2.5) holds for all n > 0.
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1. M is weakly bounded if there exist some M ≥ 1, some 0 ≤ p < 1 and
some integer r, such that for all n ≥ 0,

1

M
≤ γn ≤ M(n + r)p, (2.24)

γn

γn+1
≤ M2. (2.25)

2. M is bounded if there exists some M ≥ 1 such that for all n ≥ 0,

1

M
≤ γn ≤ M. (2.26)

Thus, every bounded functional M is also weakly bounded with p = 0.
Recall that in Example 1 (Chebyshev polynomials/Bessel functions) the re-
cursion coefficients satisfy γn = 1/2 for n > 1; in Example 2 (Legendre
polynomials/Spherical Bessel functions), γn = (n+1)/

√

4(n + 1)2 + 1; con-
sequently, in both cases the corresponding functional M is bounded. In
Example 3 (Hermite polynomials/Gaussian monomial functions), the recur-
sion coefficients satisfy γn =

√

(n + 1)/2; thus, in this case the correspond-
ing moment functional M is weakly bounded, but not bounded. In Example
4 we have γn = n + 1; thus, the corresponding functional M is not weakly
bounded.

In the remaining part of this paper, unless explicitly stated otherwise,
all moment functionals involved are assumed to be weakly bounded.

Weakly bounded moment functionals allow a useful estimation of the
coefficients in the corresponding equations (2.21) and (2.22).

Lemma 1. Let M be weakly bounded, and let M , p and r be as in Defini-
tion 1. Then the following two inequalities hold for all k and n:

|(Kn ◦ d
k)[m](0)| ≤ (2M)k(k + r)!p; (2.27)

∣

∣

∣

∣

Kn

[

tk

k!

]

(0)

∣

∣

∣

∣

≤ (2M)n. (2.28)

Proof. By (2.12), it is enough to prove (2.27) for all n ≤ k. We proceed
by induction on k; applying (2.5) to dk[m ](t) we get

|(Kn ◦ d
k+1)[m ](t)| ≤γn|(Kn+1 ◦ d

k)[m ](t)| + γn−1 |(Kn−1 ◦ d
k)[m ](t)|.

Using the induction hypothesis and (2.12) again, we get for all n ≤ k + 1,

|(Kn ◦ d
k+1) [m ] (0)| ≤ (M(k + 1 + r)p + M(k + r)p)(2M)k(k + r)!p

≤ (2M)k+1(k + 1 + r)!p.
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Similarly, by (2.23), it is enough to prove (2.28) for all k ≤ n. This time we
proceed by induction on n and use (2.5), (2.24) and (2.25) to get

∣

∣

∣

∣

Kn+1

[

tk

k!

]
∣

∣

∣

∣

≤ M

∣

∣

∣

∣

Kn

[

tk−1

(k − 1)!

]
∣

∣

∣

∣

+ M2

∣

∣

∣

∣

Kn−1

[

tk

k!

]
∣

∣

∣

∣

.

By induction hypothesis and using (2.23) again, we get that for all k ≤ n+1,
∣

∣

∣
Kn+1

[

tk

k!

]

(0)
∣

∣

∣
≤ M (2M)n + M2(2M)n−1 ≤ (2M)n+1.

Corollary 1. Let M be weakly bounded; then for every ε > 0 there exists

k0 such that
∣

∣(Kn ◦ dk) [m] (0)/k!
∣

∣

1/k ≤ ε for all k > k0 and all n.

Proof. Choose K such that (2M)k(k + 1 + r)!p/k!p < Kk for all k > 0.
By (2.27),

∣

∣(Kn ◦ dk) [m ] (0)
∣

∣

k!
<

Kk

k!1−p
<

(

K e

k1−p

)k

. (2.29)

The claim now follows from the fact that p < 1.

Corollary 2. Let m(t) correspond to a weakly bounded moment functional

M; then limk→∞

(µk

k!

)1/k
= limk→∞

∣

∣

∣

m
k(0)
k!

∣

∣

∣

1/k
= 0, i.e., inequality (2.2) is

satisfied. Moreover, m(z) =
∑∞

n=0 inµnzn/n! is an entire function on C.

In our Example 4 we have γn = n + 1 and thus (2.25) and (2.24)
are satisfied with p = 1. However, the interval of convergence of m(t) =
∑∞

n=0 E2n t2n/(2n)! is finite, Im = (−π/2, π/2). Thus, Example 4 shows
that if m(z) is to be an entire function, then the upper bound in (2.24) of
Definition 1 of a weakly bounded moment functional is sharp.

Definition 2. Let M be a weakly bounded moment functional; then B
M

denotes the set of functions that are analytic on R, such that for every
compact interval I, lim

n→∞
sup
t∈I

|Kn[f ](t)|1/n = 0.

Proposition 1. B
M

is a vector space that contains m(t) and is closed for
differentiation. Thus, Kn[m](t) ∈ B

M
for all n.

Proof. Let I be a compact interval and let L be such that |t| < L for all
t ∈ I. Corollary 1 implies that for every ε > 0 there exists k0 such that for
all n > k0 and all k, |(dn+k ◦ Kn)[m ](0)/(n + k)!|1/(n+k) < ε/L. Thus,

|Kn[m ](t)| ≤
∞
∑

k=0

|(dn+k ◦ Kn)[m ](0)|
(n + k)!

|t|n+k <

∞
∑

k=0

εn+k =
εn

1 − ε
(2.30)

for all t ∈ I, which implies m(t) ∈ B
M

. It is easy to check that B
M

is closed
for addition and scalar multiplication. By (2.24), lim supn→∞(γn)1/n = 1.
Using (2.5), |Kn[f ′](t)| = |(d◦Kn)[f ](t)| ≤γn |Kn+1[f ](t)|+γn−1 |Kn−1[f ](t)|.
It is now easy to verify that if f ∈ B

M
then also f ′ ∈ B

M
.
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3. Pointwise convergence of chromatic expansions

The past work on chromatic expansions relied heavily on properties of the
Fourier transform. In this paper we develop a more elementary treatment,
that also applies to functions that do not have a Fourier transform (as a
function). Our approach extends the classical treatment of Bessel functions
as presented in [23], and is based on notions that have a simple geomet-
ric interpretation, presented in §6. We relate these notions to the Fourier
transform and the past work on chromatic expansions in §5.

Lemma 2. Let M and p < 1 be as in Lemma 1; then there exists K such
that for every integer k ≥ 1/(1 − p), every n and every z ∈ C,

|Kn[m](z)| <
(K|z|)n
n!1−p

k (K|z| + 1)k−1 e(K|z|+1)k

. (3.1)

Proof. Let K be as in the proof of Corollary 1; using the Taylor series for
Kn[m ](z), (2.12), the first inequality of (2.29) and our assumptions, we get

|Kn[m ](z)| <

∞
∑

m=0

|Kz|n+m

(n + m)!1−p
<

|Kz|n
n!1−p

∞
∑

m=0

|Kz|m
m!1/k

<
|Kz|n
n!1−p

∞
∑

m=0

(K|z| + 1)k⌊m/k⌋+k−1

⌊m/k⌋!

=
|Kz|n
n!1−p

k (K|z| + 1)k−1 e(K|z|+1)k

.

Proposition 2. Let M be weakly bounded, p < 1 as in (2.24), f(z) an
entire function and u ∈ C. If lim supn→∞ |f (n)(u)/n!1−p|1/n = 0, then for
all z ∈ C,

f(z) =
∞
∑

j=0

(−1)jKj [f ](u)Kj [m](z − u). (3.2)

Proof. It is enough to prove the statement for u = 0. Let k and K be as
in Lemma 2. We define θ(z) ≡ k(K|z| + 1)k−1 e(K|z|+1)k

and

h(z) ≡
∞
∑

n=0

∞
∑

m=0

(−1)n+m f (n)(0)Kn+m

[

tn

n!

]

(0) Kn+m[m ](z). (3.3)

From our assumptions, (2.28) and (3.1), for every ε > 0 there exists Q such
that |h(z)| <

∑∞
n=0

∑∞
m=0 Qεn n!1−p (2M)n+m |Kz|n+m θ(z)/(n + m)!1−p.
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As in the proof of Lemma 2, taking an integer k ≥ 1/(1 − p), we get

|h(z)| <
∞
∑

n=0

Q(2 εMK|z|)n(2MK|z| + 1)k−1
∞
∑

m=0

(2MK|z| + 1)k⌊m/k⌋

⌊m/k⌋! θ(z)

<

∞
∑

n=0

Q(2 εMK|z|)n σ(z),

where σ(z) = k (2MK|z| + 1)k−1 e(2MK|z|+1)k

θ(z). This implies that the
series defining h(z) converges absolutely and uniformly on every disc of
finite radius. Thus, using (2.11) and (2.22), for every natural number s,

Ks[h](0) =
∞
∑

n=0

∞
∑

m=0

(−1)n+m f (n)(0)Kn+m

[

tn

n!

]

(0) (Ks ◦ Kn+m)[m ](0)

=
∑

n+m=s

(−1)n+m f (n)(0)Kn+m

[

tn

n!

]

(0) (Ks ◦ Kn+m)[m ](0)

=
s
∑

n=0

f (n)(0)Ks

[

tn

n!

]

(0) = Ks[f ](0). (3.4)

This implies h(s)(0) = f (s)(0) for all s, i.e., f(z) ≡ h(z). On the other hand,
the substitution k = n + m in (3.3), regrouping, (2.22) and (2.23) yield

f(z) =
∞
∑

k=0

k
∑

n=0

(−1)k f (n)(0)Kk

[

tn

n!

]

(0)Kk[m ](z)

=
∞
∑

k=0

(−1)kKk[f ](0)Kk[m ](z).

Corollary 3. If M is bounded, then for every entire function f and all
u, z ∈ C, f(z) =

∑∞
k=0(−1)kKk[f ](u)Kk[m](z − u).

Proof. If f(z) is entire, then for every u, limn→∞ |f (n)(u)/n!|1/n = 0. The
Corollary now follows from Proposition 2 with p = 0.

Corollary 4. Let PM

n (ω) be the orthonormal polynomials associated with a
weakly bounded moment functional M; then eiωt =

∑∞
n=0 inPM

n (ω)Kn[m](t).

Proof. If p < 1 then

lim
n→∞

n

√

| dn

dtn [sin ωt]|t=0

n1−p
= lim

n→∞

n

√

| dn

dtn [cos ωt]|t=0

n1−p
= lim

n→∞

|ω|
n1−p

= 0

and the claim follows from Proposition 2 and (2.16).
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We note that Corollary 3 generalizes the classical result that every en-
tire function can be expressed as a Neumann series of Bessel functions [23],
by replacing the Neumann series with any chromatic expansion that corre-
sponds to a bounded moment functional. Corollary 4, on the other hand,
generalizes the well known equality for the Chebyshev polynomials Tn(ω)
and the Bessel functions Jn(t), i.e., eiωt = J0(t) + 2

∑∞
n=1 inTn(ω)Jn(t).

In a similar fashion, one can obtain many other classical results on Bessel
functions from [23], as well as their generalizations. For example, the chro-
matic expansion of the constant function f(z) ≡ 1 yields the equality

m(z) +
∑∞

n=1

(

∏n
k=1

γ2k−2

γ2k−1

)

K2n[m ](z) = 1, with γn the recursion coeffi-

cients from (2.4), which generalizes the identity J0(z) + 2
∑∞

n=1 J2n(z) = 1.

4. Uniform convergence of chromatic

approximations

Definition 3. Let M be a weakly bounded moment functional; then LM

2

denotes the vector space of analytic functions f(t) such that
∑∞

n=0 Kn[f ](t)2

is a continuous function on R.

Since the sum in the above definition has positive terms, by Dini’s
Theorem f ∈ LM

2 just in case the sum
∑∞

n=0 Kn[f ](t)2 converges uniformly
on every compact interval I ⊂ R.

Lemma 3. For all f, g ∈ LM

2 the sum Σ(u) =
∑∞

k=0 Kk[f ](u)Kk[g](u)
converges uniformly on every compact interval I, and is independent of u.

Proof. Since
∑∞

m=0 Km[f ](u)2 and
∑∞

m=0 Km[g](u)2 converge uniformly
on every compact interval I, Σ(u) converges absolutely and uniformly on
such I as well. Let Σ∗(n, u) =

∑n
m=0 Km[f ](u)Km[g](u). Since M is weakly

bounded, (2.7) and (2.24) imply that for some M ≥ 1, 0 ≤ p < 1 and r,

d [Σ∗(n, u)] ≤ M(n + r)p(|Kn+1[f ](u)Kn[g](u)| + |Kn[f ](u)Kn+1[g](u)|).
(4.1)

Let Sk(u) = |Kk[f ](u)| + |Kk+1[f ](u)| + |Kk[g](u)| + |Kk+1[g](u)|; then

∞
∑

k=0

Sk(u)2 ≤ 4

∞
∑

k=0

Kk[f ](u)2 + Kk+1[f ](u)2 + Kk[g](u)2 + Kk+1[g](u)2 < ∞.

Thus, the series
∑∞

k=0 Sk(u)2 is convergent, and consequently for every fixed
u there are infinitely many n such that

(|Kn[f ](u)| + |Kn+1[f ](u)| + |Kn[g](u)| + |Kn+1[g](u)|)2 <
1

n + r
.

For every such n, all four summands must be smaller than 1/
√

n + r. This,
together with (4.1), implies that for such n, |d[Σ∗(n, u)]| < 2M/(n + r)1−p,
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i.e., that lim infn→∞ |d[Σ∗(n, u)]| = 0. Since limn→∞ d [Σ∗(n, u)] exists, it
must be equal to zero, and consequently Σ(u) is constant on R.

The above Lemma has several useful consequences. First of all, it
allows us to define on LM

2 a scalar product and a convolution in a highly
local, yet instant independent way (i.e., the two sums in the definition below
are independent of u).

Definition 4. Let f, g ∈ LM

2 , then we define

〈f, g〉
M

=
∑∞

k=0 Kk[f ](u)Kk[g](u); (4.2)

(f ∗
M

g)(t) =
∑∞

k=0 Kk[f ](u)Kk
u[g(t − u)]. (4.3)

Let ‖f‖
M

= 〈f, f〉1/2
M

. If f ∈ LM

2 , then ‖Kn[f ]‖∞ ≤ ‖f‖
M

for all n.
Thus, for f ∈ LM

2 , the filters that correspond to the operators {Kn}M

n∈N

have outputs uniformly bounded by ‖f‖
M

. This feature is important for
applications in fields that involve digital sampling of such filter banks.

Let B
M

be as in Definition 2; clearly B
M

⊂ LM

2 . Thus, by Proposition
1, Kn[m ](t) ∈ LM

2 for all n. By Lemma 3 and (2.6),
∑∞

k=0(Kk ◦ Kn)[m ](t)
(Kk ◦ Km)[m ](t) =

∑∞
k=0(Kk ◦ Kn)[m ](0) (Kk ◦ Km)[m ](0) = δ(m − n).

Corollary 5. For every fixed u, the family of functions {Kn[m](t−u)}n∈N

is an orthonormal set of vectors in LM

2 . Similarly, the set of sequences
{[(Kn ◦Kk)[m](u)]k∈N}n∈N is an orthonormal set of vectors in l2. In partic-
ular, for all u ∈ R,

∞
∑

k=0

Kk[m](u)2 = 1. (4.4)

Thus, for all u ∈ R,
|Kn[m](u)| ≤ 1. (4.5)

Corollary 6. Let M be weakly bounded and let A1, A2 ∈ D. Then

〈A1, A2〉DM =

∞
∑

n=0

M[Kn ◦ A1]M[Kn ◦ A2] (4.6)

is a scalar product on D, and the mapping A 7→ A[m](t) is a unitary iso-
morphism between D and the space spanned by the family {Kn[m](t)}n∈N

with the scalar product 〈f, g〉
M

. Similarly, for every fixed u, the map-
ping A 7→ [(Kk ◦ A)[m](u)]k∈N is a unitary embedding of D into l2 and
A 7→ [(Kk ◦ A)[m](0)]k∈N maps {Kn}M

n∈N
onto the usual base of l2.

Since Kk is a linear combination of derivatives of the same parity as k,
we have Kk

u[g(t − u)] = (−1)kKk[g](t − u); thus, by Lemma 3 and (4.3), for
every u and t,

(f ∗
M

g)(t) =

∞
∑

k=0

(−1)n Kk[f ](u)Kk[g](t − u). (4.7)
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By taking g(t) ≡ m(t) in (4.7), we get

(f ∗
M

m)(t) =

∞
∑

k=0

(−1)n Kk[f ](u)Kk[m ](t − u) = CEM[f, u](t). (4.8)

Finally, by setting first u = 0 and then u = t in (4.7), we get the
following useful lemma.

Lemma 4. For every f, g ∈ LM

2 ,

∞
∑

k=0

(−1)k Kk[f ](t)Kk[g](0) =
∞
∑

k=0

(−1)k Kk[f ](0)Kk[g](t). (4.9)

Proposition 3. Let M be weakly bounded and f ∈ LM

2 ; then the chro-
matic expansion CEM[f, u](t) of f(t) converges to f(t) in LM

2 and thus also
converges to f(t) uniformly on R.

Proof. We can assume u = 0. Since f,m ∈ LM

2 and Kk[m ](0) = 0 for
k > 0, using the second inequality of (4.8) and Lemma 4, CEM[f, 0](t) =
∑∞

k=0(−1)k Kk[f ](t)Kk[m ](0) = f(t). The convergence is uniform because
∣

∣

∣

∑∞
j=n+1(−1)jKj [f ](0)Kj [m ](t)

∣

∣

∣

2
≤∑∞

j=n+1 Kj [f ](0)2
∑∞

j=n+1 Kj [m ](t)2 ≤
∑∞

j=n+1 Kj [f ](0)2. So, for m > n, Km
t [
∑∞

j=n+1(−1)jKj [f ](0)Kj [m ](t)]
∣

∣

t=0

=
∑∞

k=n+1(−1)k Kk[f ](0)(Km ◦ Kk)[m ](0) = Km[f ](0). Since this implies
∥

∥

∑∞
k=n+1 Kk[f ](0)Kk[m ](t)

∥

∥

M
=
(
∑∞

k=n+1 Kk[f ](0)2
)1/2

, we conclude that
CEM[f, 0](t) converges to f(t) in LM

2 .

Note that Proposition 3 and (4.8) imply that for f ∈ LM

2

(f ∗
M

m)(t) = f(t). (4.10)

Setting f(t) = m(t) in (4.10) and (4.8), and subsequently also setting
u = t/2 in (4.8), we get

∞
∑

k=0

(−1)k Kk[m ](t/2)2 = m(t).

This is a generalization of the well known equality for the Bessel functions,
J0(t/2)

2 + 2
∑∞

n=1(−1)nJn(t/2)2 = J0(t). In a similar manner, we can gen-
eralize of many other identities for Bessel functions from [23].

Proposition 4. LM

2 is a complete space.

Proof. If f ∈ LM

2 then ‖f‖∞ ≤ ‖f‖
M

; thus, every Cauchy sequence
{fk}k∈N in LM

2 converges uniformly on R to an analytic function f(t),
and for every fixed n, the sequence {Kn[fk]}k∈N converges uniformly to
Kn[f ]. Let ε > 0 and N be arbitrary; then there exists m such that
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(
∑N

k=0 Kk[fm(t) − fn(t)]2)1/2 < ε/2 for all n > m and all t. Let n > m
be such that (Kk[fn](t)−Kk[f ](t))2 < ε2/(4N +4) for all 0 ≤ k ≤ N and for
all t. Then (

∑N
k=0 Kk[fm(t) − f(t)]2)1/2 < (

∑N
k=0 Kk[fm(t) − fn(t)]2)1/2 +

(
∑N

k=0 Kk[fn(t) − f(t)]2)1/2 < ε/2 + ε/2 = ε. Since N is arbitrary, also

(
∑∞

k=0 Kk[fm(t) − f(t)]2)1/2 ≤ ε. Finally, since
(
∑∞

n=N Kn[f ](t)2
)1/2 ≤

(
∑∞

n=0(Kn[f ](t) −Kn[fm](t))2
)1/2

+
(
∑∞

n=N Kn[fm](t)2
)1/2

, and since the
sum

∑∞
n=N Kn[fm](t)2 converges uniformly on every compact interval I,

also
∑∞

n=0 Kn[f ](t)2 converges uniformly on every such I. Thus, f ∈ LM

2 ,
and {fm}m∈N converges to f in LM

2 .

Corollary 7. If M is weakly bounded and the sequence of reals [am]m∈N

belongs to l2, then g(t) =
∑∞

m=0 am Km[m](t) belongs to LM

2 . For such
g(t) we have Kn[g](0) = (−1)n an; thus, for every fixed u, the mapping
f 7→ [Kk[f ](u)]k∈N is a unitary isomorphism between LM

2 and l2.

Proof. It is easy to see that αn(t) =
∑n

k=0 ak Kk[m ](t) is a Cauchy se-
quence in LM

2 that also uniformly converges to α(t) =
∑∞

k=0 ak Kk[m ](t).
By Proposition 4, the sequence {αm}m∈N converges in LM

2 to α ∈ LM

2 .

Corollary 8. {Kn[m](t−u)}n∈N is a complete orthonormal system in LM

2 .

Proof. Let f(t) ∈ LM

2 and let u be fixed; by Corollary 5, {Kn[m ](t−u)}n∈N

is an orthonormal system in LM

2 . By Lemma 3, 〈f(t),Kn[m ](t − u)〉
M

=
∑∞

j=0 Kj [f ](t)(Kj ◦ Kn)[m ](t − u)
∣

∣

∣

t=u
=
∑∞

j=0 Kj [f ](u)(Kj ◦ Kn)[m ](0) =

(−1)nKn[f ](u). Thus, we have
∑∞

n=0〈f,Kn[m ](t − u)〉
M

Kn[m ](t − u) =
CEM[f, u](t) = f(t). Consequently, the Fourier expansion of f(t) ∈ LM

2

with respect to the orthonormal system {Kn[m ](t−u)}n∈N is the chromatic
expansion of f(t). By Proposition 3 such Fourier expansion converges to
f(t) in LM

2 .

Lemma 5. If M is bounded, then LM

2 is closed for differentiation.

Proof. Assuming that γn < M for all n, we have (d ◦ Kn)[f ](t) =
γn Kn+1[f ](t) − γn−1 Kn−1[f ](t) < M(|Kn+1[f ](t)| + |Kn−1[f ](t)|). Thus,
∑∞

k=0 Kk[f ′](t)2 < 2M2(
∑∞

k=0 Kk+1[f ](t)2 +
∑∞

k=0 Kk−1[f ](t)2), and so if
∑∞

k=0 Kk[f ](t)2 converges uniformly on every compact interval I, so does
∑∞

k=0 Kk[f ′](t)2.

If M is only weakly bounded, then LM

2 need not be closed for differen-
tiation. For example, let {Kn}M

n∈N
be defined by the three term recurrence

relation (2.5) with γn = (2 + (−1)n)(n + 1)4/5; such M is clearly weakly
bounded. Let g(t) =

∑∞
n=0 1/(n + 1)6/5 Kn[m ](t) <

∑∞
n=0 1/(n + 1)6/5. By

Corollary 7, g ∈ LM

2 . Since the series defining g(t) is uniformly convergent,
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by (2.5),

g′(t) =

∞
∑

n=0

γn Kn+1[m ](t) − γn−1 Kn−1[m ](t)

(n + 1)6/5
=

∞
∑

n=0

anKn[m ](t),

with an = (2 − (−1)n)/n2/5 − (2 + (−1)n)(n + 1)4/5/(n + 2)6/5 and the last
series converging uniformly. Thus, Km[g′](0) =

∑∞
n=0 an(Km ◦Kn)[m ](0) =

(−1)mam. Since |am| > 1/m2/5, we get that
∑∞

n=0 Kn[g′](0)2 =
∑∞

n=0 a2
n

diverges, and thus g′ 6∈ LM

2 .

Let Su[f ](t) denote the shift operator, i.e., Su[f ](t) = f(t−u), and let A
be a linear operator on LM

2 that is continuous with respect to the norm ‖f‖
M

.
If A is shift invariant, i.e., such that for every fixed h, (A◦Sh)[f ] = (Sh◦A)[f ]
for all f ∈ LM

2 , then A also commutes with differentiation on LM

2 . Using
Lemma 3,

A[f ] =

∞
∑

n=0

(−1)nKn[f ](u)A[Kn[m ](t − u)]

=

∞
∑

n=0

(−1)nKn[f ](u)Kn[A[m ]](t − u) = f ∗
M

A[m ]. (4.11)

Thus, the action of such A on any function in LM

2 is uniquely determined
by A[m ], which plays the role of the impulse response of a continuous time
invariant linear system in the standard signal processing paradigm based on
Nyquist’s expansion. This shows that a chromatic expansion has some good
features of both Taylor’s expansion and Nyquist’s expansion. Representing
Nyquist’s expansion using the shift operator Sh[f ](t) = f(t − h), i.e.,

f(t) =

∞
∑

n=−∞

S−n[f ](0)Sn[sinc πt], (4.12)

the chromatic expansion can now be seen as analogous to the Nyquist ex-
pansion, with the operators Kn replacing the shift operators Sn, and with
m(t) replacing sincπt. However, while Nyquist’s representation of a sig-
nal f ∈ BL(π) uses a set of samples {f(n)}n∈N evenly spread in time that
provide information on the global behavior of the signal, the chromatic rep-
resentation of f(t) uses a set of simultaneous samples {Kn[f ](u)}n∈N, taken
at a single instant u, and thus is local in nature.

The next proposition shows that among continuous linear operators on
LM

2 only shift invariant operators commute with differentiation.

Proposition 5. Let M be weakly bounded. If a continuous linear operator
A : LM

2 → LM

2 satisfies (dn ◦ A)[m](t) = (A ◦ dn)[m](t) for all n, then A
must be shift invariant on LM

2 .
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Proof. Such an operator A also satisfies (A ◦ Kn)[m ](t) = (Kn ◦ A)[m ](t)
for all n. Thus, also using Proposition 3 and Lemma 4, for every f ∈ LM

2 ,

A[f ](t) =
∞
∑

n=0

(−1)nKn[f ](0)Kn[A[m ]](t) =
∞
∑

n=0

(−1)nKn[A[m ]](0)Kn[f ](t).

Since operators Kn[f ](t) are shift invariant, A is also shift invariant.

5. Chromatic derivatives and the Fourier

transform

In this section we relate our notions to the Fourier transform and to the
past work on chromatic expansions.

Let M be a weakly bounded moment functional on Pω. Since M
is positive definite, there exists a bounded, non-decreasing function a(ω),
called an m–distribution function, such that

∫∞
−∞ ωn da(ω) = µn and for all

m and n,
∫∞
−∞ PM

n (ω)PM

m (ω) da(ω) = δ(m − n) (see e.g. [7]). More over,
our Corollary 2 and a theorem of Riesz [18] imply that such m–distribution
function is substantially unique, see e.g. §II.5 in [7], Theorem 5.1.

Let L2
a(ω) be the vector space consisting of functions ϕ : R → C such

that ‖ϕ‖a(ω) = (
∫∞
−∞ |ϕ(ω)|2 da(ω))1/2 < ∞, with the scalar product defined

by the Lebesgue – Stieltjes integral 〈α, β〉a(ω) =
∫∞
−∞ α(ω)β(ω) da(ω). Since

∫ ∞

−∞
|(i ω)nϕ(ω) eiωt|da(ω) ≤

(
∫ ∞

−∞
ω2n

da(ω)

∫ ∞

−∞
|ϕ(ω)|2da(ω)

)1/2

< ∞,

(5.1)
for every ϕ ∈ L2

a(ω) we can define a corresponding function f : R → C by

f(t) =

∫ ∞

−∞
ϕ(ω)eiωt

da(ω), (5.2)

and we can differentiate (5.2) under the integral sign any number of times.
Using (2.16), we obtain

Kn[f ](t) =

∫ ∞

−∞
i
n PM

n (ω)ϕ(ω) eiωt
da(ω). (5.3)

By Corollary 2, if M is weakly bounded, then limn→∞ µ
1/n
n /n = 0;

thus, for every ε > 0 there exists n0 such that µn < εnnn for all n > n0.
Consequently, for all ϕ ∈ L2

a(ω) and for f(t) such that (5.2) holds, using

(5.1) we get that for n > n0

|f (n)(t)| ≤ µ
1/2
2n ‖ϕ‖1/2

a(ω) ≤ εn(2n)n ‖ϕ‖1/2
a(ω) .
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This inequality can be used to bound the remainder term of the Taylor
approximation of f(t) of order n− 1, and is easily seen to imply that for all
ϕ ∈ L2

a(ω) the corresponding f(t) defined by (5.2) must be analytic.

Proposition 6. Families of orthogonal polynomials {PM

n (ω)}n∈N that are
associated with a weakly bounded moment functional M are complete in their
corresponding spaces L2

a(ω).

Proof. Follows from Lemma 2 and Riesz’s theorems from [18]; see e.g.
Theorems 4.2 and 4.3 in §II.4. of [7].

As a corollary, we get the completeness of many classical families of
orthogonal polynomials, such as the Hermite polynomials.

Since the family {PM

n (ω)}n∈N is a complete orthonormal system in
L2

a(ω), for every ϕ ∈ L2
a(ω) and for the corresponding f(t) such that (5.2)

holds, (5.3) implies that for almost all ω,

ϕ(ω) =
∞
∑

n=0

(−i)nKn[f ](0)PM

n (ω). (5.4)

Consequently, for every analytic function f(t) there can be at most one
function ϕ(ω) ∈ L2

a(ω) (in the sense of L2
a(ω)) such that (5.2) holds; such

ϕ(ω) we call the M–Fourier–Stieltjes transform of f(t), and we write ϕ =
FM [f ]. More generally, (5.3) implies that for every fixed u, ϕ(ω) eiωu =
∑∞

n=0(−i)nKn[f ](u)PM

n (ω) for almost all ω. Thus, by Parseval’s equality,

∞
∑

n=0

|Kn[f ](u)|2 =
∥

∥ϕ(ω)eiωu
∥

∥

2

a(ω)
= ‖ϕ(ω)‖2

a(ω) . (5.5)

Let FL2
a(ω) be the subspace of L2

a(ω) consisting of all functions ϕ ∈ L2
a(ω)

such that the function f(t) defined by (5.2) is real valued. If we define b(t) =
∫∞
−∞

eiωtda(ω), then b(n)(0) = inµn = m
(n)(0). Since

∫∞
−∞ da(ω) = µ0 < ∞,

we have FM [b] ∈ L2
a(ω) and consequently b(t) is analytic. Thus, b(t) ≡ m(t),

i.e.,

m(t) =

∫ ∞

−∞

eiωt
da(ω). (5.6)

Note that (5.5) implies that
∑∞

n=0 |Kn[f ](u)|2 does not depend on u.
Consequently, if ϕ(ω) ∈ FL2

a(ω), then f(t) defined by (5.2) is in LM

2 , and

‖f‖2
M

=

∞
∑

n=0

Kn[f ](u)2 =

∫ ∞

−∞
|ϕ(ω)|2da(ω) = ‖ϕ‖2

a(ω) . (5.7)

On the other hand, if f ∈ LM

2 , then
∑∞

k=0 Kk[f ](0)2 < ∞ and the
sequence of functions defined by

ϕn(ω) = FM

[

n
∑

k=0

(−1)nKn[f ](0)Kn[m ](t)

]

=

n
∑

k=0

(−i)
nKn[f ](0)PM

n (ω)
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is a Cauchy sequence in FL2
a(ω). Consequently, {ϕn(ω)}n∈N converges in the

sense of L2
a(ω) norm, i.e., almost everywhere to ϕ(ω) given by (5.4), and (5.2)

and (5.7) hold. In this way we get the following version of the Plancherel
Theorem.

Proposition 7. If M is weakly bounded then for every analytic real func-
tion f we have f ∈ LM

2 just in case FM [f ] ∈ FL2
a(ω) and

‖f‖
M

=

(

∞
∑

n=0

Kn[f ](u)2

)1/2

=

(
∫ ∞

−∞
|FM [f ](ω)|2da(ω)

)1/2

= ‖FM [f ]‖a(ω) .

(5.8)
Thus, the mapping f 7→ FM [f ] is a unitary isomorphism between LM

2 and
FL2

a(ω), and 〈f, g〉
M

= 〈FM [f ],FM [g]〉a(ω), i.e.,
∑∞

n=0 Kn[f ](u)Kn[g](u) =
∫∞
−∞FM [f ](ω) FM [g](ω) dω.

Similarly, if f, g ∈ LM

2 then also

M
∑

n=0

(−1)nKn[f ](0)Kn[g](t)

=

∫ ∞

−∞

M
∑

n=0

(−1)n Kn[f ](0) i
nPM

n (ω) FM [g](ω) eiωt
da(ω)

=

∫ ∞

−∞
FM [g](ω)FM

[

M
∑

n=0

(−1)nKn[f ](0)Kn[m ](t)

]

eiωt
da(ω).

Since FM [
∑M

n=0(−1)nKn[f ](0)Kn[m ](t)] converges to FM [f ] in FL2
a(ω),

f ∗
M

g =
∞
∑

n=0

(−1)nKn[f ](0)Kn[g](t) =

∫ ∞

−∞
FM [g](ω)FM [f ](ω) eiωt

da(ω).

Corollary 9. If f, g ∈ LM

2 then FM [f ∗
M

g](ω) = FM [g](ω)FM [f ](ω).

If a(ω) is absolutely continuous, then there exists a non-negative weight
function w(ω) such that almost everywhere a′(ω) = w(ω). In this case

f̂(ω) = 2π w(ω)FM [f ](ω), where f̂(ω) =
∫∞
−∞ f(t) e− iωtdt is the usual

Fourier transform of f(t). If the moment functional M is bounded, then
a(ω) and w(ω) are finitely supported; see e.g. [2]. Thus, if the support of
w(ω) is contained in the finite interval [−σ, σ], then m(t) ∈ BL(σ), i.e.,
m(t) is a σ-band limited signal, and m(t) =

∫ σ
−σ

w(ω) eiωtdω.
In our Example 2 for the modified Legendre polynomials defined by

PM

n (ω) =
√

2n + 1 Ln(ω/π), we have m(t) = sincπt. In this case w(ω) = 1
for −π ≤ ω ≤ π and zero outside [−π, π]; thus, LM

2 consists of functions with

the Fourier transform supported in [−π, π] that satisfy 1
2π

∫ π
−π |f̂(ω)|2dω =
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∫∞
−∞ f(t)2dt < ∞, i.e., all π-band limited signals of finite energy, the most

important space of signals in signal processing practice.

Thus, the space BL(π) can be spanned either by the integer shifts of
the function sinc π(t) = sinc (πt), which results in the “global”, Nyquist’s
expansion of a signal f ∈ BL(π), or by the chromatic derivatives associ-
ated with the Legendre polynomials of sinc π(t), which results in the local,
chromatic expansion. Since for f ∈ BL(π) the Nyquist expansion of f con-
verges uniformly, Kn[f ](t) =

∑∞
k=−∞ f(k) Kn[sinc π](t − k) for all n. This

equation for t = 0 and the chromatic expansion of f(t) provide the transfor-
mations between the Nyquist rate samples used in Nyquist’s expansion and
the values of the chromatic derivatives used in the chromatic expansion:

Kn[f ](0) =

∞
∑

k=−∞

(−1)n f(k) Kn[sinc π](k);

f(n) =

∞
∑

k=−∞

(−1)k Kk[f ](0) Kk[sinc π](n).

In our Example 1, LM

2 consists of signals f(t) whose Fourier transform

f̂(ω) is equal to zero for |ω| > 1, and satisfies
∫ 1
−1

√
1 − ω2|f̂(ω)|2dω < ∞,

see [12]. Thus, the chromatic expansion associated with this example is
convenient for representing signals with lots of power in frequencies near
the edge of the bandwidth. To represent signals that have low power in the
high end of the spectrum, a good choice would be to use the chromatic ex-
pansion that corresponds to the Chebyshev polynomials of the second kind,
Un(ω), because in this case the space LM

2 consists of band limited signals f(t)

with the Fourier transform f̂(ω) that satisfies
∫ 1
−1 |f̂(ω)|2/

√
1 − ω2dω < ∞;

see [8]. For non-band limited signals one would use the chromatic expan-
sions that correspond to weakly bounded moment functionals that are not
bounded, such as the one described our Example 3, and for signals that
are finitely supported in the time domain (or in the space domain, such as
images, treated by a natural extension of our theory to two dimensions) one
can use chromatic expansions associated with families of the kind described
in our Example 4. In [8] it is shown how to custom design families of chro-
matic derivatives from empirically obtained features of a linear system, for
example from the impulse response of a telecommunication channel.

6. A geometric interpretation

Let M be weakly bounded. By Corollary 5, for every fixed t the set of
vectors {[(Km ◦Kn)[m ](t)]n∈N}m∈N is an orthonormal basis of l2. Similarly,
by Lemma 7, for every fixed t the mapping from LM

2 into l2 defined by
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f 7→ [Kn[f ](t)]n∈N is a unitary isomorphism between LM

2 and l2. If t varies,

then ~f(t) = [Kn[f ](t)]n∈N defines a curve in l2.

Lemma 6. If f ∈ LM

2 then ~f(t)=[Kn[f ](t)]n∈N is a continuous curve in l2.

Proof. If f ∈ LM

2 then
∥

∥f − Sh[f ]
∥

∥

2

M
≤∑N

n=0(Kn[f ](u)−Kn[Sh[f ]](u))2+

2
∑∞

n=N+1 Kn[f ](u)2+2
∑∞

n=N+1 Kn[Sh[f ]](u)2. The claim now follows from
the facts that on every compact interval I ⊂ R the sum

∑∞
n=0 Kn[f ](u)2

converges uniformly, and that functions {Kn[f ](t)}n≤N are uniformly con-
tinuous on I.

Lemma 7. Let B
M

be as in Definition 2 and assume that g ∈ B
M

. Then

limh→0

∥

∥

∥

g(t)−Sh[g](t)
h − g′(t)

∥

∥

∥

M

= 0. Thus, the curve ~g(t) = [Kn[g](t)]n∈N is

everywhere differentiable and ~g ′(t) = [Kn[g′](t)]n∈N.

Proof. Since B
M

⊂ LM

2 , Proposition 1 implies g′ ∈ LM

2 . Thus, if
I is a compact interval, then for every ε > 0 there exists N such that
∑∞

n=N+1 Kn [g′] (u)2 < ε for all u ∈ I. Also, for every t and h let ξt
n be

a number between t and t − h such that (Kn[g](t) − Kn[g](t − h))/h =
(Kn[g])′(ξt

n) = Kn[g′](ξt
n). Since

∞
∑

n=0

Kn

[

g(t) − g(t − h)

h
− g′(t)

]2

=

∞
∑

n=0

(

Kn[g′](ξt
n) −Kn[g′](t)]

)2

<

N
∑

n=0

(

Kn[g′](ξt
n) −Kn[g′](t)

)2
+ 2

∞
∑

n=N+1

Kn[g′](ξt
n)2 + 2

∞
∑

n=N+1

Kn[g′](t)2

and functions Kn [g′] (u) are uniformly continuous on every compact interval,
the above sum can be made arbitrarily small on every such interval I.

If we let ~ek+1(t) =
[

(Kk ◦ Kn)[m ](t)
]

n∈N
for k ≥ 0, since by Proposition

1 Kn[m ](t) ∈ B
M

for all n, by Lemma 7 ~ek(t) are differentiable for all k.
Since l2 is complete and ~e1(t) is continuous, ~e1(t) also has an antiderivative
~e0(t). Thus, ~e1(t) = ~e ′

0 (t), and, from (2.5),

~e ′
1 (t) = [(d ◦ Kn)[m ](t)]n∈N

= γ0 ~e2(t)

~e ′
k (t) = −γk−2

[

(Kk−2 ◦ Kn)[m ](t)
]

n∈N

+ γk−1

[

(Kk ◦ Kn)[m ](t)
]

n∈N

= −γk−2 ~ek−1(t) + γk−1 ~ek+1(t).

This means that ~e0(t) is a helix in l2 with curvatures κk = γk−1 (k ≥ 1); for
every t and k ≥ 0, vectors ~ek+1(t) = [(Kk ◦Kn)[m ](t)]n∈N are orthonormal in
l2 (Lemma 5) and they form an orthonormal moving base of the helix ~e0(t);
the above two equations are the corresponding Frenet–Serret formulas.

Since for f ∈ LM

2 the chromatic expansion of f converges uniformly,

Km[f ](t) =
∞
∑

n=0

Kn[f ](u)(Km ◦ Kn)[m ](t − u). (6.1)
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Consequently, for all t and u, the infinite matrix [(Km ◦ Kn)[m ](t − u)]∞m,n=0

defines a unitary operator on l2 that maps the vector [Kn[f ](u)]n∈N that
represents f at the instant u into the vector [Kn[f ](t)]n∈N that represents
f at the instant t. Thus, as time evolves, the orthonormal moving base
{~ek(t)}k≥1 slides along the helix ~e0(t), while the norms and angles between
vectors [Kn[f ](t)]n∈N that represent f ∈ LM

2 at an instant t remain invariant.
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