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Chromatic Derivative Filter Banks
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Abstract—A new contribution to generalized sampling of band-
limited signals based on the so-called chromatic derivative opera-
tors was recently introduced by Ignjatovic. Chromatic derivatives
are linear combinations of the ordinary derivatives, where the co-
efficients of the combination are derived from orthogonal polyno-
mial theory. This letter describes the connection between these op-
erators and the well-established ideas of perfect reconstruction and
biorthogonality in analog filter banks.

Index Terms—Biorthogonality, Chebyshev—Bessel filter bank,
chromatic derivatives, perfect reconstruction.

1. INTRODUCTION

T IS WELL known that an analytic function can be ex-
pressed in terms of its derivatives using the classic Taylor
series expansion. Although this series matches the function well
in the neighborhood of expansion, the approximation error in-
creases dramatically at far-away points when the infinite series
is truncated. As such, the Taylor series expansion is not particu-
larly useful in signal processing applications. For band-limited
signals, however, it is possible to obtain perfect reconstruction
(PR) of the signal with a finite number of derivatives evaluated
at sub-Nyquust intervals, as shown in [3]. This generalized sam-
pling scheme can be visualized as a filter bank in which the anal-
ysis filters evaluate the derivatives of the signal at uniform inter-
vals and the synthesis filters perform the interpolation function.
[tis generally believed that the accurate evaluation of derivatives
is a daunting task because of the impact of measurement noise.
Even if their evaluation is not hampered by noise, this scheme is
still not practical, since the frequency responses of the analysis
filters that represent the higher order derivatives cluster together,
which results in a poor encoding of the signal spectrum.
Chromatic derivatives were introduced in [1], [2] in order to
alleviate the above-mentioned spectral encoding problem. They
are related to standard derivatives in a manner similar to the
way orthogonal polynomials are related to the monomials. The
transfer functions of these derivatives are well separated in the
frequency domain, and hence they encode the spectral informa-
tion elegantly instead of destroying such information.
The main purpose of this letter is to demonstrate the PR prop-
erty of filter banks based on chromatic derivatives. First, we de-
rive the biorthogonality condition for PR in an infinite-channel
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Fig. 1. The infinite-channel filter bank for a signal #(1) band-limited to —7 <

w <.

continuous time filter bank (a review of standard results for dis-
crete time PR filter banks can be found in [4]). This corresponds
to the series expansion of a function, and we demonstrate that
the Taylor filter bank satisfies this condition. Next, we introduce
chromatic derivative filter banks using Chebyshev polynomials
as an example and show that the corresponding interpolating
functions for PR in such a filter bank are Bessel functions.

II. BIORTHOGONAL ANALOG FILTER BANKS

Consider Fig. 1, where a signal z(f) band-limited to
|w| < = is passed through an infinite-channel analysis filter
bank Hj(w), whose outputs are sampled at ¢ = 0. Assume
that the input x(¢) is in the space spanned by the synthesis
filters Fp(w), i.e, z(t) = Yo cmfm(t), or equivalently
X(w) = X0 emdin(w). If the analysis and synthesis filters
satisty the biorthogonality condition

" dw .
/ IIR'(L"‘)FTH(““) ; = é&'m (1)

T

where 6., 15 the Kronecker delta function, then the filter bank
has the PR property. To prove this, first consider the output of
the mth analysis filter evaluated at ¢ = 0:

vm(0) = /_ ' _X(u;)ﬁ,,,(w);—‘;

oc T J
= Z o / EFi(w)H, (w) % = 2)

k=0

where the last equality follows from the biorthogonality condi-
tion. The reconstructed signal is

K@) =D vmlO)F(w) = Y conFn(w) = X(w). (3)

m=0 m=i

Of course, this is an “extreme filter bank,” since there are infin-
itely many channels with only one sample kept in each subband.

1070-9908/02817.00 © 2002 IEEE



216

We can visualize the Taylor series expansion x(f) =
S o ™ (0)¢* /E! of a signal 2(t) about t = 0 as a filter bank
of the form in I'ig. 1. Since the kth order differentiator has
frequency response (jw)*, the analysis filters can be written as
Hy(w) = (jw)*, 0 < k < o0, and the impulse responses of the
synthesis filters are f,,,(£) = £ /m!, 0 < m < cc. The Fourier
transform of f,,(t) is Fy,(w) = 278" (w)/m!, where
8" () is the mth derivative of the Dirac delta function. It is
easy to verify that the Taylor filter bank satisfies (1).

[II. CHROMATIC DERIVATIVE FILTER BANKS

An interesting family of continuous-time filter banks, called
chromatic derivative filter banks, arises when we define the
H;.(w) to be more general polynomials in jw that are related to
the classical orthogonal polynomials. In this case, the kth anal-
ysis filter 1s a linear combination of derivatives of order less than
k., and the coefficients of the combination are precisely the co-
efficients of the orthogonal polynomials, up to a sign. As an ex-
ample of such a construction, consider a system where the kth
analysis filter Hy(w) is derived from the kth Chebyshev poly-
nomial of the first kind 73.(x). Recall that these polynomials are
defined by the recursion

To(z)=1, Ty(z)=z, T4 (x)=22T3(2x)=Th_1(z). (4

Furthermore, these polynomials satisfy the orthogonality rela-
tion
1
/ W (z) i (x) Lo () de = SpmYm (5)
-1
where the weighting function W(z) and the normalization
factor -y, are given by

1 R m =10
VI—22’ Tm = w/2, m#0.

Now, it we chose the analysis and synthesis filters as

Hy(w) = f*Ti(w/x)

W(z) = (©)

and
EFn(w) = (=3)" @/vm)W (/) Tolw/) (N

then it can be verified, using (5), that the filter bank shown in
Fig. 1 satisfies the biorthogonality condition (1). The factor j*
in the definition of the analysis and synthesis filters guarantees
that their impulse responses will be real.

It 1s noteworthy that the impulse responses of the synthesis
filters in (7) can be expressed in terms of Bessel functions. The
Fourier transform of the mth-order Bessel function .J,,,(7t) is
band-limited to |w| < , and its value in this range can be shown
to be [5]

(=" @2/ Tu(w/m)W (w/m). ®

From (7) and (8), the impulse responses of the synthesis filters
for PR can be written as

Jo(rt),
& ={ 570,

m =10

m # 0. ©)
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It is also interesting to note that

fm(t) = (=1)"2fo(#) * hn(2),

where * denotes convolution. Hence, the mth synthesis filter is
the cascade of the base interpolation filter fy(t) = Jo(nt) and
the mnth analysis filter h,,,(t), except for a gain term.

The analysis filters Hy.(w), 0 £ k < 20, are known as chro-
matic derivative operators. Since these filters are derived from
Chebyshev polynomials, they satisfy a recursive relationship
similar to (4). The output v;(0) of the kth analysis filter Hj,(w)
in Fig. 1 is known as the kth chromatic derivative of z(t) eval-
uated at £ = 0. Denoting this by K [z](0), we can write the
following series expansion for x(t):

m#0 (10)

2(t) = Ko[2](0)Jo(mt) + 2 | Ku[2](0)Ju(xt).  (11)

n=l1

Using (10), this expansion can also be written as
() = Ko[z](0)Jo(wt)

+2) (1)K [0 Ka[fo)(®) (12)

where K, [fo](t) denotes the nth chromatic derivative of the
base interpolating function fo(t).

A comparison of the Taylor and the Chebyshev analysis banks
reveals a number of useful differences. In the Taylor filter bank,
all the filters have zeros at w = 0, and the higher order filters are
indistinguishable from each another. The Chebyshev analysis
filters, on the other hand, have zeros distributed in the interval

n < w << 7, and the zeros of any two analysis filters are
disjoint. The filters are also well separated from each other.

IV. CONCLUSION

Although we have described the Chebyshev—Bessel filter
bank as an example, it is possible to formulate chromatic
derivative filter banks corresponding to the other classical
orthogonal polynomials. Since the use of an infinite number
of filters is not practical, we propose to construct a local ap-
proximation to the signal about a point using a finite number of
chromatic derivatives and truncate the mterpolating functions
appropriately. This process can then be repeated at a sequence
of sampling points in order to obtain a piece-by-piece recon-
struction of the signal. The procedure for putting the pieces
together and an analysis of the resulting error characteristics
are discussed in [1].
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