Formally Verified Software in the Real World

Gerwin Klein June Andronick Matthew Fernandez
Data61, CSIRO Data61, CSIRO Data61, CSIRO
and and
UNSW UNSW UNSW

Sydney, Australia

Sydney, Australia

Sydney, Australia

lhor Kuz Toby Murray Gernot Heiser
Data61, CSIRO Data61, CSIRO Data61, CSIRO
and and
UNSW University of Melbourne UNSW

Sydney, Australia

ABSTRACT

We present an approach for building highly-dependable systems
that derive their assurance from a formally-verified operating-
system which guarantees isolation between subsystems. We lever-
age those guarantees to enforce security through non-bypassable ar-
chitectural constraints, and through generation of code and proofs
from the architecture. We show that this approach can produce a
system that is highly robust against cyber attacks, even without for-
mal proof of its overall security. We demonstrate not only that this
approach is applicable to real-world systems, such as autonomous
vehicles, but also that it is possible to re-engineer an existing inse-
cure system to achieve high robustness, and that this can be done
by engineers not trained in formal methods.

CCS Concepts

eSoftware and its engineering — Operating systems; Software
verification; eSecurity and privacy — Formal methods and the-

ory of security;

Keywords

Provably trustworthy systems, formal verification, seL.4

1. INTRODUCTION

In February 2017, a helicopter took off from a Boeing facility in
Mesa, AZ, to fly a routine mission around nearby hills. The heli-
copter flew its course fully autonomously, the safety pilot, required
by the FAA, did not touch any controls during the flight.

This was not the first autonomous flight of the AH-6, dubbed the
Unmanned Little Bird (ULB) [Boeing], it had been doing those for
years. This time, however, the aircraft was subjected to mid-flight
cyber attacks: The central mission computer was attacked by rogue

*Now at Intel Corporation.

ACM ISBN 978-1-4503-2138-9.
DOI:110.1145/1235

Melbourne, Australia

Sydney, Australia

camera software as well as a virus implanted from a compromised
USB stick during maintenance. The attack compromised some sub-
systems, but could not affect the safe operation of the aircraft.

One might think that this is not a big deal, certainly military
aircraft would be robust against cyber attacks? Yet, reality is dif-
ferent: In 2013, a “Red Team” of professional penetration testers,
hired by DARPA under the High-Assurance Cyber Military Sys-
tems (HACMS) program, compromised the baseline version of the
ULB, designed for safety rather than security, to the point where
they could have crashed it or diverted to any location of their
choice. In that light, risking an in-flight attack with a human on
board indicates that something had changed dramatically.

This article explains that change, and the technology that enabled
it. Specifically it is about technology developed under the HACMS
program, aimed at ensuring the safe operation of critical real-world
systems in a hostile cyber environment, various autonomous ve-
hicles in our case. The technology is based on formally verified
software, software with machine-checked mathematical proofs that
it behaves according to its specification. While this article is not
about the formal methods themselves, it explains how the verified
artefacts can be used to secure practical systems. Arguably the
most impressive outcome of HACMS is that this technology could
be retrofitted to existing real-world systems, dramatically improv-
ing their cyber-resilience, a process dubbed seismic security retrofit
in analogy to the seismic retrofit of buildings. Importantly, most of
the re-engineering of the system was done by Boeing engineers, not
by formal verification researchers.

By far not all the software on the HACMS vehicles was built on
the basis of mathematical models and reasoning, the field is not yet
ready for that. However, HACMS demonstrated that significant im-
provements are possible, and feasible, by applying such techniques
strategically, to the most critical parts of the overall system.

The HACMS approach works for systems where the desired se-
curity property can be achieved purely by architecture-level en-
forcement. Its foundation is our verified microkernel, seL.4
[ion 3)), which guarantees isolation between subsystems, except for
well-defined communication channels that are subject to the sys-
tem’s security policy. This is supported by system-level compo-
nent architectures that, by architecture, enforce the desired secu-
rity property (Section 4)), and our verified component framework,
CAmKES (Section 5). The CAmKES framework integrates with ar-
chitecture analysis tools from Rockwell Collins and the University
of Minnesota, and trusted high-assurance software components us-
ing domain-specific languages from Galois.

10.1145/1235

The HACMS achievements are based on the software engineer’s
old friend, modularisation. What is new is that formal methods
provide proof that interfaces are observed and module internals are
encapsulated. This allows engineers, such as Boeing’s, who are not
formal-method experts, to construct new or even retrofit existing
systems (Section 6), and achieve high resiliency, even though the
tools do not yet provide an overall proof of system security.

2. FORMAL VERIFICATION

Mathematical correctness proofs of programs go back to at least
the 1960s [1967]], but for a long time, real-world impact
was limited in scale and depth. However, recent years have seen a
number of impressive breakthroughs in the formal code-level veri-
fication of real-life systems. These range from the verified C com-

piler CompCert [Leroy,[2009], the verified seL4 microkernel [Klein

et _al [2009] [2014} [seL4], the verified conference system Co-
Con [Kanav et al.} [2014], the verified ML compiler CakeML

mar et al., [2014]], the verified interactive theorem provers Mi-
lawa [Davis and Myreen| [2015]] and Candle [Kumar et al} 2016],
the verified crash resistant file system FSCQ [Chen et al.| [2015],
the verified distributed system IronFleet [Hawblitzel et al.| 2013],
to the verified concurrent kernel framework CertiKOS [Gu et al.,
[2016]], and more — not to mention significant mathematical theo-
rems such as the Four Colour Theorem [Gonthier| [2003], the mech-
anised proof of the Kepler Conjecture [2013]), and the

0dd Order Theorem [Gonthier et all, 2013]]. These are not toy sys-
tems. For instance, CompCert is a commercial product, the sel.4

microkernel is used amongst others, in aerospace, autonomous avi-
ation, and as an internet of things platform; the CoCon system has
been used in practice for multiple full-scale scientific conferences.

All of these verifications required significant effort, and for ver-
ification to become practical for wide-spread use, this effort needs
to decrease. In this article we demonstrate how strategically com-
bining formal with informal techniques, partially automating the
formal ones, and carefully architecting the software to maximise
the benefits of isolated components, allows us to dramatically in-
crease the assurance of systems whose overall size and complexity
is orders of magnitude larger than that of the systems listed above.

Note that we primarily use formal verification to provide proofs
about correctness of code that we rely upon, however, it has other
benefits as well. Code correctness proofs have assumptions about
the context in which the code is run (e.g. behaviour of hardware,
configuration of software, etc.). Since these assumptions are made
explicit, effort can be targeted at ensuring that the assumptions hold
(through other means of verification such as testing). Furthermore,
in many cases systems will consist of a combination of verified and
non-verified code. In such cases formal verification acts as a lens,
focussing review, testing, and debugging attention on critical non-
verified code in the system.

3. SEL4

We begin with the foundation for building provably trustworthy
systems: the operating system (OS) kernel. It is the system’s most
critical part and the enabler of cost-effective trustworthiness of the
entire system.

The seL.4 microkernel provides a formally-verified, minimal set
of mechanisms for implementing secure systems. Compared to
standard separation kernels [I981]], these mechanisms are
purposefully general, and can be combined to implement a wide
range of security policies for a wide range of system requirements.

One of selL4’s main design goals is to enforce strong isolation
between mutually distrusting components that may run on top of

Untrusted VM

Untrusted Trusted

R ——
Hardware

Figure 1: Isolation and controlled communication with sel.4

it. The mechanisms support its use as a hypervisor, for instance,
to host entire Linux operating systems while keeping them iso-
lated from security-critical components that might run alongside,
as depicted in[Figure 1] In particular this functionality allows us to
deploy legacy components, which may have latent vulnerabilities,
alongside highly trustworthy components.

The seL4 kernel is unique amongst general-purpose micro-
kernels. Not only does it have the highest performance in its
class [Heiser and Elphinstone, 2016], but its 10,000 lines of C
code also have been subject to more formal verification than any
other publicly available piece of software in human history (not
only measured by lines of proof). At the heart of seL.4’s proofs sits
the proof of functional correctness of the kernel’s C implementa-
tion [Klein et al][2009]|. This proof guarantees that every behaviour
of the kernel is predicted by its formal abstract specification. Fol-
lowing this, we added further proofs, which we explain below after
introducing the main kernel mechanisms.

3.1 selL4 API

The sel4 kernel provides a minimal set of mechanisms for im-
plementing secure systems: threads, capability management, vir-
tual address spaces, inter-process communication (IPC), signalling,
and interrupt delivery.

The kernel maintains its state in kernel objects. For example,
for each thread in a system there is a thread object that stores in-
formation about scheduling, execution, and access control. User-
space programs can only refer to kernel objects indirectly through
capabilities [Dennis and Van Hornl [1966]. A capability combines
a reference to an object with a set of access rights to this object.
For example, a thread cannot start or stop another thread unless it
possesses a capability to the corresponding thread object.

Threads communicate and synchronise by sending messages
through IPC endpoint objects. One thread with a Send capability
to an appropriate endpoint can message another thread which has
a Receive capability to that endpoint. Notification objects provide
asynchronous communication through sets of binary semaphores.

Virtual address translation is managed by kernel objects that rep-
resent page directories, page tables, and frame objects. These are
thin abstractions over the corresponding entities of the processor
architecture. Each thread possesses a designated VSpace capability
that points to the root of the thread’s address-translation object tree.

Capabilities themselves are managed by the kernel, and stored
in kernel objects called CNodes, arranged in a graph structure that
maps object references to access rights, similarly to page tables
mapping virtual to physical addresses. Each thread possesses a dis-
tinguished capability identifying a root CNode. We call the set of
capabilities reachable from the root the thread’s CSpace. Capabili-
ties can be transmitted over endpoints with the grant operation, and
they can be shared via shared CSpaces.

Figure 2|illustrates these kernel objects on an example.

Thread-ObjectA

[
=
—
<
]
I
z
ls]

Figure 2: Kernel objects for an example seL.4-based system with two threads communicating via an endpoint

3.2 Security Proofs

With its generality, seL4’s kernel API is necessarily low-level
and admits highly dynamic system architectures. Direct reasoning
about this API can therefore be relatively involved.

The higher-level concept of kernel access control policies ab-
stracts away from individual kernel objects and capabilities and in-
stead captures the access-control configuration of a system via a
set of abstract subjects (think components) and the authorities each
has over the others (e.g. to Read data, or Send a message). In the
example of the system would have components A and B
with authority over the endpoint.

[2011]| proved for suitable such access control poli-
cies that seL.4 enforces two main security properties: authority con-
finement and integrity.

Authority confinement states that the access control policy is a
static (unchanging) safe approximation of the concrete capabilities
and kernel objects in the system for any future state of execution.
This implies that no matter how the system develops, no compo-
nent will ever gain more authority than the access control policy
predicts. In[Figure 2] the policy for component B does not contain
write access to component A, and therefore B will never be able
to gain this access in the future. This means reasoning at the pol-
icy level is a safe approximation over reasoning about the concrete
access control state of the system.

Integrity states that no matter what a component does, it will
never be able to modify data in the system (including by any sys-
tem calls it might perform) that the access control policy does not
explicitly allow it to modify. For instance, in[Figure 2] the only au-
thority component A has over another component is the Send right
to the endpoint component B receives from. This means, the max-
imum state change A can effect in the system is in A itself, and
in B’s thread state and message buffer. It cannot modify any other
parts of the system.

The dual of integrity is confidentiality, which states that a com-
ponent cannot read another component’s data without permission.
[Murray et al| [2013]] proved the stronger property of intransitive
non-interference for seL.4: given a suitably configured system (with
stronger restrictions than for integrity), no component will be able
to learn information about another component or its execution with-
out explicit permission. The proof expresses this in terms of an
information-flow policy that can be extracted from the access con-
trol policy used in the integrity proof. Information will only flow
when explicitly allowed by this policy. This proof covers explicit
information flows as well as potential in-kernel covert storage chan-
nels, but timing-channels are outside of its scope and must be ad-
dressed using different means [2014].

Further proofs about seL4 include the extension of functional
correctness, and thereby the security theorems to the binary level
for the ARMv7 architecture [Sewell et al [2013]], and a sound

worst-case execution time profile for the kernel [Blackham et al.l

[201T} [Sewell et al., 2016]), necessary for real-time systems.

The selL4 kernel is available for multiple architectures (ARMV6,
ARMv7, ARMv7a, ARMvS, Intel x86, and Intel x64), and its
machine-checked proof is current on the ARMv7 architec-
ture for the whole verification stack, as well as on ARMv7a with
hypervisor extensions for functional correctness.

4. SECURITY BY ARCHITECTURE

The previous section summarised the seL.4 kernel, which we can
use as a strong foundation for provably trustworthy systems. The
kernel forms the bottom layer of the trusted computing base (TCB)
of such systems. The TCB is the part of the software that needs
to work correctly for the security property of interest to hold. Of
course, real systems have a much larger TCB than just the micro-
kernel they run on, and more of the software stack would need to
be formally verified to gain the same level of assurance as for the
kernel. However, there are classes of systems for which this is not
necessary, for which the kernel-level isolation theorems are already
enough to enforce specific system-level security properties. This
section shows an example of such a system.

The systems for which this works are those whose component
architectures alone already enforce the critical property, potentially
together with a few small, trusted components. Our example is the
mission control software of a quadcopter, which was the research
demonstration vehicle in the aforementioned HACMS program.

_7

) Mission

Computer

g

"
Flight
Sy . g

Figure 3: Autonomous air vehicle architecture

shows the main hardware components of this quad-
copter. It is intentionally more complex than needed for a quad-
copter, because it is meant to be representative of the ULB. At this
level of abstraction, it is the same as the ULB architecture.

The figure shows two main computers: (i) a mission computer
that communicates with the ground control station, and manages
mission payload software, such as controlling a camera, and (ii)
a flight computer that has the task of flying the vehicle, reading
sensor data, and controlling motors. The computers communicate
via an internal network, a CAN bus on the quadcopter, a dedicated
Ethernet on the ULB. On the quadcopter, the mission computer
also has an insecure WiFi link, which gives us the opportunity to
demonstrate further security techniques.

The sub-system under consideration in this example is the mis-
sion computer. The main properties to enforce are that (i) only

Radio
Driver

Driver

Figure 4: Simplified quadcopter mission computer architecture

correctly authenticated commands from the ground station are sent
to the flight computer, that (ii) cryptographic keys are not leaked,
that (iii) no additional messages are sent to the flight computer,
and that (iv) untrusted payload software cannot influence the flight
behaviour of the vehicle. The operating assumption is that the cam-
era is untrusted and potentially compromised (i.e., malicious), that
its drivers and the legacy payload software are potentially com-
promised, and that any outside communication is potentially com-
promised. For the purpose of this example, we assume a correct
and strong cryptography implementation (i.e. the key cannot be
guessed), and that basic radio jamming and denial of service by
overwhelming the ground station radio link are out of scope.

shows how the quadcopter architecture achieves these
properties. We use a virtual machine (VM) running Linux as a con-
tainment vessel for legacy payload software, camera drivers, and
WiFi link. We isolate the cryptography control module in its own
component, with connections to the CAN bus component, to the
ground station link, and to the Linux VM for sending image recog-
nition data back to the ground station. The purpose of the crypto
component is to forward (only) authorised messages to the flight
computer via the CAN interface stack, and to send back diagnos-
tic data to the ground station. The radio link component sends and
receives raw messages that are encrypted, decrypted, and authenti-
cated respectively by the crypto component.

Establishing the desired system properties is now reduced to
purely the isolation properties and information-flow behaviour of
the architecture, and the behaviour of the single trusted crypto com-
ponent. Assuming correct behaviour of that component, keys can-
not be leaked, because no other component has access to them —
the link between Linux and the crypto component in|[Figure 4]is for
message passing only and does not give access to memory.

Only authenticated messages can reach the CAN bus, because
the crypto component is the only connection to the driver. Un-
trusted payload software and WiFi are, as part of the Linux VM,
encapsulated by component isolation, and can only communicate
to the rest of the system via the trusted crypto component.

It is easy to imagine that this kind of architecture analysis could
be automated to a high degree by model checking and higher-level
mechanised reasoning tools. As in MILS systems
[2006]], the observation is that component boundaries in an
architecture are not just a convenient decomposition tool for mod-
ularity and code management, but with enforced isolation provide
effective boundaries for formal reasoning about the behaviour of
the system. However, the entire argument hinges on the fact that
component boundaries in the architecture are correctly enforced at
runtime in the final, binary implementation of the system.

The mechanisms of the seL4 kernel we summarised in[Section 3|
can achieve this enforcement, but the level of abstraction of these
mechanisms is in stark contrast to the boxes and arrows of an ar-

chitecture diagram; even the more abstract access control policy
still contains far more detail than the architecture diagram. A run-
ning system of this size contains tens of thousands of kernel objects
and capabilities, which are created programmatically, and errors in
configuration could lead to security violations.

The next section shows how we not only automate the configu-
ration and construction of such code, but also how we can automat-
ically prove that architecture boundaries are enforced.

5. VERIFIED COMPONENTISATION
5.1 Generated Code

The same way reasoning about security becomes easier with the
formal abstractions of security policies, abstraction also helps in
building systems. The CAmKES component platform
that runs on seL4 abstracts over the low-level kernel mech-
anisms, and provides communication primitives as well as support
for decomposing a system into functional units, as seen in|Figure 5
Using this platform, we can design and build seL.4-based systems in
terms of high-level components that communicate with each other
and with hardware devices using connectors, such as remote pro-
cedure calls (RPC), dataports and events. Internally, CAmKES im-
plements these abstractions using seL.4’s low-level kernel objects:
components comprise (at least) one thread, a CSpace and a VSpace.
RPC connectors use endpoint objects and CAmKES generates glue
code to marshal and unmarshal messages and send them over IPC
endpoints. Similarly, a dataport connector is implemented using
shared memory (shared frame objects present in the address spaces
of two components, optionally restricting the direction of commu-
nication). Finally an event connector is implemented using seL4’s
notification mechanism.

CAmKES also generates, in the capDL language
[2010], a low-level specification of the system’s initial configura-
tion of kernel objects and capabilities. This capDL specification is
the input for the generic selL4 initialiser that runs as the first task
after boot and performs the necessary seL.4 operations to instantiate

and initialise the system [Boyton et al.|[2013].

CAmMKES
component
code
capDL

A glue
Thread d
Object CSpace code

g Chloce + proof

CONTEXT

initialised system + proof

Figure 5: CAmKES workflow

In summary, a component platform provides free code. The com-
ponent architecture describes a set of boxes and arrows, and the im-
plementation task is reduced to filling in these boxes; the platform
generates the rest, enforcing the architecture.

With a traditional component platform, this would mean that the
generated code increases the trusted computing base of the system,
because it has the ability to affect the functionality of the compo-
nents. However, CAmKES also generates proofs.

5.2 Automated Proofs

While generating glue code, CAmKES produces formal proofs in
Isabelle/HOL, following a translation validation approach
[1998], demonstrating that the generated glue code obeys a
high-level specification, and that the generated capDL specifica-
tion is a correct refinement of the CAmKES description
[2016]. We also prove that the generic seL4 initialiser correctly sets
up the system in the desired initial configuration. In doing so, we
automate large parts of system construction without expanding the
trusted computing base.

Developers rarely look at the output of code generators, fo-
cussing instead on the functionality and business logic of their sys-
tem. In the same way, we intend the glue code proofs to be artefacts
that do not need to be examined, the developer can focus on prov-
ing the correctness of their hand-written code. Mirroring the way
in which a header generated by CAmkKES gives the developer an
API for the generated code, the top-level generated lemma state-
ments produce a proof API. These lemmas describe the expected
behaviour of the connectors. In the example of RPC glue code
depicted in the generated function f provides a way to
invoke a remote function g in another component. To preserve the
abstraction, calling f must be equivalent to calling g. The lemma
we generate states that the invocation of the generated RPC glue
code f behaves as a direct invocation of g, as if it were colocated
with the caller.

hand-written

marshalling

seL4_Send(ep, . .. -~>
seL4_Recv(ep,...
unmarshalling

generated

Figure 6: RPC generated code

To be useful, the proofs we generate must be composable with
(almost) arbitrary user-provided proofs, both of the function g and
of the contexts where g and f are used. For this, the specification
of the connectors is parameterised by user-provided specifications
of remote functions. In this way, the proof engineer can reason
about her architecture, providing specifications and proofs for her
components, and relying on specifications for the generated code.

To date we have demonstrated this process end-to-end using
a specific CAmKES RPC connector [[Fernandez, 2016} [Fernandez]
[2013]]. Extending the proof generator to support other con-
nectors, allowing the construction of more diverse verified systems,
should be simpler to achieve, because other connector patterns (dat-
aports and events) are significantly less complex than RPC.

Next to communication code, CAmKES produces the initial ac-
cess control configuration that is supposed to enforce architecture
boundaries. To prove that the two system descriptions (capDL and
CAmKES) correspond, we consider the CAmKES description as an
abstraction of the capDL description. We use the established frame-
work mentioned in[Section 3.2]to infer author-
ity between objects from a capDL description to lift reasoning to a
policy level. To complement this, we have defined rules for infer-
ring authority between components in a CAmKES description. The
produced proof states that the capDL objects, when represented as
an authority graph with objects grouped per component, have the

same inter-group edges as the equivalent graph between CAmKES
components [2016]). Intuitively this means that an ar-
chitecture analysis of the policy inferred by the CAmKES descrip-
tion will hold for the policy inferred by the generated capDL de-
scription, which in turn is proved to satisfy authority confinement,
integrity, and confidentiality as in[Section 3.2]

Finally, to prove correct initialisation, we use the generic ini-
tialiser that will run as the first user task after boot time. In sel4,
this first (and unique) user task has access to all available mem-
ory. It uses it to create objects and capabilities according to the de-
tailed capDL description that it takes as input. We proved that the
state after execution of the initialiser satisfies the one described in
the given specification [2013]. Currently, this proof
holds for a precise model of the initialiser, but not yet at the im-
plementation level. Compared to the depth of the rest of the proof
chain, this may appear weak, but it is already more formal proof
than would be required for the highest level (EAL7) of a Common
Criteria security evaluation.

6. SEISMIC SECURITY RETROFIT

In practice there are few opportunities for engineering a system
from scratch for security, so the ability to retrofit for security is cru-
cial. Our framework supports this by an iterative process we call
seismic security retrofit, in analogy to retrofitting existing buildings
for more resilience against earthquakes. We illustrate the process
by walking through an example that incrementally adapts the ex-
isting software architecture of an autonomous air vehicle, moving
it from a traditional testing approach to a high-assurance system
with theorems backed by formal methods. While this example is
based on work done for a real vehicle, the ULB, it is simplified for
presentation and does not show all details.

The original vehicle architecture is the same as in Its
functionality is split over two separate computers: a flight com-
puter, which controls the actual flying, and the mission computer,
which performs high-level tasks such as ground station communi-
cation and camera-based navigation. The original version of the
mission computer is a monolithic software application that runs
on Linux. The rest of the example will concentrate on a retrofit
of this mission computer functionality. The system was built and
re-engineered by Boeing engineers, using the methods, tools, and
components provided by the HACMS partners.

6.1 Step 1: Virtualisation

The first step is to take the system as is and run it in a virtual ma-
chine (VM) on top of a secure hypervisor (Figure 7). In the seismic
retrofit metaphor, this corresponds to a more flexible foundation.

A VM on top of selL4 in this system consists of one CAmkKES
component that includes a virtual machine monitor (VMM) and
the guest OS, in this case Linux. The kernel provides abstractions
of the virtualisation hardware, while the VMM manages these for
the VM. The selL4 kernel constrains not only the guest, but also
the VMM, so that the VMM implementation does not need to be
trusted to enforce isolation. Failure of the VMM will lead to failure
of the guest, but not to failure of the complete system.

Depending on the system configuration the VM may get access
to hardware devices through para-virtualised drivers, pass-through
drivers, or both. In the case of pass-through drivers, we can make
use of a system MMU (or IOMMU) to prevent hardware devices
and drivers in the guest from breaching isolation boundaries.

Note that simply running a system in a VM does not add any
additional security or reliability benefits. Instead, the reason for
this first step is to enable step two.

i
1
: ()
1 _e_
: |
i i
i i
i L
{ —
i 1
i i
1 1
1 1
Net ! (@
e—— fed—

Figure 7: All functionality in a single VM

6.2 Step 2: Multiple Virtual Machines

The second step in a seismic retrofit strengthens existing walls.
In software, we improve security and reliability by splitting the
original system into multiple sub-system partitions, each of which
consists of a VM running the code of only part of the original sys-
tem. Each VM/VMM combination runs in a separate CAmKES
component, which introduces isolation between the different sub-
systems, keeping mutually distrusting ones from affecting each
other, and, later, allowing different assurance levels to coexist.

In general the partitions will follow the existing software archi-
tecture. However, where the software architecture is inadequate to
provide effective isolation, a redesign may be necessary.

Despite the desire for isolation, in general the partitions will need
to communicate with each other, so in this step we also add appro-
priate communication channels between them. It is critically im-
portant for security that these interfaces are kept narrow, limiting
the communication between partitions to only what is necessary.
Furthermore, interface protocols should be efficient, i.e., keeping
the required number of messages or amount of data copying min-
imal. Importantly seL4’s ability to enable controlled and limited
sharing of memory between partitions allows us to minimise the
amount of data copying.

Besides the VMs that represent subsystems of the original sys-
tem, we also extract and implement components for any shared re-
sources, for example, the network interface.

We can iterate this entire step two until we have achieved the
desired granularity of partitions. The right granularity is a trade-off
between the strength of isolation on the one hand and the increased
overhead and cost of communication between partitions, as well as
re-engineering cost on the other.

In our example we end up with three partitions: a VM that im-
plements the ground station communication functionality running
on Linux, another VM that implements camera-based navigation
functionality (also running on Linux), and a native component that

provides shared access to the network (Figure).
6.3 Step 3: Native Components

Once the system has been decomposed into separate VM parti-
tions, some or all of the individual partitions can be reimplemented
as native components rather than VMs. The aim is to significantly
reduce the attack surface for the same functionality. An additional
benefit of transforming a component into native code is reduced
footprint and better performance, removing the guest OS and re-
moving the execution and communication overhead of the VMM.

Using a native component also increases the potential for ap-
plying formal verification and other techniques for improving the
assurance and trustworthiness of the component. Examples range

Trusted Untrusted

N
)
|
|

i { ()

o _

Hl Network EE ﬁ

[l Stack IR i

il (Native) | ' 0
b il

Figure 8: Functionality split into multiple VMs

from full functional verification of hand-written code, through co-
generation of code and proofs, application of model checking, us-
ing type-safe programming languages, to static analysis or tradi-
tional thorough testing of a smaller code base.

Due to the isolation provided by seL.4 and the componentised ar-
chitecture, it becomes possible for components of mixed assurance
levels to coexist in the system without decreasing the overall assur-
ance to that of the lowest-assurance component, or increasing the
verification burden of the lowest-assurance components to that of
the highest assurance ones.

In our example, we target the VM for mission manager and
ground station link, implementing the communications, cryptogra-
phy, and mission manager functionality as native components. We
leave the camera and WiFi to run in a VM as an untrusted legacy

component (Figure 9)).

Crypto

(Native)

Network Mission
Stack

(Native)

Figure 9: Functionality in native components

The reason for this choice was a trade-off between effort to reim-
plement the sub-systems and the benefit gained by making them
native both from a performance and assurance perspective.

6.4 Step 4: Overall Assurance

With all the parts in place, the final step is to analyse the assur-
ance of the overall system, based on the assurance we can gain from
the architecture and individual components.

In HACMS, the communication, cryptography, and mission
manager functionality were implemented in a provably type-safe,
domain-specific language, Ivory with fixed
heap memory allocation. Without further verification, this does not
give us high assurance of functional correctness, but it does give
us assurance about robustness and crash-safety. Given component
isolation, we can reason that this assurance is preserved in the pres-
ence of untrusted components such as the camera VM.

The networking component is standard C code consisting of cus-
tom code for the platform, and pre-existing library code. Its assur-
ance level is careful implementation and known code. As above,
robustness could be increased without much cost using techniques
such as driver synthesis [Ryzhyk et al.| 2009] and type-safe lan-
guages. However, in the overall security analysis of the system,
any compromise of the network component would only be able to
inject or modify network packets, and since the traffic is encrypted
this would not compromise the property that only authorised com-
mands reach the flight computer.

The camera VM is the weakest part of the system, since it runs a
stock Linux system, and is expected to have vulnerabilities. How-
ever, being isolated, if an attacker were to compromise this VM,
she would not be able to escape to other components. The worst
an attacker could do is send incorrect data to the mission manager
component. As in the quadcopter, it is important for the mission
manager to validate data it receives from the camera VM.

This is the part of system on the ULB that demonstrated con-
tainment of a compromise in the in-flight attack mentioned in
This was a white-box attack, where the Red Team had ac-
cess to all code and documentation, as well as all external com-
munication, and was intentionally given root access to the camera
VM (simulating a successful attack against legacy software). This
served to validate the strength of the security claims and to uncover
any missed assumptions, interface issues, or other security aspects
that the research team might have failed to take into account.

7. LIMITATIONS AND FUTURE WORK

The previous sections have given an overview of a method for
achieving high assurance for systems whose security property can
be enforced by their component architecture. We have proved the-
orems for the kernel level and its correct configuration, as well as
theorems that the component platform correctly configures protec-
tion boundaries according to its architecture description, and that it
produces correct RPC communication code. The connection with
a high-level security analysis of the system currently remains in-
formal, and the communication code theorems do not cover all
communication primitives the platform provides. While more work
would be required to automatically arrive at an end-to-end system-
level theorem, it is clear at this stage that one is feasible.

The main aim of this work is to dramatically reduce verification
effort for specific system classes. While the purely architecture-
based approach described here can be driven a good deal further
than in our example, it is clearly limited by the fact that it can only
express properties that are enforced by the component architecture
of the system. If that architecture changes at runtime, or if the
properties of interest critically depend on the behaviour of too many
or too large trusted components, returns will diminish.

The first step to loosen these limitations would be a library of
pre-verified high-assurance components for use as trusted building
blocks in such architectures. These could include security patterns
such as input sanitisers, output filters, down-graders, and run-time
monitors, potentially generated from higher-level specifications,
but also infrastructure components such as re-usable crypto mod-
ules, key storage, file systems, network stacks, and high-assurance
drivers. If the security property depends on more than one such
component, we will need to reason about the trustworthiness of
their interaction and composition. The main technical challenges
here are concurrency reasoning, protocols, and information flow
reasoning in the presence of trusted components.

Despite these limitations, there are now real high-assurance sys-
tems that we can construct rapidly and with a cost that is lower than
traditional testing.

Acknowledgements

We are grateful to Kathleen Fisher, John Launchbury, and Ray-
mond Richards for their support as program managers in HACMS,
and in particular to Kathleen Fisher for the vision to start this pro-
gram. John Launchbury coined the term seismic security retrofit.
We thank Lee Pike for feedback on a draft of this paper. We
would also like to acknowledge our HACMS project partners from
Rockwell Collins, the University of Minnesota, Galois, and Boe-
ing. While we concentrated on the OS aspects in this paper, the
rapid construction of high-assurance systems includes many fur-
ther aspects, such as a trusted build, trusted components, as well as
architecture and security analysis tools.

This material is based on research sponsored by Air Force Research Lab-
oratory and the Defense Advanced Research Projects Agency (DARPA) un-
der agreement number FA8750-12-9-0179. The U.S. Government is au-
thorised to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of Air Force Research Laboratory, the Defense
Advanced Research Projects Agency or the U.S. Government.

References

Jim Alves-Foss, Paul W. Oman, Carol Taylor, and Scott Harrison.
The MILS architecture for high-assurance embedded systems.
Int. J. Emb. Syst., 2:239-247, 2006.

Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roy-
choudhury, and Gernot Heiser. Timing analysis of a protected
operating system kernel. In RTSS, pages 339-348, Nov 2011.

Boeing. Unmanned Little Bird H-6U. http://www.boeing.com/
defense/unmanned-little-bird-h-6u/. Visited: October 2016.

Andrew Boyton, June Andronick, Callum Bannister, Matthew
Fernandez, Xin Gao, David Greenaway, Gerwin Klein, Corey
Lewis, and Thomas Sewell. Formally verified system initialisa-
tion. In 15th ICFEM, pages 70-85, Oct 2013.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala,
M. Frans Kaashoek, and Nickolai Zeldovich. Using Crash Hoare
logic for certifying the FSCQ file system. In SOSP, pages 18-37,
Oct 2015.

David Cock, Gerwin Klein, and Thomas Sewell. Secure microker-
nels, state monads and scalable refinement. In 2/st TPHOLs,
pages 167-182, Aug 2008.

David Cock, Qian Ge, Toby Murray, and Gernot Heiser. The last
mile: An empirical study of some timing channels on seL4. In
CCS, pages 570-581, Nov 2014.

Ed Colbert and Barry Boehm. Cost estimation for secure soft-
ware & systems. ISPA / SCEA 2008 Joint International Confer-
ence, Technical Report usc-csse-2008-811, University of South-
ern California, May 2008.

Jared Davis and Magnus O. Myreen. The reflective Milawa the-
orem prover is sound (down to the machine code that runs it).
JAR, 55(2):117-183, 2015.

Jack B. Dennis and Earl C. Van Horn. Programming semantics for
multiprogrammed computations. CACM, 9:143-155, 1966.

http://www.boeing.com/defense/unmanned-little-bird-h-6u/
http://www.boeing.com/defense/unmanned-little-bird-h-6u/

Trevor Elliott, Lee Pike, Simon Winwood, Pat Hickey, James Biel-
man, Jamey Sharp, Eric Seidel, and John Launchbury. Guilt free
Ivory. In 2015 ACM SIGPLAN Symp. Haskell, pages 189-200,
2015.

Matthew Fernandez. Formal Verification of a Component Platform.
PhD thesis, UNSW Computer Science & Engineering, Jul 2016.

Matthew Fernandez, June Andronick, Gerwin Klein, and Ihor Kuz.
Automated verification of RPC stub code. In International Sym-
posium on Formal Methods, pages 273-290, Jun 2015.

Robert W. Floyd. Assigning meanings to programs. Mathematical
aspects of computer science, 19:19-32, 1967.

Georges Gonthier. A computer-checked proof of the four colour
theorem. |http://research.microsoft.com/en-us/people/gonthier/
4colproof.pdf, 2005.

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot,
Cyril Cohen, Fran¢ois Garillot, Stéphane Le Roux, Assia Mah-
boubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence
Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A
machine-checked proof of the Odd Order Theorem. In 4th ITP,
volume 7998 of LNCS, pages 163-179, 2013.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu,
Jieung Kim, Vilhelm Sjoberg, and David Costanzo. CertiKOS:
An extensible architecture for building certified concurrent OS
kernels. In OSDI, Nov 2016.

Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John
Harrison, Truong Le Hoang, Cezary Kaliszyk, Victor Magron,
Sean McLaughlin, Thang Tat Nguyen, Truong Quang Nguyen,
Tobias Nipkow, Steven Obua, Joseph Pleso, Jason Rute, Alexey
Solovyev, An Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu,
Josef Urban, Ky Khac Vu, and Roland Zumkeller. A formal
proof of the Kepler conjecture. CoRR, abs/1501.02155, 2015.
URL http://arxiv.org/abs/1501.02155|

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch,
Bryan Parno, Michael L. Roberts, Srinath T. V. Setty, and Brian
Zill. IronFleet: proving practical distributed systems correct. In
25th SOSP, pages 1-17, Oct 2015.

Gernot Heiser and Kevin Elphinstone. L4 microkernels: The
lessons from 20 years of research and deployment. Trans. Comp.
Syst., 34(1):1:1-1:29, Apr 2016.

Sudeep Kanav, Peter Lammich, and Andrei Popescu. A conference
management system with verified document confidentiality. In
CAV, volume 8559 of LNCS, pages 167-183, 2014.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engel-
hardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey
Tuch, and Simon Winwood. sel.4: Formal verification of an OS
kernel. In SOSP, pages 207-220, Oct 2009.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. Compre-
hensive formal verification of an OS microkernel. Trans. Comp.
Syst., 32(1):2:1-2:70, Feb 2014.

Ramana Kumar, Magnus Myreen, Michael Norrish, and Scott
Owens. CakeML: A verified implementation of ML. In POPL,
pages 179-191, Jan 2014.

Ramana Kumar, Rob Arthan, Magnus O. Myreen, and Scott
Owens. Self-formalisation of higher-order logic — semantics,
soundness, and a verified implementation. JAR, 56(3):221-259,
2016.

Ihor Kuz, Yan Liu, Ian Gorton, and Gernot Heiser. CAmKES:
A component model for secure microkernel-based embedded
systems. Journal of Systems and Software Special Edition on
Component-Based Software Engineering of Trustworthy Embed-
ded Systems, 80(5):687-699, May 2007.

Thor Kuz, Gerwin Klein, Corey Lewis, and Adam Christopher
Walker. capDL: A language for describing capability-based sys-
tems. In APSys, pages 31-35, Aug 2010.

Xavier Leroy. Formal verification of a realistic compiler. CACM,
52(7):107-115, 2009.

Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie,
Timothy Bourke, Sean Seefried, Corey Lewis, Xin Gao, and
Gerwin Klein. selL4: from general purpose to a proof of infor-
mation flow enforcement. In S&P, pages 415-429, May 2013.

Amir Pnueli, Michael Siegel, and Eli Singerman. Translation vali-
dation. In 4th TACAS, pages 151-166, Mar 1998.

John Rushby. Design and verification of secure systems. In SOSP,
pages 12-21, Dec 1981.

Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Ger-
not Heiser. Automatic device driver synthesis with Termite. In
SOSP, pages 73-86, Oct 2009.

seL4. The seL4 microkernel code and proofs. https://github.com/
sel.4/.

Thomas Sewell, Simon Winwood, Peter Gammie, Toby Murray,
June Andronick, and Gerwin Klein. seL4 enforces integrity. In
ITP, pages 325-340, Aug 2011.

Thomas Sewell, Magnus Myreen, and Gerwin Klein. Translation
validation for a verified OS kernel. In PLDI, pages 471-481, Jun
2013.

Thomas Sewell, Felix Kam, and Gernot Heiser. Complete, high-
assurance determination of loop bounds and infeasible paths for
WCET analysis. In RTAS, Apr 2016.

Sidebar: Proof Effort

The design and code development of seL4 took 2 person years (py).
Adding up all seL4-specific proofs over the years, comes to a total
of 18 py for 8,700 lines of C code. In comparison, L4Ka::Pistachio,
another microkernel in the L4 family, comparable in size to selL4,
took 6 py to develop and provides no significant level of assurance.
This means, there is only a factor 3.3 between verified software
and traditionally engineered software. According to the estimation
method by (Colbert and Boehm|[2008], a traditional Common Cri-
teria EAL7 certification for 8,700 lines of C code would take more
than 45.9 py. That means, formal binary-level implementation veri-
fication is already more than a factor of 2.3 cheaper than the highest
certification level of Common Criteria, and provides significantly
stronger evidence.

In comparison, the HACMS approach shown here only uses
these existing proofs for each new system, including the proofs
generated from tools. The overall proof effort for a system that fits
the approach is reduced to person weeks instead of years, and test-
ing can be significantly reduced to validating proof assumptions.

http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf
http://research.microsoft.com/en-us/people/gonthier/4colproof.pdf
http://arxiv.org/abs/1501.02155
https://github.com/seL4/
https://github.com/seL4/

Appendix

This appendix gives a flavour of the formalisms used in the selL.4
and CAmKES proofs, each with a reference to its full description.
The statements are slightly simplified to fit them here.

The Functional Correctness Proof

The functional correctness proof links the abstract specification of
seL4 to its C implementation, which is later compiled to a veri-
fied binary [Sewell et al., |2013]. The following snippet gives a
flavour of the monadic functional style of the abstract specifica-
tion. It shows (simplified) Isabelle/HOL code for the scheduler at
the abstract level:

schedule = do
threads < all_active_tcbs;
thread < select threads;
switch_to_thread thread

od OR switch_to_idle_thread

The corresponding efficient C scheduler is spread out over mul-
tiple functions and hundreds of lines of code. The technique we use
to express functional correctness formally is refinement. Program
C refines program A (written A C (), if the behaviours of C' are a
subset of the behaviours of A. We extended this classical notion to
state monads using a variant of forward simulation, which we call
carresp()ndence:

corresRPP'AC=V(s,s")estate_rel. Ps ANP's' —
(V(r', t"Yefst (Cs'). 3 (r,t)efst (As). (t,t") € state_rel ARrr')
A (snd (Cs") — snd (A s))

where A and C are abstract and concrete monadic programs, P
and P’ are preconditions for the abstract and concrete state, R is a
relation between the return values of the monad, and state_rel the
refinement relation between abstract and concrete states. Details
can be found in [Cock et al., 2008]. The preconditions make this
notion contextual and allow us to construct a scalable calculus with
moderate automation. After applying this calculus to the entire ker-
nel over three specification levels, we get as a formal corollary the
original notion of refinement and arrive at the simple looking the-
orem that the machine M ¢ with the C kernel refines the abstract
machine M 4 for any user program wu:

THEOREM 1. Mg4ul Mcu

Details on this theorem can be found in [Klein et al., [2014].

Integrity

The power of this refinement statement is that it allows us to derive
Hoare triples about M ¢ by deriving Hoare triples about M 4. The
integrity property of[Section 3.2]is such a Hoare triple.

The formalisation builds on the predicate pas_refined(p, s),
which captures authority confinement: the authority of each subject
in the system state s does not exceed its authority in the policy p.

pas_refined(p, s) =

policy_wf (policy p) (range(IRQAbs p)) (subject p) A

irg_map_wf p sA

auth_graph_map (objectAbs p) (objs_to_policy s) C policy p A

asids_to_policy p s C policy p A

irgs_to_policy p s C policy p
Sewell et al.| [2011]] describe the details of this definition.

The integrity theorem captures the allowed modifications
integrity(p, s, s’) between the states s and s’ before and after any
kernel call, according to a policy p. The relation is transitive and
reflexive in s and s’. We can now express the integrity property of

section 3.2|as a Hoare triple:

{As. pas_refined(p, s) A invs A (ev # Interrupt — ct_active) A
is_subject p o cur_thread A (s = st)}
call_kernel ev
{As. integrity(p, st, s) |}

where call_kernel is the top-level abstract kernel function and invs
are the kernel invariants. The other preconditions are explained in
[Sewell et al.l2011]]. With refinement, we get the same Hoare triple
for free for the C code.

CapDL and System Initialisation

[Section 3 mentions capDL specifications that describe the authority
state of a system at boot time, in particular which objects should
exist and which capabilities they possess. Formally, this is a further
abstraction Mp over the abstract functional specification, with a
further refinement theorem Mp u & M4 u.

The specification of the user-level component init_system uses
kernel calls in Mp, which allow us to prove that wellformed
capDL specifications lead to correctly initialised kernel objects:

THEOREM 2. If well_formed spec and
obj_ids = dom (cdl_objects spec) and distinct obj_ids then
{«valid_boot _info bootinfo spec * R»}
init_system spec bootinfo obj_ids
{Xs. Fp. «A* map (object _initialised spec ©) obj_ids N*
Si_objects spec o A* R» s A
injective ¢ A dom ¢ = obj_ids[}

Boyton et al.|[2013]] explain the predicates and separation logic no-
tation in this statement and [Klein et al., 2014] prove an additional
connection directly to the integrity statement.

Component Separation

The authority in a system is governed by an access-control policy p,
in the form of a directed graph. The CAmKES component system
generates such a policy from the input system architecture. The
authority graph for a CAmKES system contains a node for each
component and connection in the system, with the edges between
them labelled with the authority used to implement the connection.

The generated policy contains one node for every component and
connection, which means the engineer has the flexibility to further
group components and connections into subsystems according to
her desired security domains. Although this graph can become
large for a non-trivial system, reasoning support on this level is
fully automatic. For example, it is possible to state an authority
confinement claim as a set membership property, such as the one

shown in below, and decide it automatically.

THEOREM 3. (agenta, Reset agentp) ¢ auth_graph p

The level of abstraction of this automatic reasoning is at the
granularity of CAmKES components. In addition, we know that
the capDL specification CAmKES generates implements this pol-
icy correctly:

THEOREM 4. CAmMKES_gen spec ext irqgs = Some (capdl, P) N\
p € P = pes_refined p capdl

where pcs_refined is pas_refined from above, expressed directly on
the capDL level. See [Klein et al.||2014] for the formal connection.

[Fernandez, 2016, Chapter 7] provides the details of this theo-
rem, and the assumptions CAMKES_gen entails.

This means, together with the integrity and refinement theorems,
and the binary verification theorem (not shown here), this set of the-
orems spans the entire chain from the CAmKES component level
down to the binary, without any proof input required from the en-
gineer who uses CAmKES.

The proofs are either already provided, generated or automatic.

	Introduction
	Formal Verification
	seL4
	seL4 API
	Security Proofs

	Security by Architecture
	Verified Componentisation
	Generated Code
	Automated Proofs

	Seismic Security Retrofit
	Step 1: Virtualisation
	Step 2: Multiple Virtual Machines
	Step 3: Native Components
	Step 4: Overall Assurance

	Limitations and Future Work

