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Abstract

Computer networks are becoming increasingly more popular and more widely

used. In order to take full advantage of these networks, new distributed pro-

grams have to be written. Many of the tools available for distributed pro-

gramming, however, are unsatisfactory because too many of the problems faced

during distributed programming are left up to the programmer. A solution

to this is middleware. Middleware is a computing environment for distributed

applications which provides a model of information exchange and a common

programming interface to application programmers. One popular form of mid-

dleware is that of distributed objects where communication is done through

shared objects. A problem with the popularity of this type of middleware so-

lution is that there are so many di�erent models of distributed objects and no

common way of describing or comparing them. This report presents a common

framework and terminology for describing distributed object models, as well as

descriptions of a number of models.
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Chapter 1

Introduction

There are two main reasons for the current popularity and importance of net-

works and distributed programming. The �rst is the low cost of powerful com-

puters and improvements in network technology. These make it easier and more

feasible to connect computers into networks. Of course, just the fact that some-

thing is possible doesn't necessarily make it desirable, it must also be useful

to people. The second reason then has to do with the bene�ts that computer

networks have for their users. Networks allow hardware and software resources

such as disks, printers, programs and databases to be shared by multiple users.

They can also be used to increase the performance of certain types of applica-

tions, as well as to increase the reliability and fault tolerance of applications and

data through replication. Communication between users is also an important

possibility o�ered by networks. There are even some types of applications such

as cooperative applications or games which are inherently distributed and can

only exist with a network of some sorts.

In order to bene�t from interconnected computers, applications have to be spe-

cially designed and written to take the network environment into account. Un-

fortunately writing distributed applications is not easy. The biggest problem

is that much of the burden of managing communication between the di�erent

parts of the application is often left up to the programmer. Not only the com-

munication but also reliability, security and concurrency problems usually have

to be taken care of by the programmer. This means that every time that a

new application is written all of these issues must be taken into account and

often re-implemented. A problem often caused by this is that the applications

are written in such a way that changing the distribution mechanisms, e.g. the

network protocol, is a very di�cult task. Another problem is that many ex-

isting non-distributed applications cannot easily be integrated into distributed

applications, nor can they take advantage of the distributed environment.

The solution to these problems lies in middleware. Middleware's main goal is

to provide a consistent computing environment for distributed applications. It
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consists of a software layer above the operating system and networking layer and

below the application. This layer provides a model of information exchange and

a common programming interface to the application. In this way details of the

mechanisms used for distribution (e.g. interaction with the network software and

operating system) are hidden and can be replaced without having to change the

programs using them. This computing environment also provides the services,

such as reliability, security and concurrency control, needed by many distributed

applications. Middleware may also allow legacy applications to be accessed by

or be part of distributed applications. Apart from keeping the communication,

distribution and other services transparent, the environment provided by most

middleware can play an important role in structuring the applications.

One class of middleware that has received much attention and acceptance is

that of distributed objects. This type of middleware combines object-oriented

programming and distributed programming by focusing on objects and the in-

teraction between them. In object-oriented programming the basic idea is that

all the state of a program is encapsulated by objects. Objects are entities which

contain data and de�ne operations to access and modify that data. An im-

portant feature of objects is data encapsulation, which means that an object's

data is not visible from outside the object and can only be accessed through

the operations (called methods) de�ned in its interface. Another important fea-

ture of the object oriented paradigm is inheritance. This allows existing objects

(or classes, which are the de�nitions of objects) to be extended, creating new

objects (or classes). In this way reuse is facilitated because new objects do

not have to be built from scratch but can be based on existing ones, and users

of previously written objects can easily extend functionality without having to

change the original object.

The basic idea behind distributed objects is that all communication is done

through objects. These objects are usually mobile and communicate mainly

through invoking methods on other, possibly remote, objects. Whether an ob-

ject is remote or not, and how the method call is transferred to the remote

object should be transparent to the user of that object.

One of the reasons why object-oriented programming and distributed program-

ming go together well is due to the structure of most distributed applications.

Many distributed programs are structured as separate communicating entities,

for example clients and a server, or a resource and its users. This maps natu-

rally onto a model of communicating objects. Object boundaries also provide a

good place to impose security restrictions and object accesses provide a chance

to perform auditing. Migration of data or processes can be modeled by migrat-

ing objects and because an object is basically de�ned through its interface, the

actual implementations of objects can di�er depending on their surroundings

(e.g. the underlying hardware or operating system). It is possible to achieve

reliability and performance gain by replicating objects. The reuse and inher-

itance mentioned above also allow previously developed objects to be reused

and extended in new systems with minimal e�ort, as well as allowing existing

systems to be easily extended or modi�ed.
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Not all of these are trivial matters of course. For example, implementing e�-

cient replicated services and process migration are areas where research is still

being done in and the combination of inheritance and distributed programming

can often cause problems. However, once the system is implemented, the pro-

grammers do not have to worry about these details and can concentrate on their

speci�c applications.

The merging of objects and distributed programming has been widely accepted

and as a result many di�erent models have been proposed and implemented.

The problem is that there is no common terminology much less a common

framework for describing these models. This has led to much confusion because

it is not always easy to see the di�erences and similarities between the various

models. The goal of this report is then to de�ne a common terminology and

present a framework for describing models for distributed objects.

The rest of the report will be structured as follows. In the next chapter the

common framework and terminology will be presented and explained. After that

the framework will be used to describe a number of models. The conclusion will

discuss the framework and will present some general remarks about comparisons

of the models.
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Chapter 2

The Framework

A common framework for models of distributed objects should provide a basic

structure for a description of each model. This description should allow the

structure and working of a model to be quickly discerned. It should also allow

one to easily see the availability or lack of any features, and should function as

a base for a comparison of various models for distributed objects.

The framework described here breaks a model up into a number of important

issues in distributed objects. Each issue is also broken down into a number of

aspects, which include de�nitions of terms and descriptions of features found in

models of distributed objects.

The approach taken in this chapter will be to �rst introduce some terminology

used in describing the framework. Then the issues and their aspects will be

explained. This will provide a description of the framework, as well as a `how

to' guide, where necessary giving tips and information about how to use the

various aspects when drawing up a description of a model. Finally an overview

of all the issues and aspects will be presented.

2.1 Overview of the Framework

2.1.1 External vs Internal View of a Model

When describing a model we can either take an external or an internal view

The outside (or external) view is how a programmer using the model would

view a feature, including the syntax and semantics. The inside (or internal)

view describes what a feature looks like `under the surface' of the model. This

includes internal semantics and a description of the actual implementation of

the system (if deemed necessary for further understanding of the model).
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In the description of a model most entries will include information about the

external and internal views. For some aspects of a model this separation of

views is not necessary, and will be explicitly stated when appropriate.

2.1.2 Terminology

Model (when referring to a distributed objects model) refers to the descriptive

part of a distributed objects model, whereas system refers to an implementation

of the model - its run time system. Process and thread are used interchange-

ably and refer to an active entity. An object's client always refers to a process

or object which accesses that object (i.e. calls the objects method). The terms

user and programmer always refer to people using the objects in the model

to write a program or application and to people programming objects.

An address space is the memory directly accessible by an active entity. Ma-

chine refers to a physical computer (assuming single processors) or CPU (with

multiprocessors). Di�erent address spaces may be on the same or on di�erent

machines. A domain is a collection of address spaces managed by a single do-

main manager. A domain can span multiple machines or multiple domains can

be present on one machine.

2.1.3 Main Issues

The main classes of issues covered in the framework include: objects, object

management, object location, interaction with objects, concurrency, object ori-

ented programming issues, typing, persistence, failure and fault tolerance, pro-

gramming interface, and system issues.

2.2 Objects

Generally an object consists of a state, methods for accessing the state, and one

or more interfaces which specify how clients can access the object. Each model

may however deviate from this structure.

2.2.1 Objects and Object Structure

Granularity. The �rst aspect is the granularity of the object model. Gran-

ularity refers to the size of the objects managed by the system. In large grain

models the objects usually encapsulate whole applications and smaller entities

(like data structures) are not visible to the system. In medium grain models

the objects represent medium sized data structures (like lists or records) as well

as larger entities (as in the large grain model). The �ne grained models treat

everything as objects, this includes even the smallest data types (like integers).

For this aspect no external/internal division is needed.
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Kinds of Objects. Some models may distinguish di�erent kinds of objects,

for example system and user objects, or local and remote objects. Often a user

sees di�erent kinds of objects (external view) than the system does (internal

view). The object structure is also an important aspect which may be seen

di�erently by the user and the system. Object structure is a de�nition of what

an object actually IS. This includes a description of the parts that constitute

an object (for example an object may have a state and methods).

Composition. Object composition refers to creating objects out of other ob-

jects. One common way of doing this is through nesting. A nested object is one

that is included in another object's state. Important here is whether objects can

be nested at all, and if so how this is done (e.g. by including the whole object

in the state, or by including only a reference in the object's state), and if there

are any restrictions as to what kinds of objects may be nested (e.g. only local

objects can be nested). The external view refers to how a user would include

an object and the internal view deals with how the nesting is actually done at

the system level (these two do not have to be the same).

2.2.2 Interface

An object's interface refers to how clients access the object. This aspect deals

with the possibilities (or lack thereof) for multiple and evolving interfaces. Some

models allow objects to have multiple interfaces, meaning that di�erent clients

of an object may see di�erent interfaces, and therefore have di�erent ways of

accessing the object. The interfaces may be completely di�erent or may be

restricted subsets of other interfaces. Another possibility o�ered by some models

is evolving interfaces, which means that an object's interface may change during

the lifetime of that object. In both cases the external view refers to how a

programmer and user of an object can manipulate or use the multiple or evolving

interfaces. The internal view refers to how multiple and evolving interfaces are

actually handled by the system.

2.2.3 Activity Model

The activity model deals with the relationship between processes and objects.

Three kinds of activity models are possible: passive, active and hybrid. In the

passive model processes and objects are separate entities. The active entities

communicate through shared objects

1

. In the active model processes and ob-

jects are bound to each other, that is every object has a process that is bound to

it and every process is bound to an object. Another aspect of the active object

model is that all active entities communicate directly. Each object has a main

thread bound to it which receives messages from other threads and arranges

1

Other communication mechanisms are possible, however this is the only one that we will

discuss
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that the appropriate action is taken (this usually entails a worker thread being

activated and executing the appropriate method). The hybrid model encom-

passes combinations of the above two, for example a model which allows both

active and passive objects to coexist. This aspect requires no external/internal

division.

2.3 Object Management

With object management we refer to how the system and users keep track of

objects. This includes managing the object's life cycle as well as how objects

can be found and referred to by users.

2.3.1 Object Life Cycle Management

An object's life cycle consists of being de�ned, being created, executing methods

as requested by its clients and then being destroyed. Here life cycle management

refers to taking care of the de�nition, creation and destruction of an object.

De�nition. When an object is de�ned (or declared) usually the data types in

the state, the methods and the interface(s) are de�ned. How a user de�nes an

object belongs to the external view, whereas what actually happens when an

object is de�ned (e.g. a class object is created) may be both part of the external

and internal view.

Creation. Once an object is de�ned it must be created (sometimes the def-

inition and creation are merged into one action). This usually entails memory

being allocated, and perhaps a process being activated as well as the user re-

ceiving a reference to the object.

Destruction. Once an object is no longer needed it must be destroyed, in

some models this must be done explicitly by the user, while in others objects

are garbage collected when they are no longer needed. Once destroyed an object

is gone for good and can no longer be accessed by any clients. In both cases

the external view speci�es how the creation or destruction is done by the user

and what the user perceives, whereas the internal view describes what is done

by the system.

2.3.2 Class and Class Objects

In many models objects are in fact instances of a class. A class is the descrip-

tion/de�nition of an object and it is the class which is de�ned, rather than the

object during the de�nition phase of the life cycle.
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Often the class is itself an object which is created upon de�nition. If a model in-

cludes class objects then a description must include information about whether

class objects are normal objects (i.e. can be accessed by other objects or pro-

cesses, also have a class, etc.), whether they impose any restrictions on the

objects (e.g. when an object moves its class object must move with it), infor-

mation about sharing of class objects (by objects which are instances of the

same class) and any other peculiarities which class objects might introduce.

2.3.3 Object Naming

In order for potential clients to �nd an object some sort of name service must

be included in a model. A name service allows objects to have names and allows

objects to be found using these names. A potential client uses the name service

to resolve names, that is given a name it can get a reference to the object with

that name. In order to be known by the name service an object must register

itself under a speci�c name.

There are many possible structures for a name service and a description should

include the structure of an object name, how objects register themselves (or get

registered) and how name resolution takes place both from an external as well

as an internal view.

2.3.4 Object Reference

In order for a client to do anything with an object it must �rst be able to

reference it. This could mean a number of things including having access to the

object through a memory pointer and having the actual object in its address

space and being able to access it directly. Usually there is a big di�erence

between the way that a user sees a reference and the way that a reference is

actually implemented (or seen by the system). Also one must take into account

the possible di�erence between referencing di�erent kinds of objects (e.g. local

and remote).

2.4 Object Location

The whole idea of distributed objects is that objects on di�erent machines (or at

least in di�erent address spaces) can communicate with each other. Therefore

object location is an important issue. However, object location is a di�cult

concept to de�ne in general and it is used di�erently in many models.

Considering an object as described in Section 2.1.1 (an object has a state, meth-

ods and interfaces) an object's location will be a combination of its state and

interface location. The state location refers to the complete set of address spaces

where all the parts of the state can be found.
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The interface location is the set of address spaces (on possibly di�erent ma-

chines) where the interface can be accessed. For message-passing interfaces this

would be where the messages can be sent to, while for direct invocation this

would be where the methods can be invoked.

2.4.1 Location Transparency

In order to make programming easier many models try to hide the fact that some

objects may be remote and others local. If that di�erence is not hidden then the

actual location of remote objects usually is. Location transparency refers to two

concepts: whether clients know that the objects that they reference are remote,

and if so whether they know the location of the objects that they reference. No

internal/external division is needed for this aspect.

2.4.2 Location and Finding Objects

On the system level the location of an object often needs to be made explicit (e.g.

to access a remote object). Sometimes (depending on the location transparency)

the location also has to be made explicit to the user. The location aspect refers

to how an object's (or any other) location is speci�ed. Finding objects refers to

how the location of an object is determined given a reference to that object.

2.4.3 Mobility

In a distributed object model objects can often be moved or copied to di�er-

ent address spaces on possibly di�erent machines. Moving an object changes

its location while copying creates a new object based on the original object.

The external view describes how a user can explicitly move or copy an object

and what they perceive happening, the internal view describes what actually

happens when an object is moved or copied.

2.4.4 Distribution

Distribution of an object refers to how an object's location can be spread out

over a number of address spaces. There are two main ways of distributing an

object: by fragmention or by replicating.

When an object is fragmented the object is split over more than one location.

This means that an object's state is partitioned over multiple address spaces.

When an object is replicated its whole state is maintained at multiple locations.

Objects are often replicated for e�ciency or availability reasons. For example,

an object may be replicated so that it does not form a bottleneck. In order for

this sort of replication to be possible an object's interface must also be accessible

at multiple locations. In our terms we say that the interface is replicated. These
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two means of distribution can also be combined to produce fragmented replicas

and replicated fragments.

Note that the possibility for these must be o�ered by the system. That is the

programmer should not have to implement the fragmentation and replication

communication protocols because these should already be o�ered by the system.

Alternatively, the system may o�er the possibility for external implementations

of these protocols (e.g. third party libraries) to easily be added to objects to

make them distributed.

2.5 Interaction with Objects

In distributed object models method invocation on objects is used by active

entities to communicate with each other. Therefore, interaction with objects is

an important issue.

2.5.1 Method Invocation

From the client's perspective there are two ways that method invocations can

be performed: static and dynamic. For static invocation the method invocation

is constructed at compile time, while for dynamic invocation it is constructed at

run-time. For dynamic invocation the method interface is often not known at

compile time and must be discovered before the invocation can be constructed.

The presence or absence of static and dynamic invocation is the �rst aspect of

the interaction issue. This does not require external/internal separation.

Next comes the invocation itself. A method invocation can be seen as a message

to an object asking it to invoke a method, or a direct operation invocation on

an object or its reference. The external and internal views for this point do not

have to correspond at all. For the external view this usually depends on the

language used for programming. For example, in POOL [3] messages are sent,

while in C++ methods are invoked directly. For the internal view this depends

on the operational semantics and implementation aspects of method invocation.

This aspect should deal with the techniques, problems and restrictions of the

actual invocation mechanism from the external and internal viewpoint.

Dynamic binding is a feature of many object-oriented programming languages;

it basically means that the actual method which is to be executed is determined

at runtime depending on the context (e.g. the actual object that a reference

points to). However, with distributed objects the method invoked is almost

always determined dynamically, that is an explicit look up is done at runtime.

Nevertheless, any interesting details of a model that have to do with dynamic

binding can be described here.
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2.5.2 Parameter Passing

When a method is invoked values are often passed as arguments or return values.

The external view of parameter passing deals with how these are passed (e.g. by-

value, by-reference, by-copy-restore), what kinds of parameters are possible (e.g.

in, out, inout) and restrictions as to what values can be passed as parameters.

The internal view deals with the implementation of parameter passing. Usually

parameters have to be marshaled and unmarshaled so details should be given

about how this is done. This is especially the case when other objects are passed

as parameters.

2.5.3 Security

Security is important in any system where possibly untrusted entities can have

access to resources and program elements owned by others. In an object model

the object boundary o�ers the ideal place to implement security checks and

restrictions because all interactions with objects take place through their inter-

faces. Many security issues can thus be addressed by looking at and restricting

access to an object's interface.

Enforcing encapsulation

The encapsulating of data by objects is a �rst layer of security which lets a

programmer determine how an object's data may be read or modi�ed. This

layer of protection is of course only as strong as the encapsulation provided by

the system. This aspect then describes how strong the encapsulation is and how

it is enforced by the system.

Authorization and Auditing

Encapsulation does not prevent untrusted entities from invoking an object's

methods, so another level of security can be o�ered in the form of authorization.

This refers to limiting access to an object (i.e. invoking an object's methods)

only to authorized principals/clients. Authorization also involves authenticat-

ing principals/clients in order to �nd their true identities. The external view

includes aspects of authorization and authentication which can be controlled by

the user. The internal view relates to the implementation of authorization and

authentication at the system level.

Auditing can be used along with authentication and authorization to keep track

of accesses to objects. Here any auditing done by the system or auditing facilities

o�ered by the system should be described.
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2.5.4 Atomicity

Atomicity here refers to an action being all or nothing, that is either all of the

steps of an action are taken or none are. This is important for objects because

they have to insure that their state is always in a consistent state. Here any

services o�ered by the system which allow atomic actions should be described.

2.6 Concurrency

In a distributed application multiple processes will want to simultaneously to

access the same data or invoke the same operation. The techniques developed

to help solve concurrency problems often require much work or loss of exibility

from a programmer. Object methods and the encapsulation provided by the

object model provide a good opportunity to make concurrency easier for the

programmer.

2.6.1 Concurrent access to objects

This aspect refers to the possibility of more than one client invoking an ob-

ject's method(s) at the same time. If concurrent access to an object is not

allowed then there is no need to worry about serializing method invocations.

No external/internal division is necessary for this aspect.

2.6.2 Isolated Actions (Serializing Concurrent Actions)

When actions are serialized or isolated the result is as if all the actions took place

one after another even though they might have all taken place at once. Two

types of serializability are possible in distributed objects models - serializability

of actions within an object, that is actions which a�ect only that object's state,

and serializability of actions between objects, that is actions which may interact

with other objects and therefore a�ect the state of multiple objects.

2.6.3 Synchronization

Synchronization in distributed programming refers to allowing concurrent pro-

cesses to synchronize their actions. There are two aspects to synchronization:

condition synchronization - waiting with an action until a certain condition has

been met, and mutual exclusion synchronization - preventing processes from

simultaneously accessing shared data. Here we deal with synchronization mech-

anisms o�ered by the system to the programmers (e.g. semaphores, monitors,

etc.).

Synchronization mechanisms can also be split into two categories in distributed

objects. Those that work within objects - that is it a�ects only the one object's

17



state, and those that work between objects - for actions that a�ect the states

of multiple objects.

As an example of the di�erence between (synchronization or serialization) mech-

anisms that work within objects and ones that work between objects we can

look at monitors and distributed locks. A monitor controls the execution of a

method within one object, its purpose is to protect the state of just that object.

Distributed locks can a�ect multiple objects and may be used by entities that

invoke operations on these objects.

2.7 Object-Oriented Programming Issues

Other than the concept of objects and encapsulation object-oriented program-

ming is usually associated with a number of other features. Often models which

do not at least include inheritance are called object-based rather than object-

oriented [52].

2.7.1 Inheritance

Inheritance is a mechanism by which existing objects or classes can be extended

in order to create new ones. There are two basic types of inheritance: interface

inheritance and implementation inheritance. In interface inheritance only the

interface of the parent object (or class) is taken over, the programmer must

still implement the actual methods. For implementation inheritance the actual

implementation of the methods and the state variables are inherited as well.

Usually the inherited code can be overridden allowing for customization of the

new object or class.

The external view of inheritance includes a description of what kind of inher-

itance (if any) a model has (i.e. interface or implementation) as well as any

restrictions that the programmer notices when using inheritance (e.g. only lo-

cal objects can be inherited). It also notes whether it is objects or classes that

are inherited. The internal view includes any restrictions for the system when

dealing with inheritance (e.g. the parent object/class must always be moved

with a child object when it is moved) as well as how inheritance is actually

implemented.

2.7.2 Multiple and Dynamic Inheritance

Multiple Inheritance. Often multiple objects or classes can be inherited. In

this case the new object or class has multiple parents. One important issue which

must be addressed when dealing with multiple inheritance is what happens

when an object inherits more than one method with the same interface. Also

important (for the internal view) is whether multiple inheritance is handled

using the same mechanisms as single inheritance.
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Dynamic Inheritance. Normally inheritance is static, that is it is done at

compile time, however sometimes dynamic inheritance is possible. This means

that the object inherits new methods or state variables at runtime from other

objects or from its environment.

2.7.3 Polymorphism

Polymorphism is a feature often (but not exclusively) found in object-oriented

languages. It usually refers to a number of concepts and has to do with variables

and values (including objects) which may have more than one type and functions

whose parameters may be of di�erent types.

There are four types of polymorphism [15]. The �rst two are are grouped under

the term universal polymorphism and include parametric and inclusion poly-

morphism. Parametric polymorphism refers to functions or methods which

work uniformly on a range of types. Inclusion polymorphism means that an

object may have many di�erent, not necessarily related types. The next two

types are grouped under the term ad hoc polymorphism and include overloading

and coercion. Overloading relates to functions which have the same name but

are further unrelated (i.e. have separate implementations). Coercion refers to

parameters of a function or method being unnaturally (i.e. not following the

type hierarchy) coerced to appropriate types.

2.8 Typing

A type represents a set of values and a set of operations de�ned on those val-

ues. Types help to organize and classify data according to characteristics and

purpose. The typing in a system can vary from very weak typing (basically no

typing) to strong typing where all expressions are type consistent. Also the type

system must be enforced by checking the types in an expression, this can either

be done at compile time (static typing) or during runtime (dynamic typing).

2.8.1 Type and Subtyping

In object-oriented systems the type of an object is often equal to an object's

class, though this is not always the case. Also some systems o�er primitives or

mechanisms which allow the types of objects to be explicitly determined and

compared by the user. The de�nition of type in a model and the possibilities

for explicit type determination and checking should be described here (no exter-

nal/internal division). Often types can be subtyped, creating type hierarchies.

The description of subtyping should explain the type hierarchy in the model

and how subtypes can be created. There is also no external/internal division.
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2.8.2 Type Checking

In order to enforce the typing model some checks must be done to ensure that

objects are used appropriately according to their type. As mentioned above,

type checking can be done either at compile time by the compiler or at runtime

by the runtime system (or both). Often with distributed objects some kind of

dynamic typing will be necessary because the type of a remote object may not

be known at compile time. The kind of type checking done and the basis of

type equality should be explained here.

2.9 Persistence

A persistent object is one that persists until it is explicitly deleted, even if there

are no clients referring to it. This means that persistent objects must persist

even if, for example, the machine that they are on fails or is turned o�, or

between program executions. Usually persistent objects reside on secondary

storage as well as having a copy resident in memory. Actions on persistent

objects modify the version of the object in memory and the version on secondary

storage is usually only updated when an action commits. Persistent objects are

often used for storing information which must not be deleted unless explicitly

requested, for example �les, or databases.

A persistent object can be in two states; melted or frozen adopting the terminol-

ogy used in the Spring model. In the melted state it is present in memory and

on secondary storage while when frozen it is present only on secondary storage.

2.9.1 Persistent Objects

Like a regular (non persistent) object a persistent object also has a life cy-

cle. Unlike regular objects a persistent object's life cycle also includes melting

and freezing. Note that it may also be possible for regular objects to become

persistent and for persistent objects to become regular objects (losing their per-

sistence).

Creation and Deletion. Creation deals with the creation of persistent ob-

jects. This includes creation from scratch (comparable to the creation of a

regular object) or the transformation of a regular object into a persistent ob-

ject. Deletion deals with the deletion of a persistent object. This means deletion

of the persistent part of the object (that is the part on secondary storage) - so

destruction of just the memory image does not fall under deletion. Like cre-

ation this aspect includes the changing of a persistent object to a regular object

(which implies the deletion of the persistent state).
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Melting and Freezing. Melting describes how (and/or when) a frozen per-

sistent object is melted and freezing describes how (and/or when) a melted

persistent object freezes.

2.9.2 Durable Actions

Durable actions refer to actions whose results are permanent once the action

completes. This is usually related to persistent objects as they o�er the pos-

sibility of making modi�cations to the state permanent (by making the state

persistent). This aspect should describe the mechanisms o�ered by the system

which allow actions to become durable.

2.10 Failure and Fault Tolerance

In distributed applications on distributed architectures the chance that some-

thing goes wrong is bigger than that something goes wrong on a traditional

(non-distributed) application running on a single machine. This is because

there are now more computers that can fail, as well as network connections

over which communication can fail. It is important that systems for distributed

programming deal with (preferably transparently) possible failures.

2.10.1 Failure Detection and Availability

Failure Detection. There are two types of failures that can occur in a dis-

tributed object system; existence failures and transient failures. Existence fail-

ures refer to failures that happen before a method invocation has started (e.g.

an object cannot be located). Transient failures refer to failures that occur once

a method invocation has started (e.g. the machine where the invocation is run-

ning on crashes). Failure detection refers to what kind of failures the system

can detect and what it does once these failures are detected. The external view

relates to what the user notices (and has to do) when the system detects a

failure, and the internal view relates to how the system actually detects failures

and handles them.

Availability. Availability is a promise made by the system regarding the avail-

ability of objects in the face of hardware, software or network failure. The exter-

nal view should describe what the model promises with respect to availability

and any restrictions as to what objects remain available. The internal view

should explain how the system ful�lls these promises.
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2.10.2 Exception Handling

Exception handling deals with how errors are signaled to other objects. These

could be system errors or user de�ned errors.

2.11 Programming Interface

In order to write a program using distributed objects a programming interface

is necessary. This allows a programmer to access and work with the objects

and services o�ered by the system. The types of interfaces can vary from a

completely new language for using the system to a library which is linked in with

a program written in an existing programming language. Other possibilities

include modifying an existing programming language to include new constructs

on which the model relies. Alternatively, interface de�nition languages can be

used which allow the interfaces of objects to be de�ned, but which require the

actual implementation and rest of the program to be written in an existing

language.

2.12 System Issues

This aspects deals with speci�c features of the actual system. This includes

resource management, extra services o�ered by the system that haven't been

described above and any special internal structure of the system. Also we deal

with interoperability and scalability.

Interoperability. Interoperability refers to how systems work together. It

has two aspects: interoperability between di�erent models, and interoperability

between di�erent implementations of the same model.

Scalability. Scalability is concerned with to what extent a system/model can

expand. That is whether the model or system has any inherent limitations

which prevent it from growing (with respect to number of machines, number of

objects, number of users of objects, etc.). Scalable systems should not depend

on any centralized resources or on algorithms that need global information.

2.13 Overview of the Framework

The following is an summary of our framework.

1. Objects
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Chapter 3

Descriptions of Selected

Models

3.1 Introduction

This chapter will present the descriptions of a number of models for distributed

objects. The models will be presented per major issue; for each issue �rst a

table will be presented to give a quick overview of the features present and then

each model's features will be presented in more detail. The models described

are Spring, CORBA, Emerald, Obliq, Fragmented Objects, Globe and Legion.

The models were chosen in order to thoroughly 'test' the framework, thus they

include many di�erent approaches to distributed objects. Also where possi-

ble similar models were chosen so that the comparative qualities of the frame-

work could be tested. Spring and CORBA are similar models which use a

proxy/server structure. Emerald is a language based model and Obliq is a

scripting language based model built on top of another distributed object model.

Fragmented Objects and Globe are both models based on object fragmentation

and replication. Legion is an 'in-between' model that is not language depen-

dent, is not based on the proxy/server structure and is not based on fragmented

objects.

3.1.1 Spring

Spring [33, 39, 19] is a distributed object-oriented operating system and pro-

gramming environment. All Spring resources and system functions are modeled

as objects. Spring also provides subcontracts [20] which allow objects to use

di�erent kinds of runtime techniques for operations like method invocation, pa-

rameter marshalling, etc.
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The description of Spring will focus primarily on the object model and subcon-

tracts.

3.1.2 CORBA

CORBA (Common Object Request Broker Architecture) [36, 37] is a standard

for distributed objects being developed by a consortium (called the Object Man-

agement Group - OMG) of software vendors and end users. CORBA speci�es an

Object Request Broker (ORB) which provides the mechanisms by which objects

transparently make requests and receive responses. This speci�cation, however,

only de�nes the interface and to a certain extent the mechanics of an ORB,

but leaves implementation details open. Along with the ORB and object model

CORBA also speci�es a number of services which expand and/or complement

the ORB's features.

The description of the CORBA model will describe the object model, the run-

time system (ORB) and the services as speci�ed by the OMG.

3.1.3 Emerald

Emerald [42, 7] is a programming language and programming system providing

both process and object mobility [25] on a network of workstations. Objects

are the units of programming and distribution [8] , and the entities between

which communication takes place. Operations can be invoked on non-local (in

the network) objects, and objects can move from node to node.

In the description of Emerald we will concentrate on Emerald's runtime system

rather than on language aspects.

3.1.4 Obliq

Obliq [10, 11] is a lexically-scoped untyped interpreted language that supports

distributed object-oriented computation. Obliq objects have state and are local

to a site. Computations in Obliq can roam over the network, while maintaining

network connections.

Obliq is implemented using Modula 3 Network Objects [6] however in the de-

scription of Obliq we will primarily focus on Obliq's features and mention Net-

work Objects only where necessary.

3.1.5 Fragmented Objects/SOS/FOG

SOS [45] is an operating system built upon the ideas of Fragmented Objects [30,

43]. Fragmented Objects is a model for distributed shared objects. The SOS

system is an implementation of the Fragmented Objects model and adds some
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extra functionality in the form of services. The SOR group has also developed

a speci�c language, FOG [16] , used for structuring distributed applications as

fragmented objects.

This description will handle Fragmented Objects, SOS and FOG.

3.1.6 Globe

Globe [22, 51, 21, 23] provides a model where processes communicate and in-

teract through objects which are physically distributed and shared between

processors. The implementation of distribution, consistency and replication of

state is completely encapsulated in these distributed objects. This makes the

objects less dependent on runtime services and allows object speci�c solutions

to problems.

Globe is currently in the design phase and the model's current state will be

described. This means that many aspects of it may not be completely or only

partially speci�ed.

3.1.7 Legion

Legion [18, 29] provides an architecture for building distributed systems that

give the illusion of a single virtual machine. It is designed so that it can be used

above existing computer architectures and operating systems and uses stan-

dard protocols for networking. Legion is also designed with high performace

programming in mind and allows users to make their own scheduling (with re-

spect to placement of objects) decisions thereby allowing them to access remote

computing power when needed.

3.2 Objects

Spring CORBA Emerald

granularity f/m m f

kinds of objects server, proxy server, proxy direct, local, global

composition y not de�ned y

interface m, e m, e m

activity model p p h

Obliq FO Globe Legion

granularity m m m m

kinds of objects global isolated, isolated, local, global

distributed distributed

composition y y y n

interface n m m, e n

activity model p p p a
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3.2.1 Spring

Granularity

The Spring model has medium grain granularity, however, it is possible to have

�ne grain Spring objects as well.

Kinds of Objects

For users of the Spring model all objects seem the same. From the internal view

there are two kinds of objects: global and local objects; Spring calls these server

based and serverless objects. Global objects are those that may be in di�erent

address spaces than their clients. Local objects on the other hand always have

their state in the client's address space and are usually used for light-weight

objects like simple data types.

Structure

For users an object is de�ned by a strongly typed interface. Internally a global

object is usually split up into a server and multiple proxies. The server object

contains the actual implementation and resides in a di�erent address space than

a client. Proxies are client side representations of the object. They reside in

the client's address space and provide a way to access the server. Each object

contains subcontract routines. Subcontracts are replaceable modules which are

responsible for object management as well as object interaction. By making sub-

contracts replaceable programmers are given control over object management

and interaction policies.

Interface

Spring supports multiple interfaces through multiple inheritance. Because an

object which has inherited from a number of other classes can be cast to any of

those object's types, its interface can be di�erent depending on how it is being

accessed. Spring does not support evolving interfaces.

Composition

In Spring composition is achieved through nesting of objects. This is done either

by including a reference to an object in the outer object's state or by including

the entire nested object. The subcontract used determines how a nested object

reacts to actions of the composite object, e.g. whether the nested object moves

along when its outer object is moved.
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Activity Model

The activity model in Spring is passive.

3.2.2 CORBA

Granularity

The CORBA model has medium grain granularity.

Kinds of Objects

CORBA users can distinguish between local and global objects. The local ob-

jects are plain objects, that is programming language speci�c objects which are

not visible to the CORBA system. The global objects are the only objects that

the system knows about. They are objects which may be referenced by clients

which reside in di�erent address spaces than the object itself.

Structure

For users, the global objects consist of only an interface. Internally a global

object is structured as a server and a number of proxies. The server includes

the actual implementation of the objects as well as stubs used by the system for

accessing the object. The proxies consist of (language dependent) stub routines

which call on the system to access the server.

Interface

Multiple interfaces can be provided by the CORBA objects through use of

multiple inheritance. By multiply inheriting the interfaces of several objects

a CORBA object can provide all of those objects' interfaces. CORBA also pro-

vides evolving interfaces. The runtime system maintains a database of interfaces

(of objects managed by it) called the interface repository. This database can be

dynamically modi�ed by adding or removing an interface's methods. Clients us-

ing dynamic invocation will be able to notice these changes and take advantage

of the new interface.

Composition

Whether CORBA objects can be nested by reference is not de�ned. A Relation-

ship service will allow relationships between independent objects to be created

dynamically. A number of di�erent types of relationships will be possible in-

cluding ownership, reference, containment, etc.
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Activity Model

The activity model in CORBA is passive.

3.2.3 Emerald

Granularity

The Emerald model has �ne grain granularity, that is all entities in a program

are Emerald objects.

Kinds of Objects

From the external view all objects in Emerald are the same. From the internal

view there are three di�erent kinds of objects corresponding to their imple-

mentation style, these are global, local and direct. The style of an object is

determined by the compiler depending on how that object will be used. Global

objects are those which can be moved and which can be accessed remotely, that

is they may reside in di�erent address spaces than their clients. Local objects

are local to another object, that is they can only be accessed by methods of that

object and are always located in the same address space as that object. Direct

objects have the same characteristics as local objects but their data is allocated

directly in the state of the enclosing object.

Object Structure

Users see objects as having a name, a state, methods and an optional process.

Internally an object consists of a data area, a concrete type (see Class Objects)

and optionally a process. The data area includes a pointer to the concrete type

and the state data.

Interface

In Emerald variables are typed. This means that any objects accessed by a

variable will be seen to have the same type (and thus interface) as the variable.

Thus an object will present di�erent interfaces depending on the type of the

variable used to access it. Emerald does not support evolving interfaces.

Composition

Users can create composite objects by including an object reference in an ob-

ject's state. Internally depending on how the nested object is implemented either

the entire object or a reference to it is included in the state of the composite

object.
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Emerald also allows objects to be attached to each other using the attach prim-

itive. An attached object always moves with the object that it is attached to.

Activity Model

Emerald has a hybrid activity model. All processes are bound to an object,

however, not all objects have to include a process. Processes communicate

through shared objects as in the passive model rather than directly as in the

active model. When a process executes a method of another object the process

conceptually executes inside that object. Thus if an object moves, part of the

process moves as well.

3.2.4 Obliq

Granularity

The Obliq model has medium grain granularity.

Kinds of Objects

All Obliq objects are global objects, that is they can be accessed by clients in

di�erent address spaces.

Object Structure

An Obliq object consists of a collection of named �elds. There are three types

of �elds: method, alias and value. A method �eld holds a method, an alias �eld

holds an alias which redirects method invocations to other methods and a value

�eld is a �eld containing anything else. An object's interface consists of all its

�elds.

3.2.5 Interface

Obliq does not support multiple or evolving interfaces.

Composition

An object can be nested in another object by assigning it to one of the �elds

(thereby including the whole object) or by assigning a reference to the object

in one of the �elds.
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Activity Model

The activity model in Obliq is passive.

3.2.6 Fragmented Objects

Granularity

The Fragmented Objects model has medium grain granularity.

Kinds of Objects

In SOS there are three kinds of objects: plain objects, isolated objects and dis-

tributed objects. Plain objects are ones that are not seen by SOS (e.g. C++

objects), isolated objects (called elementary objects by SOS) are objects which

at any one time reside and are accessible in a single address space, and dis-

tributed objects (called fragmented objects by SOS) reside (and are accessible)

in multiple address spaces. Distributed objects consist of a group of communi-

cating isolated objects. These will often be referred to as fragments. Internally

there are isolated objects and primitive connective objects. A primitive connec-

tive object is a system object that is distributed over multiple address spaces and

provides the means of communication between the fragments of a distributed

object.

Structure

Isolated objects consist of state and a public and private interface. A distributed

object appears to clients as a single shared object. For programmers a basic

distributed object is composed of: a set of isolated objects a client interface

which is presented to each client through the public interface of a local fragment,

a group interface which is used for communication between the fragments, and

connective objects. An object's method implementations are provided by a class

object.

In SOS a distributed object is composed of three kinds of isolated objects: a

server object which serves the request, fragments which represent the service lo-

cally and a provider which provides fragments on client requests. The provider

object receives requests from the distributed object's potential clients and ar-

ranges that new or existing fragments are created in their address spaces.

Interface

Distributed objects allow multiple interfaces because the programmer of such

an object may decide how the interface is presented to a client. This is done

by choosing the isolated objects through which a client will access a distributed
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obect. The compiler and runtime system verify that a client gets the interface

that it expected.

Composition

Composite objects can be created in SOS by including references to other objects

in an isolated object's state. Both isolated and connective objects can be nested

in this way. It is also possible to include memory pointers in an object's state,

however there is no support for pointer management with respect to objects

moving or being moved. When isolated objects are nested using references they

will migrate along with their outer object and be written to secondary storage

when that object checkpoints.

Activity Model

The activity model in SOS is passive.

3.2.7 Globe

Granularity

The Globe model has medium grain granularity.

Kinds of Objects

There are two kinds of objects (from both the external and internal views)

in Globe: isolated (called local) and distributed. Isolated objects are placed

entirely in one address space and can be either primitive or composite [1].

Primitive objects do not include any other objects, while composite objects

can include other local objects. Distributed objects reside in multiple address

spaces.

Object Structure

Externally an object consists of state, a collection of methods and a collection

of interfaces (an interface denotes a subset of the methods of an object). Each

object includes a number of standard methods for initialization, cleanup and

identi�cation. Each object also has a standard object interface which denotes

the standard methods. From an internal view a primitive isolated object consists

of a state instance, which is an instance of a data structure which can hold the

state, method instances, which include a method implementation per method

(as described in the class) and interface instances, which are tables consisting

of a method address and state pointer pair for each method in the interface.
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Method implementations may actually reside in a class object rather than in

the object itself. For a description of composite objects see Composition.

Distributed objects are a collection of communicating isolated objects which

will often be refered to as fragments. A fragment is a composite object with a

standard organization. The object consists of a semantics object, a communi-

cation object, a replication object and a control object. The semantics object is

implemented by the developer of an object, it contains the actual functionality

of the distributed object. The communication object is responsible for commu-

nicating with other objects and the replication object is responsible for keeping

the state of the distributed object consistent. Both communication and replica-

tion objects can be chosen from a library or implemented by the programmer.

The control object is generated automatically using interface information from

the semantics object. It is responsible for handling the interaction between the

semantics and the replication object.

Interface

An object in Globe can have multiple interfaces. Each object can contain mul-

tiple interface tables and an object can choose which ones it will export to a

client. The interfaces exported to a client can be changed at runtime so evolving

interfaces are also available.

Composition

Isolated objects can be nested within other isolated objects resulting in com-

posite objects. Composite objects can also be nested. Internally the state of

a composite object is a combination of all the states of the nested objects plus

any other state belonging to the object itself. The method instances are the

union of all the included objects' methods. The interfaces are de�ned by the

composite object itself.

Activity Model

The activity model in Globe is passive.

3.2.8 Legion

Granularity

The Legion model has medium grain granularity.
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Kinds of Objects

In Legion users are aware of local and global objects. The local objects are plain

objects, that is language dependent objects that are not visible to the system.

The global objects may reside in di�erent address spaces than their clients.

Global objects must ultimately inherit from a system provided base object class

and are address space disjoint. Internally there are two types of global objects:

stateful and stateless. Stateful objects are the most common and maintain their

state from instantiation to destruction, while stateless objects do not maintain

any state between invocations and their methods can be considered to be pure

functions.

Structure

Users see Legion objects as consisting of state and an interface through which the

state is manipulated. The state consists of contained local objects. An object's

interface is described by the complete set of method signatures (typed formal

parameter list and name) de�ned for it. Internally an object exists in an address

space, has a class, a name and a set of capabilities. An object also contains a

binding cache and the network address of a binding object. The cache is used

to quickly map object identi�ers to network addresses and a binding object is

used to do this mapping if the information cannot be found in the cache.

Interface

Legion objects do not have multiple interfaces. The dynamic inheritance (in the

form of InheritsFrom()) allow methods to be dynamically added to an objects

interface, thus providing evolving interfaces.

Composition

Legion does not o�er support for nesting of other Legion objects.

Activity Model

The activity model in Legion is active.

3.3 Object Management

Spring CORBA Emerald

class n y n

class objects n n n

reference native languge reference

mapping
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Obliq FO Globe Legion

class n y y y

class objects n y y y

reference variable object local object language

mapping

3.3.1 Spring

Object De�nition

The object interface is de�ned in an interface de�nition language (IDL) which

is then compiled to produce a language speci�c interface. The actual imple-

mentation of the object is written around this generated interface and compiled

into an application. The subcontract code is dynamically linked in when the

application is started.

Object Creation

Spring server objects are usually started like normal applications. The proxies

are not explicitly created by the clients but are acquired as results of operations

(e.g. name binding). In the internal view proxies are created by the server

objects. The server's subcontract creates a communication endpoint and con-

structs an object (the proxy) which uses this to communicate with the server.

Once the proxy object is created it is moved to the client's address space by the

server's and the proxy's subcontract code.

Object Destruction

To delete proxies the language speci�c method of deleting an object is used.

Internally this causes the client stub (see Invocation) to to call the consume

function in the subcontract belonging to the proxy. The result of calling this

function is that the proxy is destroyed and any communication resources are

cleaned up. When a server is no longer accessible by any proxies then it is

destroyed. When a server object dies all communication endpoints that it uses

become invalid.

Class and Class Objects

There are no class objects in Spring.

Object Naming

In Spring any object can be bound to any name in any name space [41]. A name

space consists of a number of connected directories (called contexts) which form
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a directed graph. The directories themselves are objects and can be manipulated

directly, e.g. passed as arguments. Directories may be passed to processes by

their parents and by default each process is passed at least one directory by its

parent. Binding an object associates it with a name in a directory. An object

may be bound to several di�erent names in possibly di�erent directories or to

no names at all. The name service de�nes a structural representation for names

including identi�er, version number, kind, etc. Presentation and parsing is done

by the user software. Resolving a name returns a reference to the object bound

to that name.

Internally a name space is created by binding directories within other directories.

A single object may implement multiple directories, however, clients are unaware

of which object contains which parts of the name space. When an object is

bound to a name then the object is actually moved to the appropriate directory's

address space and stored there. Thus the objects that are usually bound to

names are those that can provide proxies when they are contacted during name

resolution.

Name Resolution involves invoking a resolution method on a directory object.

If the directory object does not include the object the request is forwarded on

to another directory as speci�ed in the name. When a directory is found which

directly references the object then the object is contacted and it can return a

copy of itself, create new objects, return a proxy to itself, etc.

Requests forwarded between directories implemented by di�erent objects may

be subject to security checks if the objects do not trust each other.

Object Reference

Clients treat Spring objects as native objects (or language constructs for non

object-oriented languages). Internally the native object/construct referenced

by the client is actually a generated stub that transfers calls to appropriate

methods in the proxy. When Spring object references are passed as arguments

to procedures or methods then the whole proxy (or a copy depending on the

parameter passing semantics) is passed, rather than a reference.

3.3.2 CORBA

Object De�nition

An object's interface is de�ned in an IDL and its implementation in a normal

programming language. One way that this can be done is as follows: an IDL

precompiler produces language skeletons for the actual implementation of the

object, the object implementation is added to the skeletons and the code is

compiled. This whole process generates interfaces for the interface repository,

proxy code, server stubs and server code.
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Object Creation

Normally a server object will be created by explicitly 'installing' it, e.g. running

a compiled version of it. On the client side a reference to this object could be

acquired by instantiating a language dependent proxy object.

Objects can also be created at runtime through the life cycle service. The life

cycle service provides operations for creating, copying, moving and destroy-

ing objects. It can also handle associations between groups of related objects

(containment and reference relationships) and allow varying semantics for its

operations - e.g. deep and shallow operations.

Object Destruction

Server objects can be destroyed using the life cycle service. Proxies can be

destroyed using native language techniques.

Class and Class Objects

There are no class objects in CORBA.

Object Naming

Object naming is provided by the naming service which binds names to object

references. An object's name is unique within a name space (called a name

context) which is a graph of interconnected directories. An object's name con-

sists of a sequence of names and forms a hierarchical naming tree. Each name

component has two attributes; an identi�er - the name string, and kind - a

descriptive attribute.

The name service is implemented by two kinds of objects: a directory object and

an iterator object. The directory objects provide methods for binding objects

and resolving names as well as keep track of bindings for a directory. The

iterator objects are used to iterate through directory trees.

Object Reference

Clients have references to objects and invoke operations through these refer-

ences. Because of language mapping clients can reference CORBA objects in

the same way that they would reference native objects or data. The language

mapping from any particular programming language must be the same for all

implementations of CORBA.

From the internal view the client's reference will often be a reference to a proxy

which controls the contact with the server object. Interoperable Object Refer-

ences must be used to pass object references between di�erent implementations.
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Interoperable Object References contain a collection of pro�les which describe

how to contact the object using a particular implementation's mechanism.

3.3.3 Emerald

Object De�nition

Objects are de�ned using an object constructor primitive. The object construc-

tor includes state and method declarations.

Object Creation

In Emerald object creation and object de�nition are not separate events. When

an object is de�ned then an instance of the object is created and a reference to

the object is returned. During object creation an optional initialization method

is called which initializes the object's state. After this the process (if any)

belonging to the object is started.

Internally when an object is created a data area is allocated for it and, if it does

not already exist on that machine, a concrete type (see Class Object) is created.

Object Destruction

Objects are garbage collected when there are no more references to them so the

user does not have to worry about destroying objects. There are two types of

garbage collectors, a local (for local garbage) and a distributed one (in which

the nodes cooperate to collect distributed garbage). Both use a modi�ed mark

and sweep algorithm

1

Class and Class Objects

There is no class concept in Emerald, therefore Emerald does not support ex-

plicit class objects. However at the system level concrete types resemble class

1

A mark and sweep algorithm works as follows: all objects are originally white, then all

known reachable ones are marked gray, the references in all gray object are then also marked

gray and the objects are marked black. This is repeated until there are no more gray objects,

then all the white objects can be deallocated. In Emerald every node holds an object descriptor

for each remote object that has been referenced since the last garbage collection. The local

garbage collector works as follows: each object descriptor has a ag RefGivenOut which is set

if a reference to the object is ever given to another node, or if the object has been moved to

its current node. Resident objects with the ag set are considered reachable and non-resident

objects are ignored.

The distributed garbage collector works as follows: a global collecting process started on

each node, all global objects are marked white, then all explicitly reachable ones are marked

gray and scanned (if attempting to scan a remote object, a mark-gray message is sent to the

node, and an is-black message is returned when the object has been checked), all objects that

move are scanned and marked black. The collection is �nished once all nodes have done their

scanning and there are no more gray objects.
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objects. A concrete type is a kernel structure (not an object) which contains the

code and templates for all objects created using the same object constructor. A

template describes the data layout of an object's state as well as the layout of

activation records for the object's methods. A concrete type must be present

on the same node as an object, however they are not automatically moved with

an object but only if requested by the destination kernel. This happens if the

appropriate concrete type is not already present on that node.

Object Naming

Emerald does not provide a name service.

Object Reference

Users access objects through variables which hold object references. A reference

can be acquired either through language primitives such as object constructors

or as the result or parameter of an operation. Internally a variable contains a

vector and an object reference. The vector consists of pointers to the method

implementations in the concrete type of the object being referenced. The struc-

ture of the object reference is di�erent for each implementation type. For local

and direct objects this is basically a memory pointer to the object's data area,

while for global objects this is a pointer to a local structure which tells where

the actual object can be found.

3.3.4 Obliq

Object De�nition

An object is de�ned by specifying all of its �elds and their initial values.

Object Creation

Objects are created when they are de�ned or when they are cloned (see Inter-

action) from other objects.

Internally creation of an Obliq object causes a Network Object to be created.

Object Destruction

Objects are garbage collected when they are no longer referenced

2

.

2

Internally the Network Objects runtime system takes care of the garbage collection. It

works as follows: for each network object the runtime records in the dirty set the clients which

contain a proxy for the object. As long as the set is not empty the runtime keeps a reference

to the object so that it will not get garbage collected. Once the set is empty the runtime

removes the reference and the object can be cleaned up. Clients add or remove themselves to

or from the dirty set when surrogates are created or destroyed.

40



Class and Class Objects

There is no class concept nor are there class objects in Obliq.

Object Naming

Objects can be bound to names via the name server. Name binding and resolu-

tion occurs using a built-in net module which has functions for binding objects

to names and resolving names to object references. The name service is imple-

mented by a name server which is an external process uniquely identi�ed by an

IP address. This server maintains a table associating text strings with object

references.

Object Reference

Clients reference objects through variables. Internally these variables contain a

pointer to the object's data area if it is in the same address space as the variable,

or a network reference

3

for remote objects.

3.3.5 Fragmented Objects

Object De�nition

In FOG an isolated object de�nition looks like:

class elobj1 : parentof1 {

private:

// private state and methods

public:

// public methods

group:

// group methods

export:

// provider methods

};

and a distributed object de�nition looks like:

group foName { elobj1, elobj2 };

3

A network reference is a Network Object reference which is a pointer to a local proxy

object.
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Isolated objects are de�ned as a normal class, the 'group:' keyword speci�es

which methods are for the group interface and the 'export:' keyword speci�es

the provider method, that is which method provides new fragments when clients

request one. All isolated objects must (possibly indirectly) inherit from a root

ancestor object which de�nes a minimal object interface. Distributed objects

are de�ned as a group of isolated objects. Object de�nition leads to the creation

of a class object.

Object Creation

Object creation is managed by an object management service (called the Ac-

quaintance Service in SOS) and is done in two steps. The �rst step involves

actually creating a memory image of the object; the second step requires giving

the object a reference to its class object. Between the two steps initialization

methods (belonging to the object and its super objects) are called to initialize

the object's state.

For distributed objects an isolated object must �rst be created and then regis-

tered in a new group. Isolated objects can also be added to existing groups.

Object Destruction

Isolated objects are destroyed by calling a destroy method. Before it is ac-

tually destroyed any destructors de�ned by it or its superclasses are invoked.

Distributed objects disappear when their last fragment is destroyed.

Class and Class Objects

The class object is an instance of a prede�ned class of isolated objects and holds

the compiled code for a class. A class object is a normal object. An object's

class obect must always be present in that object's address space. Class objects

may be shared by objects of the same class in the same address space. Note

that distributed objects do not have a class or class objects, they are de�ned by

their fragments.

Object Naming

Objects may have names that are unique to their name space. A name space is

a distributed object whose fragments allow clients to maintain personal views

of the name space. That is the clients may map other name spaces in their

own name space thus creating a personal naming hierarchy. Clients bind or

resolve names at these fragments. When an object is bound then the name

space fragment adds a reference to the object along with its name into an

internal table. When a name is resolved then the client is given a reference
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to a distributed object. The client is responsible for requesting a fragment from

the object.

Object Reference

Objects are accessed through variables which hold object references. There are

two types of references, global and local. An object manager

4

provides ways to

convert between these two. Internally each object has a unique identi�er, and

an object reference is either a pointer to the objects data area or it consists of

the objects identi�er and network location information.

The SOS system also keeps track of all isolated objects in each address space.

A table present in each address space contains information about the objects'

identi�ers, which distributed objects they are part of, where their class objects

and data areas are, etc.

3.3.6 Globe

Object De�nition

An object de�nition consists of a class de�nition and a class implementation.

The class de�nition is a collection of interface de�nitions. An interface de�ni-

tion describes the syntax and semantics of a collection of methods and a class

implementation is a description (and implementation) of the methods and state

of an object. De�nition of a class object leads to the creation of a class object.

Object Creation

To create an object a class object create method must be called causing an

instance of that class to be created. During the creation of an object an initial-

ization method is called to initialize the state. For distributed objects �rst an

isolated object is created and its name registered, the object then grows as more

clients connect to it and more fragments are created. Internally object creation

causes memory for the objects state, methods (if they are not contained in the

class object) and interface tables to be allocated.

Object Destruction

When an isolated object is to be destroyed the destroy method of its class object

must be called with the object to be destroyed as a parameter. This causes a

destructor to be called and then the object's memory to be freed.

4

An object manager is a service provided by the system for managing objects (e.g. taking

care of creation, location management, etc.)
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Class and Class Objects

Class objects are objects that represent class implementations. They are isolated

objects and have a class. Class objects include two additional standard methods:

a method to create a new object of the class and a method to destroy an object

of the class. A class object must exist in each address space where an object of

its class is found.

Object Naming

When an object is created it has to bind itself to a name using the name service.

Globe provides one global name space, thus a name refers to at most one object

at any given time. The name space is constructed as a graph of directory objects.

A name consists of a starting point and components which refer to directory

objects and eventually the �nal object. In Globe name binding results in the

object being registered with the location service (see Finding Objects) and the

name and internal object identi�er (called an object handle) being stored in a

directory object. Name resolution includes a name lookup, a location lookup

and �nally the creation of a fragment of a distributed object. The name lookup

produces the object identi�er which is used in the location lookup step.

Object Reference

Distributed objects are either referenced by name or through a pointer to the

interface of a fragment or isolated object.

3.3.7 Legion

Object De�nition

A class interface is de�ned in an IDL and the actual code is de�ned in any

supported language using generated headers. A class may have multiple im-

plementations possibly written in di�erent languages. The de�nition of a class

leads to the creation of a class object.

Object Creation

Objects can be created by calling a class object's create or derive methods.

Create creates a new object, while derive creates a new class object. Actually

object creation is initiated by native language features (e.g. C++ new, or

C++ inheritance) and the compiler generates the code to call the create or

derive methods. Both an object manager and host object (which represents the

machine on which the object will be created) are involved in creation of objects.
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Object Destruction

Object destruction is also initiated by native language features, and ultimately

occurs by calling the delete method of the object manager. Note that calls to

the object manager are requests and may be rejected.

Class and Class Objects

Class objects are objects which de�ne an object type. All class objects ulti-

mately inherit from a system provided base class object. This base class object

de�nes and implements all of a class object's mandatory interface. A class object

contains among other things (possibly multiple) source and implementations of

its object's methods and information needed for locating instances of the class.

The class object is also responsible for assigning identi�ers to new objects upon

object/sub-class creation.

Object Naming

Legion provides a single name space for all legion objects. Symbolic names are

mapped to object references by name server objects. Internally the naming ser-

vice is a two layer scheme where symbolic names are mapped to object identi�ers

by a name server object, and the identi�ers are mapped to address bindings by

binding objects and class objects. Legion allows multiple name servers and users

can de�ne their own name servers. One well-known name server class which pro-

vides basic name services and is used as a bootstrap server, is provided by the

Legion system.

Object Reference

Legion objects are referenced transparently through language mappings. Inter-

nally objects are referenced by object identi�ers which are globally unique bit

strings. Object identi�ers are used to �nd objects' network addresses

3.4 Object Location

Spring CORBA Emerald

location y, y y, y optional

transparency

�nding objects n n y

moving y y y

copying y y n

distribution f, r, fr, rf f, r r
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Obliq FO Globe Legion

location n, y n, y y, y y, y

transparency

�nding objects n y n n

moving y y not speci�ed n/y

copying y y not speci�ed n/y

distribution n f, r, fr, rf f, r, fr, rf r(+-)

3.4.1 Spring

Location Transparency

Clients cannot tell whether an object is remote or not. Nor are they aware of

the location of an object.

Location

Clients cannot directly refer to an object's location. The internal representation

of an object's location depends on the subcontract used.

Finding Objects

Clients are not able to determine the location of an object. Subcontracts are

responsible for �nding the appropriate server object upon method invocation.

Moving

Spring allows only proxy objects to be moved, server objects always stay at

the same location. Objects are moved when passed as a parameter to other

object's methods. Internally when objects are moved they are marshaled by

the subcontract routines and their local state is deleted. At the destination

the subcontract's unmarshal routine rebuilds a new object using the marshaled

version of the other object. The subcontract needed for unmarshaling can be

determined from the the marshaled state of the object.

Copying

Objects can be explicitly copied or passed as by-copy parameter. Internally

when a proxy is explicitly copied, the object stub calls a subcontract copy

routine which will create a new Spring object based on the original. The copy

semantics (shallow, deep, etc.) actually used depend on the subcontract. When

an object is passed as a by-copy parameter then the subcontract performs an

optimized combination of a copy followed by a marshal on the copy.
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Distribution

Because subcontracts are used to implement di�erent access policies, they can

also be used to implement fragmented and replicated objects. Fragmented repli-

cas and replicated fragments could also be implemented in this way. However,

the Spring object model is based on a server/proxies structure which can lead to

awkward implementations of fragmented and replicated objects. This is because

all of the replication and distribution control is in the proxies rather than in the

server objects. This can cause problems when for example one proxy decides

to create a replica, but others are not aware of this - some method invocations

will then be performed on both servers while others only on one (depending on

which proxy was used).

3.4.2 CORBA

Location Transparency

Clients cannot tell whether an object is remote or not. They are also not aware

of the clients location.

Location

Clients have no way of directly dealing with an object's location. The runtime

system has an implementation dependent representation of object references

and location and thus the location representation is also left up to it.

Finding Objects

The runtime system is for �nding an object and the way this is done is implemen-

tation speci�c. However the implementation repository (where implementation

information is stored per domain) stores information about the classes imple-

mented at a domain and is often used to �nd objects. Also there is a standard

communication protocol between the di�erent domains (called the GIOP) which

o�ers mechanisms to communicate with and �nd object implementations across

domain boundaries.

Moving and Copying

The life cycle service allows objects to be moved and copied to di�erent servers.

Objects which will need to use the life cycle services need to inherit (both

interface and implementation) from a life cycle object. Copying across machines

uses a factory object

5

at the target location which knows how to create an

instance of that object. The factory objects can be found using special factory

5

A factory object creates instances of other objects
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�nder objects. The move operation restricts object movement to within the

scope of an appropriate factory �nder object.

Distribution

The Collection service will allow groups of objects to be created. Clients will

then be able to operate on the objects as a group rather than on the individual

objects themselves.

3.4.3 Emerald

Location Transparency

Both an object's remoteness and an its location are unknown to a client unless

this information is explicitly asked for.

Location

Location is speci�ed by a reference to a node object, which is an abstraction of

a host, or in some cases a reference to any object on that host.

Finding Objects

The location of an object can be explicitly found by a user through a locate

primitive. Calling this primitive for any object will return a reference to the

node where the object is located. Internally each node contains a table with

location information for all objects either resident on or accessed from that

node. For an object on the same node as its client this location information

refers directly to the object. For remote objects this information consists of a

forwarding address. In order to �nd remote objects the forwarding addresses

are followed until the object is found. If the chain of forwarding addresses is

broken for some reason (e.g. a node is unreachable) then a broadcast protocol

is followed. During this broadcast protocol messages are sent to all nodes in the

system, and the one containing the actual object should respond.

Moving

Global objects can be moved using the move or re�x primitives. It is also

possible to �x an object at a node so that it cannot be moved unless explicitly

un�xed. The move primitive is a hint to the system to move an object to another

location, because this is a hint the system is not obliged to actually move the

object. If an object is moved then all processes executing in it at the time will

continue to execute at the new location after the move. The re�x primitive is

48



not a hint and will always be performed. Its e�ect is to un�x a �xed object,

move it to the destination location and then �x it there all in one atomic action.

Internally moving an object requires moving its state, and any processes exe-

cuting in the object. When moving the state a message consisting of the data

area followed by translation information is created and sent to the destination.

The translation information is used at the destination to �nd and change all

direct memory references. At the destination memory is allocated for the data

area(s), the data is copied and the memory pointers are changed according to

the translation information.

When an object moves, the parts of the processes currently executing within

it must move as well. In order to do so the relevant contexts of the processes

executing in the object must be stored in, and sent along with, the message. At

the destination the process contexts are set up and the processes reactivated.

Copying

Objects cannot be copied.

Distribution

Objects can be replicated by using Emerald's checkpoint at <nodelist> and con-

�rm checkpoint primitives. Checkpoint at <nodelist> speci�es the nodes at which

the object should be replicated and con�rm checkpoint replicates the object at

those nodes. Note that this is not an active replication, the replica's meth-

ods cannot be executed and they are updated only when con�rm checkpoint is

called. Internally con�rm checkpoint causes copies of the object to be sent to

all the nodes in <nodelist>. The object is marshaled in the same way as when

moving objects.

3.4.4 Obliq

Location Transparency

Users do not need to know whether an object or variable is remote or not,

nor do they know the object's locations. In Obliq data and computations are

location transparent, that is their meaning does not depend on allocation sites

or execution sites.

Location

Users do not deal with location explicitly. Internally an object's location is

not directly dealt with either, instead network references are used to reference

remote objects.
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Finding Objects

An object's or variable's network location cannot be explicitly determined.

Moving

Objects are local to a site and are never automatically moved over the network.

However network references can be transferred and atomic object migration can

be coded by using the cloning and aliasing primitives combined with remote

execution engines (see Invocation).

Copying

Objects can be copied using the copy primitive which produces local copies of

Obliq values. If performed remotely a remote copy will be made. Cloning can

also be used to copy an object.

Distribution

Obliq does not support fragmentation or replication of objects.

3.4.5 Fragmented Objects

Location Transparency

The user of a distributed object cannot tell whether it is a distributed object

or not, therefore the fact that an object is 'remote'

6

as well as its location are

transparent.

Location

Users do not deal with object locations directly. Internally location can only be

speci�ed using a reference which contains the exact location of an object. Such

a reference can be acquired as the result of the object manager's �nd operation

(see Finding Objects).

Finding Objects

Users are able to explicitly �nd an object's location. They do this by calling the

object manager's �nd method with a reference to the object as an argument.

If the argument was a reference to a distributed object then a reference to

the closest fragment is returned. Otherwise if the reference is to an isolated

6

here 'remote object' refers to distributed object
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object then a reference containing exact location information for that object is

returned. Looking at this process internally the object manager checks whether

it or any of its fragments knows the object's exact location and if so returns a

reference containing that information.

Moving

Clients cannot explicitly move objects except by causing a fragment to be moved

into their own address space. Internally objects are moved by calling an export

routine on a connective object. This method migrates an object (with copy

or move semantics depending on the call) along a connection provided by a

connective object. During migration a copy of the object is made, the copy is

sent to the destination and the original object is deleted. If the object depends

on any other objects (called prerequisites in SOS), such as its class object, then

these objects are moved or copied as well.

Copying

Copying is basically the same as moving except that the original object is not

deleted after being copied to the destination.

Distribution

Fragmented Objects supports fragmentation as the fragments can also hold part

of the state depending on how the provider object is implemented. Replication

is possible, by adding an appropriate connective object to the distributed ob-

ject. Fragmented replicas and replicated fragments would also be possible given

appropriate connective objects.

3.4.6 Globe

Location Transparency

Once a reference to an object is acquired a user cannot tell whether it is a

distributed or an isolated object. All objects are accessed locally so that users

cannot determine the location of an object either.

Location

Users do not deal with the location of objects directly. Internally an object's

location can be speci�ed using its contact address. This is the address where

initial communication with the object can take place (called a contact point in

Globe)
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Finding Objects

Users are also unable to determine the location of an object directly. The

location service [50, 49] can therefore only be seen from the internal view. It

is responsible for �nding the contact address of an object given the object's

identi�er. The location service is composed of a hierarchy of directory objects.

For every object there is a path from the root of the tree to a leaf node which

contains the contact address for that object. The location service decomposes

the whole network into regions and each leaf node resides in one of these regions.

To �nd a contact address a search is started at a leaf node, and continues up,

until a directory where the object is known is found. From this point the

forwarding pointers are followed to the leaf where the contact address can be

found.

Moving and Copying

Whether objects can be moved or copied has not yet been speci�ed.

Distribution

In Globe distributed objects are always fragmented. Replication is possible by

using appropriate replication objects in a distributed object's isolated objects.

Fragmented replicas and replicated fragments are also possible using the appro-

priate (self written or provided by libraries) replication objects.

3.4.7 Legion

Location Transparency

Machine boundaries are invisible to users therefore users are not aware of an

object's location or remoteness.

Location

Users do not deal with object locations. Internally an object location is de-

scribed by a structure containing the objects identi�er and a list of object ad-

dresses where it can be reached.

Finding Objects

The object location process is completely hidden from users. It involves mapping

an object identi�er to addresses where this object can be found. The process

is carried out by the client, special binding objects, the object managers and

class objects. Internally the binding objects query each other trying to �nd the
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object's address. If the binding objects fail then the object's class object must

be found. An object's class object must always know the locations of all its

instances.

Finding a class object involves the base class object which contains information

about how to �nd all class objects. This information is collected when new class

objects are contact the base class object during creation in order to get a unique

identi�er.

Moving

Migration decisions are made by special user supplied objects, users cannot

explicitly move objects. When an object is to be moved its object manager's

move method is called. The results of a move are equivalent to executing a Copy

and then a Delete

Copying

As with moving, copying decisions are not explicitly made by the user. The

object manager is responsible for copying an object. When an object is copied it

is �rst frozen creating a persistent representation of the object. This persistent

representation is then sent to the object manager of the destination domain

where it is melted to form a new object.

Distribution

Replicated objects are those whose address structures contain multiple physical

addresses. This replication is however on a system level and cannot be controlled

by users or programmers. Legion does not support fragmenting of objects.

3.5 Interaction with Objects

Spring CORBA Emerald

static/dynamic s s, d s

invocation direct language direct

dependant

dynamic binding n y y

parameters move, copy, ref, move,

copy reference visit

security

encapsulation y y y

authorization y y n

auditing n y n

atomicity n y n
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Obliq FO Globe Legion

static/dynamic s s s s, d(+-)

invocation direct direct direct language

dependant

dynamic binding y y y y

parameters reference, reference, reference value

copy copy in, out, inout

security

encapsulation y y/n y y

authorization n y/n n y

auditing n n n n

atomicity n n n y(+-)

3.5.1 Spring

Static and Dynamic Invocation

Spring supports static invocation.

Invocation

Users directly invoke methods on object references according to the program-

ming language used. The caller blocks until the operation returns. From the

internal view invoking a method on a local object is di�erent than invoking

one on a global object. For a local object the client calls a stub which directly

calls the appropriated method of the object. For a global object clients invoke

methods on a proxy. The proxy then invokes appropriate subcontract opera-

tions to marshal the parameters and remotely invoke a method on the server.

At the server subcontract code will unmarshal the parameters and call the ap-

propriate server method. Results are returned in the same way, �rst through

the subcontract and then up through the proxy and to the client.

Dynamic Binding

Depending on the mechanisms used by subcontracts for passing method invo-

cations on to server objects, static and dynamic binding are both possible. For

example, if kernel ports are used by the subcontract to provide 'direct' access to

the servers methods, then the binding would be static. This is because a method

invocation on an object reference would always invoke the same server method.

However if the subcontracts were to use message passing then the server could

change its methods and the binding would be dynamic.
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Parameter Passing

Users use the native parameter passing techniques of their programming lan-

guage to pass arguments to the generated stubs. These stubs then pass the argu-

ments on to the proxy objects. The types of the parameters are restricted to the

types de�ned in the IDL. By default parameters are passed by-move, however

they can also be passed by-copy. Internally the proxies call subcontract routines

to marshal and unmarshal the parameters. Unmarshaling involves recreating an

object given the marshaled version, this is done by a subcontract at the receiv-

ing end. A marshaled object contains the data of a proxy and a subcontract

identi�er which identi�es the subcontract type needed to reconstruct the object.

Security

Enforcing Encapsulation. The only way that a Spring object can be ac-

cessed is through stubs generated from IDL descriptions of the object's interface.

Also access to objects in other domains is only possible through subcontracts

which prevent server data from being accessed directly.

Authorization. There are a number of authentication/authorization mecha-

nisms available in Spring. The name service provides security by only allowing

authorized principals access to objects. An object can also de�ne its own access

control list, which is checked before any client gets a reference to a proxy of that

object. Such a reference is like a capability and o�ers anyone who has it access

to the object.

Because untrusted parties may participate in the naming process the name ser-

vice allows trust to be established where appropriate by means of authentication.

The name service also protects the name service information from unauthorized

operations (e.g. it ensures that clients performing naming operations are per-

mitted to do so).

Authentication is achieved through authenticated directories which remember

the principal for whom operations are being performed. This principal is most

often established when the initial directory for an address space is acquired.

Once the principal is determined the client can use that directory without au-

thentication until a directory or object which does not trust the context is

encountered. When this happens the client must authenticate itself to the di-

rectory or object and proceed from there.

An object can de�ne an ACL of users and access rights which is checked at

runtime (e.g. when a client asks for a proxy) to determine whether a client is

allowed to access the object. When a client proves that it is allowed to access

an object, the object's server creates a proxy and gives it to the client.

Auditing. Spring does not provide any auditing mechanisms.
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Atomicity

Spring does not provide support for atomic actions.

3.5.2 CORBA

Static and Dynamic Invocation

CORBA supports both static and dynamic invocation.

Invocation

Methods are invoked by users on object references. For static invocation this is

done in a language speci�c way. The method is invoked on an object reference

and through language mapping this leads to an invocation on an object type

speci�c client stub. This stub �rst marshals the parameters and then passes

an invocation request to the runtime system. For dynamic invocation library

calls have to be made in order to build an invocation, and execute it. This

entails acquiring interface information from the interface repository and using

it along with the arguments to be passed as parameters to create an argument

list. Using the argument list and a reference to the object a request is created

and executed. This causes the arguments to be marshaled and the runtime

system to be contacted as with static invocation. When the remote operation is

�nished the results are received, unmarshaled and passed back up to the client.

The runtime system is responsible for and manages control transfer and data

transfer to the actual object implementation and back. The way that the control

and data transfer is actually achieved is implementation speci�c.

At the server side when a message comes in, parameters are unmarshaled and

the appropriate method is invoked.

Dynamic Binding

The method actually executed depends on the object being referenced, also

dynamic invocation makes static binding impossible.

Parameter Passing

Users use the native parameter passing techniques of their programming lan-

guage to pass arguments to the client stubs. The types of the parameters are

however restricted to the types de�ned in the IDL. The arguments can be passed

by value, by result or by value/result. Internally the parameters are marshaled

and unmarshaled to and from a standard representation (Common Data Rep-

resentation) and are copied to the server. CORBA objects are always passed

by reference.
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Security

Enforcing encapsulation. Encapsulation is enforced because only the CORBA

runtime system actually has direct access to a server object. All other entities

must therefore access server objects through the runtime system which only

allows access as de�ned by the object's interface.

Authorization and Auditing. The runtime system guarantees that for ev-

ery method invocation it will identify the principal on whose behalf the request

is performed. The server object can obtain this information from the system

and do with it what it likes, however the runtime does not enforce any speci�c

security policies.

Further security policy will be provided by the security service. Servers will

use ACLs to authorize clients and acquiring an authenticated identi�er can be

done using third party authenticators. Auditing mechanisms will also use the

authenticated identi�ers.

Atomicity

Atomic actions will be provided by the object transactions service (OTS). The

OTS supports at (required) and nested (optional) transactions. Both CORBA

and non CORBA applications will be able to participate in the transactions

which can span domains. To make an object transactional (that is to allow it

to take part in transactions) it must inherit from an abstract OTS class.

3.5.3 Emerald

Static and Dynamic Invocation

Emerald supports static invocation.

Invocation

Methods are invoked directly on a variable containing an object reference. When

a method is invoked on another object the thread of control enters that object

for the duration of the call. Internally when methods are invoked on objects on

the same node then the method is called directly. However when methods are

invoked on remote objects then the context of the process is collected and moved

to the remote object's location where execution continues. In order to locate an

operation (i.e. �nd the location of the possibly remote object and the address of

the actual code) the vector of method pointers contained in variables is used. If

the object is local then the pointer is used to �nd the implementation, otherwise

the request is sent to the object's forwarding address (see Finding Objects).
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Eventually the request �nds its way to a node where the object implementation

is located and the method invocation takes place there.

Dynamic Binding

Because the type system (see Typing) is based on interfaces, the methods actu-

ally executed depend on the object referenced and not on the syntactic type of

the variable referencing it.

Parameter Passing

In Emerald parameters are mostly passed by reference. There are two other

possibilities which are used to improve performance: pass by move, and pass

by visit. Whether call by move (or visit) is used can be explicitly speci�ed by

the user or can be automatically determined by the compiler based on compile

time information. Both are hints to the system to move the referenced object

to the node where the method will be executed. With pass by visit semantics,

the object is also moved back after execution of the method.

Parameters may also be declared to be value or result parameters.

Security

Enforcing Encapsulation. Encapsulation is enforced at compile time. The

runtime system itself does not prevent data (for local and direct objects) from

being accessed directly.

Authorization and Auditing. Authorization and Auditing are not sup-

ported by the system.

Atomicity

Emerald does not provide any mechanisms for atomic actions.

3.5.4 Obliq

Static and Dynamic Invocation

Obliq supports static invocation.
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Invocation

Obliq supports four basic operations on objects: selection/invocation, updat-

ing/overriding, cloning and aliasing. Selection/invocation returns a value when

applied to a value �eld and invokes a method when applied to a method �eld.

Updating/overriding updates a value �eld or overrides the method invoked

through a method �eld. Cloning produces a new object from existing objects.

It can be used with one or more arguments. With one argument a new object

with the same �elds and values as the argument object is created. With more

than one argument a single object is created that contains the values, methods,

and aliases of all the argument objects. Aliasing replaces a �eld's contents with

an alias. It is also possible to alias all the components of an object at once.

Remote invocation of procedures is done at remote compute servers (or execu-

tion engines). These are remote procedures which accept procedures or methods

as arguments and execute them. The language de�nes a number of primitives

for exporting and importing these engines.

Internally when a method is invoked on a remote object, the arguments are

transmitted over the network to the remote site, the results are computed re-

motely and the �nal value is returned to the site of invocation

7

.

Dynamic Binding

The code of a method can be changed at runtime, therefore the actual code that

will be run must be determined at runtime.

Parameter Passing

Any values can be transmitted as parameters including procedures and methods.

When these are transmitted, lexically scoped free identi�ers retain their bindings

to the originating sites. Objects are passed by reference, whereas other values

are passed by copy. Non-object values are passed by copy, whereas objects are

passed by reference.

Security

Enforcing Encapsulation. All state is visible and by default also accessible

in Obliq objects. However an object can be protected meaning that it rejects

all external update, cloning, and aliasing. This provides some encapsulation,

however the object's state remains visible.

Authorization and Auditing. Obliq does not provide any authorization or

auditing mechanisms.

7

A call on a remote network object goes through the object's proxy which marshals the

arguments and does a remote procedure call on the server object.
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Atomicity

Obliq does not provide any mechanisms for atomic actions.

3.5.5 Fragmented Objects

Static and Dynamic Invocation

SOS supports static invocation.

Invocation

Users invoke methods directly on isolated objects or fragments. Internally the

fragments use their common connective object to invoke methods in the group

interface. When fragments invoke methods in their group interface then a mes-

sage must be built and passed to the connective object. The connective object

then sends the message to the destination(s), where the parameters are un-

marshaled and the appropriate method is called. FOG automatically generates

stubs which do the marshaling and unmarshaling of the arguments.

Dynamic Binding

SOS relies on C++'s or FOG's dynamic binding mechanisms to let users cus-

tomize methods which are upcalled. Programmers may also use this dynamic

binding for distributed object fragments and isolated objects.

Parameter Passing

In FOG arguments can be passed by copy or by reference. FOG also allows one

to specify parameters as value, result and value/result. When passing arrays

and pointers the size of the data to be passed can be given using a special

construct. If a distributed object is passed by reference then FOG tries to

migrate a fragment of the object into the callee's address space. The migration

code for each object is written by the programmer and must decide how best

to do the migration, e.g. whether it should migrate itself, a copy, or create

a fragment. For parameters which are not distributed objects, value/result

parameter passing is used for passing arguments by reference.

Security

Enforcing Encapsulation. Encapsulation of the state of an isolated object

or a fragment is enforced at compile time by the language that the objects are

implemented in. For group communication (between fragments) encapsulation

is enforced because fragments can only access each other through connective

objects using methods belonging to the group interface.
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Authorization. The only authorization mechanism provided by SOS is that

connective objects only allow their owner(s) to use them. This implements

authorization for the group interface only. Any authorization for the public

interface must be done by the fragments themselves.

Auditing. SOS does not provide any auditing mechanisms.

Atomicity

SOS does not provide any mechanisms for atomic actions.

3.5.6 Globe

Static and Dynamic Invocation

Globe supports static invocation.

Invocation

Methods are invoked by users directly on an isolated object. Internally they

are invoked through a binary interface which consists of an array of method

and state pointer pairs. This binary interface is accessed through language

mappings. When a method is invoked on a fragment it is actually invoked on

the control object which exports the same interface as the semantics object does.

The control object synchronizes access to the distributed object by serializing

access (through locking) to the semantics object. It then decides how to handle

the invocation. For example the semantics object might be allowed to modify

local state or a message might be sent to another fragment invoking one of its

methods. When a message arrives from another fragment a popup thread is

created which performs the call through a callback interface to the replication

object.

Dynamic Binding

When a method is invoked on an object the interface table that the reference

points to is used to determine which method should be executed. Because this

table can be updated dynamically, binding cannot be done statically.

Parameter Passing

The parameter passing semantics seen by users is that of the language that they

are programming in. When an object is passed as a parameter then it is passed

by reference. Internally all the arguments have to be marshaled before a message
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is sent to any other objects. Likewise the arguments have to be unmarshaled at

the receiving end. The marshaling and unmarshaling is handled transparently

in the fragments of the distributed object.

Security

Enforcing Encapsulation. Encapsulation is enforced because methods can

only be invoked through an interface and thus the actual data of an object

cannot be accessed directly.

Authorization and Auditing. Authorization and Auditing have not yet

been included in the model.

Atomicity

Globe does not support atomic actions.

3.5.7 Legion

Static and Dynamic Invocation

Legion supports static invocation. If the implementation language or a special

library allowed method calls to be dynamically constructed, then dynamic in-

vocation could also be possible. This is due to all class objects containing a

method for getting that classes interface.

Invocation

Methods are invoked using native language constructs and the compiler pro-

duces code which makes Legion calls. Internally methods are invoked on object

identi�ers. The address corresponding to the object identi�er is found and then

a message is sent to the destination asking it to perform the method.

Legion uses standard protocols (e.g. XTP) and the communication facilities of

the host operating systems to support communication between Legion objects.

Method calls are asynchronous, the caller can choose whether to block waiting

for results, or proceed until they are needed. Also the callee may accept the

methods in any order that it chooses.

Dynamic Binding

For remote objects the method to be executed must be determined at run time

when the invocation is performed.
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Parameter Passing

Formal parameters can be passed by value, result or value/result. Non-object

arguments are always passed by-copy. Data coercion to and from an interme-

diate format is done by type speci�c coercion functions which are generated by

the IDL compiler. The runtime system decides whether it is necessary to use the

functions or not. Legion objects are passed by sending the object's identi�er.

Security

Enforcing Encapsulation. The runtime system does not allow objects to be

accessed in any way other than by calling their methods.

Authorization. In Legion authorization invocation rights are granted per

method. The basic concepts in Legion's security model [53] are as follows. Ev-

ery object must provide certain security related member functions. These may

be implemented by the object itself or by inheriting them from other objects.

User objects can play two security roles, that of responsible agent (RA) or

security agent (SA). The responsible agent identi�es the principle who was (in-

directly) responsible for initiating the call and the security agent is responsible

for enforcing security policies. Every invocation of a method is performed in an

environment consisting of a triple of objects: SA, RA, CA (calling agent - the

agent directly responsible for the call). There are a set of actions that Legion

takes at method invocation. The actions are as follows. An object's MayI()

method is called before an invocation of any other of its methods. MayI returns

a license for the object and all its methods. The license issued depends on the

identity of the caller. It is up to MayI how to authenticate the caller, Legion

provides the CA, RA and SA and these may (but do not have to) be used. A

license is a capability which is checked before every invocation of the object for

which it was issued. It may be revoked if certain conditions no longer hold. If

an SA is de�ned in an environment then all calls must be passed through the

SA using its pass method. The SA then decides if a call may even be attempted.

Auditing. There are no auditing mechanisms provided by Legion.

Atomicity

Legion provides atomic actions for stateless objects, but not yet for stateful ob-

jects. Note that providing atomic actions for stateless objects is not completely

trivial as changes to output parameters must also be taken into account.
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3.6 Concurrency

Spring CORBA Emerald

concurrent access y y y

isolated actions n y y

synchronization n y y

Obliq FO Globe Legion

concurrent access y y y n

isolated actions n n y -

synchronization n n y y

(not speci�ed how)

3.6.1 Spring

Concurrent Access to Objects

Both local and global objects can be accessed simultaneously by multiple clients

in the same address space. Global objects can also be accessed by multiple

clients active in di�erent address spaces. Internally, for global objects a server

process is started for each request and thus multiple requests can be handled

simultaneously. The subcontracts might, however, restrict concurrent access to

an object's methods if they use blocking communication.

Isolated Actions

Spring does not o�er any mechanisms for isolated actions.

Synchronization

Spring does not o�er any mechanisms for synchronization.

3.6.2 CORBA

Concurrent Access to Objects

Whether concurrent access to objects is possible depends on the implementation

of the runtime system and of the object itself. The user of an object is, however,

generally not aware of the implementation of an object and therefore not aware

of whether concurrent access is actually possible or not.
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Isolated Actions and Synchronization

Isolated actions and Synchronization are provided by the concurrency service.

The concurrency control service provides interfaces to acquire and release locks.

The role of the concurrency service is to prevent multiple clients from simul-

taneously owning locks to the same resource if their activities conict. The

concurrency service is tightly coupled to the transaction service and therefore

the locks may be acquired for the transaction service and may be used in nested

transactions. Of course if the object implementation does not allow concurrent

access to the object then all actions are automatically isolated.

3.6.3 Emerald

Concurrent Access to Objects

Multiple clients can execute any of an object's methods simultaneously.

Isolated Actions

Isolated actions are provided by means of monitors. A monitor can be de�ned

within an object and includes a number of the object's method de�nitions.

The methods in the monitor can only be executed by one process at a time.

The methods within a monitor may call methods of other objects, however

those methods may (if they are not in monitors) be simultaneously invoked by

multiple clients.

Synchronization

Synchronization is provided through condition objects. The condition objects

can be signaled and waited on. Condition objects can only be used within a

monitor.

3.6.4 Obliq

Concurrent Access to Objects

Objects can be accessed concurrently by multiple remote and local clients.

Isolated Actions

Obliq provides isolated actions through serialized objects. In a serialized object

at most one client can operate on a value or run one of its methods at any

one time. Self inicting operations are not serialized in this way. Internally

serialized objects have an implicit object mutex associated with them. External
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operations always acquire the mutex of an object, and release it on completion.

Self-inicted operations do not need to and so never acquire the mutex of their

object. When serialized objects are cloned a fresh mutex is created for the clone.

Synchronization

Obliq provides a conditional synchronization statement which makes use of con-

ditions and guards. The synchronization statement can only be used inside of a

serialized object's method. The statement evaluates a condition and a boolean

guard expression. If the guard evaluates to true then the statement ends and

control can continue in the serialized object. Otherwise the object is 'unlocked',

that is other clients can access it, and the client executing the synchronization

statement waits on the condition. When the condition is signaled the object is

'locked' and the guard is reevaluated. This continues until the guard is true and

the statement ends.

3.6.5 Fragmented Objects

Concurrent Access to Objects

Isolated objects can simultaneously be accessed by multiple clients resident in

the same address space. Distributed objects can be simultaneously accessed

by multiple clients resident in the same address spaces as any of the objects

fragments.

Isolated Actions

Isolated actions are not supported by the system.

Synchronization

No synchronization mechanisms are o�ered by the system.

3.6.6 Globe

Concurrent Access to Objects

An isolated object can be accessed concurrently by multiple objects as long as

they reside in the same address space as the object. However the accesses to

fragments of a distributed object will be serialized by the fragment's control

object. Distributed objects may be accessed concurrently by multiple objects

as long as the acceses are through separate fragments (so that the calls are not

serialized).
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Isolated Actions

Control objects serialize all access to a semantic object's methods, however there

is no mechanism to serialize actions invoked on di�erent fragments which are

part of a distributed object.

Synchronization

Synchronization will be possible, how has not yet been speci�ed.

3.6.7 Legion

Concurrent Access to Objects

Legion does not provide concurrent access to objects.

Isolated Actions

There is no need for isolated actions because objects cannot be accessed con-

currently.

Synchronization

Due to the fact that objects cannot be concurrently invoked they can be used

by processes to synchronize.

3.7 Object-Oriented Programming Issues

Spring CORBA Emerald

inheritance int int n

multiple inheritance y y n

dynamic inheritance n n n

polymorphism i i p, i, o

Obliq FO Globe Legion

inheritance y y not speci�ed y

multiple inheritance n n n y

dynamic inheritance n n n y

polymorphism p i, o, c n n/a
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3.7.1 Spring

Inheritance

Spring o�ers interface inheritance through IDL.

Multiple Inheritance

Spring supports multiple inheritance through its IDL.

Dynamic Inheritance

Spring does not o�er dynamic inheritance.

Polymorphism.

Inclusion polymorphism is available through the type system. Due to the fact

that an object's type depends on its interface, an object can take on any type

which is based on a subset of its interface.

3.7.2 CORBA

Inheritance

CORBA o�ers interface inheritance through IDL. Implementation inheritance

may be provided by higher level tools.

Multiple Inheritance

IDL also o�ers multiple inheritance.

Dynamic Inheritance

CORBA does not o�er dynamic inheritance.

Polymorphism

Inclusion polymorphism is available through the type system. Due to the fact

that an object's type depends on its interface, an object can take on any type

which is based on a subset of its interface.
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3.7.3 Emerald

Inheritance

Emerald does not provide any form of inheritance.

Multiple Inheritance

Emerald does not provide multiple inheritance either.

Dynamic Inheritance

Nor does it provide dynamic inheritance.

Polymorphism

Emerald provides parametric, inclusion and overloading polymorphism. Para-

metric polymorphism is present because functions can work on objects of dif-

ferent types as long as the expected and actual types conform (see Typing).

The Requirements for inclusion polymorphism are satis�ed because an object

can have multiple types due to the type system in Emerald. Overloading is also

possible because an operation is not uniquely de�ned by its name.

3.7.4 Obliq

Inheritance

Cloning is used to simulate implementation inheritance. The new object is an

independent object and is in no way dependent on the parent.

Multiple Inheritance

Cloning can also be used for multiple inheritance.

Dynamic Inheritance

Obliq does not support dynamic inheritance.

Polymorphism

Obliq provides parametric polymorphism because the language is untyped, so

any values can be used as parameters.
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3.7.5 Fragmented Objects

Inheritance

FOG supports C++'s implementation inheritance.

Multiple Inheritance

FOG also support C++'s multiple inheritance.

Dynamic Inheritance

FOG does not support dynamic inheritance.

Polymorphism

FOG supports inclusion, overloading and coercion polymorphism. Inclusion is

supported due to the type system. Overloading and coercion are supported due

to FOG being based on C++.

3.7.6 Globe

Inheritance

Whether inheritance will be available or not has not yet been speci�ed.

Multiple Inheritance

Not yet speci�ed.

Dynamic Inheritance

Globe does not support dynamic inheritance.

Polymorphism

Globe uses binary interfaces, so the polymorphism issues are not dealt with by

Globe but the languages and compilers used to implement Globe objects and

clients.
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3.7.7 Legion

Inheritance

Legion o�ers dynamic implementation inheritance using the derive method of a

class object. Derive creates a new subclass class object which inherits everything

from the class object. Users use native language techniques for inheritance which

are then mapped to a call to derive by language mapping.

Multiple Inheritance

Multiple inheritance is achieved using a class object's inheritfrom method. This

causes member functions from the argument to be added to the class object's

interface. Future instances of the class will then have the extended interface.

Dynamic Inheritance

Dynamic inheritance is also possible using a class object's inheritfrom method.

Polymorphism

Legion o�ers overloading as the only form of polymorphism.

3.8 Typing

Spring CORBA Emerald

type checking s, d s, d s, d

Obliq FO Globe Legion

type checking d s, d d (not speci�ed) d

3.8.1 Spring

Type

An object's interface de�nes its type.

Subtyping

The type hierarchy follows the inheritance hierarchy, so an object is subtyped

when it inherits another's interface.
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Type Checking

Type equality is based on equality of interfaces. Two objects have the same

type if their interfaces are the same. All arguments to methods are statically

checked by the programming language used. Dynamic type checking is done

when the type of an object is to be narrowed (changed to a subtype). Before

this can be done the object is checked for the new type and the change may fail

or succeed.

3.8.2 CORBA

Type

An object's type is based on its interface.

Subtyping

The type hierarchy follows the inheritance hierarchy. An object's type can

become a subtype of another object by inheriting from it.

Type Checking

Type comparison is based on interface comparison. An object satis�es an inter-

face if it can be speci�ed as the target object in each potential request described

by the interface. Both static and dynamic type checking are done.

3.8.3 Emerald

Type

The types of objects are based on method signatures. Abstract Types are

objects that explicitly de�ne types. They are explicitly de�ned by specifying

an interface. A client can determine the type of an object using the typeof

primitive, this determines the maximal type (the largest type that it can belong

to) of an object.

Subtyping

The type hierarchy is based on type conformity. S conforms to abstract type T

if an object of type S can always be used where one of type T is expected. This

means that S provides at least the operations of T: corresponding operations

have the same number of parameters and results, the types of the operations

conform (S's to T's) and the types of the parameters conform (T's to S's!). Any

object that supplies the interface of T is a subtype of T. Subtype relations are

implicit - there is no means for explicitly declaring the conformity relation.
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Type Checking

Type checking is based on type conformity. Each identi�er has a declared type

which is evaluated at compile time, this is called its syntactic type. Any object

to which such an identi�er is bound must satisfy (conform to) the syntactic

type of that variable. Static type checking is done whenever possible, otherwise

dynamic type checking is done.

3.8.4 Obliq

Obliq is an untyped language. The runtime system is however strongly typed.

This means that when objects are used in ways that are not possible (e.g. a

nonexistent �eld is accessed) then precise error information is returned.

Type

Runtime type is based on Modula 3 typing.

Subtyping

For Network objects the subtyping hierarchy follows the inheritance hierarchy.

Type Checking

Only dynamic type checking is done.

3.8.5 Fragmented Objects

Type

FOG and SOS typing is based on C++ typing which is based on classes.

Subtyping

Subtyping follows the inheritance hierarchy, thus objects can be subtyped through

inheritance.

Type Checking

Static type checking is based on C++ typing and is done by the FOG compiler.

FOG also generates code to check the interfaces at run time. This means that

dynamic type checking is based on equality of interfaces rather than classes.
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3.8.6 Globe

What kind of typing Globe will have is not known yet.

3.8.7 Legion

Type

Type for Legion objects is based on classes

Subtyping

Subtyping is based on the kind-of relationship which follows hierarchies built

through derive.

Type Checking

Objects are equal if they have the same class. Type checking is both static and

dynamic.

3.9 Persistence

Spring CORBA Emerald

persistent objects y y y

durable actions n y y

Obliq FO Globe Legion

persistent objects n y y (not speci�ed) y

durable actions n y not speci�ed n

3.9.1 Spring

Persistent Objects

Persistence in Spring [40] is provided through naming. If the part of the name

space where an object is found is persistent then the object will also be per-

sistent. The server object controls how to make its own state and that of its

proxies persistent.

Creation

When an object is bound to a name in a name space which is persistent then

the object will become persistent.
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Deletion

When an object is unbound from a name space that is persistent then it will

no longer be persistent and its persistent image (e.g. a copy of the object on

secondary storage) will be deleted.

Melting

An object bound in a persistent name space is melted as soon as its name is

resolved by a client. Internally a freeze token can be melted only at the same

freeze service where it was acquired at. Melting causes an object which shares

some state with the original object to be generated.

Freezing

An object is typically frozen when no clients have access to it, however an object

can also o�er methods which let it be explicitly frozen at any time by a client.

An object can be frozen directly through its freezing interface but this is usually

done by a (persistent) directory object when the object is bound to a name.

When an object is frozen a freeze token is generated. A freeze token persistently

represents an object's state and the object can be reconstituted from the token

at a later time. Freezing can either be done by the object itself or by a freeze

object which is chosen by the object.

Durable Actions

Spring does not provide any mechanisms for durable actions.

3.9.2 CORBA

Persistent Objects

The runtime system provides minimal persistence support. Every object is

persistent in that a client can use an object reference at any time - whether an

object is activated or not (see Creation). However the system provides only a

small amount of extra storage (outside of the objects implementation) which is

usually not enough to store the state of the object. This data can be used to

store information about, for example, the location of the persistent state.

The Persistent Object Service allows the state of an object to be saved in a

persistent store and restored when it is needed. The service de�nes the interfaces

to the objects which compose it but not the implementations of these objects

(which could be database systems or just simple �le systems). The persistence of

an object may be completely transparent to a client or the client may be involved
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in the persistence management. The client chooses how much management it

wants, however a server object can also completely hide its persistence. The

Persistent object is ultimately responsible for its persistence - it can manage

the persistence itself or delegate it to the persistence services.

Creation

An object can become persistent by inheriting from a special Persistent Object

class, it must also provide a mechanism for freezing its state. Clients typically

interact with the interface provided by this persistent object class.

Deletion

The persistent object's delete method allows a persistent object to be deleted.

Melting

Clients can invoke a persistent object's restore method.

Freezing

Clients can invoke a persistent object's store method. Persistent object method

invocations are routed by the Persistent Object Manager to the appropriate

Persistence Data Service which is an interface to the particular datastore im-

plementation.

Durable Actions

An action performed in a persistent object can be made durable by explicitly

freezing the object.

3.9.3 Emerald

Persistent Objects

Emerald provides persistent objects through the checkpoint primitive [24].

Creation

An object becomes persistent the �rst time that it is checkpointed. When this

happens the object is written to stable storage and becomes a persistent object.

Distributed persistence is also possible by executing checkpoint at <nodelist>.

Nodelist lists nodes to which the object is copied after being checkpointed.
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Internally when an object is checkpointed it is marshaled (as when it is moved,

except that process information is not needed) and written to disk.

Deletion

Persistent objects cannot be deleted.

Melting

Melting is triggered automatically. When an object melts a designated recovery

process starts up. In the internal view melting is triggered automatically when

a copy of an object cannot be found during a remote invocation, or when frozen

copies of an unavailable object are found during garbage collection.

Freezing

A persistent object becomes frozen when its memory image is garbage collected.

Durable Actions

Any change to an object's state can become durable when the object is check-

pointed.

3.9.4 Obliq

Persistent Objects

There is no mechanism for persistence in Obliq.

3.9.5 Fragmented Objects

Persistent Objects

In SOS persistent objects are those which inherit from a special base persistent

object.

Creation

Classes which wish to be persistent must inherit from a special persistent object.

Internally a persistent object has access to a storage object, which is a fragment

of the storage service object. The persistent object's methods have privileged

access to the storage object (for communication with the storage service), and

the storage object is automatically imported when a persistent object is created.
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Deletion

A persistent object once stored on disk can never be deleted.

Melting

It has not been speci�ed how/if a frozen object can be melted.

Freezing

A persistent object can be frozen by destroying its memory image.

Durable Actions

When a persistent object checkpoints, its state is written to secondary storage,

also any other objects (persistent or not) referenced by the object are written

to disk.

3.9.6 Globe

Persistent Objects

Persistence will be available in Globe but the details have not yet been speci�ed.

3.9.7 Legion

Persistent Objects

All Legion objects are persistent and may be melted or frozen, this is not visible

to users. A frozen object is represented by an Object Persistent Representation

which is a description of the frozen object and can be used to melt it e.g. an

executable �le and state. Moving objects between melted and frozen state is

the responsibility of the object managers but every object will have methods

which can be called to save and restore its state.

Creation

All objects are automatically persistent.

Deletion

When an object is destroyed its persistent image is also deleted.
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Melting

Melting happens automatically when a method of a frozen object is called. In-

ternally the object manager �nds a suitable location for the object, allocates

process resources, begins execution of an appropriate implementation and in-

stalls and initializes the state.

Freezing

The object manager decides when an object is to be frozen. All objects have a

method for freezing themselves. When the object manager decides to freeze an

object then it calls this method and releases any process resources associated

with the object.

Durable Actions

When an object is frozen then the state is saved.

3.10 Failure and Fault Tolerance

Spring CORBA Emerald

failure detection t e e

availability n n y

exception handling y y return values

Obliq FO Globe Legion

failure detection e e n t, e

availability n n y(+-) n

exception handling y events n y

3.10.1 Spring

Failure Detection

When a called address space crashes the kernel forces all active incoming calls

to return with an error code. When the caller's address space crashes the call is

arranged to return to the kernel (of the machine where it is executing) so that

the crashed address space can be removed. The alert mechanism allows a called

address space to detect that its caller has gone away and neatly abort whatever

it was doing. Alerts are propagated down the call chain and to any threads that

it has called (e.g. invocations in di�erent address spaces)
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Availability

Spring does not guarantee availability of objects

Exception Handling

A method may raise exceptions.

3.10.2 CORBA

Failure Detection

The Corb runtime system produces exceptions on invocation failure.

Availability

CORBA does not guarantee availability of objects.

Exception Handling

Exceptions can be produced by the runtime system or by an object and these are

then propagated to the client. The exceptions are passed to the client through

an appropriate mapping into a native mechanism for the language in which the

client is implemented.

3.10.3 Emerald

Failure Detection

Existing faults (speci�cally node crashes) can be handled if the desired object

cannot be accessed and that object is a distributed persistent object. This is

done by melting one of the frozen copies of the object. Internally what happens

is that when an attempt to locate an object �nds only frozen copies of the object

then an election is started to �nd one to melt. During the location procedure

(which fails if no active object is found) the querying node is informed of the

most recent frozen replica (determined by an election protocol) on the network

and this is chosen as the new active object.

Availability

The distributed persistence (i.e. replication) allows objects to remain available

in the face of failures, however this is only possible for objects which checkpoint,

and is not transparent.
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Exception handling

Failures are signaled through return values. There is also a special return and

fail statement which allows graceful failure.

3.10.4 Obliq

Failure Detection

Communication failures produce exceptions that can be caught.

Availability

Obliq does not guarantee availability of objects.

Exception Handling

Exceptions can be raised and caught. Exceptions are equal if their names are

equal, so an exception can be caught at a site di�erent from the one in which it

was raised.

3.10.5 Fragmented Objects

Failure Detection

Node crashes can be signaled using dependency families and events. A depen-

dency family is a set of objects which agree to a common signaling protocol;

they join the family and receive any events generated within the family, or any

system events. The objects are responsible for the handling of these events.

Availability

Availability of objects is not guaranteed.

Exception Handling

Errors can be signaled by generating a user de�ned event within a dependency

family. FOG also o�ers C++ like exceptions.

3.10.6 Globe

Failure Detection

No special measures are taken by the Globe system to detect and handle failures.
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Availability

Availability is not a guarantee of the system. However due to the distribution of

objects they will most likely remain available in the face of problems (crashes,

etc). The degree of availability will largely depend on the how the objects are

distributed (e.g. degree of replication, centralization, etc.).

Exception Handling

Globe does not provide any exception handling.

3.10.7 Legion

Failure Detection

For fail stop faults of hardware components the underlying message system

guarantees delivery of messages. If a host fails then legion recon�gures itself to

remove the host, it also recon�gures when the host recovers again. In the case

of a network partition legion treats the unreachable hosts as dead.

The communication layer detects attempts to communicate with invalid object

addresses.

Availability

Legion does not guarantee availability of objects.

Exception Handling

Legion supports exception handling.

3.11 Programming Interface

Spring CORBA Emerald

programming interface IDL IDL languge

dependant

Obliq FO Globe Legion

programming Lang FOG, C++ IDL, existing IDL, mentat

interface language
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3.11.1 Spring

The Spring model is language independent. An object's interface is de�ned in

an IDL. The actual implementation of the object is de�ned in another language

(e.g. C, C++). An IDL compiler produces: a language speci�c form of the

interface (e.g. C++ header �les), client-side stub code which is later dynamically

linked into a client's program and server-side stub code which is linked into the

server to translate incoming remote object invocations, i.e. they call the correct

methods.

3.11.2 CORBA

The CORBA model is language independent. Interfaces are de�ned in an IDL

while the implementations of an object can be de�ned in any other program-

ming language as long as there is a binding between IDL and the language.

This binding should be the same for all CORBA implementations. Language

mappings allow objects and the runtime system to be accessed through regu-

lar language features. An IDL precompiler produces language skeletons for the

actual implementation of the object. The object implementation is added to

the skeletons and the code is compiled generating interfaces for the interface

repository, client stubs, server stubs and server code.

3.11.3 Emerald

The model is dependent on the Emerald programming language.

3.11.4 Obliq

The model is dependent on the Obliq language.

3.11.5 Fragmented Objects

The model is meant to be language independent, however some aspects of SOS

are dependent on features of C++ or FOG. These aspects include: upcalls

which depend on C++'s virtual functions, the system interface which depends

on C++ constructors and destructors and SOS's dependence on C++'s 'this'

pointer for authentication (in connective objects) when making method calls.

3.11.6 Globe

The Globe model is language independent. The class and interface de�nitions

are described in either an existing language or through an IDL. If an IDL is

used then the implementation can be de�ned in an existing language as long as

an IDL binding to that language exists.
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3.11.7 Legion

The Legion model is language independent. Object interfaces are de�ned in an

IDL or Mentat [17] and the implementation in another language. This code then

has to be compiled with special Legion compilers to produce Legion objects or

programs.

3.12 System Issues

Spring CORBA Emerald

interoperability n/y y, y n,n

scalability + depends on -

implementation

Obliq FO Globe Legion

interoperability y, y n n, y n, y

scalability +- +- ++ +

3.12.1 Spring

Interoperability

Spring does not specify interoperability with di�erent models. Interoperability

between di�erent implementations should be possible because each implementa-

tion would be responsible for its own objects and when objects are passed over

the network they are always marshaled into intermediated forms. Also objects

do not have to be searched for upon method execution and so communication

between machines with di�erent implementations would be minimal.

Scalability

The communication mechanism is expandable which allows di�erent types of

communication depending on how objects are to be used, this could be point to

point communication, broadcasting, etc. In this way objects that are expected

to have many clients can be programmed using subcontracts that allow the

object to be replicated or cached to avoid problems.

The naming service allows private name spaces for each address space so that

name searches do not always have to be done starting at some 'root' directory.

Also shared name spaces can be attached to an address spaces name space so

that shared objects can easily be found. Because directories are normal objects

name spaces can also be dynamically expanded. Popular name spaces could

have their nodes replicated to reduce congestion.
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Other

System Structure The Spring operating system is organized as a microker-

nel. The nucleus and virtual memory manager run in kernel mode, all other

system services are implemented as user level objects. The services provide

object-oriented interfaces, and clients communicate with the services by invok-

ing their methods. The nucleus manages processes and IPC. It supports three

basic abstractions: Domains - provide an address space for applications to run

in, Threads - execute within a domain and Doors - support object-oriented calls

between domains. A door is basically an entry point into a domain. All objects

in Spring reside in a domain.

An important concept in Spring is the subcontract. Subcontracts are replace-

able modules which control the basic mechanisms of object life, invocation and

argument passing. Subcontracts cannot be accessed directly by clients.

3.12.2 CORBA

Interoperability

CORBA implementations are interoperable between di�erent implementations

of the CORBA model and may also be interoperable between di�erent models.

Interoperability between di�erent models is possible using the dynamic skele-

ton interface to translate incoming and outgoing requests to and from CORBA

requests. Interoperability between implementations is required of CORBA run-

time systems (called ORBs). To achieve this CORBA de�nes the GIOP (Gen-

eral Inter-Orb Protocol) and IIOP (Internet Inter-Orb Protocol) which allow

di�erent ORBs to communicate. This way they can �nd interfaces and im-

plementations stored at other ORBs as well as forward invocation requests to

other ORBs. Interoperable Object References allow di�erent ORBs to pass

object references to each other.

Scalability

Much of the scalability aspect in CORBA depends on the implementation of

the runtime system and services.

Other

Services CORBA has speci�cations for a number of services. For all the

services CORBA de�nes the interfaces, not the implementations. Also many

of the services have not yet been fully speci�ed. Here follows a list of the

main services (they have all been described elsewhere): Life cycle, Naming,

Transactions, Concurrency, Persistence, Collections, Relationships, Security.
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System Structure Every CORBA object has an object adapter (and an

object adapter can be responsible for multiple objects) that provides it with a

total environment. It takes care of registration of the objects class with the

implementation registry, instantiating objects at run time (for balancing the

supply of objects with the incoming client demands), generating and managing

references for its objects and handling the incoming requests/invocations and

routing them to the proper methods. CORBA speci�es a Basic Object Adapter

that can be used for most ORB objects with conventional implementations.

The Interface Repository stores IDL information in a form available at runtime

and is used for getting information about object interfaces when constructing

dynamic invocations. Extra information such as debugging information can also

be stored there.

The Implementation Repository contains information which lets ORBs locate

and activate object implementations. It can also store additional (e.g. debug-

ging) information.

3.12.3 Emerald

Interoperability

There is no speci�cation of interoperability between Emerald and di�erent mod-

els or of interoperability between di�erent implementations of the Emerald

model.

Scalability

The Emerald model is limited to use on LANs because of its location mechanisms

- forwarding addresses and the broadcast protocol. Also the original implemen-

tation is limited to any homogeneous nodes, but a new implementation exists

which does allow heterogeneous nodes [46].

3.12.4 Obliq

Interoperability

Because Obliq objects are implemented using Network Objects it is possible for

them to communicate with other Network Objects. Therefore Obliq should be

interoperable with other implementations of the Obliq model as well as with

some other (namely Network Object based) models.

Scalability

Most of the scalability of Obliq depends on how scalable Network Objects are.

Network Objects cannot be replicated which can cause congestion problems for
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objects which are heavily used. Also the name service is centralized - being

implemented at one network address, even though naming is not used heavily,

it can nevertheless cause problems in a wide area application of Obliq.

3.12.5 Fragmented Objects

Interoperability

SOS has no mechanisms for interoperability with di�erent models. Di�erent

implementations of SOS could probably interoperate due to well described in-

terfaces and structures (such as references).

Scalability

A number of properties of SOS distributed objects theoretically allow the system

to scale well. These include the fact that traditional connective objects can

be substituted for more complex ones o�ering the possibility of implementing

replicated objects, or of using more e�cient communication protocols. Also the

fact that the key services are implemented as distributed objects allows then to

be distributed preventing network problems when many objects try to access

them at once. Ironically it is dependence on this distribution that actually

prevents the SOS system from scaling well. The problem is that the object

manager needs to have a fragment in every address space. As the number of

connected machines grows the communication between all the fragments will

also increase and eventually cause problems.

Other

System Structure SOS consists of a kernel and a number of services. The

kernel provides separate address spaces, lightweight threads and communication

within the same address space. The services are all implemented as distributed

objects. The main services are: the object manager (called the Acquaintance

Service) which is a distributed object manager and a fragment of which is present

in each address space. The Communication service which provides protocol

implementations and takes care of remote communication. The Storage service

which handles persistence and the Naming service which provides symbolic and

internal name binding.

3.12.6 Globe

Interoperability

The Globe model does not support interoperability between di�erent models

but does support interoperability between di�erent Globe implementations.
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Scalability

Globe achieves scalability by allowing crucial components of objects to be re-

placed (by more e�cient ones) without a�ecting the objects themselves. The

organization of a number of key services (such as naming and location) into

scalable structures (such as trees) also prevents problems when there are many

objects in the system. By replicating objects which are heavily used problems

with many users of objects can also be avoided.

3.12.7 Legion

Interoperability

Legion does not provide any mechanisms for interoperability with di�erent mod-

els. It does o�er interoperability between di�erent implementations of the model

because it uses existing network protocols for communications, and the structure

of important entities such as object references is clearly de�ned.

Scalability

The Legion model provides a reasonable degree of scalability. This is achieved

by taking into account the heterogeneity of networks and through Legions use

of decentralized object management. The fact that all objects are persistent

also takes into account situations where the number of objects is too large for

them to reasonably �t into main memory of the computers.

Legion manages and exploits heterogeneity of hardware and con�guration. Dif-

ferent architectures (or con�gurations of the same architecture) are better suited

to some problems than others and Legion allows this to be exploited by allow-

ing the scheduling decisions to be user de�nable. Legion also takes into account

that di�erent systems have many di�erences which have to be masked.

Object managers are responsible for local object management which decentral-

izes object management, preventing problems with too many objects needing to

be managed.

A large drawback is that the Legion model does rely on some centralized logical

objects like LegionClass and class objects. This can be solved by replicating

these objects and organizing them into hierarchical structures, however a design

for this is not incorporated into the model.

Other

System Structure Resources are logically partitioned into possibly non-

disjoint domains (called Jurisdictions). Control over these domains is given

to object managers (called Magistrate objects).
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There are a number of basic core objects which other Legion objects inherit.

They can always be reimplemented by the users once inherited. The objects are:

LegionObject - de�nes all the mandatory object functions. All objects are in-

stances of classes were that eventually derived from LegionObject. LegionClass

- de�nes all mandatory class member functions. This object is derived from Le-

gionObject and all classes are eventually derived from LegionClass. LegionHost

- models hosts. LegionMagistrate - models Magistrates. It includes functions

to manage activation, deactivation and migration of objects in a Jurisdiction.

LegionBindingAgent - bind object identi�ers to addresses.
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Chapter 4

Conclusion

4.1 Summary

The proposed framework for describing distributed object models divides such

a model into a number of issues. Each issue is then split up into a number of

features which may be present in a model. A common terminology allows these

features to be used to describe di�erent distributed object models in a similar

way. A model description based on this framework describes, using the common

terminology, how each of these features are represented in that model. A number

of models have been described in order to show how this framework can be used

as well as an initial attempt to provide general descriptions of various existing

distributed object models.

4.2 Discussion

The proposed framework provides a starting point for comparisons of di�erent

distributed object models. Because all models are described in common terms

it is much easier to see in how far aspects of some models resemble those of

other models. One problem, however, is �nding a good level of detail, that is

the descriptions cannot be too detailed, nor too general. If they are too detailed

then we no longer have an overview of the features and it is no longer possible

to describe models in general terms. Also, the more detailed the descriptions

become the more they tend to describe the implementation of a model rather

than the model itself. If the descriptions are too general then all of the models

will begin to look alike, after all the most general description "the model has

objects" would not distinguish any of the models from each other. It is a

question thus of �nding the 'middle ground' of detail for the descriptions.

Having found a middle ground of detail for the framework, using it as a basis

for a comparison of distributed object models still has its problems. In some
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situations the framework is too speci�c, that is it does not bring out the big

picture of a model. The focus of the framework is biased towards descriptions

of features rather than of a model as a whole. For example with Spring and

CORBA, we notice that some features are quite similar, especially with regards

to interface (as both use the same IDL) and the proxy server structure. However

the descriptions do not make clear how similar the two models actually are, in

fact the Spring system can actually be viewed as an extension to CORBA [39].

On the other hand, many of the descriptions are too general. In order to make a

conclusion about a model's scalability, for example, it is often necessary to know

much more detailed information about many of its features than our descriptions

can provide. For example, name services play an important part in many of the

models which means that they will be used a lot. Such a service can form

a bottleneck if it is not cleverly designed and implemented in order to avoid

that. However, due to the fact that the descriptions do not go deeper into the

mechanics of the name services it is not possible to make a judgment about the

possible problems that such a service would cause.

In order to make a general comparison of distributed object models it will be

necessary to construct new comparison criteria. These may include some of

the features described in the framework (e.g. scalability), but on the whole the

divisions suggested by the framework are too �ne for a general comparison.

4.3 Future Work

A good comparison of distributed object models will have to be done on a

number of levels. First the general characteristics of the di�erent models will

have to be compared. These will be the characteristics that most distinguish

di�erent models. Next the general descriptions, as presented in this report, can

be compared. This will o�er a comparison of the various features available in the

models. Finally more detailed and model speci�c descriptions can be compared.

These would basically follow the framework presented earlier, but will describe

the features in more detail. This way they can provide backing for statements

made in the previous two levels as well as allow more detailed comparisons.

The models will �rst have to be described at all three levels, these descriptions

can then be used as the sources for all the comparisons. The higher level de-

scriptions can and should draw on information from the lower levels to support

any claims made. The lower levels can of course also refer to characteristics or

properties of the models mentioned in the upper levels. In this way the three

levels of descriptions can be treated as a whole.

Characteristics described in the �rst level will relate to the global structure of a

model, that is the characteristics will be the ones that distinguish models from

each other rather than the most important characteristics. For example, con-

currency and management of concurrent actions is very important in distributed

programming but it is not an issue that distinguishes distributed object mod-

els from each other. The distinguishing issues will include: the structure and
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relationship between objects, which will deal with kinds of objects, object struc-

ture, composition and object reference as described in chapter 2. Next will

come mobility, which tells whether objects can be moved or copied between ad-

dress spaces. Distribution will concern the possibilities for fragmentation and

replication of objects. Method Invocation will described what kind of method

invocation is possible as well as how methods are invoked in di�erent situations

(e.g. remote vs. local invocations). Persistence will refer to the presence or

absence of persistent objects and programming interface will describe how pro-

grammers use the object model. Finally scalability will discuss the scalability

issues of the model. This level of description can be used not only to com-

pare di�erent models but also as a mechanism for categorizing di�erent models

depending on their main characteristics.

The second level will be based on the description framework developed in this

report. Important to note is that some of the issues dealt with in the framework

received much less attention than others in the object model descriptions. For

example, the description have very little to say about the issues of inheritance

and failure and fault tolerance. The reason for this is that they require more

speci�c (e.g. implementation details) information than the other issues. These

issues could easily be moved down into the third level where the necessary

amount of detail can be given. Also the terminology used in the framework

(as well as the terminology used in the �rst level) will have to be more precise.

For example, some of the terms used in this report, like local, plain and isolated

object, have very similar meaning and are sometimes used interchangeably. One

way to achieve this precision is to introduce the terms and their precise meanings

in a separate chapter or section.

The third level will also be based on the framework used in the second level

but will describe the models and their features in more detail. This will include

implementation details if necessary. Also the terminology will not have to be

as general as in the previous two levels, however, di�erent terms should not be

used to refer to the same concept.

92



Bibliography

[1] Local Objects. Internal Research Note #1, February 1995.

[2] G. Agha. Concurrent Object-Oriented Programming. Communications of

the ACM, 33(9):125{141, September 1990.

[3] P. America and F. van der Linden. A Parallel Object-Oriented Lan-

guage with Inheritance and Subtyping. In ECOOP-OOPSLA 90, Ottawa,

Canada, October 1990.

[4] H.E. Bal, J.G. Steiner, and A.S. Tanenbaum. Programming Languages for

Distributed Computing Systems. ACM Computing Surveys, 21(3):261{322,

September 1989.

[5] P. Bernstein. Middleware: A Model for Distributed System Services. Com-

munications of the ACM, 39(2):87{98, February 1996.

[6] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network Objects. Tech-

nical Report SRC-115, Digital Systems Research Center, Palo Alto, Calif.,

February 1994.

[7] A. Black, N. Hutchinson, E. Jul, and H. Levy. Object structure in the

Emerald system. In 1986 ACM Conference on Object-Oriented Program-

ming Systems, Languages and Applications, pages 78{86. ACM, October

1986. Published in SIGPLAN Notices, vol. 21, no. 11, November 1986.

[8] A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and

Abstract Types in Emerald. IEEE Transactions on Software Engineering,

SE-13(1):65{76, January 1987.

[9] G. Brun-Cottan and M. Makpangou. Adaptable Replicated Objects in

Distributed Environments. Technical Report 2593, INRIA, May 1995.

[10] L. Cardelli. Obliq: A Language with Distributed Scope. Technical Report

SRC-122, Digital Systems Research Center, Palo Alto, Calif., June 1994.

[11] L. Cardelli. A Language with Distributed Scope. Computing Systems,

8(1):27{59, January 1995.

93



[12] L. Cardelli and P. Wegner. On Understanding Types, Data Abstractions,

and Polymorphism. ACM Computing Surveys, 17(4), December 1985.

[13] D. Caromel. Toward a Method of Object-Oriented Concurrent Program-

ming. Communications of the ACM, 36(9):90{102, September 1993.

[14] R.S. Chin and S.T. Chanson. Distributed Object-Based Programming Sys-

tems. ACM Computing Surveys, 23(1):91{124, March 1991.

[15] E. Gamma, R.Helm, R. Johnson, and J.Vlissides. Design Patterns: El-

ements of Reuseable Object-Oriented Software, chapter 1, pages 1{31.

Addison-Wesley, Reading, Mass, 1995.

[16] Y. Gourhant and M. Shapiro. FOG/C++ : a Fragmented-Object Genera-

tor. In Usenix C++ Conference, April 1990.

[17] A. S. Grimshaw. Easy to use object-oriented parallel programming with

mentat. IEEE Computer, pages 39{51, May 1993.

[18] A. S. Grimshaw, W. A. Wulf, J. C. French, A. C. Weaver, and P. F.

Reynolds, Jr. Legion: The Next Logical Step Toward a Natiowide Vir-

tual Computer. Technical Report CS-94-21, University of Virginia, June

1994.

[19] G. Hamilton and P. Kougiouris. The Spring Nucleus: A Microkernel for

Objects. In 1993 Summer USENIX Conference. USENIX, June 1993.

[20] G. Hamilton, M. Powell, and J. Mitchell. Subcontract: A Flexible Base

for Distributed Programming. In 14th Symposium on Operating Systems

Principles, Asheville, North Carolina, December 1993. ACM.

[21] P. Homburg, L. van Doorn, M. van Steen, A. Tanenbaum, and W. de Jonge.

An Object Model for Flexible Distributed Systems. In 1st Annual ASCI

Conference, pages 69{78, Heijen, The Netherlands, May 1995.

[22] P. Homburg, M. van Steen, and A. S. Tanenbaum. Distributed Shared Ob-

jects as a Communication Paradigm. In Second Annual ASCI Conference,

pages 132{137, Lommel, Belgium, June 1996. ASCI.

[23] P. Homburg, M. van Steen, and A.S. Tanenbaum. An Architecture for a

Scalable Wide Area Distributed System, October 1995.

[24] N. Hutchinson and C. L. Je�ery. An e�cient implementation of distributed

object persistence. Internal Emerald document, july 1989.

[25] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-Grained Mobility in the

Emerald System. ACM Transactions on Computer Systems, 6(1):109{133,

February 1988.

94



[26] J. F. Karpovich. Support for Object Placement in Wide Area Hetero-

geneous Distributed Systems. Technical Report CS-96-03, University of

Virginia Department of Computer Science, January 1996.

[27] P. Kougiouris and G. Hamilton. Support for Space E�cient Object Invo-

cation in Spring. In A Spring Collection. SunSoft Inc., September 1994.

[28] H. M. Levy and E. D. Tempero. Modules, Objects and Distributed Pro-

gramming: Issues in RPC and Remote Object Invocation. Software - Prac-

tice and Experience, 21(1):77{90, January 1991.

[29] M. Lewis and A. Grimshaw. The Core Legion Object Model. Technical

Report CS-95-35, University of Virginia, August 1995.

[30] M. Makpangou, Y. Gourhant, J.-P. Le Narzul, and M. Shapiro. Structuring

Distributed Applications as Fragmented Objects. Technical Report 1404,

INRIA, January 1991.

[31] F. Manola. MetaObject Protocol Concepts for a RISC Object Model. Tech-

nical Report TR-0244-12-93-165, GTE Laboratories, Waltham, MA, De-

cember 1993.

[32] F. Manola and S. Heiler. A RISC Object Model for Object System Interop-

eration: Concepts and Applications. Technical Report TR-0231-12-93-165,

GTE Laboratories, Waltham, MA, August 1993.

[33] J. G. Mitchell, J. J. Gibbons, G. Hamilton, P. B. Kessler, Y. A. Khalidi,

P. Kougiouris, P. W. Madany, M. N. Nelson, M. L. Powell, and S. R. Radia.

An Overview of the Spring System. In Compcon Spring 1994, February

1994.

[34] J. R. Nicol, C. T. Wilkes, and F. A. Manola. Object Orientation in Het-

erogeneous Distributed Computing Systems. Computer, 26(6):57{67, June

1993.

[35] O.M. Nierstrasz. A Survey of Object-Oriented Concepts. In Won Kim and

Frederick H. Lochovsky, editors, Object-Oriented Concepts, Databases, and

Applications. ACM Press, 1989.

[36] Object Management Group. The Common Object Request Broker: Ar-

chitecture and Speci�cation, version 2.0. Technical Report PTC/96.03.04,

OMG, July 1995.

[37] R. Orfali, D. Harkey, and J. Edwards. The Essential Distributed Objects

Survival Guide. John Wiley, New York, 1996.

[38] M. Papathomas. Concurrency Issues in Object-Oriented Languages. In D.

Tsichritzis, editor, Object-Oriented Development, pages 207{246. Univer-

sity of Geneva, July 1989.

95



[39] S. R. Radia, G. Hamilton, P. B. Kessler, and M. L. Powel. The Spring

Object Model. In Usenix Conference on Object-Oriented Technology, June

1995.

[40] S. R. Radia, P. W. Madany, and M. L. Powell. Persistence in the Spring

System. In 3rd Workshop on Object Orientation in Operating Systems,

December 1993.

[41] S. R. Radia, M. N. Nelson, and M. L. Powell. The Spring Name Service.

Technical Report SMLI-93-16, Sun Microsystems Laboratories, October

1995.

[42] R. K. Raj, E. Tempero, H. M. Levy, A. P. Black, N. C. Hutchinson, and

E. Jul. Emerald: A General-Purpose Programming Language. Software {

Practice and Experience, 21(1):91{118, January 1991.

[43] M. Shapiro. Structure and Encapsulation in Distributed Systems: The

Proxy Principle. In 6th International Conference on Distributed Computing

Systems, Boston, MA, May 1986. IEEE.

[44] M. Shapiro. A Binding Protocol for Distributed Shared Objects. In Inter-

national Conference on Distributed Computing Systems, Poznan, Poland,

June 1994.

[45] M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ru�n, and C. Valot.

SOS: An Object-Oriented Operating System - Assessment and Perspec-

tives. Computing Systems, December 1989.

[46] B. Steensgaard and E. Jul. Object and Native Code Thread Mobility

Among Heterogeneous Computers. In 15th ACM Symposium on Operating

Systems Principles, pages 68{78, December 1995.

[47] A.S. Tanenbaum, H.E. Bal, S. Ben Hansen, and M.F. Kaashoek. Object-

based Approach to Programming Distributed Systems. Concurrency: Prac-

tice and Experience, 6(4):235{249, June 1994.

[48] C. Tomlinson and M. Scheevel. Concurrent Object-Oriented Programming

Languages. In Won Kim and Frederick H. Lochovsky, editors, Object-

Oriented Concepts, Databases, and Applications, chapter 5, pages 79{124.

ACM Press, 1989.

[49] M. van Steen, F. J. Hauck, and A. S. Tanenbaum. A Model for Worldwide

Tracking of Distributed Objects. In TINA '96 Conference, Heidelberg,

Germany, September 1996.

[50] M. van Steen, F. J. Hauck, and A. S. Tanenbaum. A Scalable Location

Service for Distributed Objects. In Second Annual ASCI Conference, pages

180{185, Lommel, Belgium, June 1996. ASCI.

96



[51] M. van Steen, P. Homburg, L. van Doorn, A.S. Tanenbaum, and

W. de Jonge. Towards Object-based Wide Area Distributed Systems. In

L.-F. Cabrera and M. Theimer, editors, 4th International Workshop on

Object Orientation in Operating Systems, pages 224{227, Lund, Sweden,

August 1995. IEEE.

[52] P. Wegner. Concepts and Paradigms of Object-Oriented Programming.

OOPS Messenger, 1(1):7{87, 1990.

[53] W. A. Wulf, C. Wang, and D. Kienzle. A New Model of Security for

Distributed Systems. Technical Report CS-95-34, University of Virginia

Department of Computer Science, August 1995.

97


