
Objects and State
COMP1400 Week 9

Wednesday, 19 September 12

Mutator methods
The internal state of an object can change.

We do this by changing the values contained
in its fields.

Methods that change an object's state are
called mutator methods.

Wednesday, 19 September 12

Vending machine
Consider a vending machine that issues
books.

There is a fixed price for buying a book.

You add credit to the machine by inserting
coins.

When you have enough credit, you can buy a
book.

Wednesday, 19 September 12

State
The state consists of:

• The available stock in the machine (a list
of books)

• The current credit balance

• The total amount of money collected.

Wednesday, 19 September 12

Accessor methods
We will need accessor methods to:

• get the current stock

• get the current credit balance

• get the total money collected

Wednesday, 19 September 12

Mutator Methods
The mutator methods we will implement:

• Add credit

• Buy a book

• Refund (remaining) credit

• Add a book to the stock

Wednesday, 19 September 12

Fields
private ArrayList<Book> myBooks;

private int myCredit;

private int myTotalCash;

public static final int
 BOOK_PRICE = 100;

Wednesday, 19 September 12

Constructor
public VendingMachine() {

 // initially empty

 myBooks =
 new ArrayList<Book>();

 myCredit = 0;

 myTotalCash = 0;

}

Wednesday, 19 September 12

Accessor methods
public ArrayList<Book> getBooks();

public int getCredit();

public int getTotalCash();

Wednesday, 19 September 12

Mutator methods
public void addCredit(int amount);

public Book buyBook();

public int refundCredit();

public void addBook();

Wednesday, 19 September 12

addCredit
public void addCredit(int amount)
{
 // ignore attempts to add
 // negative credit

 if (amount > 0) {
 myCredit += amount;
 }
}

Wednesday, 19 September 12

buyBook flow chart

Enough
credit?

Enough
stock?

Transfer
Credit.

Take book
from stock.

Return
book.

Return
nothing.

Yes Yes

No No

Wednesday, 19 September 12

buyBook
public Book buyBook() {

 // 1. check for enough credit

 if (myCredit < BOOK_PRICE) {

 return null;

 }

 // cont...

Wednesday, 19 September 12

buyBook
 // 2. check there is stock

 if (myBooks.isEmpty()) {

 return null;

 }

 // cont...

Wednesday, 19 September 12

buyBook
 // 3. transfer book price

 myCredit -= BOOK_PRICE;

 myTotalCash += BOOK_PRICE;

 // cont...

Wednesday, 19 September 12

buyBook
 // 4. remove the first book
 // in stock

 Book book = myBooks.remove(0);

 // 5. return it

 return book;

}

Wednesday, 19 September 12

The null object
The keyword null is used to represent the
null object.

The null object is the way Java represents
"nothing".

Wednesday, 19 September 12

The null object
The null object can belong to any object type
but not a primitive type:

String s = null;

Book b = null;

Integer i = null;

int i2 = null; // WRONG!

Wednesday, 19 September 12

The null object
Note the difference between the empty
string and the null string:

String empty = "";

String nothing = null;

// empty != nothing

Wednesday, 19 September 12

The null object
It is an error to try to call a method on the
null object:

Book b = null;

String t = b.getTitle();

// NullPointerException

Wednesday, 19 September 12

addBook
public void addBook(Book book) {

 // don't add the null book

 if (book != null) {

 myBooks.add(book);

 }

}

Wednesday, 19 September 12

Breaking encapsulation
Simply making a field private isn't always good
enough to maintain encapsulation.

Consider:

public ArrayList<Book> getBooks()
{

 return myBooks;

}

Wednesday, 19 September 12

Breaking encapsulation
ArrayList<Book> books =
vendingMachine.getBooks();

books.clear();

VendingMachine
 myBooks

ArrayList
 0:
 1:

Book

Book

books

Wednesday, 19 September 12

Breaking encapsulation
ArrayList<Book> books =
vendingMachine.getBooks();

books.clear();

VendingMachine
 myBooks

ArrayList
 0:
 1:

Book

Book

books

Wednesday, 19 September 12

Breaking encapsulation
ArrayList<Book> books =
vendingMachine.getBooks();

books.clear();

VendingMachine
 myBooks

ArrayList

Book

Book

books

Wednesday, 19 September 12

Two solutions
There are two simple solutions to this
problem:

1. return a copy of the list, not a reference

2. wrap the list in a layer that prevents
modification

Wednesday, 19 September 12

Solution 1
public ArrayList<Book> getBooks()
{

 // return a copy of myBooks

 return new
 ArrayList<Book>(myBooks);

}

Wednesday, 19 September 12

Solution 1
ArrayList<Book> books =
vendingMachine.getBooks();

books.clear();

VendingMachine
 myBooks

ArrayList
 0:
 1:

Book

Book

books

Wednesday, 19 September 12

Solution 1
ArrayList<Book> books =
vendingMachine.getBooks();

books.clear();

VendingMachine
 myBooks

ArrayList
 0:
 1:

Book

Book

books
ArrayList
 0:
 1:

Wednesday, 19 September 12

Solution 1
ArrayList<Book> books =
vendingMachine.getBooks();

books.clear();

VendingMachine
 myBooks

ArrayList
 0:
 1:

Book

Book

books
ArrayList

Wednesday, 19 September 12

Solution 1
Advantages:

• returns a list that can be used without
affecting the vendingMachine

Disadvantages:

• copying on every access is time
consuming

Wednesday, 19 September 12

Solution 2
public ArrayList<Book> getBooks()
{

 // return an unmodifiable
 // version of myBooks

 return
 Collections.unmodifiableList(
 myBooks);
}

Wednesday, 19 September 12

Solution 2
ArrayList<Book> books =
vendingMachine.getBooks();

books.clear();

VendingMachine
 myBooks

ArrayList
 0:
 1:

Book

Book

books

Wednesday, 19 September 12

Solution 2
ArrayList<Book> books =
vendingMachine.getBooks();

books.clear();

VendingMachine
 myBooks

ArrayList
 0:
 1:

Book

Book

books UnmodifiableList
 list

Wednesday, 19 September 12

Solution 2
ArrayList<Book> books =
vendingMachine.getBooks();

books.clear(); // ERROR

VendingMachine
 myBooks

ArrayList
 0:
 1:

Book

Book

books UnmodifiableList
 list

Wednesday, 19 September 12

Solution 2
Advantages:

• prevents outsiders modifying myBooks

• avoids cost of copying

Disadvantages:

• users need to copy the list themselves in
order to modify it

Wednesday, 19 September 12

