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Mutator methods
The internal state of an object can change.

We do this by changing the values contained 
in its fields.

Methods that change an object's state are 
called mutator methods.
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Vending machine
Consider a vending machine that issues 
books.

There is a fixed price for buying a book.

You add credit to the machine by inserting 
coins.

When you have enough credit, you can buy a 
book.
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State
The state consists of:

• The available stock in the machine (a list 
of books)

• The current credit balance

• The total amount of money collected.
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Accessor methods
We will need accessor methods to:

• get the current stock

• get the current credit balance

• get the total money collected
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Mutator Methods
The mutator methods we will implement:

• Add credit

• Buy a book

• Refund (remaining) credit

• Add a book to the stock
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Fields
private ArrayList<Book> myBooks;

private int myCredit;

private int myTotalCash;

public static final int 
            BOOK_PRICE = 100;
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Constructor
public VendingMachine() {

   // initially empty

   myBooks = 
     new ArrayList<Book>();

   myCredit = 0;

   myTotalCash = 0;

}
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Accessor methods
public ArrayList<Book> getBooks();

public int getCredit();

public int getTotalCash();
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Mutator methods
public void addCredit(int amount);

public Book buyBook();

public int refundCredit();

public void addBook();
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addCredit
public void addCredit(int amount) 
{
   // ignore attempts to add
   // negative credit

   if (amount > 0) {
       myCredit += amount;
   }
}
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buyBook flow chart

Enough 
credit?

Enough 
stock?

Transfer 
Credit.

Take book 
from stock.

Return 
book.

Return 
nothing.

Yes Yes

No No
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buyBook
public Book buyBook() {

   // 1. check for enough credit   

   if (myCredit < BOOK_PRICE) {

      return null;

   }

   // cont...
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buyBook
   // 2. check there is stock

   if (myBooks.isEmpty()) {

      return null;

   }

   // cont...
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buyBook
   // 3. transfer book price

   myCredit -= BOOK_PRICE;

   myTotalCash += BOOK_PRICE;

   // cont...   
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buyBook
   // 4. remove the first book
   //    in stock

   Book book = myBooks.remove(0);

   // 5. return it

   return book;

}
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The null object
The keyword null is used to represent the 
null object.

The null object is the way Java represents 
"nothing". 
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The null object
The null object can belong to any object type 
but not a primitive type:

String s = null;

Book b = null;

Integer i = null;

int i2 = null;  // WRONG!
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The null object
Note the difference between the empty 
string and the null string:

String empty = "";

String nothing = null;

// empty != nothing
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The null object
It is an error to try to call a method on the 
null object:

Book b = null;

String t = b.getTitle();

// NullPointerException
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addBook
public void addBook(Book book) {

   // don't add the null book

   if (book != null) {

      myBooks.add(book);

   }

}
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Breaking encapsulation
Simply making a field private isn't always good 
enough to maintain encapsulation.

Consider:

public ArrayList<Book> getBooks() 
{

   return myBooks;

}
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Breaking encapsulation
ArrayList<Book> books = 
vendingMachine.getBooks();

books.clear();

VendingMachine
   myBooks

ArrayList
   0:
   1:

Book

Book

books
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Breaking encapsulation
ArrayList<Book> books = 
vendingMachine.getBooks();

books.clear();

VendingMachine
   myBooks

ArrayList
 

Book

Book

books
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Two solutions
There are two simple solutions to this 
problem:

1. return a copy of the list, not a reference

2. wrap the list in a layer that prevents 
modification
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Solution 1
public ArrayList<Book> getBooks() 
{

   // return a copy of myBooks

   return new 
       ArrayList<Book>(myBooks);

}
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Solution 1
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Solution 1
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Solution 1
ArrayList<Book> books = 
vendingMachine.getBooks();

books.clear();

VendingMachine
   myBooks

ArrayList
   0:
   1:

Book

Book

books
ArrayList
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Solution 1
Advantages:

• returns a list that can be used without 
affecting the vendingMachine

Disadvantages:

• copying on every access is time 
consuming
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Solution 2
public ArrayList<Book> getBooks() 
{

   // return an unmodifiable
   // version of myBooks

   return    
    Collections.unmodifiableList(
                    myBooks);
}
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Solution 2
ArrayList<Book> books = 
vendingMachine.getBooks();

books.clear();

VendingMachine
   myBooks
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   0:
   1:

Book

Book
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Solution 2
ArrayList<Book> books = 
vendingMachine.getBooks();

books.clear();  

VendingMachine
   myBooks

ArrayList
   0:
   1:

Book

Book

books UnmodifiableList
   list
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Solution 2
ArrayList<Book> books = 
vendingMachine.getBooks();

books.clear();  // ERROR

VendingMachine
   myBooks

ArrayList
   0:
   1:

Book

Book

books UnmodifiableList
   list
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Solution 2
Advantages:

• prevents outsiders modifying myBooks

• avoids cost of copying

Disadvantages:

• users need to copy the list themselves in 
order to modify it
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