
Polymorphism and
Interfaces
COMP1400 - Week 11

this
The keyword this is can be used by an object
as a reference to itself.

It is usually used when telling other objects
about itself:

 room.enter(this);

this
on Player:

 public void moveTo(Room r) {
 r.enter(this);
 }

on Room:

 public void enter(Player p) {
 // they found an arrow!
 p.addArrows(1);
 }

Removing ambiguity
public class RobotGame {

 private int robots; // BAD
 // STYLE

 public RobotGame(int robots) {

 // field parameter
 this.robots = robots;
 }
}

this

Player

Room
 enter(Player p)

public void moveTo(Room r) {

 r.enter(this);

}

this

Player

Room
 enter(Player p)

public void moveTo(Room r) {

 r.enter(this);

}

Polymorphism
In the real world a particular object may be
thought to belong to a number of different
categories (types) in different contexts

Malcolm is

• a person

• a man

• a lecturer

• a mammal

• a musician

• a 70kg mass

Polymorphism
Such an object is polymorphic. It can have
different types in different circumstances.

A polymorphic object implements a number of
different interfaces.

Each interface defines an expected set of
methods by which it can be used.

Interfaces
A lecturer can be asked to:

• teach

• mark

A musician can be asked to:

• play music

A 70kg mass can be asked to:

• accelerate

Interfaces
The object (Malcolm) must implement all of
these interfaces.

Different objects may implement interfaces
differently.

Eg: Malcolm implements "play music" using a
ukulele.

Another musician might use a trombone or a
glockenspiel.

Interfaces in Java
In Java we define interfaces like empty classes:

public interface Hazard {
 // interface definition.

 public String getWarning();

 public boolean
 activate(Player player);

}

Interfaces in Java
In Java we define interfaces like empty classes:

public interface Hazard {
 // interface definition.

 public String getWarning();

 public boolean
 activate(Player player);

}

'interface'
keyword

interface
name

method
signatures

semicolonno method
bodies

Interfaces in Java
Interfaces contain no code or data,
only method signatures.

They do nothing on their own.

They merely describe interfaces for other
classes.

Interfaces in Java
Objects must list the interfaces they implement

public class Bats
 implements Hazard {

 // class definition ...

}

Interfaces in Java
Objects must list the interfaces they implement

public class Bats
 implements Hazard {

 // class definition ...

}

'implements'
keyword interface

name

Interfaces in Java
A class which implements an interface must
provide methods that match those in the
interface description.

Multiple classes may implement the same
interface in different ways.

public class Bats
 implements Hazard {

 public String getWarning() {

 return "You hear squeaking.";

 }

 public boolean
 activate(Player player) {

 // ... move the player ...

 return false;
 }
}

public class Pit
 implements Hazard {

 public String getWarning() {

 return "You fell a draft.";

 }

 public boolean
 activate(Player player) {

 // ... kill the player ...

 return true;
 }
}

Using Interfaces
An object which implements an interface may
be treated as an instance of that type:

 Bats b = new Bats();
 Hazard h = b;

 String warn = h.getWarning();

 boolean gameOver =
 h.activate(player);

private ArrayList<Hazard>
 myHazards;

public void addHazard(Hazard h) {

 myHazards.add(h);

}

public void activateHazards(
 Player p) {

 for (Hazard h : myHazards) {
 h.activate(p);
 }
}

Interface example
Room room = new Room();

Bats bats = new Bats();

room.addHazard(bats);

Room room2 = new Room();

Pit pit = new Pit();

room2.addHazard(pit);

Using Interfaces
Note that while all Bats are Hazards, not all
Hazards are Bats. So the following is wrong:

 Hazard h = new Pit();

 Bats b = h; // WRONG!

 h = new Bats();

 b = h; // WRONG!

Interfaces as Masks
It is helpful to visualise interfaces as masks
which only reveal parts of a class:

Bats b = new Bats();
Hazard h = b;

String warn =
 h.getWarning();

h.fly(); // ERROR

Bats
 getWarning()
 activate()
 fly()
 drinkBlood()

Hazard

getWarning()
activate()

Design
Interfaces are a useful tool for abstraction.

Often we have several different objects which
are functionally similar at the abstract level but
differ in implementation detail.

Interfaces allow us to ignore the details when
they are irrelevant.

Interfaces in JCL
The Java Class Library includes a number of
interfaces:

Eg: The List interface abstracts the idea of a
sorted list.

The ArrayList class implements this
interface. So does LinkedList.

http://docs.oracle.com/javase/1.4.2/docs/api/

http://docs.oracle.com/javase/1.4.2/docs/api/java/util/List.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/util/List.html

Lists
public Room {

 private List<Hazard> myHazards;

 public Room() {
 myHazards =
 new ArrayList<Hazard>();
 }
}

Lists
public Room {

 private List<Hazard> myHazards;

 public Room() {
 myHazards =
 new LinkedList<Hazard>();
 }
}

Comparable
One important interface is Comparable:

http://docs.oracle.com/javase/1.4.2/docs/api/
java/lang/Comparable.html

It describes the standard method for comparing
objects:

public int compareTo(Object o);

http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Comparable.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/Object.html

