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Abstract
A stream processor executes an application that has been decom-
posed into a sequence of kernels that operate on streams of data
elements. During the execution of a kernel, all streams accessed
must be communicated through the SRF (Stream Register File), a
non-bypassing software-managed on-chip memory. Therefore, op-
timizing utilization of the SRF is crucial for good performance. The
key insight is that the interference graphs formed by the streams
in stream applications tend to be comparability graphs or decom-
posable into a set of multiple comparability graphs. We present a
compiler algorithm that can find optimal or near-optimal colorings
in stream IGs, thereby improving SRF utilization than the First-Fit
bin-packing algorithm, the best in the literature.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—compilers and optimization; B.3.2 [Mem-
ory Structures]: Design Styles—Primary memory

General Terms Algorithms, Languages, Performance

Keywords Stream processor, stream programming, comparability
graph coloring, software-managed cache

1. Introduction
Media applications, such as image processing, signal processing,
video and graphics, are becoming an increasingly dominant por-
tion of computing workloads today. In contrast with other applica-
tions, media applications exhibit producer-consumer locality with
little global data reuse, have abundant parallelism and require high
computation rates (with 10-100 billion operations per second and a
few to thousands of operations per input data). These characteristics
are poorly matched to conventional general-purpose programmable
architectures that depend on data reuse (captured by hardware-
managed caches), cannot exploit the available parallelismand can-
not support high computation rates. On the other hand, special-
purpose media-processing processors tailored to one specific ap-
plication require significant design effort and are thus difficult to
change as applications and/or algorithms evolve.
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The (programmable) stream processors, such as Imagine [18],
Raw [20], Cell [23], AMD FireStream and Merrimac [4], represent
a promising alternative in achieving high performance in media
applications [17, 18, 21]. In addition, stream processing is also well
suited for some scientific applications [4, 23, 25].
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Figure 1: Block diagram of the FT64 stream processor.

We have recently designed and fabricated a 64-bit stream pro-
cessor, FT64 [25], for media applications as well as certainscien-
tific applications that are also amenable to stream processing. As
shown in Figure 1, like Imagine [18], Cell [23] and Merrimac [4],
FT64 can be easily mapped to the stream virtual machine architec-
ture described in [12]. Such stream processor executes applications
that have been mapped to the stream programming model: a pro-
gram is decomposed into a sequence of computation-intensive ker-
nels that operate on streams of data elements. Kernels are compiled
to VLIW microprograms to be executed on clusters of ALUs, one
at a time. Streams are stored in the SRF (Stream Register File), a
software-managed on-chip memory. Expressing an application as
streams exposes its inherent locality and parallelism. Kernels ex-
pose kernel locality by keeping temporary values local (in the non-
shown local register files near the ALUs) and instruction-level par-
allelism (exploited by the multiple ALUs in each cluster). Streams
expose producer-consumer locality between kernels — enabling
some output streams produced by a kernel to be consumed by the
next kernel in sequence — and data-level parallelism — enabling
different elements of an input stream to be operated on simultane-
ously, one on each ALU cluster, in a SIMD fashion.

Research into advanced compiler technology for stream lan-
guages and architectures is still at its infancy. Among several chal-



lenges posed by stream processing for compilation [5], an efficient
allocation of the scarce on-chip SRF is critical to performance.
SRF, the nexus of a stream processor, is introduced to capture the
widespread producer-consumer locality in media applications to re-
duce expensive off-chip memory traffic. Unlike conventional reg-
ister files, however, SRF is non-bypassing, namely, the input and
output streams of a kernel must be all stored in the SRF when a
kernel is being executed. If the work set of a kernel is too large to
fit into the SRF, strip mining can be applied to segment some large
streams into smaller strips so that the kernel can then be called to
operate on one strip at a time. Alternatively, some streams can be
double-buffered [5] or spilled [22] until the data set of every kernel
does not exceed the SRF capacity. Therefore, optimizing utilization
of SRF is crucial for good performance.

We are aware of two existing SRF management techniques for
stream processors [5, 22]. In [5], SRF utilization is optimized by
applying First-Fit bin-packing heuristics. In our recent work [22],
we have experimented with adopting a graph coloring approach that
we introduced in [14] for scratchpad allocation to SRF allocation.
This graph coloring approach requires the SRF to be partitioned
into pseudo registers before graph coloring can be applied.Artifi-
cial aliases among pseudo registers may cause SRF fragmentation,
reducing SRF utilization unnecessarily. On the other hand,First-
Fit heuristics can be sub-optimal for many applications. For small
applications, either technique suffices. For large applications with
tens to hundreds of kernels, both need to be further improved.

In this paper, we present a new compiler algorithm that aims
to optimize utilization of SRF for stream applications. Thecentral
machinery is the traditional interference graph (IG) representation
except an IG here is a weighted (undirected) graph formed by the
streams operated on by a sequence of kernels. The key discovery is
that the IGs in many media applications are comparability graphs,
enabling the compiler to obtain optimal colorings in polynomial
time. This has motivated us to develop a new algorithm for opti-
mizing utilization of SRF when allocating the streams in stream
IGs to the SRF by comparability graph coloring. If the data set of
a kernel still exceeds the SRF capacity after SRF allocation, live-
range splitting (or spilling) and strip mining can be applied, as will
be discussed in the concluding section of this paper.

In summary, this paper makes the following contributions:

• We propose, for the first time, to optimize utilization of SRFby
comparability graph coloring and present an efficient algorithm
designed for well-structured media and scientific applications
amenable to stream processing.

• We show that our algorithm can find optimal and near-optimal
colorings for stream IGs, thereby outperforming First-Fitheuris-
tics.

The rest of this paper is organized as follows. For background
information, Section 2 introduces the stream programming model
by an example. In Section 3, we make precise the SRF management
problem we solve. Section 4 casts it as a comparability graph
coloring problem and presents our algorithm for solving thenew
formulation. Section 5 evaluates our approach. Section 6 discuss
related work. Section 7 concludes by discussing future work.

2. Stream Programming Model
The central idea behind stream processing is to divide an applica-
tion intokernelsandstreamsto expose its inherent locality and par-
allelism. As a result, an application is divided into two programs, a
stream programrunning on the host processor and akernel program
running on the stream processor. The stream program specifies the
flow of streams between kernels and initiates the execution of ker-
nels. The kernel program executes these kernels, one at a time.

1     complex xmat[2*N], ymat[2*N];

2     complex twiddlemat[log2(2*N)*N];

3  stream<complex> a(N), b(N);

4     stream<complex> twiddle(N);

5     stream<complex> c(N), d(N); 

6 dataInit('xmatix.dat', xmat);

7     dataInit('twiddlematrix.dat', twiddlemat);

8 Load(xmat[0, N-1], a);

9 Load(xmat[N, 2*N-1], b);

10   for (int i = 0; i < log2(2*N); i+=2) {

11 Load(twiddlemat[i*N, (i+1)*N-1], twiddle); 

12 Kernel('fft', a, b, twiddle, c, d);

13 Load(twiddlemat[(i+1)*N, (i+2)*N-1], twiddle);

14 Kernel('fft', c, d, twiddle, a, b);

15   }

16 Store(a, ymat[0, N-1]);

17 Store(b, ymat[N, 2*N-1]);

18   bitReverse(ymat);

19 dataSave('ymatrix.dat', ymat);

1     fft(stream<complex> a, stream<complex> b, 

2          stream<complex> twiddle, 

3          stream<complex> c, stream<complex> d)

4     {

5            complex a_tmp, b_tmp, c_tmp, d_tmp;

6            complex twiddle_tmp;

7            for (int i = 0; i < N/2; i++) {

8                 a>>a_tmp;

9                 b>>b_tmp;

10               twiddle>>twiddle_tmp;

11               c<<a_tmp+b_tmp;

12               c<<twiddle_tmp*(a_tmp-b_tmp);

13          }

14          for (i = N/2; i < N; i++) {

15               a>>a_tmp;

16               b>>b_tmp;

17               twiddle>>twiddle_tmp;

18               d<<a_tmp+b_tmp;

19               d<<twiddle_tmp*(a_tmp-b_tmp);

20          }

21   }

(a) Stream program (b) Kernel program

Kfft

a

b

twiddle
Kfft

c

d

twiddle

a

b
Kfft

c

d

twiddle

a

b

(c) Data flow of streams through kernels

Figure 2: Stream and kernel programs for a radix FFT.

Figure 2 depicts the mapping of a2N -point radix-2 FFT
to the stream programming model. The kernelfft is executed
log2(2N) times with explicit producer-consumer locality: every
output stream from a kernel execution is used as an input for the
next kernel execution in sequence.

Let us examine the stream program first. In lines 1 and 2,
three arrays of sizes2N , 2N and log2(2N) ∗ N are declared,
respectively. In lines 3 – 5, five streams of sizeN are declared.
In lines 6 and 7, the functiondataInit is called twice to initialize
arraysxmat andtwiddlematresiding in the off-chip memory with
the two data files stored at the host processor. In line 8, the data in
the first half ofxmat are gathered into streama. This will result in
the loading of the data fromxmat in off-chip memory into the space
allocated to streama in the SRF. In line 9, streamb is initialized
from the second half ofxmat. In line 10, the loop in a sequential
FFT program is unrolled once to expose the producer-consumer
locality between the kernel calls tofft . In line 11, the “twiddle
factors” needed by FFT are gathered into streamtwiddle. In line
12, the kernelfft is called to perform the core computation of FFT
on the stream processor. As shown,a, b and twiddle are input
streams andc andd are output streams. In line 13, streamtwiddle is
updated with new twiddle factors. In line 14,fft is called again with
c, d, twiddle as input anda andb as output. After the kernel has run
to completion, the final output streams are stored from the SRF into
arrayymat in off-chip memory (lines 16 and 17). Since the output
is in bit-reversed order, In line 18, the functionbitReversereorders
the data. In line 19, result is saved into a data file.

In the kernel program, a loop at line 7 first goes over the first
half of each input stream. In line 8, the elements of streama are
read sequentially, one a time, into a temporary variablea tmp. In
lines 9 and 10, the elements of streamsy andtwiddle are read off
similarly. In lines 11 and 12, the computations on these elements
are performed with the results being appended to output streamc.
In lines 14 – 20, these steps are repeated on the second half ofthe
input streams, with the results bing appended to output streamd.

3. Problem Statement
The focus of this work is on optimizing utilization of the SRF. So
only stream programs are relevant here. Given a stream program,
this paper presents an algorithm that assigns the streams inthe
program to the SRF so as to minimize the total amount of space



taken by the streams. Such an algorithm can then be used by a
stream compiler to produce a final SRF allocation by combining
with live range splitting and strip mining, if necessary.

A stream program consists of a sequence of loops where each
loop includes a sequence of kernels operating on streams. Ina
stream compiler, all loops are considered separately in SRFallo-
cation. As shown in Figure 1, the DRAM controller supports two
stream-level instructions,Load and Store, that transfer an entire
stream between off-chip memory and the SRF. In stream programs
as demonstrated in Figure 2, loads and stores are used to initialize
some streams from the global input data residing in off-chipmem-
ory and write certain streams to off-chip memory, respectively.

The central machinery in our approach to allocating the streams
in a loop to the SRF is the traditional interference graph (IG) except
that it is a weighted (undirected) graph formed by the streams
operated on by the kernels in the loop. All streams accessed in
the loop are identified as live ranges to be placed in the SRF. If
two live ranges interfere (i.e., overlap), they must be placed in non-
overlapping SRF spaces. The live ranges of streams are computed
by extending thedef/usedefinitions for scalars to streams:Load
defines a stream,Storeuses a stream, and a kernel call (re)defines
its output streams and uses its input streams. The live rangeof a
stream starts from its definition and ends at its last use. Of course,
streams are renamed using the SSA (static single assignment) form.

After the live ranges have been computed for a loop, its
weighted (undirected) IG, denotedG, is built in the normal manner,
where a weighted node denotes a stream live range whose weight is
the size of the stream and and an edge connects two nodes if their
live ranges interfere with each other.

The SRF allocation problem can be naturally solved as an
interval-coloring problem as formalized below. Allocating SRF
spaces to stream live ranges in an IG is represented by an assign-
ment of intervals to the nodes in the IG. Minimizing the span of
intervals amounts to minimizing the required SRF size.

DEFINITION 1. Given a stream IGG = (V, E) with positively
integral node weightsw : V → IN (representing stream sizes), an
interval coloringα of G maps each nodex onto an intervalαx of
the real line of widthw(x) such that adjacent nodes are mapped to
disjoint intervals, i.e.,(x, y) ∈ E impliesαx ∩ αy = ∅.

It is well-known that interval coloring is NP-complete.
Our IG-based approach is flexible enough to accommodate pre-

pass optimizations that are applied earlier to a program either by
the programmer or the compiler. One example is to reorder some
loads and stores to overlap memory transfers and kernel execution.
Another is to split some long live ranges (in scientific applications)
accomplished by inserting a pair of store and load instructions. We
plan to automate their integration with this work in future.

4. Comparability Graph Coloring for Stream IGs
Section 4.1 recalls the basic results about interval coloring and
comparability coloring [9], which provide a basis for understand-
ing our approach and proving its optimality and near-optimality.
Section 4.2 describes our key insight drawn from a careful analysis
of the structure of stream IGs: a large number of stream IGs are
comparability graphs, enabling their optimal colorings tobe found
in polynomial time. In Section 4.3, we turn this insight intoan al-
gorithm that can find optimal or near-optimal colorings for well-
structured media and scientific applications when their stream IGs
are expected to be decomposable into a set of comparability graphs.

4.1 Interval and Comparability Graph Coloring: Basics

Given a (directed or undirected) graphG = (V ,E ) and a subset
A ⊆ V , the induced subgraphby A is G(A) = (A,E (A)), where

E (A) = {(x , y) ∈ E | x , y ∈ A}. A subsetA ⊆ V of r nodes is
anr-cliqueif it induces a complete subgraph. A clique is amaximal
clique if it is not contained in any other clique.

Given an undirected graphG = (V ,E ) with the functionw
mapping nodes to positively integral weights, the totalwidth
(i.e., the number of hues) of an interval coloringα, χα(G;w), is
|
S

x∈V αx |. Thechromatic numberχ(G;w) is the smallest width
needed to color the nodes inG. The clique numberis defined as
ω(G;w) = max{w(K) | K is a clique ofG}. As a fact, we have:

χ(G;w) > ω(G;w) (1)

4.1.1 Interval Coloring vs. Acyclic Orientation

Figure 3 illustrates the equivalence between finding an interval
coloring and finding an acyclic orientation for a weighted graph.
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Figure 3: Two interval coloringsα andβ of a weighted undirected
graph together with their equivalent acyclic orientations.

Let G= (V, E) be an undirected graph. Anorientationof G is a
functionα that assigns every edge a direction such thatα(x , y) ∈
{(x , y), (y , x)} for all (x, y) ∈ E. LetGα be the digraph obtained
by replacing each edge(x, y) ∈ E with the arcα(x, y). An
orientationα is acyclic if Gα contains no directed cycles.

Every interval coloringα of G induces an acyclic orientationα′

such that(x, y) ∈ α′ if and only if αx > αy i.e., an arc is directed
from x to y if and only if αx is to the right ofαy for all (x, y) ∈ E.

Conversely, an acyclic orientationα of G induces an interval
coloring α′. For a sink nodex, let α′

x = [0, w(x)). Proceeding
inductively, for a nodey with all its successor nodes already being
colored (i.e.,α′ defined at the successors), lett be the largest
endpoint of their intervals and defineα′

y = [t, t + w(y)).
From an acyclic orientation, we can obtain an interval coloring

in linear time by a depth-first search.
The problem of finding optimal colorings is NP-complete. In an

optimal coloring, the chromatic numberχ(G; w) is related to the
notion ofheaviest pathin an acyclic orientation ofG:

χ(G; w) = min
α∈A(G)

( max
µ∈P(α)

w(µ)) (2)

where A(G) is the set of acyclic orientations ofG and P(α)
the set of directed paths in an orientationα ∈ A(G). In other
words, the orientation whose heaviest path is the smallest induces
an optimal coloring. The heaviest-path-based formulationstated in
(2) is exploited in the development of our coloring algorithm for
stream IGs (Section 4.3).

In Figure 3(b), the heaviest path isx → c → b → z with a
total weight ofχα(G;w) = 12. In Figure 3(c), the heaviest path
is c → z → b with a total weight ofχβ(G;w) = 10. The gap
between the two colorings is 2 but can be larger (Figure 22). So
there is a need to look for an optimal solution efficiently in practice.
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Figure 4: An illustration of Definition 4 (n = 3).

Due to the equivalence between acyclic orientations and interval
colorings, we also writeχα(G; w) to mean the width of the interval
coloring associated with an acyclic orientationα of G.

4.1.2 Comparability Graph Coloring

In the context of this work, we examine below a class of graphsthat
allows interval colorings to be found optimally in polynomial time.

DEFINITION 2. An orientationα of an undirected graphG is tran-
sitive if (x , z) ∈ Gα whenever(x , y), (y , z) ∈ Gα.

DEFINITION 3. An undirected graphG is acomparability graphif
there exists a transitive orientation ofG.

A transitive orientation is acyclic but the converse is not neces-
sarily transitive. In Figure 3,α is not transitive since(x , b), (b, a) ∈
Gα but (x , a) /∈ Gα. However,β is transitive. Therefore, the graph
shown in Figure 3(a) is a comparability graph.

Let α be a transitive orientation of a comparability graphG. Re-
stating (1), we haveχ(G;w) > ω(G;w). Due to transitivity, every
path inGα is contained in a clique ofG. In particular, the heavi-
est path inGα equals to the heaviest clique inG, i.e.,χ(G;w) 6

χα(G;w) = ω(G;w). Hence,χα(G;w) = χ(G;w) = ω(G;w).
This result is summarized below.

THEOREM 1. For any transitive orientationα of G, the interval
coloring induced is optimal (and can be found in linear time).

DEFINITION 4. LetG0 be a graph withn nodesv1 , v2 , . . . , vn and
G1 , G2 , . . . , Gn ben disjoint graphs. These graphs may be directed
or undirected. Thecompositiongraph G = G0 [G1 ,G2 , . . . ,Gn ],
which is illustrated in Figure 4, is formed formally as follows. First,
replacevi in G0 with Gi . Second, for all1 ≤ i , j ≤ n, make each
node ofGi adjacent to each node ofGj whenevervi is adjacent to
vj in G0 . Formally, forGi = (Vi, Ei), we defineG= (V, E) as:

V = ∪16i6nVi

E = ∪16i6nEi ∪ {(x, y) | x ∈ Vi, y ∈ Vj and (vi, vj) ∈ E0}

THEOREM 2. LetG = G0 [G1 ,G2 , . . . ,Gn ], where allGi ’s are dis-
joint undirected graphs. ThenG is a comparability graph if and
only if eachGi(0 ≤ i ≤ n) is a comparability graph.

Furthermore, the problems of recognizing a comparability
graphG = (V, E) and finding a transitive orientation ofG can both
be done inO(δ· | E |) time andO(| V | + | E |) space, whereδ
is the maximum degree of a node inG. Based onα, an optimal
coloring ofG can be obtained in linear time (Theorem 1).

4.2 Optimal Colorings of Comparability Stream IGs

In stream programs with producer-consumer locality but little
global data reuse, the live ranges of streams are also local.A typi-
cal stream program (or a loop in such program) consists of a series
of kernels, each producing intermediate streams to be consumed
by the next kernel in sequence. We show below that if all stream
live ranges in a stream IG do not span across more than two kernel
calls, then the IG is a comparability graph and its optimal coloring

can thus be found in polynomial time. This result is proved easily
by a straightforward application of Theorem 2.

Figure 5 shows the IG for a series of three kernels, where all live
ranges are no longer than two kernel calls. In particular, streamq
is live from kernel ‘1’ to kernel ‘2’, streamsu, v andw are live in
kernels ‘2’ and ‘3’, and the remaining streams are only live at the
kernels where they are operated on. In this example and the proofs
of our results, whether a stream is an input or output is irrelevant.

Load(..., p);

Kernel('1', p, q);

Load(..., r);

Load(..., s);

Load(..., t);

Kernel('2', q, r, s, t, u, v, w);

Load(..., x);

Kernel('3', u, v, w, x, y); 

store(y, ...);

p

q

r

s

t

u

v

w

x

y

Figure 5: A stream program and its IG.

Let Gcg be the IG built from a loop containingNcg kernels
(numbered from 1) such that each live range inGcg is not longer
than two kernels. We partition all live ranges inGcg into 2Ncg sets:

K1, K12, K2, K23, K3, . . . , K(Ncg−1)Ncg
, KNcg

, KNcg1 (3)

whereKi consists of all streams accessed, i.e., live only in kerneli
andKi(i⊕1) all streams live only in kernelsi andi ⊕ 1. We define
i⊕c to be(i+c−1)%Ncg +1 andi⊖c to be(i−c−1)%Ncg +1.

As illustrated in Figure 6, all streams accessed in a kernel in a
loop form a maximal clique in the stream IG of the loop.

LEMMA 1. The streams inK(i⊖1)i∪Ki∪Ki(i⊕1) form a maximal
clique for every kerneli.

p q

q
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s
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u

v

w

u

v
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x

y

Kernel 1 Kernel 2 Kernel 3

Figure 6: Kernel-induced cliques for the program in Figure 5.

Our main results are stated in two theorems, Theorem 3 is
applicable whenNcg is even and Theorem 4 applicable when
KNcg1 = ∅, i.e., when cross-iteration reuse is absent. When neither
condition holds, we can apply loop unrolling once to producea
loop with an even number of kernels so that Theorem 3 can be
applied. For stream processors, unrolling a stream programthat is
executed on the host processor does not affect negatively program
performance. (Code size expansion for the host is not a concern.)

THEOREM3. If Ncg is even, thenGcg is a comparability graph.

PROOF. Let us assume first that all sets listed in (3) are not empty.
By construction, the live ranges in every such a set are equal. Thus,
the induced subgraph ofGcg by Ki (Ki(i⊕1)) is a clique, denoted
Gi (Gi(i⊕1)). So we have the following2Ncg induced cliques:

G1,G12,G2,G23,G3, . . . ,G(Ncg−1)Ncg
,GNcg

,GNcg1 (4)

In addition, for any two setsK andK′ listed in (3), either every
live rangex ∈ K interferes with every live rangex′ ∈ K′ or there
is no interference between the live ranges inK and those inK′.

By Theorem 2, inGcg, if we let Gi (Gi(i⊕1)) “collapse” into
one node, identified byKi (Ki(i⊕1)), and denote the resulting



“decomposed graph” byG0, we have:

Gcg = G0[G1, G12 , G2 , . . . ,GNcg
,GNcg1]

A clique is a comparability graph. Thus,Gi, i = 1, 12, 2, . . . , Ncg1
given in (4) are all comparability graphs. Then, by Theorem 2, Gcg

is a comparability graph if we show thatG0 is. To achieve this,
by Definition 3, it suffices if we can find a transitive orientation of

K1
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K23

K3

K34

K4

K41

K1
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K3

K34

K4

K41

K1

K2

K12

K23

K3

K34

K4

K41

(a)G0 (b) Two orientations

Figure 7: Two transitive orientations ofG0 (Ncg = 4).

G0. As shown in Figure 7, there are exactly two different transitive
orientations sinceK12, K23, . . . , KNcg1 must alternate to be a
source or a sink (Lemma 2). This is possible sinceNcg is even.

Finally, if any set listed in (3) is empty, the decomposed graph
G0 is still a comparability graph since every induced subgraphof a
comparability graph is a comparability graph. �

THEOREM 4. If KNcg1 = ∅, thenGcg is a comparability graph.

PROOF. A transitive orientation ofGcg as shown in Figure 7 always
exists even ifNcg is odd since the “ring” is broken atKNcg1. �

In fact, Theorem 4 holds as long asKi(i⊕1) = 0 for somei.
Let us illustrate Theorem 4 in Figure 8 for the IG in Figure 5.

Being a comparability graph, its optimal coloring is guaranteed.
The optimality is independent of the node weights in the graph.
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Figure 8: Optimal interval coloring of the stream IG given inFig-
ure 5 (with the weights ofp, q andr being 1, the weights ofs, t, u
andv being 2 and the weights ofw, x andy being 3). To avoid clut-
tering, in the graph labelled byG0[G1,G12,G2,G23,G3], a thicker
arrow directing from a cliqueK to a cliqueK′ symbolizes all di-
rected edges(x, y), for all x ∈ K and allx′ ∈ K′.

The facts stated in Lemmas 2 and 3 are exploited in the devel-
opment of our algorithm for coloring stream IGs in Section 4.3.

LEMMA 2. SupposeGcg is a comparability graph. LetG′
cg be an

induced subgraph ofGcg. If G′
cg is connected, then it has at most

eight different transitive orientations.

PROOF. If G′
cg is connected, there must exist two kernelsi and

j such thatKi(i⊕1), K(i⊕1)(i⊕2), . . . K(j⊖2)(j⊖1), K(j⊖1)j are in
G′

cg and that these are the only sets containing two-kernel long
live ranges listed in (3). Let us consider only the worst casewhen
Ki = Kj = ∅. In a transitive orientation ofG′

cg, the middle
j − i − 2 sets in the above list must alternate to serve as a source
or a sink. So there are only two possibilities. In either case, edge
(Ki(i⊕1), Ki⊕1) may have at most two orientations, and similarly,
edge(Kj⊖1, K(j⊖1)j) may have at most two orientations. So there
are at most2 × 2 × 2 = 8 different transitive orientations. �

LEMMA 3. SupposeGcg is a comparability graph. If all sets in (3)
are nonempty, thenG has exactly two transitive orientations.

Proof. Gcg is connected and then apply Lemma 2 (Figure 7).�

4.3 A General Algorithm for Coloring Stream IGs

In some scientific applications (amenable to stream processing), the
presence of temporal reuse in a few streams could make their live
ranges longer than two kernels. In some media applications,there
are also occasionally a few long producer-consumer live ranges.
Furthermore, some live ranges may be extended by the programmer
or a pre-pass compiler optimization in order to overlap memory
transfers and kernel execution. Such stream IGs may or may not
be comparability graphs. In this section, we generalize ourwork
described in the preceding section to deal with these streamIGs.

The basic idea is to partition the node setV in G = (V, E) into:

Vs = {v ∈ V | v’s live range spans at most two kernels}

Vl = {v ∈ V | v’s live range spans more than two kernels}

As a result,E is partitioned into the following three subsets:

Es = {(x, y) ∈ E | x ∈ Vs, y ∈ Vs}

El = {(x, y) ∈ E | x ∈ Vl, y ∈ Vl}

Esl = {(x, y) ∈ E | x ∈ Vs, y ∈ Vl}

By Theorems 3 and 4, the subgraphG(Vs) induced byVs is
a comparability graph. Our key observation is that the long live
ranges in stream IGs are sparse and tend not to be live simultane-
ously. So we assume that the subgraphG(Vl) is a forest of disjoint
trees (which are trivially comparability graphs). In the rare cases
whenG(Vl) is not a forest, we may, as part of future work, apply
live range splitting to shorten some live ranges to make it so.

Load(..., k);

Kernel('1', k, l);

Load(..., m);

Load(..., n);

Kernel('2', l, m, n, o);

Load(..., p);

Load(..., q);

Kernel('3', o, p, q, r); 

Load(..., s);

Kernel('4', r, s, t);

Load(..., u);

Kernel('5', m, t, u, v);

Load(..., w);

Kernel('6', p, v, w, x);

Kernel('7', x, y);  
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Figure 9: A program with two long live rangesm andp and its IG.

As illustrated in Figure 9,Vl consists of two long live rangesm
andp: m is live from kernel 2 to kernel 5 andp is live from kernel 3
to kernel 6. Since both streams interfere with each other, the forest
G(Vl) has only one tree, which is a line connectingm andp.



Algorithm 1 A general algorithm for coloring stream IGs.
1: procedure IG CGC

2: Input: G = (V, E) with V = {Vs, Vl} andE = {Es, El, Esl}
3: Output:An acyclic orientation,or equivalently,interval coloring α of G
4: if a transitive orientationα of G can be foundthen
5: return α

6: end if
7: χmin(G) = +∞
8: LetOs be the set of all transitive orientations ofEs, i.e.,G(Vs)

9: Let Ol be the set of2trees(G(Vl)) transitive orientations ofEl, i.e.,
G(Vl)

10: for each orientationos × ol ∈ Os ×Ol do
11: for (x, y) ∈ Esl, wherex ∈ Vs andy ∈ Vl do
12: Direct an arc fromy to x (x to y) if y is a source (sink)
13: end for
14: Letα be the acyclic orientation ofG thus found
15: if χα(G) < χmin(G) then
16: χmin(G) = χα(G)
17: Record theα as the current best
18: end if
19: end for
20: return α

21: end procedure

In Section 4.3.1, we present a polynomial algorithm for coloring
our stream IGs. In Section 4.3.2, we argue that why this algorithm
tends to give optimal and near-optimal colorings in practice.

4.3.1 Algorithm

As shown in Algorithm 1, ifG is a comparability graph (Defi-
nition 3), then by Theorem 1, an optimal coloring, represented by
a transitive orientation, is returned immediately (lines 4– 6). Oth-
erwise,G is not a comparability graph, in which case, an optimal
or near-optimal coloring, represented by an acyclic orientation, is
found in three steps. Lettrees(G(Vl)) be the number of trees in
G(Vl). The basic idea is to enumerate the setOs of all transitive
transitive orientations ofEs, i.e.,G(Vs) (in Step 1) and enumerate
the setOl of all 2trees(G(Vl)) transitive orientations for the forestEl,
i.e.,G(Vl) (in Step 2). As a result, for every possible combination
os × ol in Os × Ol, a unique orientation toEsl is determined (in
Step 3). Among|Os| × |Ol| acyclic orientations ofG found, the
one whose heaviest (directed) path is the smallest is returned (lines
15 – 17). This is motivated by the fact stated in (2).

We restrict ourselves to transitive orientations inG(Vs) and
G(Vl) only to both reduce the solution space to be searched for
and minimize the width of the final interval coloring found.

In Step 1 (line 8), the setOs of all transitive orientations ofEs,
i.e., G(Vs) is found. In real code,G(Vs) is generally connected,
resulting in exactly two transitive orientations by Lemma 3as
illustrated in Figure 7. There can be only a limited number of
transitive orientations whenG(Vs) is disconnected by Lemma 2.
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Figure 10: Two transitive orientations of a tree.

In Step 2 (line 9), we find all2trees(G(Vl)) transitive orientations
of the trees inG(Vl), i.e., El. There are these many orientations
because a tree is a bipartite graph and has exactly two orientations
(when it has more than one node). As shown in Figure 10, in
one orientation, the edges are directed from the nodes at theodd-
numbered levels and in the other, the edge directions are reversed.
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Figure 11: Two orientations for the program in Figure 1.

In Step 3 (lines 10 – 13), for each orientationos×ol ∈ Os×Ol

(line 10), a unique orientation ofEsl is determined (lines 11 –
13). For each edge(x, y) ∈ Esl, wherex ∈ Vs andy ∈ Vl, its
orientation is assigned based on the property ofy. From Figure 10,
it can be easily observed thaty is either a source or a sink underol.
If y is a source, direct the edge fromy to x, namely, maintainy’s
property; otherwise, direct the edge fromx to y.

Every orientationα of G found in line 14 is acyclic. This can
be reasoned about as follows. No directed path confined toG(Vs)
can be a cycle sinceG(Vs) is a comparability graph. In addition, no
directed path that contains a node inG(Vl) can be a cycle since the
node must be either a source or a sink (Figure 10).

IG CGC is polynomial in practice. For comparability graphs,
their recognition and optimal colorings are polynomial. Inaddition,
Gs is mostly connected, resulting in a few orientations (Lemmas 2
and 3). Finally,2trees(G(Vl)) is a small constant sinceG(Vl) has few
trees.

Let us applyIG CGC to the program given in Figure 9. In
lines 4 – 6,G is detected to be a comparability graph. Its optimal
coloring is found and returned immediately. Nevertheless,let us use
this example to explain how the remaining steps of the algorithm
work. G(Vs) is connected and happens to have only two transitive
orientations. AsG(Vl) has only one tree, there are two orientations.
So there are a total of four orientations, two of which are shown in
Figure 11, to consider in line 10. In this particular example, the one
in Figure 11(a) is a possible solution found since it is transitive.

4.3.2 Analysis

In this section, we argue thatIG CGC finds optimal colorings for
most stream programs. We show further that non-optimal colorings
occur only infrequently and are near-optimal in the sense that they
are only larger by the sum of one or two stream sizes in the worst
case. Our claim is validated in our experiments in Section 5.

Recall thatχ(G; w) denotes the chromatic number ofG. In our
algorithm,α is the best acyclic orientation found andχα(G; w) is
its width. LetPα be the heaviest directed path inGα:

Pα =def v1, v2, . . . , vm (5)

According to (2), we haveχα(G; w) = w(Pα). In addition,w(Pα)
is the smallest among the heaviest directed paths in all orientations
of G found in line 14 ofIG CGC given in Figure 1.

IG CGC is optimal for G if χα(G; w) = χ(G;w).
All results presented below in this section are formulated and

proved based on reasoning about the structure ofPα, which is un-
covered in Lemma 4, resulting in five cases to be distinguished,
and Lemma 5. In three of the five cases, our algorithm is optimal
(Theorem 5). In the remaining two cases, our algorithm is also op-
timal for many stream IGs. Non-optimal solutionsα are returned
only infrequently when some strict conditions are met, and more-
over, these solutions are near-optimal sinceχα(G; w)−χ(G; w) is
small for reasonably large stream IGs (Theorems 6 and 7).

LEMMA 4. Onlyv1 or vm may appear in the forestG(Vl).



PROOF. Follows simply from the fact that for every orientationα
of G found in line 14 ofIG CGC given in Figure 1, every node in
G(Vl) is either a source or a sink underα. �

This lemma implies that all nodes inPα are contained inG(Vs)
except its start and end nodes.

Let Ki = K(i⊖1)i ∪ Ki ∪ Ki(i⊕1). By Lemma 1,Ki is a
maximal clique inG(Vs) (as illustrated in Figure 6).

LEMMA 5. v2, v3, . . . , vm−1 form a cliqueKi for somei.

PROOF. α found byIG CGC is a transitive orientation ofG(Vs).
First, there cannot be two different nodesvi andvj in v2, v3, . . . ,

vm−1, wherei < j, such thatvi ∈ Ki andvj ∈ Kj . This is be-
cause(vi, vj) /∈ G(Vs). Otherwise,α cannot be transitive.

Second, there cannot be three distinct nodesvi, vj and vk,
wherei < j < k, in v2, v3, . . . , vm−1 such thatvi ∈ Ki(i⊕1),
vj ∈ Kj(j⊕1) andvk ∈ Kk(k⊕1), because(vi, vk) /∈ G(Vs).

Third, it is not possible forv2, v3, . . . , vm−1 to be contained
in two “non-consecutive”K(i⊖1)i andKj(j⊕1), wherej 6= i and
i ⊖ 1 6= j ⊕ 1. Otherwise, we would end up in a situation that
contradicts to the fact just established (in the second step).

Sov2, v3, . . . , vm−1 must be contained inKi for somei.
Finally, Ki is a clique, which must be formed byv2, v3, . . . ,

vm−1 sincePα is the heaviest path found byα. �

We distinguish five cases depending on the structure ofPα:

Case P1. Pα is contained inG(Vs)

Case P2. Pα is contained inG(Vl)

Case P3. v1, vm ∈ G(Vl) interfere with each other

Case P4. v1, vm ∈ G(Vl) do not interfere with each other

Case P5. Eitherv1 or vm is in G(Vl) (but not both)

THEOREM 5. IG CGC is optimal in Cases P1 – P3.

PROOF. In Case P1,G(Vs) is a comparability graph. Thus,Pα must
be contained in a cliqueK in G(Vs) (and also inG). This means
that χα(G; w) = w(Pα) = w(K). Sincew(K) 6 χ(G; w), we
must haveχα(G; w) 6 χ(G; w). Soα is optimal. The proof for
Case P2 is similar since the forestG(Vl) is also a comparability
graph. In Case P3, ifv1 andvm interfere with each other, according
to Lemma 5, it is easily deduced thatv1 andvm must interfere with
all nodes, i.e.,v1, v2, . . . , vm−1, in Ki, and consequently, all the
nodes inPα. ThusPα must appear together in a cliqueK in G.
Thus, we can complete the rest of the proof for Case P3 in a similar
way as for Case P1. �

THEOREM 6. In Case P4, we haveχα(G; w) − χ(G; w) 6

w(v1) + w(vm), where the equality holds if and only if
v2, v3, . . . vm−1 happen to from the heaviest cliqueK in G such
thatχ(G; w) = w(K).

PROOF. By Lemma 5, we haveχα(G; w) − χ(G;w) 6 w(v1) +
w(vm). We now prove the “if” and “only if’ for the equality.

The “if” part is true sinceχα(G; w) = w(Pα) = w(v1) +
w(vm) + w(K) = w(v1) + w(vm) + χ(G; w). The “only if”
part is true due to Lemma 5 and the given hypothesisχα(G; w) −
χ(G; w) = w(v1) + w(vm). �

An analogue of Theorem 6 for Case P5 is given below.

THEOREM 7. In Case P5, suppose thatv1 is contained inG(vl) but
vm is not. Thenχα(G; w) − χ(G; w)6 w(v1), where the equality
holds if and only ifv2, v3, . . . vm−1 happen to form the heaviest
cliqueK in G such thatχ(G; w) = w(K).

5. Experiments
Research into advanced compiler technology for stream processing
is still at its infancy. There are presently no standard benchmarks

available. Table 1 gives a list of 11 media and scientific applica-
tions available to us for the FT64 stream processor. NLAG-5 is a
nonlinear algebra solver for two-dimensional nonlinear diffusion of
hydrodynamic. QMR is the core iteration in the QMRCGSTAB al-
gorithm for solving nonsymmetric linear systems. LUD is a dense
LU Decomposition solver. As shown, the stream IGs in 10 bench-
marks are comparability graphs. Their optimal colorings are guar-
anteed. Initially, the stream IGG for QMR is not a comparability
graph andG(Vl) is not a forest. However, after unrolling its loop
with a factor of two and performing some live range splitting,G(Vl)
is a forest in the unrolled loop as depicted in Figure 12, to which
our algorithm can now be applied. In fact, the IG for the unrolled
loop happens to be a comparability graph. A transitive orientation
of this comparability graph is shown in Figure 13. This example
provides evidence that loop unrolling and live-range splitting can
be used as enabling transformations to enable more applications to
be optimally colored.

Benchmark Source IG
Laplace NCSA C

Swim-calc1 Spec2000 C
Swim-calc2 Spec2000 C

GEMM BLAS C
FFT - C
EP NPB C

NLAG-5 - C
QMR - F
LUD - C
Jacobi - C
MG NPB C

Table 1: Media and scientific programs (C (F) indicates the corre-
sponding stream IGG (G(Vl)) is a comparability graph (forest)).
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Figure 12: The IG for the unrolled QMR.

p1

r1

v1

q0

t1

q1
x1

f1 s0 r0

r2

p2

v2

q3 q4

t2

x2

f2

r1

s2

q2 s1

Figure 13: A transitive orientation of the IG for the unrolled QMR.

Below we demonstrate thatIG CGC can find optimal and nearly
optimal colorings efficiently for a large number of randomlygener-
ated stream IGs that satisfy the characteristics of stream processing.

We have implemented an algorithm that randomly generates the
stream IGs that satisfy the stream characteristics exploited in the
development of ourIG CGC algorithm as discussed in Section 4.3.



All random numbers are in discrete uniform distribution generated
by unidrnd in Matlab unless specified otherwise.

There are five steps involved in generating a stream IGG. Step 1
generates the number of kernels, denotednum kernel. In Step 2, we
generate the set of short live ranges, namelyG(Vs). For each kernel
i, we generate two setsKi and Ki(i⊕1). We generate a random
number in the range [1,3] to represent the number of live ranges
in Ki. Similarly, we generate another random number over [1,3] to
represent the number of live ranges inKi(i⊕1). As a result, each
kernel has at most nine short live range streams live at the kernel:
three fromK(i⊖1)i, three fromKi and three fromKi(i⊕1).

In Step 3, we generate the set of long live ranges, namelyG(Vl).
We generate a random numberp ranging from 1% to 20% to repre-
sent the percentage of long live ranges inG(Vl) over num kernel.
Thus,|G(Vl)| = p × num kernel. For each long live rangei, we
generate a random number,length i, over [3,6] to represent the
number of kernels spanned byi (longer live ranges should be split)
and another random number over [1,num kernel-length i+1] to
represent the kernel from whichi starts to be live.

In Step 4, we keepG if G(Vl) is a forest and go back to Step
1 otherwise. In Step 5, we generate the stream sizes for all live
ranges according to their characteristics in stream applications. In
our experiments, node weights are chosen to have two different
distributions,DistributionU andDistributionL. We use Distribu-
tion U , a discrete uniform distribution, to demonstrate generally
the worst-case performance advantages of ICCGC over First-Fit.
In this case, node weights are randomly taken from the range [1,6].
For each program, we modify DistributionU to obtain Distribution
L by simply replacing each stream sizew by 2w. In this second
case, the fact that some streams may be geometrically largerthan
others in a program is explicitly taken into account. DistributionL
is actually a uniform distribution in the logrithmic scalelog2.

To test the scalability ofIG CGC, we have generated four
groups of stream IGs. GroupsG1

U and G1
L consist of IGs with

between 3 to 50 kernels with their node weights generated using
DistributionsU andL, respectively. GroupsG2

U andG2
L consist of

larger IGs with between 50 to 100 kernels. Each group consists of
exactly 30 different IGs (with their node weights being ignored).
For each IG in each group, there are 10 instances of that IG in-
stantiated with different node weights (in Step 5). So each group
consists of 300 different weighted IGs, giving rise to a total of 1200
stream IGs considered in our experiments. Due to space limitation,
we restrict our discussions to GroupG1

L and GroupG2
U . The node

counts of the graphs in these two groups are shown in Figures 14
and 18, respectively, and their edge counts in Figures 15 and19,
respectively. The tree counts in the forestsG(Vl) in these graphs
are shown in Figures 16 and 20, respectively.

To check the optimality ofIG CGC, we have developed a for-
mulation of the SRF allocation problem by integer linear program-
ming (ILP). We ran the commercial ILP solver, CPLEX 10.1, to
find an optimal coloring for each IG. If CPLEX does not terminate
in five hours for an IGG, its optimal coloring is estimated opti-
mistically by (1). Therefore, all optimality results aboutIG CGC
reported here are conservative.

Table 2 shows thatIG CGC obtains optimal solutions in 99% of
the 1200 IGs in all four groups. On the other hand, the solutions
from First-Fit are mostly sub-optimal. First-Fit obtains optimal
solutions in 26% of the 1200 IGs in all four groups.

The near-optimality ofIG CGC is achieved efficiently as vali-
dated in our experiments on a 3.2GHz Pentium 4 with 1GB mem-
ory. The longest time taken is 0.2 seconds for an IG with 409 nodes
and 1836 edges, in which caseG(Vl) consists of 8 trees. For most
of the other IGs, the times elapsed are less than 0.05 secondseach.

Let us look at the differences betweenIG CGC and First-Fit in
terms of their allocation results. For a given weighted IGG, the

Group #Weighted IGs Optimal Solutions (%)

IG CGC First-Fit

G1
L 300 299 (99.67%) 55 (18.33%)

G1
U 300 298 (99.33%) 115 (38.33%)

G2
L 300 296 (98.67%) 38 (12.67%)

G2
U 300 295 (98.33%) 104 (34.67%)

Table 2: Optimality ofIG CGC and First-Fit for 1200 IGs.

Group #Unweighted Graphs > 20% > 10% < 0%

G1
L 30 18 30 1

G1
U 30 0 18 2

G2
L 30 4 27 2

G2
U 30 1 19 1

Table 3: Gaps betweenIG CGC and First-Fit.

quality of our solutionα found by IG CGC is measured as agap
with respect to that found by First-Fit defined as follows:

gap(G) =
χFirst−Fit(G; w) − χα(G; w)

χFirst−Fit(G; w)
(6)

whereχFirst−Fit(G; w) is the optimal solution (i.e., the smallest
width required for coloring all nodes inG) found by First-Fit and
χα(G; w) is the optimal solution found byIG CGC.

Table 3 shows the gaps betweenIG CGC and First-Fit for the
four groups,G1

L, G1
U , G2

L andG2
U , with 30 unweighted graphs in

each group. As shown in Column 3, for 18 out of 30 graphs in
GroupG1

L, there are always weight assignment(s) achieving a gap
of over 20%. The largest for this set of 30 graphs is 41% for a graph
consisting of 114 nodes and 455 edges. In addition, as shown in
Column 4, for at least 18 out of 30 graphs in each group, there are
some weight assignment(s) achieving a gap of over 10%. Finally,
we observe from Column 5 thatIG CGC may perform slightly
worse than First-Fit in six different weighted graphs. The gaps for
five of these graphs are between−5.69% — −2.78% and the gap
for the remaining one is−13.89%. In general, the gaps depend
on the distribution of the node weights, i.e., the sizes of streams
in a program. The major advantage ofIG CGC is that if an IG is
a comparability graph, then the optimal allocation is guaranteed
regardless of what its node weights are, and in addition, even when
an IG is not a comparability graph,IG CGC can still achieve near-
optimal colorings as proved in Theorems 6 and 7 and confirmed
by the experimental data in Table 2. However, the performance of
First-Fit is sensitive to the structure of an IG and the values of its
node weights. For example, the gap as shown in Figure 22 is 50%.

Let us see whyIG CGC achieves better SRF allocation than
First-Fit. First-Fit places the streams in an IG in a certainorder, say,
according to the order in which the streams start to live and then
their weights without considering the structure of the IG, resulting
in SRF fragmentation. We demonstrate this with a simple program
shown in Figure 22(a). Figure 22(b) shows the SRF allocation
under First-Fit. The streamsS1 andS2 live at kernel 1 are allocated
beforeS3. S1, which is heavier thanS2, is allocated first followed
by S2. However, sinceS2 is also live in kernel 2,S3, which is
heavier thanS1, can only be placed afterS2. Based on the IG and
the assigned transitive orientation in Figure 22(c), the optimal SRF
allocation found byIG CGC is shown in Figure 22(d).
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Figure 17: Number of optimal solutions found byIG CGC and
First-Fit in 300 weighted IGs from GroupG1

L.

6. Related Work
Let us examine in more detail the two existing SRF management
techniques for stream processors [5, 22]. Stream scheduling intro-
duced in [5] was earlier implemented in the StreamC compilerto
compile stream programs for Imagine [5, 18]. Stream scheduling
associates (if possible) all stream accesses to the same stream with
the same buffer in the SRF. All such SRF buffers are placed in the
SRF by applying some greedy First-Fit-like bin-packing heuristics.
The key idea is trying to position each buffer at the smallestpossi-
ble SRF address, always complete the current buffer before starting
another, and finally, position the largest buffers first so that smaller
buffers can fill in the cracks. On encountering spills, theiralgorithm
resorts to double buffering to reduce the sizes of some buffers. Strip
mining is applied before SRF allocation.

In [22], we apply graph coloring to place streams in the SRF.
This entails a partitioning of the SRF into pseudo registersbefore
graph coloring can be applied. For some applications, such SRF
partitioning introduces aliases among pseudo registers, resulting in
SRF fragmentation and wasted free spaces. The idea of partitioning
a software-managed cache first this way and then applying graph
coloring to perform cache allocation was first proposed in [14]. In
[26], we focused on how to identify and represent loop-dependent
reuse between streams in stream programs.

In this paper, we present a comparability graph coloring algo-
rithm for SRF allocation developed based on a careful analysis of
the characteristics of stream IGs. This new approach relieson nei-
ther First-Fit heuristics, which can be sub-optimal, nor SRF par-
titioning, which can cause SRF fragmentation. Our algorithm can
achieve near-optimal colorings as validated in our experiments and
outperform First-Fit in a large number of stream IGs tested.

Graph coloring is a popular technique used in register alloca-
tion. Based on Chaitin’s original formulation [2], a variety of graph
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Figure 21: Number of optimal solutions found byIG CGC and
First-Fit in 300 weighted IGs from GroupG2
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coloring based register allocators have been developed [1,3, 7].
Recently, Smith et al. [19] present a generalized algorithmfor ir-
regular architectures with register aliases and non-disjoint register
classes. Li et al. [14, 16] apply this generalized algorithmto assign
arrays in embedded programs to scratchpad memory (SPM). Wang
et al. [22] apply it further in SRF allocation as discussed above.

Fabri [6] discovered the connection between interval coloring
and compile-time memory allocation. Since then some approxima-
tion algorithms have been proposed [8, 11]. Lefebvre and Feautrier
[13] use interval coloring to minimize the number of data struc-
tures to rename in storage management for parallel programs. By
continuing their graph coloring work [14], Li et al. [15] apply in-
terval coloring to assign arrays in embedded programs to SPM.

Govindarajan and Rengarajan [10] studied a compile-time
buffer allocation problem for so-called regular stream flowgraphs.

In [24], some improvements of [5] to LRFs (Local Register
Files) allocation in stream processor are presented. The LRFs are
register files near the ALU clusters. Unlike SRF, LRFs play a
similar role as the register files in general-purpose processors.

7. Conclusion
This paper presents a new approach to optimizing utilization of
the SRF for stream processors. The key insight is that the interfer-
ence graphs (IGs) in media and scientific applications amenable to
stream processing are comparability graphs or decomposable into
well-structured comparability graphs (like trees). This has moti-
vated the development of a new algorithm that is capable of finding
optimal or near-optimal colorings efficiently, thereby outperform-
ing First-Fit heuristics that are presently used in the literature.

This new approach also facilitates its integration with strip min-
ing, an important optimization for stream processors for improving
the performance of a stream application. There are at least two ways
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(a) Program (with loads/stores omitted) (b) Allocation by First-Fit (c) IG (d) Allocation byIG CGC

Figure 22: An example demonstrating the superiority ofIG CGC over First-Fit.

in which our algorithm can be combined with strip mining. Oneis
to apply the algorithm to perform SRF allocation for a set of given
strip sizes and return the best according to some performance-based
cost model. Another is to combine our algorithm and strip mining
to find a good strip size in a symbolical manner. All stream sizes
are multiples of a strip size variable. So the best SRF allocation
returned by our algorithm gives an upper bound on the strip size
to be used. By combining this upper bound constraint with theex-
ecution time estimate of a stream application also expressed as a
function of the strip size variable, the best strip size can be solved
analytically or numerically using, say, MatLab.

Finally, our IG-based algorithm allows other pre-pass optimiza-
tions such as live range splitting and stream prefetching tobe well
integrated into the same compiler framework.
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