Comparability Graph Coloring for Optimizing Utilization of
Stream Register Filesin Stream Processors

XuejunYang Liwang*T9 JinglingXué YuDeng Ying Zhang
National Laboratory for Parallel and Distributed ProcegsiSchool of Computer, NUDT, Chiha
Programming Languages and Compilers Group, School of Ctam@aience and Engineering, UNSW, Australia

{Iwang, jingling}@©cse.unsw.edu.au {xjyang, yudeng, zhangying}®@nudt.edu.cn

Abstract

A stream processor executes an application that has beemédec
posed into a sequence of kernels that operate on streamgeof da
elements. During the execution of a kernel, all streamsssetk

The (programmable) stream processors, such as Imaging [18]
Raw [20], Cell [23], AMD FireStream and Merrimac [4], repees
a promising alternative in achieving high performance indiae
applications [17, 18, 21]. In addition, stream processagjso well
suited for some scientific applications [4, 23, 25].

must be communicated through the SRF (Stream Register, Eile)
non-bypassing software-managed on-chip memory. Theretm-
timizing utilization of the SRF is crucial for good perfornee. The
key insight is that the interference graphs formed by theastis
in stream applications tend to be comparability graphs cpiie
posable into a set of multiple comparability graphs. We gnées
compiler algorithm that can find optimal or near-optimalaroigs

in stream IGs, thereby improving SRF utilization than thestFit
bin-packing algorithm, the best in the literature.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors—compilers and optimization; B.3Mefn-
ory Structurek Design Styles—Primary memory

General Terms Algorithms, Languages, Performance

Keywords Stream processor, stream programming, comparability
graph coloring, software-managed cache

1. Introduction

Media applications, such as image processing, signal psoag
video and graphics, are becoming an increasingly dominant p
tion of computing workloads today. In contrast with othepléga-
tions, media applications exhibit producer-consumer liycaith
little global data reuse, have abundant parallelism andiredgh
computation rates (with 10-100 billion operations per secand a
few to thousands of operations per input data). These clesistacs
are poorly matched to conventional general-purpose pnogizble
architectures that depend on data reuse (captured by hardwa
managed caches), cannot exploit the available parallgiscan-
not support high computation rates. On the other hand, apeci
purpose media-processing processors tailored to onefispapt
plication require significant design effort and are thudidift to
change as applications and/or algorithms evolve.

9 The work was carried out during Li Wang’s visit to Jingling &si Re-
search Group at UNSW during February 2008 — February 2009.

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copesar made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’09, February 14-18, 2009, Raleigh, North Carolina, USA.

Copyright(© 2009 ACM 978-1-60558-397-6/09/02 . $5.00

-+ 23CB)s > Host Stream
Interface Controller
6.4GB/s

s | DDR Memroy I H

Controller

SGBISI

Stream
Memory
Controller

(>

Arowdwr 10ssad0xd
diyd-3jo 03 350y 03

16GB/s

> Stream
Register File
—

data path H H H H

ERTIREIN |
SNAOMIIN

64GB/s

n[onuU)
LRETI 7N

2
=
@
=
&
=
»

TSN

€«--->
control path

gaIsN1)

-

Figure 1: Block diagram of the FT64 stream processor.

We have recently designed and fabricated a 64-bit stream pro
cessor, FT64 [25], for media applications as well as cedaian-
tific applications that are also amenable to stream praogssis
shown in Figure 1, like Imagine [18], Cell [23] and Merrimad,[
FT64 can be easily mapped to the stream virtual machinetacchi
ture described in [12]. Such stream processor executeEapphs
that have been mapped to the stream programming model: a pro-
gram is decomposed into a sequence of computation-inekeiv
nels that operate on streams of data elements. Kernels rmgled
to VLIW microprograms to be executed on clusters of ALUs, one
at a time. Streams are stored in the SRF (Stream Regist¢r &ile
software-managed on-chip memory. Expressing an appitas
streams exposes its inherent locality and parallelismn&lsrex-
pose kernel locality by keeping temporary values localt{gron-
shown local register files near the ALUs) and instructiorelgar-
allelism (exploited by the multiple ALUs in each clusterjr&ams
expose producer-consumer locality between kernels — ewgbl
some output streams produced by a kernel to be consumed by the
next kernel in sequence — and data-level parallelism — émgbl
different elements of an input stream to be operated on tameH
ously, one on each ALU cluster, in a SIMD fashion.

Research into advanced compiler technology for stream lan-
guages and architectures is still at its infancy. Among is\ehal-

lenges posed by stream processing for compilation [5], Brieit
allocation of the scarce on-chip SRF is critical to perfonce
SRF, the nexus of a stream processor, is introduced to eaftar
widespread producer-consumer locality in media appticatio re-
duce expensive off-chip memory traffic. Unlike conventilorem-
ister files, however, SRF is non-bypassing, namely, thetiapd
output streams of a kernel must be all stored in the SRF when a
kernel is being executed. If the work set of a kernel is togdao
fit into the SRF, strip mining can be applied to segment somyzla
streams into smaller strips so that the kernel can then tedct
operate on one strip at a time. Alternatively, some streaansbe
double-buffered [5] or spilled [22] until the data set of gvkernel
does not exceed the SRF capacity. Therefore, optimizitigatton
of SRF is crucial for good performance.

We are aware of two existing SRF management techniques for
stream processors [5, 22]. In [5], SRF utilization is opted by
applying First-Fit bin-packing heuristics. In our recertnk [22],
we have experimented with adopting a graph coloring apbrtreat
we introduced in [14] for scratchpad allocation to SRF altgm.
This graph coloring approach requires the SRF to be paréto
into pseudo registers before graph coloring can be apphgii-
cial aliases among pseudo registers may cause SRF fragioenta
reducing SRF utilization unnecessarily. On the other héicst-
Fit heuristics can be sub-optimal for many applications. $toall
applications, either technique suffices. For large apitina with
tens to hundreds of kernels, both need to be further improved

In this paper, we present a new compiler algorithm that aims
to optimize utilization of SRF for stream applications. Tdentral
machinery is the traditional interference graph (IG) repreation
except an IG here is a weighted (undirected) graph formedhdy t
streams operated on by a sequence of kernels. The key digésve
that the IGs in many media applications are comparabiligphs,
enabling the compiler to obtain optimal colorings in polymal
time. This has motivated us to develop a new algorithm foi-opt
mizing utilization of SRF when allocating the streams ireatn
IGs to the SRF by comparability graph coloring. If the datadase
a kernel still exceeds the SRF capacity after SRF allocatios
range splitting (or spilling) and strip mining can be apglias will
be discussed in the concluding section of this paper.

In summary, this paper makes the following contributions:

¢ We propose, for the first time, to optimize utilization of SRF
comparability graph coloring and present an efficient atgor
designed for well-structured media and scientific applcet
amenable to stream processing.

¢ We show that our algorithm can find optimal and near-optimal
colorings for stream IGs, thereby outperforming FirstHeitiris-
tics.

The rest of this paper is organized as follows. For backgtoun
information, Section 2 introduces the stream programmiogleh

by an example. In Section 3, we make precise the SRF managemen

problem we solve. Section 4 casts it as a comparability graph
coloring problem and presents our algorithm for solving rieev
formulation. Section 5 evaluates our approach. Sectiorséugs
related work. Section 7 concludes by discussing future work

2. Stream Programming M odel

The central idea behind stream processing is to divide alicapp
tion intokernelsandstreamgo expose its inherent locality and par-
allelism. As a result, an application is divided into two grams, a
stream progranmunning on the host processor ankeanel program
running on the stream processor. The stream program spsetiie
flow of streams between kernels and initiates the execufiere
nels. The kernel program executes these kernels, one aga tim

complex xmat[2*N], ymat[2*N];
complex twiddlemat[log,(2¥*N)*N];
stream<complex> a(N), b(N);
stream<complex> twiddle(N);
stream<complex> ¢(N), d(N);

fft(stream<complex> a, stream<complex> b,
stream<complex> twiddle,
stream<complex> ¢, stream<complex> d)

R

complex a_tmp, b_tmp, c¢_tmp, d_tmp;

1
2
3
4 {
5
6 complex twiddle_tmp;

EN

datalnit('xmatix.dat', xmat);
it("twi rix.dat’, twi)5 for (inti=0; i < N/2; i++) {
a>>a_tmp;
b>>b_tmp;
twiddle>>twiddle_tmp;
c<<a_tmp+b_tmp;
c<<twiddle_tmp*(a_tmp-b_tmp);

Load(xmat[0, N-1], a);

Load(xmat[N, 2*N-1], b);

for (int i = 0; i <log(2*N); i+=2) {
Load(twiddlemat[i*N, (i+1)*N-1], twiddle);
Kernel('fft', a, b, twiddle, ¢, d);
Load(twiddlemat[(i+1)*N, (i+2)*N-1], twiddle);
Kernel('fft', ¢, d, twiddle, a, b);

10
11
12
13
14
15 }

16 Store(a, ymat[0, N-1]);

17 Store(b, ymat|N, 2*N-1]);

13 }
for (i=N/2;i<N;i++) {
a>>a_tmp;
b>>b_tmp;
twiddle>>twiddle_tmp;
d<<a_tmp+b_tmp;
d<<twiddle_tmp*(a_tmp-b_tmp);
}

19
20
21 }

18
19

bitReverse(ymat);
dataSave('ymatrix.dat', ymat);

(a) Stream program

a

(b) Kernel program

c a c a

O-- 0o Q- - - O---Om O---Om Q- ..o
b A\ d 7 b ... {7, b
DE‘\‘%\:‘ | DE\(‘%\] Kig |00, D%‘\:‘:L Kig |0- 000,
widd 1widd widde
i an & &v

(c) Data flow of streams through kernels

Figure 2: Stream and kernel programs for a radix FFT.

Figure 2 depicts the mapping of 2N-point radix-2 FFT
to the stream programming model. The kerrfigl is executed
log,(2N) times with explicit producer-consumer locality: every
output stream from a kernel execution is used as an inpuhfor t
next kernel execution in sequence.

Let us examine the stream program first. In lines 1 and 2,
three arrays of size8N, 2N andlog,(2N) * N are declared,
respectively. In lines 3 — 5, five streams of siXeare declared.
In lines 6 and 7, the functionlatalnitis called twice to initialize
arraysxmat and twiddlematresiding in the off-chip memory with
the two data files stored at the host processor. In line 8, dkeid
the first half ofxmat are gathered into stream This will result in
the loading of the data froxmatin off-chip memory into the space
allocated to stream in the SRF. In line 9, strearh is initialized
from the second half okmat In line 10, the loop in a sequential
FFT program is unrolled once to expose the producer-consume
locality between the kernel calls . In line 11, the “twiddle
factors” needed by FFT are gathered into streaiadle. In line
12, the kernelfft is called to perform the core computation of FFT
on the stream processor. As shovan,b and twiddle are input
streams and andd are output streams. In line 13, streamiddleis
updated with new twiddle factors. In line 1# is called again with
¢, d, twiddle as input angi andb as output. After the kernel has run
to completion, the final output streams are stored from thie iB®
arrayymatin off-chip memory (lines 16 and 17). Since the output
is in bit-reversed order, In line 18, the functibitReversaeorders
the data. In line 19, result is saved into a data file.

In the kernel program, a loop at line 7 first goes over the first
half of each input stream. In line 8, the elements of streaane
read sequentially, one a time, into a temporary variabteip. In
lines 9 and 10, the elements of streaynand twiddle are read off
similarly. In lines 11 and 12, the computations on these etam
are performed with the results being appended to outpudarstee
In lines 14 — 20, these steps are repeated on the second liadf of
input streams, with the results bing appended to outpudistce

3. Problem Statement

The focus of this work is on optimizing utilization of the SRFo

only stream programs are relevant here. Given a streamamgr
this paper presents an algorithm that assigns the streanteein
program to the SRF so as to minimize the total amount of space

taken by the streams. Such an algorithm can then be used by af(A) = {(z,y) € E | z,y € A}. A subsetA C V of r nodes is
stream compiler to produce a final SRF allocation by comlginin anr-cliqueif it induces a complete subgraph. A clique imiaximal
with live range splitting and strip mining, if necessary. cliqueif it is not contained in any other clique.

A stream program consists of a sequence of loops where each Given an undirected grapg = (V, E) with the functionw
loop includes a sequence of kernels operating on streama. In mapping nodes to positively integral weights, the toidtith
stream compiler, all loops are considered separately in &RF (i.e., the number of hues) of an interval coloriag x.(G; w), is
cation. As shown in Figure 1, the DRAM controller support®tw |,y «.|. Thechromatic number(G; w) is the smallest width
stream-level instructiond,oad and Store that transfer an entire needed to color the nodes éh Theclique numberis defined as
stream between off-chip memory and the SRF. In stream pmigra w(G; w) = max{w(K) | K is a clique ofG}. As a fact, we have:
as demonstrated in Figure 2, loads and stores are usedisdizeit
some streams from the global input data residing in off-chgm- x(G;w) =2 w(G;w) Q)
ory and write certain streams to off-chip memory, respetfiv

The central machinery in our approach to allocating theastise)]])
in a loop to the SRF is the traditional interference graph) @Gept 4.11 Interval Coloring vs. Acyclic Orientation

that it is a weighted (undirected) graph formed by the steeam Figure 3 illustrates the equivalence between finding anniate

operated on by the kernels in the loop. All streams accessed i coloring and finding an acyclic orientation for a weightedjr.
the loop are identified as live ranges to be placed in the SRF. |

two live ranges interfere (i.e., overlap), they must be @thin non-
overlapping SRF spaces. The live ranges of streams are techpu
by extending thedef/usedefinitions for scalars to streamkoad
defines a strean§toreuses a stream, and a kernel call (re)defines
its output streams and uses its input streams. The live rahge
stream starts from its definition and ends at its last use oOfse,
streams are renamed using the SSA (static single assighfoent

After the live ranges have been computed for a loop, its
weighted (undirected) IG, denot€q is built in the normal manner,
where a weighted node denotes a stream live range whosetigigh
the size of the stream and and an edge connects two nodeg if the
live ranges interfere with each other. s o) o) —) —

ThegSRF allocation problem can be naturally solved as an (@) (G5 w); (b) Xo(G3w) = 12 (©xp(Giw) =10
interval-coloring problem as formalized below. AllocairSRF
spaces to stream live ranges in an IG is represented by anassi
ment of intervals to the nodes in the IG. Minimizing the sp&n o
intervals amounts to minimizing the required SRF size. LetG= (V, E) be an undirected graph. Aurientationof G is a

)) - function « that assigns every edge a direction such that, y) €

DEFINITION 1. G]ven a stream 1@ = (V,.E) with pos!tlvely {(z,), (y,z)} forall (z,y) € E. LetG., be the digraph obtained
integral node weightsy : V' — IN (representing stream sizes), an by replacing each edgér,y) € E with the arca(z,y). An

¢ au) ¢ ab ¥ac; M

;
0123456785011z 012345678910

Figure 3: Two interval coloringa and3 of a weighted undirected
graph together with their equivalent acyclic orientations

interval coloringa of G maps each node onto an intervaby, of orientationa is acyclicif G, contains no directed cycles.
the real line of widthw () such that adjacent nodes are mapped to Eyery interval coloringx of G induces an acyclic orientatiasf
disjoint intervals, i.e.(z,y) € £ impliesa. Nay = 0. such that(z,) € o' ifand only if o, > ay i.e., an arc is directed

from x to y if and only if o, is to the right ofw,, for all (z,y) € E.

Conversely, an acyclic orientatiam of G induces an interval
coloring ’. For a sink noder, let o, = [0, w(x)). Proceeding
inductively, for a nodey with all its successor nodes already being
colored (i.e.,a’ defined at the successors), tebe the largest
endpoint of their intervals and defirg, = [t,t + w(y)).

From an acyclic orientation, we can obtain an interval dobpr
in linear time by a depth-first search.

The problem of finding optimal colorings is NP-complete. in a
L . optimal coloring, the chromatic numbegr(G; w) is related to the
4. Comparability Graph Coloring for Stream I Gs notion ofheaviest patlin an acyclic orientation of:

Section 4.1 recalls the basic results about interval cagpand

It is well-known that interval coloring is NP-complete.

Our IG-based approach is flexible enough to accommodate pre-
pass optimizations that are applied earlier to a prograheety
the programmer or the compiler. One example is to reordelesom
loads and stores to overlap memory transfers and kerneligaec
Another is to split some long live ranges (in scientific apafions)
accomplished by inserting a pair of store and load instonsti We
plan to automate their integration with this work in future.

comparability coloring [9], which provide a basis for unstand- x(Giw) = ag}j?g)(#g?é) w(p)) @)

ing our approach and proving its optimality and near-oplitya

Section 4.2 describes our key insight drawn from a carefalysis where A(G) is the set of acyclic orientations @ and P(c)

of the structure of stream IGs: a large number of stream I8s ar the set of directed paths in an orientation A(G). In other
comparability graphs, enabling their optimal coloringséofound words, the orientation whose heaviest path is the smaheisicies
in polynomial time. In Section 4.3, we turn this insight irgo al- an optimal coloring. The heaviest-path-based formulasiaied in
gorithm that can find optimal or near-optimal colorings foellw (2) is exploited in the development of our coloring alganittior

structured media and scientific applications when the@estr IGs stream IGs (Section 4.3).

are expected to be decomposable into a set of comparabéiphg. In Figure 3(b), the heaviest path is— ¢ — b — 2 with a

total weight ofx.(G; w) = 12. In Figure 3(c), the heaviest path
is ¢ — z — b with a total weight ofxs(G; w) = 10. The gap
Given a (directed or undirected) grapgh= (V, E) and a subset between the two colorings is 2 but can be larger (Figure 2@). S
A C V, theinduced subgraphy A isG(A) = (A, E(A)), where there is a need to look for an optimal solution efficiently ragtice.

4.1 Interval and Comparability Graph Coloring: Basics

Gl G1,G2 Gl

Go Gt G2 Gs
Figure 4: An illustration of Definition 4+(= 3).

Due to the equivalence between acyclic orientations aedviat
colorings, we also writg . (G; w) to mean the width of the interval
coloring associated with an acyclic orientatiorof G.

4.1.2 Comparability Graph Coloring

In the context of this work, we examine below a class of grabas
allows interval colorings to be found optimally in polynaahtime.

DEFINITION 2. An orientationy of an undirected grap$ is tran-
sitiveif (z, z) € Go whenever(z, y), (v, z) € Ga.

DEFINITION 3. An undirected graply is acomparability graphf
there exists a transitive orientation @f

A transitive orientation is acyclic but the converse is netes-
sarily transitive. In Figure 3y is not transitive sincéz, b), (b, a) €
Go but(z, a) ¢ Go. However,s is transitive. Therefore, the graph
shown in Figure 3(a) is a comparability graph.

Let « be a transitive orientation of a comparability graphRe-
stating (1), we have (G; w) > w(G; w). Due to transitivity, every
path inG,, is contained in a clique of. In particular, the heavi-
est path inG, equals to the heaviest clique ¢h i.e., x(G; w) <
Xa(G;w) = w(G;w). Hencexa(G; w) = x(G; w) = w(G;w).
This result is summarized below.

THEOREM1. For any transitive orientatiomn of G, the interval
coloring induced is optimal (and can be found in linear time)

DEFINITION 4. LetG, be a graph withn nodesv; , vg, . . ., v, and
Gi1,G2,...,G, ben disjoint graphs. These graphs may be directed
or undirected. Thecompositiongraph G = Gy[G1,Ga,...,Gn],

which is illustrated in Figure 4, is formed formally as folis. First,

replacew; in G, with G;. Second, for alll < i,57 < n, make each
node ofG; adjacent to each node ¢f; wheneven; is adjacent to
v; in Go. Formally, forG; = (V;, E;), we defingg= (V, E) as:

V =
E =

Uigi<n Vi
Uicisn B U{(z,y) | 2 € Vi, y € V) and (vi,v;) € Eo}

THEOREM2. LetG = Gy[G1, G2, ..., Gxn], where allG;’s are dis-
joint undirected graphs. The@ is a comparability graph if and
only if eachg; (0 < 7 < n) is a comparability graph.

Furthermore, the problems of recognizing a comparability
graphG = (V, E) and finding a transitive orientation gfcan both
be done inO(4- | E |) time andO(| V | + | E |) space, wheré
is the maximum degree of a node ¢h Based ornw, an optimal
coloring ofG can be obtained in linear time (Theorem 1).

4.2 Optimal Colorings of Comparability Stream 1Gs

In stream programs with producer-consumer locality butelit
global data reuse, the live ranges of streams are also idgpi-

cal stream program (or a loop in such program) consists ofiesse
of kernels, each producing intermediate streams to be coedu
by the next kernel in sequence. We show below that if all strea
live ranges in a stream IG do not span across more than twelkern
calls, then the IG is a comparability graph and its optimébigog

can thus be found in polynomial time. This result is provesilga
by a straightforward application of Theorem 2.

Figure 5 shows the IG for a series of three kernels, wherevall |
ranges are no longer than two kernel calls. In particulagast ¢
is live from kernel ‘1’ to kernel ‘2’, streams, v andw are live in
kernels ‘2’ and ‘3’, and the remaining streams are only liv¢he
kernels where they are operated on. In this example and tudspr
of our results, whether a stream is an input or output iseuaaht.

Load(..., p);

Kernel('1', p, q);
Load(...,1);

Load(..., s);

Load(..., t);

Kernel('2', q, 1, s, t, u, v, w);
Load(..., x);

Kernel('3',u, v, W, X, y);
store(y, ...);

Figure 5: A stream program and its IG.

Let G, be the IG built from a loop containin@V., kernels
(numbered from 1) such that each live rang&jin is not longer
than two kernels. We partition all live rangesdp, into 2N, sets:

Ki,Ki2,K2, Ko3, K3, .. @)

whereK; consists of all streams accessed, i.e., live only in kernel
andKj;(;g1) all streams live only in kernelsand: @ 1. We define
i®dctobe(i+c—1)%Neg+1andioctobe(i—c—1)%Neg +1.

As illustrated in Figure 6, all streams accessed in a kemal i
loop form a maximal clique in the stream IG of the loop.

sy K (Neg—1)Neg s KNeg » KNeg1

LEMMA 1. The streams it (;51); UK; U K;(;¢1) form a maximal
clique for every kernel.

Kernel 2

Kernel 1 Kernel 3

Figure 6: Kernel-induced cliques for the program in Figure 5

Our main results are stated in two theorems, Theorem 3 is
applicable whenN,, is even and Theorem 4 applicable when
KN = 0, i.e., when cross-iteration reuse is absent. When neither
condition holds, we can apply loop unrolling once to prodace
loop with an even number of kernels so that Theorem 3 can be
applied. For stream processors, unrolling a stream prognatris
executed on the host processor does not affect negativedygm
performance. (Code size expansion for the host is not a conce

THEOREMS3. If N is even, the§.; is a comparability graph.

PROOF Let us assume first that all sets listed in (3) are not empty.
By construction, the live ranges in every such a set are egak,

the induced subgraph ¢k, by K: (K;1)) is a clique, denoted

Gi (Gi(ip1))- SO we have the following N, induced cliques:

G1,G12,G2,G23,03, .. 4)

In addition, for any two set# and K’ listed in (3), either every
live rangex € K interferes with every live range’ € K’ or there
is no interference between the live rangegsirand those ink’.

By Theorem 2, inGg, if we let G; (G;ie1)) “collapse” into
one node, identified by<; (K;uq1)), and denote the resulting

-3 G(Neg—1)Negs INeg y TNeg1

“decomposed graph” bg,, we have:
Geg = G0lG1,G12,G2, ... ,GNeyy GNeg1]

A clique is a comparability graph. Thug;, ¢ = 1,12,2,..., Ngg1
given in (4) are all comparability graphs. Then, by Theorergi.2
is a comparability graph if we show thgy is. To achieve this,
by Definition 3, it suffices if we can find a transitive oriertat of

K,

K, Ky

Ks

(@) Go

(b) Two orientations

Figure 7: Two transitive orientations ¢ (Neg = 4).

Go. As shown in Figure 7, there are exactly two different travesi
orientations sincek12, Kas, ..., Ky, 1 must alternate to be a
source or a sink (Lemma 2). This is possible sif¢g is even.

Finally, if any set listed in (3) is empty, the decomposedogra
Go is still a comparablllty graph since every induced subgrafm
comparability graph is a comparability graph.

THEOREMA4. If Ky 1 = 0, thenG., is a comparability graph.

PROOEF A transitive orientation ofj., as shown in Figure 7 always
exists even ifN. is odd since the “ring” is broken dy ;. O
In fact, Theorem 4 holds as long &5;¢1) = 0 for somei.

Let us illustrate Theorem 4 in Figure 8 for the I1G in Figure 5.

Being a comparability graph, its optimal coloring is gudesu.
The optimality is independent of the node weights in the lgrap

Kl
K K; P
[J
K, Ky
Go Gi
l<I
Kll KJ
K, Kz
Go G =Gd G5G12G2G2Gsl
/B b I
01234567809 10111213
In™ Iw " IvIr It Is'Iq

Figure 8: Optimal interval coloring of the stream IG givenHig-
ure 5 (with the weights of, ¢ andr being 1, the weights of, ¢, u
andv being 2 and the weights af, = andy being 3). To avoid clut-
tering, in the graph labelled by, [G1, G12, G2, G23, G3], a thicker
arrow directing from a cliqués to a cliqueK’ symbolizes all di-
rected edgeér, y), forallz € K and allz’ € K.

PROOF. If G, is connected, there must exist two kernéland

j SUCh tha’[Ki(i@l), K(i@l)(i®2)7 e K(]@Z)(]@1)7 K(]@l)j are |n

G¢e and that these are the only sets containing two-kernel long
live ranges listed in (3). Let us consider only the worst agken

K; = K; = 0. In a transitive orientation ogcg, the middle

j — 1 — 2 sets in the above list must alternate to serve as a source
or a sink. So there are only two possibilities. In either casige
(Kiig1), Kie1) may have at most two orientations, and similarly,
edge(Kj o1, K(;o1);) may have at most two orientations. So there
are at mos® x 2 x 2 = 8 different transitive orientations. O

LEMMA 3. Suppos&/.. is a comparability graph. If all sets in (3)
are nonempty, the@ has exactly two transitive orientations.

Proof. G.g is connected and then apply Lemma 2 (Figure 7)0J

4.3 A General Algorithm for Coloring Stream 1Gs

In some scientific applications (amenable to stream prowgsshe
presence of temporal reuse in a few streams could make iveir |
ranges longer than two kernels. In some media applicatibese
are also occasionally a few long producer-consumer livgean
Furthermore, some live ranges may be extended by the progeam
or a pre-pass compiler optimization in order to overlap mgmo
transfers and kernel execution. Such stream IGs may or may no
be comparability graphs. In this section, we generalizeveonk
described in the preceding section to deal with these sti€&am

The basic idea is to partition the node ¥ein G = (V, E) into:

Vs -
‘/l =
As a result,E is partitioned into the following three subsets:

{v € V| v's live range spans at most two kerngls
{v € V| v's live range spans more than two kerrjels

E, = {(zy)eL|xzeV,yeVs}
E, = {(z,y)eE|reV,yeV}
Eq = {(z,y)eE|zeVs,yeV}

By Theorems 3 and 4, the subgra@iiV;) induced byV; is
a comparability graph. Our key observation is that the Idag |
ranges in stream IGs are sparse and tend not to be live simeulta
ously. So we assume that the subgrgigt’;) is a forest of disjoint
trees (which are trivially comparability graphs). In thee@ases
whenG(V}) is not a forest, we may, as part of future work, apply
live range splitting to shorten some live ranges to make.it so

Load(...,K);
Kernel('1',k,1);
Load(...,m);
Load(...,n);
Kernel('2',1, m, n, 0);
Load(..., p);

Load(..., q);
Kernel('3',0,p, q, 1);
Load(...,s);
Kernel('4',r, s, t);
Load(...,u);
Kernel('5',m, t, u, v);
Load(...,w);
Kernel('6',p, v, W, X);
Kernel('7',x,y);

G(Vs) GV

The facts stated in Lemmas 2 and 3 are exploited in the devel- Figure 9: A program with two long live ranges andp and its IG.

opment of our algorithm for coloring stream IGs in Sectio. 4.

LEMMA 2. Suppose&. is a comparability graph. Leg., be an

induced subgraph of;. If G, is connected, then it has at most

eight different transitive orientations.

As illustrated in Figure 9V, consists of two long live ranges
andp: m is live from kernel 2 to kernel 5 andlis live from kernel 3
to kernel 6. Since both streams interfere with each otherfdtrest
G(V1) has only one tree, which is a line connectingandp.

Algorithm 1 A general algorithm for coloring stream IGs.

: procedure IG_.CGC
dlnput: G = (V, E)withV = {V;,V;} andE = {Es, By, Eg }
: Output: An acyclic orientation,or equivalently,interval cologia: of G
. if a transitive orientatiomx of G can be foundhen
return o
end if
. Xmin(g) = +o00
: LetO; be the set of all transitive orientations Bf, i.e.,G(Vs)
: Let O; be the set oftrees(9(V1)) transitive orientations of7;, i.e.,
g)
. for each orientatioms x o, € Os x O; do
for (z,y) € Eg, wherex € Vs andy € V; do
Direct an arc frony to = (z to y) if y is a source (sink)
end for
Leta be the acyclic orientation @ thus found
if Xa(G) < Xmin(G) then
Xmin(g) - Xa(g)
Record thex as the current best
end if
. end for
Dreturn o
: end procedure

©CONOURWNE

In Section 4.3.1, we present a polynomial algorithm for dolp
our stream IGs. In Section 4.3.2, we argue that why this #tgar
tends to give optimal and near-optimal colorings in practic

431 Algorithm

As shown in Algorithm 1, ifG is a comparability graph (Defi-
nition 3), then by Theorem 1, an optimal coloring, represerity
a transitive orientation, is returned immediately (lines @). Oth-
erwise,g is not a comparability graph, in which case, an optimal
or near-optimal coloring, represented by an acyclic odgon, is
found in three steps. Letees(G(V7)) be the number of trees in
G(V1). The basic idea is to enumerate the >of all transitive
transitive orientations of’s, i.e., G(V5) (in Step 1) and enumerate
the set?; of all 29 (V1)) transitive orientations for the fore&s,
i.e.,G(V) (in Step 2). As a result, for every possible combination
0s X o In Os x Oy, a unique orientation t&, is determined (in
Step 3). AmongOs| x |O;| acyclic orientations off found, the
one whose heaviest (directed) path is the smallest is mdiutimes
15— 17). This is motivated by the fact stated in (2).

We restrict ourselves to transitive orientationsdgVs) and
G(V;) only to both reduce the solution space to be searched for
and minimize the width of the final interval coloring found.

In Step 1 (line 8), the s&P, of all transitive orientations ofs,

i.e., G(Vs) is found. In real codeG(V;) is generally connected,
resulting in exactly two transitive orientations by Lemmaa$8
illustrated in Figure 7. There can be only a limited number of
transitive orientations whe@(V5) is disconnected by Lemma 2.

a o
a e f 8 & ¢ f 2
b c d
7, c d h i b ¢ d4 h i
hooi
Figure 10: Two transitive orientations of a tree.

In Step 2 (line 9), we find a"=*(9(V1) transitive orientations
of the trees inG(V;), i.e., E;. There are these many orientations
because a tree is a bipartite graph and has exactly two atiems
(when it has more than one node). As shown in Figure 10, in
one orientation, the edges are directed from the nodes aidihe
numbered levels and in the other, the edge directions aeeged.

Figure 11: Two orientations for the program in Figure 1.

In Step 3 (lines 10 — 13), for each orientationx o; € Os x O,
(line 10), a unique orientation af’; is determined (lines 11 —
13). For each edgér,y) € E, wherex € V, andy € V,, its
orientation is assigned based on the property.&from Figure 10,
it can be easily observed thais either a source or a sink undar
If y is a source, direct the edge frogrto «, namely, maintairy’s
property; otherwise, direct the edge franto y.

Every orientationn of G found in line 14 is acyclic. This can
be reasoned about as follows. No directed path confingf{ 1Q)
can be a cycle sinag(V5) is a comparability graph. In addition, no
directed path that contains a nodei(l;) can be a cycle since the
node must be either a source or a sink (Figure 10).

IG_CGC is polynomial in practice. For comparability graphs,
their recognition and optimal colorings are polynomialatidition,

Gs is mostly connected, resulting in a few orientations (Lerarda
and 3). Finally2t=(9(V1) js a small constant singg(;) has few
trees.

Let us applylG_CGC to the program given in Figure 9. In
lines 4 — 6,G is detected to be a comparability graph. Its optimal
coloring is found and returned immediately. Neverthelkegsis use
this example to explain how the remaining steps of the algori
work. G(V5) is connected and happens to have only two transitive
orientations. As;(V;) has only one tree, there are two orientations.
So there are a total of four orientations, two of which areshin
Figure 11, to consider in line 10. In this particular exampie one
in Figure 11(a) is a possible solution found since it is titares

432 Analyss

In this section, we argue th#_CGC finds optimal colorings for

most stream programs. We show further that non-optimakicge

occur only infrequently and are near-optimal in the senagettiey

are only larger by the sum of one or two stream sizes in thetwors

case. Our claim is validated in our experiments in Section 5.
Recall thaty (G; w) denotes the chromatic number®fIn our

algorithm,« is the best acyclic orientation found agd (G; w) is

its width. Let P, be the heaviest directed pathdn:

Pa Q)

According to (2), we havg . (G; w) = w(P.). In addition,w(P.)
is the smallest among the heaviest directed paths in alitatiens
of G found in line 14 oflG_.CGC given in Figure 1.

IG_CGC is optimalfor G if x«(G;w) = x(G;w).

All results presented below in this section are formulated a
proved based on reasoning about the structurg,ofwhich is un-
covered in Lemma 4, resulting in five cases to be distingudishe
and Lemma 5. In three of the five cases, our algorithm is optima
(Theorem 5). In the remaining two cases, our algorithm is afs
timal for many stream 1Gs. Non-optimal solutioasare returned
only infrequently when some strict conditions are met, ammten
over, these solutions are near-optimal sinegg; w) — x(G; w) is
small for reasonably large stream IGs (Theorems 6 and 7).

=def V1,0V2,...,Um

LEMMA 4. Onlyv; or v, may appear in the forest(V;).

ProoF Follows simply from the fact that for every orientation
of G found in line 14 oflG_.CGC given in Figure 1, every node in
G(V,) is either a source or a sink under O
This lemma implies that all nodes . are contained i (Vs)
except its start and end nodes.
Let Ki = Koy U Ki U K;se1). By Lemma 1,K; is a
maximal clique inG(V;) (as illustrated in Figure 6).

LEMMA 5. va,v3,...,vm—1 form a cliquelC; for some:.

PrROOF « found bylG_CGC is a transitive orientation af (V).

First, there cannot be two different nodesaindv; in vz, vs, . . .,
vm—1, Wherei < j, such thaw; € K; andv; € Kj. This is be-
cause(v;, vj) ¢ G(Vs). Otherwise cannot be transitive.

Second, there cannot be three distinct nodgsv; and vy,
wherei < j < k, inva,vs3,...,vm-1 such that; € K,;a1),
vj € Kj(jp1) andvy, € Ky o1y, becausgui, vr) ¢ G(Vs).

Third, it is not possible fow,,vs, ..., v,—1 to be contained
in two “non-consecutive’k ;o 1y; and K;(;¢1), wherej # i and
161 # j & 1. Otherwise, we would end up in a situation that
contradicts to the fact just established (in the second.step

Sows, vs, . .., Um—1 MUSt be contained ifT; for some:.

Finally, IC; is a clique, which must be formed hy, vs, .. .,
vm—1 SinceP, is the heaviest path found lay.

We distinguish five cases depending on the structui@,of

Case P1. P, is contained irg(Vs)

Case P2. P, is contained irg(V;)

Case P3. v1, vm € G(V)) interfere with each other

Case P4. vy, v € G(V1) do not interfere with each other
Case P5. Eithervy or vy, is in G(V;) (but not both)
THEOREMS5. IG_CGC is optimal in Cases P1 — P3.

PROOF In Case P1G (V;) is a comparability graph. Thu®,, must
be contained in a cliqu& in G(V;) (and also inG). This means
that xo (G; w) = w(Pa) = w(K). Sincew(K) < x(G;w), we
must havey.(G;w) < x(G;w). So« is optimal. The proof for
Case P2 is similar since the foragtV;) is also a comparability
graph. In Case P3, if; andwv,, interfere with each other, according
to Lemma 5, it is easily deduced thatandv,,, must interfere with
all nodes, i.e.p1,v2,...,vm—1, in K;, and consequently, all the
nodes inP,. Thus P, must appear together in a cliqué in G.
Thus, we can complete the rest of the proof for Case P3 in dagimi
way as for Case P1. O

THEOREM®G. In Case P4, we have.(G;w) — x(G;w) <
w(vi) + w(vm), Where the equality holds if and only if
v2,v3,...Um—1 happen to from the heaviest cliqé&in G such
that x (G; w) = w(K).

PROOF By Lemma 5, we havg.(G; w) — x(G;w) < w(vi) +

w(vm). We now prove the “if” and “only if’ for the equality.
The “if” part is true sincex.(G;w) = w(Pa) = w(vi) +

w(vm) + w(K) = wvr) + w(vm) + x(G;w). The “only if”

part is true due to Lemma 5 and the given hypothgsi§g; w) —

x(G;w) = w(v1) + w(vm). O
An analogue of Theorem 6 for Case P5 is given below.

THEOREM7. In Case P5, suppose that is contained irg (v;) but
Um IS NOt. Theny o (G; w) — x(G; w) <w(v1), where the equality
holds if and only ifvs, vs, ... vm—1 happen to form the heaviest
clique X in G such thaty (G; w) = w(K).

5. Experiments

Research into advanced compiler technology for streanegseieg
is still at its infancy. There are presently no standard heverks

available. Table 1 gives a list of 11 media and scientific iappl
tions available to us for the FT64 stream processor. NLAG-8 i
nonlinear algebra solver for two-dimensional nonlineéfudion of
hydrodynamic. QMR is the core iteration in the QMRCGSTAB al-
gorithm for solving nonsymmetric linear systems. LUD is aske
LU Decomposition solver. As shown, the stream IGs in 10 bench
marks are comparability graphs. Their optimal colorings guar-
anteed. Initially, the stream IG for QMR is not a comparability
graph and5(V;) is not a forest. However, after unrolling its loop
with a factor of two and performing some live range splittiggV;)

is a forest in the unrolled loop as depicted in Figure 12, tictvh
our algorithm can now be applied. In fact, the IG for the uleabl
loop happens to be a comparability graph. A transitive daiton

of this comparability graph is shown in Figure 13. This exémp
provides evidence that loop unrolling and live-range 8plitcan
be used as enabling transformations to enable more apptisab

be optimally colored.

[Benchmark [| Source | IG |

Laplace NCSA [}
Swim-calcl || Spec2000| C
Swim-calc2 || Spec2000| C
GEMM BLAS C
FFT - C
EP NPB C
NLAG-5 - C
QMR - F
LUD - C
Jacobi - C
MG NPB C

Table 1: Media and scientific programs (C (F) indicates threeco
sponding stream 1@ (G(V7)) is a comparability graph (forest)).

V2

Figure 13: A transitive orientation of the IG for the unrdI@MR.

Below we demonstrate this_CGC can find optimal and nearly
optimal colorings efficiently for a large number of randorgner-
ated stream IGs that satisfy the characteristics of streanepsing.

We have implemented an algorithm that randomly generages th
stream IGs that satisfy the stream characteristics explait the
development of outG_CGC algorithm as discussed in Section 4.3.

All random numbers are in discrete uniform distribution gexted
by unidrndin Matlab unless specified otherwise.

There are five steps involved in generating a streard.IGtep 1
generates the number of kernels, denetedrkernel In Step 2, we
generate the set of short live ranges, nand&ly;). For each kernel
i, we generate two set&; and K;(;q1). We generate a random
number in the range [1,3] to represent the number of live @ang
in K;. Similarly, we generate another random number over [1,3] to
represent the number of live rangesff ;¢ 1). As a result, each
kernel has at most nine short live range streams live at theeke
three fromK ;¢ 1);, three fromk; and three from¥;;q1).

In Step 3, we generate the set of long live ranges, namel).
We generate a random numberanging from 1% to 20% to repre-
sent the percentage of long live rangegjiV;) over num.kernel
Thus,|G(V;)| = p x numkernel For each long live rangg we
generate a random numbéengthi, over [3,6] to represent the
number of kernels spanned bylonger live ranges should be split)
and another random number over flym.kerneklengthi+1] to
represent the kernel from whiglstarts to be live.

In Step 4, we kee if G(V;) is a forest and go back to Step
1 otherwise. In Step 5, we generate the stream sizes fowvall li
ranges according to their characteristics in stream aggjwics. In
our experiments, node weights are chosen to have two differe
distributions,Distribution/ andDistribution £. We use Distribu-
tion U, a discrete uniform distribution, to demonstrate gengrall
the worst-case performance advantages o€I&C over First-Fit.
In this case, node weights are randomly taken from the rah@é [
For each program, we modify Distributi@hto obtain Distribution
L by simply replacing each stream sizeby 2. In this second
case, the fact that some streams may be geometrically ldrger
others in a program is explicitly taken into account. Disition £
is actually a uniform distribution in the logrithmic scate,.

To test the scalability ofG_.CGC, we have generated four
groups of stream IGs. Groupsy, and G% consist of IGs with
between 3 to 50 kernels with their node weights generatathusi
Distributionsl{ andZ, respectively. Group&?, andG= consist of
larger IGs with between 50 to 100 kernels. Each group canefst
exactly 30 different IGs (with their node weights being igea).
For each IG in each group, there are 10 instances of that IG in-
stantiated with different node weights (in Step 5). So eacuy
consists of 300 different weighted IGs, giving rise to altofd 200
stream IGs considered in our experiments. Due to spaceationit,
we restrict our discussions to GroGg- and GroupG,. The node
counts of the graphs in these two groups are shown in Figures 1
and 18, respectively, and their edge counts in Figures 1518nd
respectively. The tree counts in the foregtd/) in these graphs
are shown in Figures 16 and 20, respectively.

To check the optimality ofG_.CGC, we have developed a for-
mulation of the SRF allocation problem by integer lineargsem-
ming (ILP). We ran the commercial ILP solver, CPLEX 10.1, to
find an optimal coloring for each IG. If CPLEX does not terntea
in five hours for an 1GG, its optimal coloring is estimated opti-
mistically by (1). Therefore, all optimality results abd@ CGC
reported here are conservative.

Table 2 shows thdtG_CGC obtains optimal solutions in 99% of
the 1200 IGs in all four groups. On the other hand, the saistio
from First-Fit are mostly sub-optimal. First-Fit obtaingtional
solutions in 26% of the 1200 IGs in all four groups.

The near-optimality ofG_CGC is achieved efficiently as vali-
dated in our experiments on a 3.2GHz Pentium 4 with 1GB mem-
ory. The longest time taken is 0.2 seconds for an |G with 4@f#80
and 1836 edges, in which ca6¥V;) consists of 8 trees. For most
of the other IGs, the times elapsed are less than 0.05 seeants

Let us look at the differences betweBh CGC and First-Fit in
terms of their allocation results. For a given weighteddGthe

Group || #Weighted I1Gs Optimal Solutions (%)
IG.CGC | First-Fit
Gk 300 299 (99.67%)| 55 (18.33%)
Gl 300 298 (99.33%)| 115 (38.33%)
G% 300 296 (98.67%)| 38 (12.67%)
G2, 300 295 (98.33%)| 104 (34.67%)

Table 2: Optimality o G_CGC and First-Fit for 1200 IGs.

| Group || #Unweighted Graphs| > 20% | > 10% | < 0% |

G~ 30 18 30 1
Gy 30 0 18 2
G2 30 27 2
G, 30 1 19 1

Table 3: Gaps betweds_CGC and First-Fit.

quality of our solutiona found bylG_CGC is measured as gap
with respect to that found by First-Fit defined as follows:

XFirstFit (G; W) — Xa(G; w)
XFirst—Fit(g; ’LU)

gap(G) (6)

where xrirst—rit (G; w) is the optimal solution (i.e., the smallest
width required for coloring all nodes i6) found by First-Fit and
X« (G; w) is the optimal solution found byG_CGC.

Table 3 shows the gaps betwekiCGC and First-Fit for the
four groups,G%, G7;, G2 andG%, with 30 unweighted graphs in
each group. As shown in Column 3, for 18 out of 30 graphs in
GroupGL, there are always weight assignment(s) achieving a gap
of over 20%. The largest for this set of 30 graphs is 41% foeplgr
consisting of 114 nodes and 455 edges. In addition, as shown i
Column 4, for at least 18 out of 30 graphs in each group, there a
some weight assignment(s) achieving a gap of over 10%. Iinal
we observe from Column 5 thdG_CGC may perform slightly
worse than First-Fit in six different weighted graphs. Tlgsgfor
five of these graphs are betwee.69% — —2.78% and the gap
for the remaining one is-13.89%. In general, the gaps depend
on the distribution of the node weights, i.e., the sizes mfashs
in a program. The major advantagel6f. CGC is that if an IG is
a comparability graph, then the optimal allocation is gotead
regardless of what its node weights are, and in additiom exen
an IG is not a comparability graphG_CGC can still achieve near-
optimal colorings as proved in Theorems 6 and 7 and confirmed
by the experimental data in Table 2. However, the performanic
First-Fit is sensitive to the structure of an IG and the valakits
node weights. For example, the gap as shown in Figure 22 is 50%

Let us see whyG_CGC achieves better SRF allocation than
First-Fit. First-Fit places the streams in an IG in a certaiter, say,
according to the order in which the streams start to live dueah t
their weights without considering the structure of the I&uiting
in SRF fragmentation. We demonstrate this with a simple raiog
shown in Figure 22(a). Figure 22(b) shows the SRF allocation
under First-Fit. The streants andsS. live at kernel 1 are allocated
beforeSs. S1, which is heavier thas, is allocated first followed
by S,>. However, sinceS; is also live in kernel 2,53, which is
heavier thanS;, can only be placed aftef,. Based on the IG and
the assigned transitive orientation in Figure 22(c), thiénogd SRF
allocation found byyG_CGC is shown in Figure 22(d).

300

200

#nodes

*
. LS
L * o ¢
100 .

25

30

*

*
0"¢0

*

*

*

*

*
*

*
se *

IS .
o * 0

*

*
*

*

*
*

10

15

20

25

30

Figure 15: Number of edges in Grogg-.

#trees

S N A
T

*

.
oo
e o

L 2 4

*
* G060 o
) *

*

*
* o

15

20

25

30

Figure 16: Number of trees in Group}.

—
=

#optimums
<

0

5

| #IG_CGC _ m First_Fit |

10

15

20

25

30

Figure 17: Number of optimal solutions found b§_CGC and
First-Fit in 300 weighted 1Gs from Grouf.

6. Related Work

& & & &
v v K v v
e,‘.,“ R e“"’ °0 o, ,0%,

0 5 10 15 20 25 30

Figure 18: Number of nodes in Grod,.

L 2000 - .
5 1000 e gboen et%e0® 0% L. % 0% 4o
54 LAY * * L3 * *
*+
0
0 5 10 15 20 25 30
Figure 19: Number of edges in Grodgy,.
10
*
) *
2 siee *e ‘00"0’ Lo eoeg
* * L N 4
) .o R REAIX
0 5 10 15 20 25 30
Figure 20: Number of trees in Groug.
" ®IG_CGC M First_Fit
g
=
£
=
S
*

Figure 21: Number of optimal solutions found b _CGC and
First-Fit in 300 weighted 1Gs from Groug?.

coloring based register allocators have been developed, [Z].

Let us examine in more detail the two existing SRF management Recently, Smith et al. [19] present a generalized algoritiunir-

techniques for stream processors [5, 22]. Stream schegditiro-
duced in [5] was earlier implemented in the StreamC compder
compile stream programs for Imagine [5, 18]. Stream sclieglul
associates (if possible) all stream accesses to the samaenstvith
the same buffer in the SRF. All such SRF buffers are placeldn t
SRF by applying some greedy First-Fit-like bin-packingigtics.
The key idea is trying to position each buffer at the smajpestsi-
ble SRF address, always complete the current buffer befartg
another, and finally, position the largest buffers first s #maller
buffers can fill in the cracks. On encountering spills, tladgorithm
resorts to double buffering to reduce the sizes of some tsufirip
mining is applied before SRF allocation.

In [22], we apply graph coloring to place streams in the SRF.
This entails a partitioning of the SRF into pseudo regisbafare
graph coloring can be applied. For some applications, suRfR S
partitioning introduces aliases among pseudo registess)ting in
SRF fragmentation and wasted free spaces. The idea oiqairig
a software-managed cache first this way and then applyinghgra
coloring to perform cache allocation was first proposed #].[In
[26], we focused on how to identify and represent loop-ddpah
reuse between streams in stream programs.

In this paper, we present a comparability graph coloring-alg
rithm for SRF allocation developed based on a careful aisabfs
the characteristics of stream IGs. This new approach refigsei-
ther First-Fit heuristics, which can be sub-optimal, noFS#ar-
titioning, which can cause SRF fragmentation. Our algaritan
achieve near-optimal colorings as validated in our expenitsand
outperform First-Fit in a large number of stream IGs tested.

Graph coloring is a popular technique used in register atloc
tion. Based on Chaitin’s original formulation [2], a vakietf graph

regular architectures with register aliases and non-disjegister
classes. Li et al. [14, 16] apply this generalized algoritbrassign
arrays in embedded programs to scratchpad memory (SPMQg Wan
et al. [22] apply it further in SRF allocation as discussedvah

Fabri [6] discovered the connection between interval ¢otpr
and compile-time memory allocation. Since then some ajpprax
tion algorithms have been proposed [8, 11]. Lefebvre anditfiea
[13] use interval coloring to minimize the number of dataustr
tures to rename in storage management for parallel progfayns
continuing their graph coloring work [14], Li et al. [15] dggdn-
terval coloring to assign arrays in embedded programs t0.SPM

Govindarajan and Rengarajan [10] studied a compile-time
buffer allocation problem for so-called regular stream ftpaphs.

In [24], some improvements of [5] to LRFs (Local Register
Files) allocation in stream processor are presented. THesldRe
register files near the ALU clusters. Unlike SRF, LRFs play a
similar role as the register files in general-purpose pismss

7. Conclusion

This paper presents a new approach to optimizing utilinatib
the SRF for stream processors. The key insight is that tleefért
ence graphs (IGs) in media and scientific applications abiena
stream processing are comparability graphs or decompmsatiol
well-structured comparability graphs (like trees). Thas hmoti-
vated the development of a new algorithm that is capable dirfin
optimal or near-optimal colorings efficiently, thereby peitform-
ing First-Fit heuristics that are presently used in theditiere.
This new approach also facilitates its integration witfpstnin-
ing, an important optimization for stream processors fqurioring
the performance of a stream application. There are at lwastays

-
5’ SRF > Si S3 § SRF———>
IIweights: S;:16; Sy: 8; S3:24; \/
kernel(T', 81, S); (213]
kernel('2". Sy, S3): S, [2]
(a) Program (with loads/stores omitted) (b) Allocation hbissEFit (©)IG (d) Allocation bylG_CGC

Figure 22: An example demonstrating the superiority&@iCGC over First-Fit.

in which our algorithm can be combined with strip mining. Osie
to apply the algorithm to perform SRF allocation for a setigég
strip sizes and return the best according to some perforerbased
cost model. Another is to combine our algorithm and stripingn
to find a good strip size in a symbolical manner. All streanesiz
are multiples of a strip size variable. So the best SRF dilmta
returned by our algorithm gives an upper bound on the stze si
to be used. By combining this upper bound constraint withethre
ecution time estimate of a stream application also expdeasea
function of the strip size variable, the best strip size carsdived
analytically or numerically using, say, MatLab.

Finally, our IG-based algorithm allows other pre-passrojza-
tions such as live range splitting and stream prefetchirgetaell
integrated into the same compiler framework.

8. Acknowledgments
This work is supported in part by the NSF Grant of China (6 @8&)

and a Chinese Council Scholarship and in part by the Aus-
tralian Research Council Grant (DP0881330) and the UNSW

Engineering-International Research Collaboration G{as6t.6380).

References

[1] Preston Briggs, Keith D. Cooper, and Linda Torczon. loygments
to graph coloring register allocatiodCM Transactions on Program-
ming Languages and Systeri§(3):428-455, 1994.

[2] G. J. Chaitin. Register allocation & spilling via grapblaring. In

SIGPLAN '82: Proceedings of the 1982 SIGPLAN symposium on

Compiler constructionpages 98-101. ACM Press, 1982.

[3] Fred C. Chow and John L. Hennessy. The priority-basedria
approach to register allocatioACM Trans. Program. Lang. Sysi2
(4):501-536, 1990.

[4] William J. Dally, Francois Labonte, Abhishek Das, PetrtHanrahan,
and Jung-Ho Ahn et al. Merrimac: Supercomputing with stream
SC '03: Proceedings of the 2003 ACM/IEEE conference on Soper
puting, page 35. IEEE Computer Society, 2003.

[5] Abhishek Das, William J. Dally, and Peter Mattson. Colmgi for
stream processing. |IRACT '06: Proceedings of the 15th inter-
national conference on Parallel architectures and comntjpia tech-
nigues pages 33-42, New York, NY, USA, 2006. ACM.

[6] Janet Fabri. Automatic storage optimizatioBIGPLAN Not. 14(8):
83-91, 1979. ISSN 0362-1340.

[7] Lal George and Andrew W. Appel. Iterated register cocilgg. ACM
Trans. Program. Lang. Systl8(3):300-324, 1996.

[8] Jordan Gergov. Algorithms for compile-time memory optiation.
In SODA '99: Proceedings of the tenth annual ACM-SIAM symposiu
on Discrete algorithmspages 907-908, Philadelphia, PA, USA, 1999.
Society for Industrial and Applied Mathematics.

[9] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect
Graphs (Annals of Discrete Mathematics, Vol 57\North-Holland
Publishing Co., Amsterdam, The Netherlands, The Nethésla?004.

[10] R. Govindarajan and S. Rengarajan. Buffer allocationrégular
dataflow networks: An approach based on coloring circuleigeaphs.
In HIPC '96: Proceedings of the Third International Conferenon
High-Performance Computing (HiPC '96)age 419, 1996.

[11] H. A. Kierstead. A polynomial time approximation algm for
dynamic storage allocatioDiscrete Math, 87(2-3):231-237, 1991.

[12] Francois Labonte, Peter Mattson, William Thies, larcBuChristos
Kozyrakis, and Mark Horowitz. The stream virtual machinePACT
'04: Proceedings of the 13th International Conference omaltel
Architectures and Compilation Techniquesges 267—-277, 2004.

[13] Vincent Lefebvre and Paul Feautrier. Automatic steraganagement
for parallel programsParallel Comput, 24(3-4):649-671, 1998.

[14] Lian Li, Lin Gao, and Jingling Xue. Memory coloring: A omiler ap-
proach for scratchpad memory managementPACT '05: Proceed-
ings of the 14th International Conference on Parallel Atebtures
and Compilation Techniquepages 329338, 2005.

[15] Lian Li, Quan Hoang Nguyen, and Jingling Xue. Scratchpfoca-
tion for data aggregates in superperfect graph2rateedings of the
2007 ACM SIGPLAN/SIGBED conference on Languages, corapiler
and tools for embedded systermpages 207-216. ACM, 2007.

[16] Lian Li, Hui Feng, Quan Hoang Nguyen, Lin Gao, and JinglXue.
Compiler-directed scratchpad memory management via geafan-
ing. ACM Transactions on Architecture and Code Optimizat@009.
To appear.

[17] John D. OwensComputer Graphics on a Stream ArchitectufehD
thesis, Stanford University, November 2002.

[18] John D. Owens, Ujval J. Kapasi, Peter Mattson, Brian [€swBen
Serebrin, Scott Rixner, and William J. Dally. Media prodegsap-
plications on the imagine stream processor. Phoceedings of the
IEEE International Conference on Computer Desigages 295-302,
September 2002.

[19] Michael D. Smith, Norman Ramsey, and Glenn Holloway. éner-
alized algorithm for graph-coloring register allocatioim PLDI '04:
Proceedings of the ACM SIGPLAN 2004 conference on Progragimi
language design and implementatigrages 277-288. ACM, 2004.

[20] Michael Bedford Taylor and Jason Kim et al. The Raw mjcxozes-
sor: A computational fabric for software circuits and gethgrurpose
programs.IEEE Micro, 22(2):25-35, 2002.

[21] W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H,H
M. Brown, and S. Amarasinghe. Streamit: A compiler for simesy
applications, 2001. MIT-LCS Technical Memo TM-622.

[22] Li Wang, Xuejun Yang, Jingling Xue, Yu Deng, Xiaobo Yahao
Tang, and Quan Hoang Nguyen. Optimizing scientific appbcat
loops on stream processors. UGTES '08: Proceedings of the 2008
ACM SIGPLAN-SIGBED conference on Languages, compilerd, an
tools for embedded systenpmges 161-170. ACM, 2008.

[23] Samuel Williams, John Shalf, Leonid Oliker, Shoaib KarRarry
Husbands, and Katherine Yelick. The potential of the celtpssor for
scientific computing. I'CF '06: Proceedings of the 3rd conference on
Computing frontierspages 9-20, New York, NY, USA, 2006. ACM.

[24] Nan Wu, Mei Wen, Ju Ren, Yi He, and Chunyuan Zhang. Regist
allocation on stream processor with local register fileAGSAC '06:
Proceedings of the 11th Asia-Pacific Computer Systems taathie
Conferencepages 545-551, 2006.

[25] Xuejun Yang, Xiaobo Yan, Zuocheng Xing, Yu Deng, Jiaiand, and
Ying Zhang. A 64-bit stream processor architecture forrgifie ap-
plications. InISCA '07: Proceedings of the 34th annual international
symposium on Computer architectupages 210-219. ACM, 2007.

[26] Xuejun Yang, Ying Zhang, Jingling Xue, lan Rogers, Gein and
Guibin Wang. Exploiting loop-dependent stream reuse fesash pro-
cessors. IPACT '08: Proceedings of the 17th international confer-
ence on Parallel architectures and compilation techniqueges 22—
31, 2008.

