On Reducing Hidden Redundant Memory Accesses
for DSP Applications

Meng Wang, Zili Shao, Member, IEEE, and Jingling Xue, Senior Member, IEEE

Abstract—Reducing memory accesses is particularly important
for DSP applications since they are widely used in embed-
ded systems and need to be executed with high performance
and low power consumption. In this paper, we propose a
machine-independent loop memory access optimization tech-
nique, REALM (REdundAnt Load Exploration & Migration),
to explore hidden redundant load operations and migrate them
outside loops based on loop-carried data dependence analysis. We
implement REALM into IMPACT and Trimaran. To the best of
our knowledge, this is the first work to implement the memory
access reduction with loop-carried data reuse in real world com-
pilers. We conduct experiments using a set of benchmarks from
DSPstone and MiBench on the cycle-accurate VLIW simulator
of Trimaran. The experimental results show that our technique
significantly reduces the number of memory accesses.

Index Terms—DSP applications, loop optimization, memory
optimization, instruction scheduling.

I. INTRODUCTION

The widening performance gap between processor and
memory requires effective compiler optimization techniques
for reducing memory accesses. This is particularly important
for DSP (Digital Signal Processing) applications since they
are widely used in embedded systems and need to be executed
with high performance and low power consumption. On the
other hand, loops are the most critical sections and consume
most time and power for DSP applications. Therefore, memory
access optimization for loops is vital for improving DSP
performance. Computationally intensive loop kernels of DSP
applications usually have a simple control-flow structure with
a single-entry-single-exit and a single loop back edge. In this
paper, thus, we develop a data-flow-graph-based loop opti-
mization technique with loop-carried data dependence analysis
to explore and eliminate hidden redundant memory accesses
for loops of DSP applications.

Various techniques for reducing memory accesses have
been investigated in previous work. Two classical compile-
time optimizations, redundant load/store elimination and loop-
invariant load/store migration [1]-[4], can reduce the amount
of memory traffic by expediting the issue of instructions that

Manuscript received March 2009; revised November 2009.

Meng Wang and Zili Shao are with the Department of Computing, The
Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
Jingling Xue is with the School of Computer Science and Engineering at
the University of New South Wales, Sydney, Australia.

The work described in this paper is partially supported by the grants
from the Research Grants Council of the Hong Kong Special Administrative
Region, China (GRF PolyU 5269/08E), the Hong Kong Polytechnic University
(HK PolyU A-PJ17), the National 863 Program of China (2008AA01Z106),
and the Australian Research Council Grant (DP0881330).

The corresponding author: Zili Shao (Email: cszlshao@comp.polyu.edu.hk.
Phone: (852) 27667287.)

use the loaded value. Most of the above optimization methods
only consider removing existing explicit redundant load/store
operations. Our technique can explore and eliminate hidden
redundant loads across multiple loop iterations based on loop-
carried data dependence analysis.

Over the last decade, memory-related issues have benefited
from advances made in the fields of compilers [5]-[15] and
high-level synthesis [16]-[24]. In loop optimization, many
compiler transformation techniques have been applied to re-
duce memory accesses, such as loop partitioning [6], [25],
array padding [26], partial redundancy elimination [27]-[30],
scalar replacement [31] and array contraction [32], [33]. In this
paper, we propose a data-flow-graph-based approach in which
the code replacement pattern for eliminating the corresponding
redundant load can be easily determined. Different from
the above work, our data-flow-graph-based approach is more
suitable for DSP applications which have loops with a simple
control-flow structure.

Our work is closely related to loop unrolling. Loop unrolling
[34]-[36] can be used to unfold a loop a few times to expose
loop-carried data dependences among memory operations.
However, with loop unrolling, how to determine the optimal
unrolling factor is not known, and the code size expansion after
unrolling is undesirable for embedded systems. Our technique
can automatically exploit the loop-carried data dependences
of memory operations using a graph, and achieve an optimal
solution by removing all possible redundant memory accesses
based on the graph. Moreover, our technique outperforms loop
unrolling since it introduces little code size expansion.

In this paper, we propose a machine-independent loop
memory access optimization technique, REALM (REdundAnt
Load Exploration & Migration), to explore hidden redundant
loads and migrate them outside loops. Our basic idea is
to explore loop-carried data dependencies among memory
operations. In our technique, hidden redundant loads are found
and replaced with registers, and by using registers in such a
way that we do not need prior memory accesses which are
unchanged or unnecessary to be fetched again from memory
over multiple loop iterations. In REALM, we first build up
a data-flow graph to describe the inter-iteration data depen-
dencies among memory operations. Then we perform code
transformation by exploiting these dependencies with registers
to hold the values of redundant loads and migrating these loads
outside loops.

Our main contributions are summarized as follows.

o We study and address the memory access optimization

problem for DSP applications which is vital both for
improving performance and reducing memory power.

Different from the previous work, our technique can
optimize both array-based and pointer-based code, which
is very important as pointer arithmetic is widely used in
DSP applications.

e We propose a data flow graph model to analyze loop-
carried data dependencies among memory operations, and
develop a technique called REALM (REdundAnt Load
Exploration & Migration) for reducing memory accesses
within the loop nests of programs. This approach is
suitable for DSP applications which typically consist of
simple loop structures.

e« We propose a practical algorithm called
RPMS_CP_REALM (register-pressure-aware modulo
scheduling with critical-path-based REALM) to minimize
register pressure and improve performance by combining
REALM with modulo scheduling [37] that is widely used
in DSP applications as a back-end software pipelining
technique.

We implemented our techniques into IMPACT [2] and Tri-
maran [38]. To the best of our knowledge, this is the first
work to implement the memory access reduction with loop-
carried data reuse in real world compilers. This function
is not implemented in various open-source compilers such
as IMPACT [2], Trimaran [38], GCC, Open64, SUIF [39],
and the TI DSP compiler (Code Composer Studio V3.3).
In particular, REALM is implemented in IMPACT [2], and
RPMS_CP_REALM, which combines REALM with mod-
ulo scheduling, is implemented in Trimaran [38] as modulo
scheduling is part of the Trimaran suite.

We conducted experiments using a set of benchmarks from
DSPstone [40] and MiBench [41] on the cycle-accurate VLIW
simulator of Trimaran [38]. The experimental results show that
our REALM technique achieves significant memory access
reduction and performance improvement with little code size
expansion compared with classical optimizations [1]-[4].

« For DSPstone [40], with the configuration of 32 registers,
our REALM technique contributes to 22.52% reduction
in the number of memory accesses, 12.61% improvement
on ILP (instruction level parallelism) and a speedup of
1.13 on overall time performance with 1.43% increase in
code size on average. For MiBench [41], with the same
configuration, our REALM technique achieves an average
of 8.3% reduction in the number of memory accesses,
4.43% improvement on ILP (instruction level parallelism)
and a speedup of 1.06 on overall time performance with
0.77% increase in code size.

« RPMS_CP_REALM, our practical algorithm that com-
bines REALM and modulo scheduling considering
register pressure, can improve performance compared
with the REALM technique. For DSPstone [40], with
the configurations of 16, 32 and 64 registers, our
RPMS_CP_REALM technique contributes to 2%, 4%
and 6% improvement on average performance, respec-
tively. For MiBench [41], with the configurations of 16,
32 and 64 registers, our RPMS_CP_REALM technique
leads to 2%, 3% and 4% improvement on average perfor-
mance, respectively. Based on the experimental results,

we conclude that our RPMS_CP_REALM technique is
the best with limited register resources.

The rest of this paper is organized as follows. The back-
ground is introduced in Section II. Motivational examples are
shown in Section III. The REALM technique is presented in
Section IV. The RPMS_CP_REALM technique is proposed in
Section V. The experimental results and analysis are provided
in Section VI. The conclusion is given in Section VIL

II. BACKGROUND

DSP applications are generally characterized as computa-
tionally intensive with a large data set, loop-dominant control
flow behavior, and accumulation-based operations [42]. Inside
loop kernels of DSP applications, the control-flow structure
is simple, and repetitive memory accesses to array elements
have great impact on overall performance. Among all of the
DSP benchmarks from DSPstone [40], almost every loop is in
the form of a simple for-loop with a single-entry-single-exit
and a single loop back edge. Except loop-back branches, there
are no other conditional or unconditional branches inside these
loops. Moreover, array-based and pointer-based computations
are widely used in the loop kernel, and the array indexes
in each loop are affine expressions of the loop index that is
incremented unconditionally.

In loop kernels of DSP applications, one important charac-
teristic is that the same memory location is repeatedly accessed
by different memory operations across multiple loop iterations.
By analyzing the inter-iteration relations among these memory
operations, we can detect hidden redundant load operations in
the innermost loop, and replace them by register operations as
shown in Section III.

III. MOTIVATIONAL EXAMPLES

In order to show how our approach works, we present an
example in this section. We use the IMPACT compiler [2] to
generate intermediate code for this example and test it on the
cycle-accurate VLIW (Very Long Instruction Word) simulator
of Trimaran [38]. The C source code of the example is shown
in Figure 1(a).

The intermediate code generated by the IMPACT compiler
[2] with classical optimizations is presented in Figure 1(b).
The code is in the form of Lcode which is a low-level machine-
independent intermediate representation. Note that the “op”
numbers represent the identifiers of operations, and they are
not in sequence due to different optimization stages of the
compiler. As shown in Figure 1(b), two different integer arrays
A and C are stored in the memory with consecutive locations.
The base pointer for array references in the loop is initialized
using the address of C[2] and assigned to register 137 at the
end of basic block 1 (Instruction: op59 add r37, mac $LV, -
792). In the loop segment, the second array reference for C[i-1]
in statement S2 in Figure 1(a) has been removed by performing
classical optimizations. However, hidden redundant loads still
exist in the intermediate code by analyzing inter-iteration
data dependencies among memory operations. For example,
as shown in Figure 1(b), op30 (Instruction: op30 1d_i 20,
137, 392; load Ali-2]) is redundant since it always loads data

Loop:

main()

int i

int A[100], C[100];
A[0]=A[1]=5;

{
SI: A[i] = C[i-2] + C[i-1];
S2: C[i] = A[i-2] + C[i-1];

Basic block 1 :

opl3 movrl, 2 ;i=2

op3 define mac $local, 800; define A[100],C[100]

op59 add r37, mac SLV, —=792; initial base address

Loop Body

Loop:

o

137, 0, r25;
rl,rl, 1;

137,137, 4;
rl, 62, cbl;

125, 120, r24;

change base address

| Redundant Loads

/

A:Ei.—Z] + C[.i—]]
store C[i]
it+

]

(b)

Fig. 1. The motivational example: (a) C source code; (b) The original intermediate code generated by the IMPACT compiler [2] after applying classical
optimizations [1]-[4].
Basic block 1 :
op3 defi ocal, 800;
opl3 mov i1, Prologue
0p39 add 137, mac $LV, =792 —
v | op73 1dii 19,13 3 load C[0] —> 19 o
V| op7a i 24,0374 load C[1] —> 124 2 ATy € '
Array A: Array A: V| op75 1d 120,137,392; load A[0] -> 1-20'} Amay A !
U] op76_1di 150,137,396; load A[1]-> 50 !
0p30 1d A[i-2] : 120 0p301d A[i=2] : 120 Loop: \L // Transformed Loop Body
Reduce graph op23 add r14,19,124; C[i-2] + C[i-1]
Array C: > Array C: op26 st_i 137,400, r14; store Ali] X
op35 add 125,120,124; A[i-2] + C[i-1] Move operations
op38 sLi 137,0,125: store Cli] P!
o 11 21 Clinl] -2 opl8 mov 19,124 Move 124 => 19 L
—[op22 [Cli-1]: 24 o = [op22 1d Cli-1] 24 op22 mov 124,125; Move 125 —> m} Armay C
O load op77 mov 120, 150; Move £50 —> 120 H
33\ . op30 mov 150, rld; Movertd o150 Amy A :
opl81d C[i-2] : 19 opl81d Cli-2] : 19 e e
op60 add r37,137,4; change base address
) opdl bt rl, 62, cbl;
(a (b)
(©)

Fig. 2.
after applying our technique.

from the memory location in which op26 (Instruction: op26
st_i 137, 400, r14; store A[i]) writes to before two iterations
in the loop. All in all, there are 5 memory operations and 300
dynamic memory accesses in this example as the loop will be
executed 60 times.

Motivated by this, we have developed the loop optimization
technique, REALM, that further detects and eliminates redun-
dant load operations across iterations. As shown in Figure 2(a)
and Figure 2(b), we first build up a data-flow graph to describe
the inter-iteration dependencies among memory operations for
each array. For example, in the data-flow graph of array A
as shown in Figure 2(a), the edge between the store op26
and the load op30 with two delays denotes that op30 always
loads data from the memory location which was written by
op26 two iterations ago. Thus, this redundant load op30
can be eliminated by exploiting register r14 which holds the

The motivational example: (a) Data-flow graph; (b) the reduced data-flow graph; (c) The optimized code generated by the IMPACT [2] compiler

value loaded from the memory location by op26 across two
iterations. The data-flow graph is constructed using address-
related operands of load/store operations. We reduce the graph
in order to keep the correctness of computation and determine
a definite code replacement pattern to eliminate the detected
redundant load as shown in Figure 2(b).

Based on the constructed data-flow graph in Figure 2(b),
our technique explores hidden redundant load operations and
performs code transformation to eliminate them. The resultant
code is presented in Figure 2(c). As shown in Figure 2(c), after
our optimization, the redundant load operations are converted
to register operations which are placed at the end of the loop
body before the loop-back branch. With our technique, several
iterations of the eliminated load operations are promoted into
the prologue in order to provide the initial values of the regis-
ters used to replace the load in the loop. As shown in Figure 2,

Original: Unroll 1 time:

Source Code: Source Code:

Unroll 2 times:

Source Code:

for(i=2;i<62;i++)
{
S1: A[i] = C[i=2] + C[i-1];
S2: C[i] = A[i-2] + C[i-1T;

}

{

}

for(i=2:1<62;i+=2)

SI: A[i] = C[i-2] + C[i-1];
S2: C[i] = A[i-2] + C[i-1]:
S$3: A[i+1] = C[i—1] + C[i]:
S4: C[i+1] = A[i—1] + C[i]:

for(i=2:i<62;i+=3)
{

S1: Afi] = C[i-2] + C[i-1];
S2: C[i] = A[i-2] + C[i-1];
S3: Afi+1] =C[i-1] + C[il;
S4: Cli+1] = A[i-1] + C[i];
S5: A[i+2] = C[i] + C[i+1];
S6: C[i+2] = A[i] + C[i+1];
}

Intermediate Code: ‘

Intermediate Code: ‘

Intermediate Code: ‘

op 18 1d_i r9.r37,-8;
op 22 1d_i r24.r37,—4;
op 23 add r14,r9,r24;
op 26 st_i r37,400,r14;
op 30 1d_i r20,r37,392;
op 35 add r25,r20,r24;
op 38 st_i r37,0,r25;
op 40 add rlrl,1;

op 60 add r37,r374;
op4l blt rl,62.cbl;

(a)

op 18 1d_i r9,r64,—12;
op 22 1d_i r35,r64,-8;
op 23 add rl14,r9,r35;

op 26 st_i r64,396,r14;

op 34 add r24,r35,r23;
op 38 st_i r64,400,r24;
op 42 1d_i r31,r64,388;
op 47 add r45,r31,r35;
op 50 st_i r64,—4,r45;
op 54 1d_i r42,r64,392;
op 58 add r46,r42,r45;
op 62 st_i r64,0,r46;
op 63 add rl,rl,2;

op 93 add r64,r64,8;
op 64 blt rl,62,cbl;

op 18 1d_i r9,r9,~16;

op 22 1d_i r46,092,—12;
op 23 add r63,r9,r46;

op 26 st_i 192,392,163
op 33 1d_i r30,r92,-8:;
op 34 add r24,r46,r30;
op 38 st_i 192,396,124,
op 45 1d_i r34,r92,—4;
op 46 add r35,r30,r34;
op 50 st_i r92,400,r35;
op 54 1d_i r42,r92,384;
op 59 add r56,r42,r46;
op 62 st_i 192,-8,r56;

op 66 1d_i r53,r92,388;
op 70 add r67,r53,r56;
op 74 st_i 192,—4,167;

op 82 add r68,r63,r67;

Fig. 3.

by promoting load operations into the prologue, it provides
more opportunities for compilers to do further optimizations
for the basic block that contains the prologue. However,
the operations promoted into the prologue will increase the
code size and cause the performance overhead. To avoid big
code size expansion, in our implementation, we restrict the
maximum number of register operations and promoted load
operations for reducing hidden redundant memory accesses.
For this example, all of the three hidden redundant load
operations, op18, op22, and op30 are completely removed
by our technique. As the loop body runs for 60 times for
this example, 180 dynamic memory accesses are eliminated.
It shows that our approach can effectively reduce the number
of memory accesses.

Next, we compare our technique against loop unrolling,
which is widely used to optimize the loop performance at
the expense of code size. The source and intermediate code
generated by unrolling the original loop of Figure 3(a) with
factor of 1 and 2 are shown in Figure 3(b) and (c), respec-
tively. In the unrolled loop, loop-carried data dependences
are changed to intra-iteration data dependences, and as a
result, a few load operations are removed by the classical
optimization techniques. However, as shown in Figure 3, the
load operations cannot be fully removed with the unrolling
factors of 1 and 2, and the best unrolling factor is hard to

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
H op 33 1d_i r23,r64,—4;
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

op 86 st_i r92,0,r68;
op 87 add rl,rl,3;

op 127 add r92,r92,12;
op 88 blt rl,62,cbl;

©)

The C code and intermediate code of the loop with the different unrolling factors: (a) 0 (the original loop); (b) 1; (c) 2.

be decided. For example, there are 6 loads and 6 stores in
Figure 3-(c) with the unrolling factor of 2, and there are
240 dynamic memory accesses as the unrolled loop will be
executed 20 times. In other words, it only reduces the total
dynamic memory accesses of the example by 60 which shows
that our technique outperforms loop unrolling. This example
also shows that our technique results in a much smaller code
size expansion compared with that of loop unrolling.

Besides the significant memory accesses reduction in this
example, our technique reduces the schedule length of the loop
body as well. The schedule of the original loop in Figure 1(b)
and that of the transformed loop in Figure 2(c) are shown
in Table I(a) and Table I(b), respectively. The schedules are
generated on the Trimaran [38] simulator, a VLIW based
simulator that has multiple function units and can process
several instructions simultaneously. The configurations of the
simulator are as follows: 2 integer ALUs, 2 memory units
and 1 branch unit (the detailed configurations are presented in
Section VI). The reason of the reduction in schedule length
is that data dependencies in the loop body are changed due
to the elimination of redundant loads which are formerly on
the critical path. And the register operations used to replace
hidden redundant loads can be put into the empty slots with
multiple function units of the VLIW architecture. From this
example, we can see that our technique can effectively reduce

(a)

Time Integer ALU Memory Units || Branch
FUlL [FU2 FUI [FU2 Unit
0 op40 opl8 op22
1 op30
2 op23
3 op35 op26
4 op60 op38 op4l
(b)
Time Integer ALU Memory Units || Branch
FUlL [FU2 FU1 [FU2 Unit
0 op23 op35
1 op40 opl8 op26 op38
2 op22 op77
3 op60 op30 op4l
4
TABLE I

THE SCHEDULES (A) FOR THE ORIGINAL LOOP IN FIGURE 1(B); (B) FOR
THE OPTIMIZED LOOP IN FIGURE 2(C).

memory accesses and schedule length. Next, we will present
our proposed technique.

IV. THE REDUNDANT LOAD EXPLORATION & MIGRATION
ALGORITHM

In this section, we first propose the REALM (REdundAnt
Load Exploration & Migration) algorithm in Section IV-A,
and discuss its two key functions in Section IV-B and Sec-
tion IV-C, respectively. Then we perform complexity analysis
in Section IV-D.

A. The REALM Algorithm

Algorithm IV.1 Algorithm REALM.
Require: Intermediate code after applying all classical optimizations

[11-14].
Ensure: Intermediate code with hidden redundant loads across dif-
ferent iterations eliminated.

1: Identify different arrays in the loop. For each array, put all of
the load/store operations into the node set V={v;,v>...vn} with
their original order in the intermediate code, where N is the total
number;

2: for each node set V do

3: Call function Graph_Construction(V) to build up the data-
flow graph G=(V, E, d) of node set V in order to determine
the inter-iteration dependencies among memory operations (dis-
cussed in Section IV-B).

4: Call function Code_Transformation(V,G) to eliminate hidden
redundant loads of set V based on the data-flow graph G
(discussed in Section IV-C).

5: end for

The REALM algorithm is designed to reduce hidden redun-
dant memory accesses in loops of DSP applications. Our basic
idea is to explore loop-carried data dependencies to replace
hidden redundant loads with register operations. The registers
are used in such a way that we do not need prior memory
accesses which are unchanged or unnecessary to be fetched

again over multiple loop iterations. The REALM algorithm is
shown in Algorithm IV.1.

The input of our algorithm is the intermediate code after
classical optimizations. In this paper, we select Lcode, the
low-level intermediate code of IMPACT compiler [2], as
the input. We choose IMPACT because it is an open-source
compiler infrastructure with full support from the open-source
community. Note that our technique is general enough and can
be applied in different compilers.

The REALM algorithm consists of two steps. The first step
is to obtain the memory operation sets for different arrays, and
the second step is to perform optimizations on each set.

In step one, we first identify different arrays. In the
following, we introduce our implementation. In IMPACT, the
explicit information of array references is maintained in the
high-level intermediate code, Hcode. The Hcode of statements
ST and S2 of the motivational example in Figure 1(a) is
shown as follows:

S1: (assign (var P_p_A) (var P_i)) (add (var P_g_C) sub
(var P_i) (2)) ((var P_qg_C)) sub (var P_i) (1))
S2: (assign (var P_g_C) (var P_i)) (add (var P_p_A) sub
(var P_i) (2)) ((var P_g_C)) sub (var P_i) (1))

In this code, arrays A and C are represented using pointer
references “var P_p_A” and “var P_q_C”, respectively. In our
technique, we keep such information as the annotation of the
operation data structure during the stage of intermediate code
generation. For pointer-based code which is widely used in
DSP applications, we adopt the alias analysis techniques to
identify which array is pointed by which pointer, and pass
the information to Lcode. Alias analysis is the preliminary
step in our work based on points-to analysis algorithms [43].
We obtain the alias information to identify array accesses via
pointers, and fed them into the annotations. Thus, we can
identify memory operations of the same array by comparing
the annotations of them. Based on this information, we put
all memory operations of the same array into a node set
V={vy,v..vn} with their original order in the intermediate
code. Two memory operation sets V4 and V¢ for arrays A
and C of the motivational example in Figure 1 are shown as
follows:

Memory operation set Va of array A : {op26 : st A[i] : rl4,
op30 : Id A[i-2] : r20}

Memory operation set V¢ of array C : {opl8 : Id C[i-2] : r9,
op22 : Id C[i-1] : r24, op38 : st C[i] : 125},

In step two, we perform optimizations on each memory
operation set. We first call function Graph_Construction() to
build up the data-flow graph of the node set that describes
the inter-iteration dependencies among memory operations.
Then, function Code_Transformation() is used to perform code
transformation on the intermediate code based on the data-
flow graph. The details of these two key functions are shown
in Section IV-B and Section IV-C below.

B. Function Graph_Construction()

Graph_Construction() is used to build a data-flow graph for
each memory operation set with loop-carried data dependence

Algorithm IV.2 Function Graph_Construction().

Require: A memory operation set V={vi,vi..vn }.
Ensure: A data-flow graph G=(V, E, d).
/I Get the node set of G:

1: Let the memory operation set V be the node set of G.

/I Step 1: Data-flow graph Construction: (N is the number
of nodes in V)

2: fori=1to N do

3: forj=1toN do
/I Calculate the weight for each node pair (vi, v;):

4: Calculate the weight for the node pair (vi, vj) as d(vi — vj)=
distance / step, in which step is the value of base pointer
for array references changing in every iteration and distance
= address operand value of v; - address operand value of vj.

5. if d(vi — v;) > 0 && vj is a load node then

6: Add an edge, vi — vj, with the number of delays d(vi —
v;), into the edge set E.

7: end if

8: end for

9: end for

// Step2: Data-flow graph Reduction:
10: Reduce the data-flow graph G obtained from Step 1 (Data-flow
graph Construction) by calling function Graph_Reduction(G).

analysis. Our basic idea is that inter-iteration dependencies
among memory operations remain invariant if two memory
operations access the same memory location among different
iterations. Such relation can be exploited to eliminate the
unnecessary memory accesses. And, register values which
have been loaded from memory or newly generated to be
stored can be reused in the next iterations without loading
them from memory again. Therefore, we construct the data-
flow graph for each memory operation set to describe the
inter-iteration dependencies among load/store operations using
Graph_Construction() as shown in Algorithm IV.2.

The input of Graph_Construction() is the memory operation
set of an array, and the output is a weighted data-flow graph
G. Data-flow graph G=(V, E, d) is an edge-weighted directed
graph, where V={v;,v;..vn} is the node set including all
memory operations of the same array, E is the edge set,
and d(e) is a function to represent the number of delays for
any edge e € E. Edges with delays represent inter-iteration
data dependency while edges without delays represent intra-
iteration data dependency. In this paper, the inter-iteration
dependency between two memory operations denotes that the
source node and the destination node operate on the same
memory location among different iterations. The number of
delays represents the number of iterations involved.

In Graph_Construction(), we first get the node set of data-
flow graph G using the input memory operation set. Then,
two steps, data-flow graph construction and data-flow graph
reduction, are performed to build up the data-flow graph as
shown below.

1) Data-Flow Graph Construction: We first calculate the
weight for each node pair (vi, vj) in the first step of data-flow
graph construction. It involves two parts of computation.

« The first part is the memory access distance calculation
between two nodes vi and vj;. In the intermediate code,
memory operations consist of two operands: one is for
memory address calculation and the other is to specify

the register that the operation will use to load or store
data. We obtain the memory access distance between
two nodes by comparing the differences of their address-
related operands. For example, the distance between
op22 and op18 equals to 4 as shown in Figure 4(a).

¢ The second part is to acquire the step value of the base
pointer for array references changes in every iteration. We
obtain this value directly from the operands of the cor-
responding base pointer calculation operations for each
array in the loop. For example, as shown in Figure 4(a),
the step value equals to the third operand of operation
op60 in which the base pointer 137 changes.

After finishing all of the required computations, we calculate
the number of delays for each node pair using the memory
distance between two nodes to divide the step value of that
array (distance / step). Thus, we can determine across how
many iterations the source node and the destination node will
operate on the same memory location.

After the weight calculation, we add an edge, vi — vj;, with
the number of delays d(vi — v;) into the edge set E when the
weight between them is greater than zero. The positive value
denotes that node v; operates on the memory location where
node v; has operated on several iterations before. Thus, node
vj can be replaced by exploiting the register value of node v
which is loaded from memory or stored in several iterations
before.

Note that we focus on eliminating redundant loads by
exploiting reusable register values across different iterations.
So we only add one edge into the edge set when the destination
node is a load node and the source node is either a store
node or a load node. Therefore, the data-flow graph has the
following properties:

o The store nodes can only have outgoing edges;
o There are no edges between two store nodes.

An example of data-flow graph construction is shown in
Figure 4. For the memory operation set V¢ of array C, after
calculating the number of delays for each edge in Figure 4(b),
we build up the data-flow graph shown in Figure 4(c). For
example, the edge (op22 — opl18) with one delay denotes
that op18 always loads data from the same memory location
as op22 writes to in the previous iteration. Thus, op18 can
be replaced with the register that holds the value of op22 one
iteration before.

2) Data-Flow Graph Reduction: After the graph is built
in the first step of Graph_Construction(), in order to deter-
mine definite code replacement patterns to eliminate redun-
dancy, we call function Graph_Reduction() to delete redundant
edges for all loads with more than one incoming edges.
Graph_Reduction() is shown in Algorithm IV.3.

In Graph_Reduction(), for each load, we keep the edge from
the closest preceding memory operation, which has the latest
produced values. We use two rules as shown below.

Rule 1:

o For each node, if it is a load node and has more than
one incoming edges, keep the incoming edges with the
minimum delays and delete all other incoming edges.

Rule 2:

Edge Weight Calculation :

+Base address offset calculation:

step =4

v op60 add 137, 1'37.@: change base poimeri

E Number of delays:

For op22 and op18,
distance =137 -4 — (137 -8) =4
delay=distance / step = 1

For op38 and op18
distance =137 + 0 - (137 -8) =8
delay=distance / step = 2

For op38 and op22
distance =137+ 0 - (137 -4) =4

op22:1d C[i-1]: 124

Y
Y

O swore
7 1oa

— delay

.
.
.
Y
.

Redundant edge

DFG
—
opl8:1d Cli=2] : 19 Reducing opl8:1d C[i=2] : 19

O store
7 1oaa

— delay

op22:1d C[i-1]:124

delay=distance / step = 1

Fig. 4.
(c) data-flow graph reduction.

Algorithm IV.3 Function Graph_Reduction().

Require: Data-flow graph G=(V, E, d).
Ensure: The reduced data-flow graph G=(V, E, d).
I: fori=1to N do
2: if ((vi is load) && (vi has more than one incoming edges))
then

3 Keep the incoming edges with the minimum delays and
delete all other incoming edges for vi;

4 if (vi still has more than one incoming edges) then

5 for each incoming edge of v; do

6: if (the source node is store) then

7: Keep this edge and delete all other edges; Break;

8: end if

9: end for

10: end if

11: end if

12: end for

« After applying rule 1, if a load node still has more than
one incoming edges, check the types of the source nodes
of all incoming edges. If the source node of one edge is
a store node, keep this edge and delete all other edges.

The reason for choosing Rule 1 is that we can use the least

registers to replace redundant loads by keeping the edges with
the minimum delays. Rule 2 needs to be applied because a
store node updates the data of the specific memory location so
we should use its register value to replace the redundant load.
An example of how to reduce the data-flow graph is shown in
Figure 4(c). According to rule 1, the edge (op38 — op18) is
deleted as it has more delays than the edge (op22 — op18)
for load op18.

After applying the above rules, we have the following

properties for the reduced data-flow graph. The properties and
their proofs are shown as follows.

Property IV.1. For each load node in the reduced data-flow
graph, there is only one incoming edge.

Proof: After we reduce the data-flow graph according
to Rule 1, only the incoming edges with the same weight
remain. Among these edges, there are only two types of edges,
each with either load or store as its source node. In other
words, if there is more than one load (or store), these loads
(or stores) must load (or store) data from (to) the same memory

(b) (©)

Data-flow graph construction and reduction of array C in the motivational example: (a) edge weight calculation; (b) data-flow graph construction;

location. Therefore, these explicit redundant loads (stores)
should have been eliminated by classical optimizations [1]-
[4]. If they have not been, the classical redundant-memory-
reduction optimization techniques will be applied to remove
them. Then by applying Rule 2, only the incoming edge with
store as its source node will be kept. So the property is proved.

|

Property IV.2. There is no cycle in the reduced data-flow
graph.

Proof: Suppose there is a cycle in the reduced data-flow
graph, and v; and v; are two different nodes in this cycle.
As there is a path from v; to vj, vi will operate on the same
memory location several iterations earlier than v;. Thus, when
we calculate the weight for the node pair, (vi, v;), we can have
the following result: d(vi — v;) > 0. However, as there is also
a path from vj to vi, the weight result for the node pair will
become d(v; — vj) < 0. Contradiction.

|

C. Function Code_Transformation()

Based on the data-flow graph constructed in Section IV-B,
function Code_Transformation() is used to perform code trans-
formation on the original intermediate code as shown in
Algorithm IV.4.

In Code_Transformation(), we traverse the data-flow graph
and eliminate redundant loads by replacing them with register
operations. We use a bottom-up method to perform code
replacement for each redundant load node and a node is only
processed after all of its child nodes have been eliminated by
our technique.

Our basic idea of code replacement is to replace redun-
dant loads with register operations. Each redundant load is
removed from the loop through two steps. First, we use
register operations to replace a load and put them at the end
of the loop before the loop-back branch. New registers are
used to be operands of these register operations which shift
the register value from the source node to the destination
node across multiple loop iterations. Second, we put several
iterations of the redundant load into the prologue. The purpose
of promoting load into the prologue is to initialize the register

Algorithm IV.4 Function Code_Transformation().

Require: Intermediate code after performing classical optimizations,
the memory operation set V={v;,v>...vn } and the reduced data-
flow graph G=(V, E, d).

Ensure: Intermediate code with hidden redundant load operations
eliminated.

1: for each node vi € V (i=1 to N) do

2: Associate a boolean variable,
Mark(vi) « False;

3: Associate an integer variable Dep(v;i), and set Dep(vi) «
The number of children of v;;

4 if ((vi is load) && (vi has one incoming edge)) then

5: set Mark(vi) « True;

6: end if

.

8

Mark(vi), and set

: end for
: while there exists a node v € V whose (Dep(v) == 0 &&
Mark(v) == True) do
9: Let u be the parent node of v for edge "u — v” with m
delays. u uses 1y to load/store data from memory and v uses
Ty to load data. Generate code with the following two steps:
10: Step 1: In the loop body, replace redundant load v with m
register move operations and put them at the end of the loop
body before the loop-back branch.

. When m = 1, convert load v to: move 1y — Ty ;

e When m > 1, convert load v to m register operations with
the following order: move 11 — 1,, move T2 — T1,
, move Ty — Tm—1 in which "r7,12, ..., Trmn—1”" are newly
generated registers.

11: Step 2: Promote the first m iterations of v into prologue
which is at the end of the previous block of the loop with
the following order: 1st iteration of v — 7y, 2nd iteration of
VT, , mth iteration of v — 14, _1;

12: Set Mark(v) « False and calculate Dep (1) « Dep(u) —
1 for v’s parent .

13: end while

values that will be used in the loop. In the intermediate code,
the prologue is put to the end of the previous basic block of the
loop. For each redundant load, both the number of iterations to
be promoted into prologue and the number of move operations
to be generated in the new loop body are determined by the
number of delays of its incoming edge.

D. Complexity Analysis

In the REALM technique, let M be the number of arrays
and N be the number of load/store operations for each array
in the loop. In the first step of the REALM algorithm, it
takes at most O(MN) to obtain the node sets. In function
Graph_Construction(), for the node set of an array, it takes at
most O(N?) to construct the data flow graph among N nodes,
and it takes at most O(N?) to traverse the graph and delete
the redundant edges. In function Code_Transformation(), we
can find the number of children for N nodes in O(N?2), and it
takes at most O(N) to finish code replacement. Totally, for M
arrays, the REALM technique can be finished in O(MN?2).

V. A PRACTICAL REGISTER-PRESSURE-AWARE REALM
TECHNIQUE

In practice, the REALM technique requires a large num-
ber of registers that may degrade the performance. Modulo
scheduling [37], a back-end software pipelining technique that

is widely used in DSP applications, also increases register
pressure. In this section, we combine software pipelining with
the REALM technique, and propose a practical algorithm
called RPMS_CP_REALM (register-pressure-aware modulo
scheduling algorithm with critical-path-based REALM) to
minimize register pressure and improve performance.

Software pipelining technique has been proposed for ex-
ploiting the instruction level parallelism of loops by over-
lapping the execution of successive iterations. It imposes
high register requirements as the lifetime of loop variables
may cross the boundary of iterations. Gao et al. [44] pro-
posed a software pipelining technique to improve performance
while minimizing register requirements. Llosa et al. [45] pre-
sented a heuristic approach for resource-constrained software
pipelining with reduced register pressure. The scheduling part
of RPMS_CP_REALM technique is based on the heuris-
tic approach in [45]. In the following, we first introduce
the background of modulo scheduling. Then we present the
RPMS_CP_REALM algorithm.

A. Background of Modulo Scheduling

The objective of modulo scheduling [37] is to compute
a schedule for one iteration of the loop such that when
this same schedule is repeated at regular intervals, no intra-
or inter-iteration dependence is violated, and no resource
usage conflict arises between operations of either the same
or distinct iterations. This constant interval between the start
of successive iterations is termed the initiation interval (II).

The minimum initiation interval (MII) is a lower bound
on the smallest possible value of II for which a modulo
schedule exists. The MII must be equal to or greater than both
the resource-constrained MII (ResMII) and the recurrence-
constrained MII (RecMII). The candidate II is initially set
to the MII and increased until a legal modulo schedule is
found. The modulo scheduling algorithm iteratively finds a
legal schedule before giving up the current II. To determine
an order for the nodes to be scheduled, a height-based priority
function is used to define a topological sort of the nodes,
which takes into account both intra- and inter-iteration data
dependencies. The priority for each node is calculated using
the longest path from the node to the leaf node of the data
dependence graph. With this function, a node will have a
higher priority than its successors.

B. RPMS_CP_REALM Algorithm

The RPMS_CP_REALM algorithm is shown in Algo-
rithm V.1. In the input, TC is the given upper bound of sched-
ule length, and BudgetRatio denotes how many schedule
attempts we will try to get a legal schedule before giving up
the current II.

The first step is to perform the critical-path-based REALM
technique for eliminating hidden redundant load operations
along the critical path with the minimum cost. Our basic idea
is to reduce memory accesses along the critical path while
minimizing the number of registers used to eliminate them. In
our technique, each redundant load along the critical path is
associated with a cost, which is calculated using the number

Algorithm V.1 Algorithm RPMS_CP_REALM.

Require: Data Dependence Graph DD G=(V_G, E_G, d_G) of the
input loop, the timing constraint TC, BudgetRatio.
Ensure: The modulo schedule with reduced register pressure.
/I A practical critical-path-based REALM technique:
1: Find CP, a critical path of the DDG.
2: Perform REALM to detect hidden redundant load operations of
the DDG.
3: while there exists hidden redundant load operations along CP
do
4: Calculate the cost of each redundant load along CP.
5: Use REALM to replace the redundant load operation with the
minimum cost.
6: DDG = The changed Data Dependence Graph.
7: CP = Find the critical path of DDG.
8: end while
/I register-pressure-aware modulo scheduling:
9: Initialize the value of II to the Minimum Initiation Interval II :=
MII().
10: while IT < TC do
11: Budget := BudgetRatio * NumberofOperations;
12: Compute priorities for each node in DD G and put them into
the list.
13: while (the list of unscheduled operations is not empty) &
(Budget > 0) do

14: Pick up the node with highest priority and find valid time
slot for it;

15: Budget:= Budget - 1;

16: end while

17: II .= 1I+1;

18: end while

of registers required to replace it. The redundant load with
the minimum cost denotes that this load requires the least
number of registers to be replaced with. When the critical
path contains no redundant load operations, this step finishes
and the generated data dependence graph becomes the input
of modulo scheduling.

The second step is to perform the register-pressure-aware
modulo scheduling algorithm to minimize register lifetime. In
the scheduling algorithm, we order the node list and schedule
nodes using as early/late as possible schemes depending on
their previously scheduled predecessors/successors in the par-
tial schedule. The register lifetime is thus reduced compared
with the conventional top-down scheduling approach [37].
Different from the technique in [37], we first put all nodes
along the critical path of DDG into the node list with their
height-based priority, and then we put other nodes into the
list with their height-based order. When an operation is to be
scheduled, it is scheduled using different schemes depending
on its predecessors and successors in the partial schedule. If an
operation has only predecessors in the partial schedule, then
it is scheduled as early as possible (ASAP). If an operation
has only successors, then it is scheduled as late as possible
(ALAP). For other cases, we employ the same schedule
schemes as in [45]. As the critical-path-based REALM will
take at most O(N) to finish assuming that there are N load
operations, the complexity of algorithm RPMS_CP_REALM
is bounded by modulo scheduling [37].

V1. EXPERIMENTS

We have implemented our technique into the IMPACT com-
piler [2] and conducted experiments using a set of benchmarks
from DSPstone [40] and MiBench [41] on the cycle-accurate
VLIW simulator of Trimaran [38]. In this section, we first
discuss our implementation and simulation environment in
section VI-A, and then introduce our benchmark programs
in section VI-B. The experimental results and discussion are
presented in section VI-C.

A. The Implementation and Simulation Platform

Our experimental platform is shown in Figure 5. The back-
end of the IMPACT infrastructure has a machine-independent
optimization component called Lopti [46] which performs
classical optimizations. Our optimization technique is applied
on Lcode, a low-level machine-independent intermediate code.
We have implemented the REALM algorithm into IMPACT
for code generation. Major modifications are performed to
integrate our technique into the loop optimization module of
IMPACT.

Our REALM technique
Compiler

IMPACT Simulator

Lopti

REALM

Lcode

Lcode

Input program

— = | Trimaran

Fig. 5. The implementation and simulation framework.

| Parameter | Configuration

2 integer ALU, 2 floating point ALU,

2 load-store units, 1 branch unit,

5 issue slots

1 cycle for integer ALU,

1 cycle for floating point ALU,

2 cycles for load in cache,

1 cycle for store,

1 cycle for branch

32 integer registers, 32 floating point registers

TABLE I
THE CONFIGURATIONS OF TRIMARAN.

Functional Units

Instruction Latency

Register file

To compare our technique with classical optimizations [1]—
[4], we use the Trimaran [38] infrastructure as our test
platform. The configurations for the Trimaran simulator are
shown in Table II. The memory system consists of a 32K 4-
way associative instruction cache and a 32 K 4-way associative
data cache, both with 64 byte block size. In the system, there
are 32 integer registers and 32 floating point registers.

B. Benchmark Programs

To evaluate the effectiveness of our algorithm, we choose
a suite of 21 benchmarks which are the only ones with loops
and hidden redundant load operations from DSPstone [40] and
MiBench [41]. We test both the fixed-point and the floating-
point versions of benchmarks from DSPstone [40]. (Two
benchmarks, fft_stage_scaled and fft_input_scaled only

10

| Benchmark [Source [Benchmark Description || Benchmark]| Source || Benchmark Description |
Convolution DSPstone Convolution fft stage scaled || DSPstone integer stage scaling FFT
dot_product DSPstone dot product fft_input_scaled || DSPstone integer input scaled FFT
IIR DSPstone IIR filter bfencrypt Mibench blowfish encrypt
fir DSPstone finite response filter bfdecrypt Mibench blowfish decrypt
fir2dim DSPstone 2D finite response filter cjpeg Mibench JPEG compress
Ims DSPstone least mean square djpeg Mibench JPEG decompress
matrix 1#3 DSPstone matrix 1%¥3 gsmencode Mibench GSM encode
matrix DSPstone || product of two metrices gsmdecode Mibench GSM decode
matrix2 DSPstone revised matrix rawcaudio Mibench ADPCM encode
n_complex_updates DSPstone n complex updates rawdaudio Mibench ADPCM decode
n_real_updates DSPstone n real updates

TABLE III
THE BENCHMARKS.

% Dynamic load

% Dynamic load

35 35
M fixed-point [floating-point
30 30
25 25
20 20
15 15
10 10 ¢
5 5 |
0 0
3 2] s el . &] 5 = = N 1] S 2] 5
s ; 8 3 s < 5§ 3 F 8
5 5 € § F 8 % S 009 £ 3 : 1§ %
oz S 3 § % ! @ 8RR
=5 S T 3 5 3
g & -]
g = s 8§ 2
< =
(@) (b)
Fig. 6. The percentages of dynamic load operations over the total number of dynamic operations for the benchmarks from (a) DSPstone; (b) MiBench.

have the fixed-point version.) The details of benchmarks are
show in Table III.

For each benchmark, we first generate code using the
IMPACT compiler, and test the code on the simulator of
Trimaran. The percentages of the number of dynamic load
operations over the total number of dynamic operations for
benchmarks from DSPstone and MiBench are shown in Fig-
ures 6 (a) and (b), respectively. It can be observed that, a
large fraction of the dynamic operations, on average, 17.79%
and 13.86% are dynamic load operations for DSPstone and
MiBench, respectively. This shows that further memory access
optimizations are necessary for improving performance.

C. Results and Discussions

In this section, we first present the results obtained by
our REALM technique, and compare them with the baseline
scheme of the IMPACT compiler [2] in section VI-C1. Then
we compare our RPMS_CP_REALM with REALM in terms
of average performance improvement with various register
resources in section VI-C2.

1) REALM vs. Baseline: In this section, we compare our
REALM approach with the baseline scheme of IMPACT.
In the experiments, we set up the maximum number of
delays adopted to determine the code replacement pattern
as 4 to avoid big code expansion. With this constraint, for
one redundant load operation, our technique will use at most
four registers to replace it. In the following, we present and

analyze the results in terms of memory access reduction, ILP
improvement, overall performance improvement and code size
expansion.

Memory Access Reduction. The percentages of memory ac-
cess reduction for benchmarks from DSP stone and MiBench
are shown in Figures 7 (a) and (c), respectively. In Figure 7
(a), the results for fixed-point and floating-point benchmarks
from DSPstone [40] are presented in bars with different colors,
and the right-most bar "AVG.” is the average result.

Our REALM algorithm reduces memory accesses by explor-
ing hidden redundant loads with loop-carried data dependence
analysis and eliminating them with register operations. More-
over, more redundant load operations in the prologue can be
further eliminated by performing classical optimizations with
the output of our algorithm. The experimental results show
that our algorithm significantly reduces the number of memory
accesses. Compared with classical optimizations, on average,
our algorithm achieves 22.52% and 8.3% reduction for the
benchmarks from DSPstone and MiBench, respectively.

ILP Improvement. Our technique improves ILP for each
benchmark. In our experiments, ILP refers to the average num-
ber of issued operations per cycle. As shown in Figures 7(b)
and (d), on average, the results show that our technique
achieves 12.61% and 4.43% improvement for the benchmarks
from DSP stone and MiBench, respectively. The reason below
is that our technique replaces redundant load operations with
register operations. As a result, the data dependence graph is
changed and these operations can be put into the available

% Reduction

(Dynamic load) M fixed-point [floating-point

11

% Reduction
(Dynamic load)

35 35
30 30
25 25
20 20
15 15
10 10
5 57 i
0 0
- < . < . = v % 2 2 s s .
§ ¢ & S £ §f 3 3 £ § ¥ 3 ¢ 5 5§ ¥ & %F ¥ 8 8§ °8
b < I 5 s g s < 3 3 = 2 S S 2 S H] 5] <
§ 5 & § 5§ % $ 3 3 $§ g : Y § %
J 0 g S E T % % S i % & &
S k] = S S S I | 8 So = =
= = S S s s =
g I] g
g =R 8 §
=
(a) (b)
% ILP % ILP
Improvement Improvement
35 P 35 mp
M fixed-point [floating-point
30 30
25 25
20 Ml 20
15 15
10 10
. SENEN W N B N NN
0 0
- . . = v wm S .
§ 0§ % § BT oF Y OFOE OEoOYoOGYTOC S 8 F f P OYof§og ¢
T i 3 08§ 3 I % % = g § TS ¢ § 3§ <
s S5 & & = H S 5 2 2 S I N 3 2 3
5 | s =2 S s = RSIEERS s & & &
33 : : s F % S s F B
g :\ g = 2
g £
=

n_con

()

(@

Fig. 7. The reduction in the number of dynamic load operations for the benchmarks from (a) DSPstone; (b) MiBench. The improvement of

ILP for the benchmarks from (c) DSPstone; (d) MiBench.

empty slots of the multiple functional units on the VLIW
architecture. Thus, the number of executed operations per
cycle is increased.

Overall Performance Improvement. The overall perfor-
mance improvement for benchmarks from DSPstone and
MiBench are shown in Figures 8 (a) and (c), respectively. The
speedup numbers are normalized based on the result of the
original code generated by IMPACT. On average, the results
show that our algorithm achieves a speedup of 1.13 and 1.06
for benchmarks of DSPstone and MiBench, respectively.

From the results of the benchmarks in DSPstone, we can
observe that our technique leads to 13% performance improve-
ment. The percentage of dynamic memory operations over
total operations is 17.79% (shown in section VI-B), and our
technique can reduce 22.52% of dynamic memory operations.
Thus, we can get the percentage of reduction in dynamic
memory operations over total operations using the product
of the above two values, which is 4%. In the following, we
present the reasons for this 13% performance improvement
caused by only 4% reduction in memory operations. First, our
technique eliminates load operations within loops that are the
most time consuming part of DSP applications. Second, load
operations are usually on the critical path of the execution
for loop kernels of DSP applications. After performing our
algorithm, the redundant load operations across different iter-

ations are replaced by register operations with less execution
time. Thus, the data dependencies in the loop are changed
accordingly. As fewer redundant load operations remain in
the loop, more operations which depend on them previously
can be scheduled earlier in the new loop. This leads to the
reduction of the schedule length of the loop.

The results also show that the performance gain for bench-

marks in MiBench (6%) is smaller than that of DSPstone. The
reason is that we eliminate about 1% of dynamic operations
which is relatively small compared with the big code size of
benchmarks in MiBench.
Code Size Expansion. The percentages of code size expansion
for DSPstone and MiBench are shown in Figures 8 (b) and (d),
respectively. On average, the results show that our technique
leads to 1.43% and 0.77% expansion for the code size of
benchmarks in DSPstone and MiBench, respectively.

The reason of the expansion is that our technique may use
more than one register operation to replace one redundant
load operation. However, in our technique, the code size
expansion is controlled by the maximum number of delays that
determines the maximum number of register operations used
to replace one redundant load operation. In the experiment,
the maximum number of delays is set as 4. Therefore, the
code size expansion is very small. With such small code size
expansion, our technique is suitable for embedded systems.

Speedup

12

Speedup
1.25 1.25
M fixed-point [floating-point
1.2
1.15
1.1
1.05
1
A @ 5 = 2 o~ ~ & @ ~ g = = I %0 L])) 5
$§E S5 88 FESOEYoTe S 5 & & % YT YOt o
N R = S
: & g 0fF 3 0% 3 < 3 I I
5') s 2 3 S s = < 2 2 s s
S £ = S s S s |) & = N
= s S 23 5 3
3 SR ~T- ¢ §
3 =
= =
(a) (b)
% Code Size % Code Size
5 Expansi 5 Ex
M fixed-point [floating-point
4 4
3 3
2 2
1 1 I:I
0 0
5 @ 5 = 2 o ~ & @ ~ : S =) %0 S S <) :
N <] s S K] S <
£ s & £ 88 5 Py o5 s :F 0§ %
o o H = ~! & = = = 3 2] =
S S = S K s £ | 8 S0 = =
= 5 ° E\ :I ‘S| S
© s s :
N =
©) (@)
Fig. 8. Performance improvement due to the REALM algorithm for the benchmarks from (a) DSPstone; (b) MiBench. The code size expansion of the

benchmarks from (c¢) DSPstone; (d) MiBench.

2) RPMS_CP_REALM vs. REALM: In this section, we
compare the average performance speedup results achieved
by the baseline scheme of IMPACT, our REALM technique
with conventional modulo scheduling (REALM _MS) and our
RPMS_CP_REALM technique using the configurations of 16,
32 and 64 registers. The speedup numbers are normalized
based on the results of the baseline scheme in IMPACT. The
results for the benchmarks of DSPstone and MiBench are
shown in Figures 9 (a) and (b), respectively.

The results show that our REALM technique achieves big-
ger performance improvements with more register resources.
And our practical RPMS_CP_REALM technique, that com-
bines software pipelining and REALM, performs better than
using REALM as it reduces register requirements. Compared
with the REALM technique, for DSPstone, with the configu-
rations of 16, 32 and 64 registers, our RPMS_CP_REALM
technique contributes to an average of 2%, 4% and 6%
performance improvement, respectively; For MiBench, with
the configurations of 16, 32 and 64 registers, on average,
our RPMS_CP_REALM technique achieves 2%, 3% and 4%
performance improvement, respectively. Based on the exper-
imental results, we conclude that our RPMS_CP_REALM
technique is the best with limited register resources.

The reasons of the performance improvement achieved
by RPMS_CP_REALM over REALM are as follows. First,
the critical path of the loop is changed as redundant load

operations along critical path with minimum cost are replaced.
Second, with lower increment of register replace requirements
and reduced register lifetime, the extra code spilling that may
degrade performance during register allocation is alleviated.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed the machine-independent loop
optimization technique REALM to eliminate redundant load
operations of loops for DSP applications. In our approach,
we built the data-flow graph by exploiting the loop-carried
dependencies among memory operations. Based on the con-
structed graph, we performed code transformation to eliminate
redundant loads. Finally, we proposed a practical algorithm to
reduce register pressure and improve performance by com-
bining software pipelining and REALM. We implemented our
techniques into IMPACT [2] and Trimaran [38], and conducted
experiments using a set of benchmarks from DSPstone [40]
and MiBench [41] based on the cycle-accurate simulator of
Trimaran [38]. The experimental results showed that our tech-
nique significantly reduces the number of memory accesses
compared with classical optimizations [1]-[4].

There are several directions for future work. First, registers
are critical resources in embedded systems. How to combine
our techniques, instruction scheduling, and register life-time
analysis together to effectively reduce memory accesses under
tight register constraints is one of the future work. Second,

Fig. 9.

[Baseline
EREALM_MS
B RPMS_CP_REALM

AVG. Speedup

1.3
1.2
1.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

16 registers 32 registers

(a)

64 registers

DSPstone; (b) MiBench.

our techniques currently work well for DSP applications with
simple control flow. How to extend our approaches to general-
purpose applications with complicated control branches is
another important problem of the future work. Third, in
embedded systems, energy and thermal are important issues.
How to evaluate the energy consumption of our techniques,
and how to combine our techniques with efficient energy
optimization techniques are important problems we need to
investigate in the future.

(1]

[3]

[4]

[71

[8]

[9]

[10]

[11]

REFERENCES

A. Aho, M. S. Lam, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, and Tools — Second Edition. Addison-Wesley, 2007.

P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W.
Hwu, “Impact: An architectural framework for multiple-instruction-issue
processors,” in Proceedings of the 18th International Symposium on
Computer Architecture, 1991, pp. 266-275.

D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations
for high-performance computing,” ACM Computing Surveys (CSUR),
vol. 26, no. 4, pp. 345-420, 1994.

P. R. Panda, F. Catthoor, N. Dutt, K. Danckaert, E. Brockmeyer,
C. Kulkarni, A. Vandercappelle, and P. G. Kjeldsberg, “Data and mem-
ory optimization techniques for embedded systems,” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 6, no. 2,
pp. 149-206, 2001.

Y. Song, R. Xu, C. Wang, and Z. Li, “Data locality enhancement
by memory reduction,” in Proceedings of the 15th ACM International
Conference on Supercomputing. ACM Press, 2001, pp. 50-64.

Y. Ding and Z. Li, “A compiler scheme for reusing intermediate com-
putation results,” in Proceedings of the 2004 Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO’04),
2004, pp. 279-291.

L. Liu, Z. Li, and A. H. Sameh, “Analyzing memory access intensity
in parallel programs on multicore,” in Proceedings of the 22nd annual
international conference on Supercomputing, 2008, pp. 359-367.

M. Kandemir, “A compiler-based approach for improving intra-iteration
data reuse,” in Proceedings of the conference on Design, automation
and test in Europe, 2002, pp. 984-990.

I Issenin, E. Brockmeyer, M. Miranda, and N. Dutt, “Data reuse analysis
technique for software-controlled memory hierarchies,” in Proceedings
of the conference on Design, automation and test in Europe - Volume
1, 2004, pp. 202-207.

J. Yan and W. Zhang, “Exploiting virtual registers to reduce pressure on
real registers,” ACM Transactions on Architecture and Code Optimiza-
tion (TACO), vol. 4, no. 4, January 2008.

Y. Jun and W. Zhang, “Virtual registers: Reducing register pressure with-
out enlarging the register file,” in Proceedings of the 2007 International
Conference on High Performance Embedded Architectures & Compilers,
2007, pp. 57-70.

1.3

13

AVG. Speedup

1.2
1.1

09
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Average performance speedup of REALM and RPMS_CP_REALM with

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

16 registers 32 registers

(b)

64 registers

16 registers, 32 registers and 64 registers for the benchmarks from (a)

S. Leventhal, L. Yuan, N. K.Bambha, S. S.Bhattacharyya, and G. Qu,
“DSP address optimization using evolutionary algorithms,” in Proceed-
ings of the 2005 workshop on Software and compilers for embedded
systems, 2005, pp. 91-98.

M. Ko, C. Shen, and S. S. Bhattacharyya, “Memory-constrained block
processing for DSP software optimization,” Journal of Signal Processing
Systems, vol. 50, no. 2, pp. 163-177, February 2008.

P. Salmela, R. Gu, S. S. Bhattacharyya, and J. Takala, “Efficient
parallel memory organization for turbo decoders,” in Proceedings of
the European Signal Processing Conference, 2007, pp. 831-835.

R. Leupers and P. Marwedel, “Time-constrained code compaction for
DSPs,” in Proceedings of the 8th international symposium on System
synthesis, 1995, pp. 54-59.

D. Kolson, A. Nicolau, and N. Dutt, “Elimination of redundant memory
traffic in high-level synthesis,” IEEE Transactions on Computer-aided
Design, vol. 15, no. 11, pp. 1354-1363, 1996.

C. Huang, S. Ravi, A. Raghunathan, and N. K. Jha, “Generation of het-
erogeneous distributed architectures for memory-intensive applications
through high-level synthesis,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 15, no. 11, pp. 1191-1204, 2007.

K. S. Khouri, G. Lakshminarayana, and N. K. Jha, “Memory binding
for performance optimization of control-flow intensive behavioral de-
scriptions,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 13, no. 5, pp. 513-524, 2005.

C. Huang, S. Ravi, A. Raghunathan, and N. K. Jha, “Eliminating mem-
ory bottlenecks for a JPEG encoder through distributed logic-memory
architecture and computation-unit integrated memory,” in Proceedings
of the IEEE Custom Integrated Circuit Conference, Sept. 2005, pp. 239—
242.

Z. Wang, T. W. O’Neil, and E. H.-M. Sha, “Optimal loop scheduling for
hiding memory latency based on two level partitioning and prefetching,”
IEEE Transactions on Signal Processing, vol. 49, no. 11, pp. 2853-2864,
2001.

Q. Wang, N. Passos, and E. H.-M. Sha, “Optimal loop scheduling for
hiding memory latency based on two level partitioning and prefetching,”
IEEE Transactions on Circuits and Systems Il - Analog and Signal
Processing, vol. 44, no. 9, pp. 741-753, 1997.

7. Wang, E. H.-M. Sha, and Y. Wang, “Partitioning and scheduling DSP
applications with maximal memory access hiding,” EURASIP Journal
on Applied Signal Processing, vol. 2002, no. 1, January 2002.

J. Seo, T. Kim, and P. R. Panda, “Memory allocation and mapping in
high-level synthesis: An integrated approach,” IEEE Transactions on
VLSI Systems (T-VLSI), vol. 11, no. 5, pp. 928-938, October 2003.

P. R. Panda, N. Dutt, A. Nicolau, F. Catthoor, A. Vandecappelle,
E. Brockmeyer, C. Kulkarni, and E. de Greef, “Data memory organi-
zation and optimizations in application-specific systems,” IEEE Design
and Test of Computers, vol. 18, no. 3, pp. 56-68, 2001.

Y. Song and Z. Li, “Applying array contraction to a sequence of doall
loops,” in Proceedings of the 2004 International Conference on Parallel
Processing, 2004, pp. 46-53.

7. Wang, E. H.-M. Sha, and X. S. Hu, “Combined partitioning and data
padding for scheduling multiple loop nests,” in Proceedings of the 2001

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[40]

[41]

[42]

[44]

[45]

[46]

International conference on Compilers, architecture, and synthesis for
embedded systems, 2001, pp. 67-75.

R. Bodik, R. Gupta, and M. L. Soffa, “Load-resue analysis: Design
and evaluation,” in Proceedings of the ACM SIGPLAN’99 Conference
on Programming Language Design and Implementation, May 1999, pp.
64-76.

J. Xue and Q. Cai, “A lifetime optimal algorithm for speculative PRE,”
ACM Transactions on Architecture and Code Optimization, vol. 3, no. 2,
pp. 115-155, 2006.

J. Xue and J. Knoop, “A fresh look at pre as a maximum flow problem,”
in Proceedings of the 2006 International Conference on Compiler
Construction (CC’06), 2006, pp. 139-154.

Q. Cai and J. Xue, “Optimal and efficient speculation-based par-
tial redundancy elimination,” in Proceedings of the Ist Annual
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO’03), 2003, pp. 91-102.

D. Callahan, S. Carr, and K. Kennedy, “Improving register allocation
for subscripted variables,” in Proceedings of the ACM SIGPLAN’90
Conference on Programming Language Design and Implementation,
1990, pp. 53-65.

V. Sarkar and G. R. Gao, “Optimization of array accesses by collective
loop transformations,” in Proceedings of the 5th international conference
on Supercomputing, 1991, pp. 194-205.

G. R. Gao, “A maximally pipelined tridiagonal linear equation solver,”
Journal of Parallel and Distributed Computing, vol. 3, no. 2, pp. 215—
235, June 1986.

L. E. L. A. P. Brown and K. K. Parhi, “Unfolding and retiming for
high-level DSP synthesis,” in Proceedings of International Symposium
on Circuits and Systems, 1991, pp. 2351-2354.

L.-F. Chao and E. H.-M. Sha, “Scheduling data-flow graphs via retiming
and unfolding,” IEEE Transactions on Parallel and Distributed Systems,
vol. 8, no. 12, pp. 1259-1267, Dec. 1997.

S. Kurra, N. K. Singh, and P. R. Panda, “The impact of loop unrolling on
controller delay in high level synthesis,” in Proceedings of the conference
on Design, automation and test in Europe, 2007, pp. 391-396.

B. R. Rau, “Iterative modulo scheduling: an algorithm for software pipel-
ing loops,” in Proceedings of the 27th Annual International Symposium
on Microarchitecture, 1994, pp. 63-74.
The Trimaran Compiler
http://www.trimaran.org/.

The SUIF Compiler Group. SUIF: An infrastructure for research on
parallelizing and optimizing compilers. http://suif.stanford.edu.

V. Zivojnovic, J. Martinez, C. Schlager, and H. Meyr, “DSPstone:
A DSP-oriented benchmarking methodology,” in Proceedings of the
1994 International Conference on Signal Processing Applications and
Technology, 1994.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the IEEE International Workshop
on Workload Characterization, 2001, pp. 3—-14.

E. A. Lee, “Programmable DSPs: A brief overview,” IEEE Micro,
vol. 10, pp. 14-16, October 1990.

B. Steensgaard, “Points-to analysis in almost linear time,” in Proceedings
of the Symposium on Principles of Programming Languages, 1996, pp.
32-41.

R. Govindarajan, E. R. Altman, and G. R. Gao, “Minimal register re-
quirements under resource-constrained software pipelining,” in Proceed-
ings of the 27th Annual International Symposium on Microarchitecture,
1994, pp. 85-94.

J. Llosa, M. Valero, E. Ayguadé, and A. Gonzélez, “Modulo scheduling
with reduced register pressure,” IEEE Transactions on Computers,
vol. 47, no. 6, pp. 625-638, June 1998.

S. A. Mahlke, “Design and implementation of a portable global code
optimizer,” Master thesis, vol. Dept. of Computer Science, University
of Illinois, 1992.

Research Infrastructure.

PLACE
PHOTO
HERE

PLACE
PHOTO
HERE

PLACE
PHOTO
HERE

14

Meng Wang received the B.E. and M.S. degrees
in computer science from Xidian University, Xi’an,
China, in 2003 and 2006, respectively. He has been
a PhD candidate with the Department of Computing,
Hong Kong Polytechnic University, since 2006. His
research interests include embedded systems, com-
piler optimization, and real-time systems.

Zili Shao received the B.E. degree in electronic
mechanics from the University of Electronic Science
and Technology of China, Sichuan, China, in 1995,
and the M.S. and Ph.D. degrees from the Depart-
ment of Computer Science, University of Texas
at Dallas, in 2003 and 2005, respectively. He has
been an Assistant Professor with the Department
of Computing, Hong Kong Polytechnic University,
since 2005. His research interests include embedded
systems, high-level synthesis, compiler optimization,
and hardware/software co-design.

Jingling Xue received the BSc and MSc degrees in
Computer Science from Tsinghua University, China
in 1984 and 1987, respectively. He received the PhD
degree in Computer Science from Edinburgh, United
Kingdom, in 1992. He is currently a Professor in the
School of Computer Science and Engineering at the
University of New South Wales. His current research
interests include programming languages, compiler
optimizations, program analysis, high-performance
computing and embedded systems. He is a senior
member of IEEE and a member of ACM.

