
Strength Reduction for Loop-Invariant Types

Phung Hua Nguyen and Jingling Xue

Compiler Research Group
School of Computer Science and Engineering

University of New South Wales
Sydney, NSW 2032, Australia

Abstract

Types are fundamental for enforcing levels of abstrac-
tion in modern high-level programming languages
and their lower-level representations. However, some
type-related features such as dynamic method calls
and dynamic type casts can contribute substantially
to the performance of a program. Loop-invariant type
is a concept relating to an object whose dynamic type
never changes inside a loop. In this case, operations
on the type of the object may be redundant in the
loop. As these operations often cause exceptions, ex-
isting redundancy elimination techniques usually fail
to optimise them. This paper proposes a new ap-
proach to reducing the cost of two important opera-
tions on loop-invariant types: method tests and dy-
namic type checking. We demonstrate its usefulness
and benefit in IBM’s Jikes RVM, a dynamic compila-
tion system for Java.

Keywords: Loop-Invariant Type, Strength Reduction,
PRE, Type Checking, Inlining

1 Introduction

Types are fundamental for enforcing levels of ab-
straction in modern programming languages and their
lower-level representations (Morrisett, Walker, Crary
& Glew 1998). However, some type-related features
pose challenges for language implementors to remove
these abstraction boundaries to permit efficient exe-
cution. In object-oriented languages, two examples
are dynamic method dispatching and dynamic type
checking. To reduce the overhead in the former case,
the compiler typically applies a number of devirtual-
isation techniques (Calder & Grunwald 1994, Cham-
bers & Ungar 1990, Detlefs & Agesen 1999, Gold-
berg & Robson 1983, Chambers, Dean & Grove
1996, Hölzle, Chambers & Ungar 1991, Ishizaki,
Kawahito, Yasue, Komatsu & Nakatani 2000, Krasner
1983, Deutsch & Schiffman 1984, Sundaresan, Hen-
dren, Razafimahefa, Vallée-Rai, Lam, Gagnon &
Godin 2000) in tandem with inlining (Hazelwood
& Grove 2003). To reduce the cost in the latter
case, various type encoding techniques have been de-
vised (Alpern, Cocchi & Grove 2001, Krall, Vitek
& Horspool 1997). For example, IBM’s Jikes RVM
(Alpern, Attanasio, Barton, Burke, P.Cheng, Choi,
Cocchi, Fink, Grove, Hind, Hummel, Lieber, Litvi-
nov, Mergen, Ngo, Russell, Sarkar, Serrano, Shep-
herd, Smith, Sreedhar, Srinivasan, & Whaley 2000),

“Copyright (c)2004, Australian Computer Society, Inc. This
paper appeared at the 27th Australasian Computer Science
Conference, The University of Otago, Dunedin, New Zealand.
Conferences in Research and Practice in Information Technol-
ogy, Vol. 26. V. Estivill-Castro, Ed. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.”

an adaptive compilation system for Java, consists of
several devirtualisation techniques including class test
(Calder & Grunwald 1994), method test (Detlefs &
Agesen 1999) and code patching (Ishizaki et al. 2000)
for researchers to experiment with. In the class
(method) test approach, a guard test is generated to
test the receiver of the class (method) to ensure that
it is valid to execute an assumed target method. In
addition, Jikes maintains several data structures op-
erationally close to every object to facilitate dynamic
type checking required by Java’s type system.

Precise type information is invaluable for analysis
and optimisation of programs. For example, both dy-
namic method dispatching and dynamic type check-
ing benefit from class hierarchy analysis (Dean, Grove
& Chamber 1995) and type analysis (Sundaresan
et al. 2000, Bacon, Wegman & Zadeck 1996, Bacon
& Sweeney 1996). By deducing the set of plausible
dynamic (or concrete) types of an object at compile
time, the compiler can reduce the number of class
and method tests required in devirtualisation and
eliminate some redundant dynamic type checks. In
the special case when the receiver x at a call site
x.f() has been proved to have a single implemen-
tation, the callee f can be dispatched as a direct
call or directly inlined if the “closed-world” assump-
tion is made. Otherwise, in languages that embrace
dynamic class loading such as Java, only one single
class/method test is needed to guard the compile-
time “unique” implementation if it is inlined. But
the caller will be recompiled (Detlefs & Agesen 1999)
or patched (Ishizaki et al. 2000) later if the single-
implementation assumption is invalidated due to, for
example, dynamic class loading.

Obviously, it is imperative for the tests required in
devirtualisation and dynamic type checking to be ex-
ecuted as efficiently as possible, especially when they
are executed frequently. This paper proposes a new
approach to reducing the cost of these tests in a loop
in an important special case that has not been ad-
dressed before. A variable (i.e., object) in a loop is
said to have a loop-invariant dynamic (i.e., concrete)
type if the dynamic type never changes during the ex-
ecution time of the loop. In this paper, such an object
is said to have a loop-invariant type. Our proposed
compiler technique, called strength reduction for loop-
invariant types, aims at reducing the cost of the type
operations whose operands have loop-invariant types.
In this case, we will execute these operations only
once, at the first iteration of the loop and cache its
value in a new temporary. The executions of these
operations in the remaining iterations of the loop are
redundant; they will be replaced with cheaper opera-
tions that perform a test on the new temporary only.

We apply our technique to reduce the overhead of
two important operations: method tests in devirtual-
isation and dynamic type checking. Our technique is
particularly useful in a compilation system that sup-



1 public void printRec() {
2 ...
3 Enumeration i = entry.items.elements();
4 Enumeration f = fmt.elements();
5
6 while ( f.hasMoreElements() ) {
7 s = ((String)f.nextElement());
8
9 if ( s != null )
10 spec.harness.Context.out.print(s);
11 else {
12 s = (String)i.nextElement();
13 spec.harness.Context.out.println(s);
14 }
15 }
16 ...
17 }

Figure 1: An example from db in SPECjvm98 where
our strength reduction succeeds but PRE fails.

ports (a) adaptive recompilation, (b) dynamic class
loading and (c) precise exception semantics. Because
of (a), the address of an inlined method must be
loaded dynamically at run time, making a method
test more expensive than a class test. For this rea-
son and since class tests are rarely used (as Table 1
shows), we do not also optimise class tests in this
work. Because of (b), class and method tests are fre-
quently necessary, especially if a call site is known to
have more than one implementation. Because of (c),
existing partial redundancy elimination (PRE) tech-
niques (Bodik, Gupta & Soffa 1998, Knoop, Rüthing
& Steffen 1994, Cai & Xue 2003) usually fail to re-
move the partial redundancy removed by our tech-
nique. Method tests and dynamic type checks involve
potential exception instructions (PEIs). Consider a
while loop shown in Figure 1, which is contained in a
method taken from db, a program from SPECjvm98.
Some irrelevant lines indicated by the “...” have been
deleted. In line 12, i has a loop-invariant type. By
applying our technique, the type check on i will be
performed only once during the first iteration of the
while loop. PRE cannot move this operation out of
the loop since doing so may cause an exception even
though it may not be thrown in the original code.
Converting the loop into a do-while would not en-
able the desired code motion since the else branch
may or may not be executed as before. If the call site
at line 12 is inlined and guarded by method test(s),
our strength reduction technique will perform these
expensive tests only once. Again PRE fails for the
above reasons. In addition, PRE fails in both cases
because some earlier instructions are PEIs. We will
discuss this again in Section 2.1.2.

The proposed technique fills a gap between PRE,
which optimises loops but is usually ineffective in han-
dling exception-throwing operations, and the work
on call devirtualisation and dynamic type checking,
which normally does not consider loop-oriented op-
timisations. We have implemented our technique in
Jikes, which is an adaptive compilation for Java that
supports dynamic class loading and precise exception
semantics. We give the statistical evidence about the
existence of loop-invariant types in benchmark pro-
grams. We present some experimental results demon-
strating the usefulness of our technique.

The rest of this paper is organized as follows. Sec-
tion 2 introduces our strength reduction technique.
Section 3 discusses the type analysis required for iden-

R0 = <receiver object>
R1 = load(R0 + <offset-of-VMT-in-object>)
R2 = load(R1 + <offset-of-method-in-VMT>)
R3 = load(VMT of expected class 1)
R4 = load(R3 + <offset-of-method-in-VMT>)
if (R2 == R4) { // test case 1

... // inlined method 1
} else {

R3 = load(VMT of expected class 2)
R4 = load(R3 + <offset-of-method-in-VMT>)
if (R2 == R4> { // test case 2
... // inlined method 2
} else
CALL R2

}

Figure 2: Pseudo code of a method test (assuming
that there are two target implementations inlined).

tifying loop-invariant types. Section 4 presents some
experimental results. Section 5 discusses the related
work. Section 6 concludes the paper.

2 Strength Reduction for Loop-Invariant
Types

In this section, we present our compiler technique
for performing strength reduction on loop-invariant
types. We show how to reduce the overhead of two im-
portant operations on loop-invariant types: method
tests (Section 2.1) and dynamic type checking (Sec-
tion 2.2). In each case, we introduce the operation
in pseudo code, discuss Jikes’s implementation, and
finally, present our optimisation. In addition, we will
use examples to explain in detail why existing PRE
techniques fail to optimise these two cases.

2.1 Method Tests

Object-oriented languages such as Java complicate in-
lining, because methods are usually virtual. A virtual
method is defined in one class, but may be overrid-
den in subclasses of that class. The method actually
invoked at a call site depends on the dynamic type of
the receiver object.

Method test (Detlefs & Agesen 1999) is one
of many devirtualisation techniques (Calder &
Grunwald 1994, Chambers & Ungar 1990, Detlefs &
Agesen 1999, Goldberg & Robson 1983, Chambers
et al. 1996, Hölzle et al. 1991, Ishizaki et al. 2000,
Krasner 1983, Deutsch & Schiffman 1984, Sundare-
san et al. 2000) proposed to reduce the overhead of
dynamic method calls for various object-oriented lan-
guages. A method test is generated to test the target
method of a virtual call with an expected method to
ensure that it is valid to make a direct call to the ex-
pected method. Java is a statically-typed language.
The overhead of a dynamic method call is low. Thus,
the expected method is usually inlined to boost per-
formance.

Figure 2 shows the pseudo code of a method test.
Every object keeps a reference to a virtual method
table (VMT), which contains the addresses of all vir-
tual methods of the class that the object belongs to.
When a call site is inlined, the address of the VMT
of the receiver and the address of the target method
are loaded. Then, the address of the target method
is compared with that of the inlined method (i.e., ex-
pected method) to ensure that it is valid to execute
the inlined method. Note that if the address of the
inlined method can change at run time – as is the
case in dynamic recompilation, the address of the ex-
pected method must be loaded as illustrated by the



pseudo code.
In Jikes, bytecode is translated into high-level in-

termediate representation (HIR), low-level intermedi-
ate representation (LIR), machine-specific intermedi-
ate representation (MIR), and finally, machine code.
At each level, many different optimisations are ap-
plied. Inlining is applied when bytecode is translated
into HIR. Consider some method invocation x.f(),
where f has one implementation in class A, a second
implementation in class B and possibly other imple-
mentations. Figure 3 gives the HIR code for inlining
the targets A.f() and B.f() using a method test.
IG METHOD TEST, known as an inline guard, makes
sure that all targets of the receiver x are called cor-
rectly. The operands of such a method test are the
receiver, the expected method, the label for the next
test and a guard variable. From the receiver, Jikes ob-
tains the address of the invoked method and compares
it with the address of the expected method. If the test
succeeds, the inlined method is executed. Otherwise,
the next inline guard is tried. Jikes uses the guard
variable guard0 to enforce the implicit dependences
among the four guarded instructions. Thus, the null-
pointer check on x, which may potentially cause a
NullPointerException, must be performed first.

Figure 4 shows the pseudo assembly code trans-
lated from the HIR code given in Figure 3. The ma-
chine code can be understood easily once Figures 2
and 3 are. In the nomenclature of Jikes, VMT is re-
ferred to as the type information table (TIB). A ref-
erence to each TIB is kept in an array of static values
called the JikesRVM table of contents (JTOC). Note
that the null-pointer check for the object reference x
does not appear in the assembly code. The Jikes uses
a hack to force a hardware interrupt when x=null=0
since TIBOffset=-12 (Alpern et al. 2000). As Jikes
is an adaptive compilation system, the address of a
compiled method can change at run time. Hence, the
addresses of A.f and B.f must be loaded at run time
during the method tests. Note that the instruction
L R1,TIBOffset(R0) appears in lines 2, 9 and 16.
The last two can be removed by the compiler since it
is is fully redundant with respect to the first.

2.1.1 Strength Reduction

To boost performance, redundant type operations
(NULLCHECK and method tests) at a call site should be
eliminated whenever possible, especially when they
are executed in a loop. Obviously, if the dynamic
type of the receiver is invariant in a loop, all the type
operations should be executed once during the entire
execution of the loop.

Figure 5 gives our optimised version of Figure 3 for
performing a method test when the method test code
sequence is contained in a loop such that the receiver
has a loop-invariant dynamic type. (The optimised
version of Figure 4 can be obtained easily from Fig-
ures 4 and 5 and is thus omitted.) A temporary vari-
able, tmp, is initialized to 0 outside the loop. Thus,
the original tests are executed during the first itera-
tion, at which tmp will be set to the appropriate value
depending on which case is successful. In all subse-
quent iterations, tmp is guaranteed not to be 0. Thus,
the original tests are skipped. Instead, each original
method test is now replaced by a cheaper test against
tmp that memorises (i.e., caches) the result of the
tests in the first iteration.

One seemingly limitation with our technique is
that the uninlined case, CALL f, takes one more test
to execute than before. This may not be a problem
since the inlined methods are expected to be called
frequently. In addition, recall that in the unoptimised
code given in Figure 4, the two loads are required to
obtain the address of an inlined method before each

method test. In that case, the compiler may or may
not move them out of the loop depending on the avail-
ability of physical registers. In our optimised version,
these loads are guaranteed to be executed only once.
Finally, our technique also generalises well when there
are guard tests for a number of inlined methods. By
mapping all the cases to consecutive integers, we can
implement all required tests on the temporary in the
form of a binary test. If hardware supports relative in-
direct jump, we can replace all the tests more cheaply
with only one such an instruction.

In Jikes, the interface calls are implemented such
that they can be treated similarly as the virtual calls
as far as (Alpern, Cocchi, Fink, Grove & Lieber 2001)
inlining is concerned. Thus, our technique also applies
to this case.

2.1.2 Why PRE Fails?

PRE (Partial redundancy elimination) (Morel &
Renvoise 1979) removes partial redundancies along
some paths through a flow graph. It subsumes
global common subexpression elimination and loop-
invariant code motion. In order to avoid introduc-
ing additional computations on an execution path,
the classic PRE techniques (Bodik et al. 1998, Knoop
et al. 1994, Morel & Renvoise 1979) move a compu-
tation e to a point p in a flow graph only if all paths
emanating from p must evaluate e before any operand
of e is modified. This guarantees the so-called down-
safety: (a) the number of evaluations of e cannot be
larger than before, and (b) if e may throw an ex-
ception in the original code, then the same exception
may occur a bit sooner in the transformed code. PRE
must be applied so as not to change the order of PEIs,
which is disallowed in Java.

Recently, our compiler group has developed a
profile-guided PRE that solves the PRE problem op-
timally with respective to a given edge profile (Cai
& Xue 2003). However, our technique has consid-
ered only the exception-free operations as code mo-
tion candidates.

It should be clear now why the existing PRE tech-
niques usually fail to eliminate the partial redundancy
in a method test. Consider the two examples in Fig-
ure 6. In the two CFGs, B3 represents a basic block
that contains a method test, where the receiver object
x has a loop-invariant type. The null-pointer check on
the receiver x is a PEI but it is partially redundant. In
the while loop depicted in Figure 6(a), PRE will not
move the null-pointer check and associated instruc-
tions in the method test outside the loop. Because
B3 does not post-dominate the loop header B1, do-
ing so may cause an exception on the execution path
B1-B2-B4. That is, such a code motion is not down-
safe. In the do-while loop shown in Figure 6(b),
PRE will not attempt to hoist the method test(s) in
B3 across the call site in B2 since the execution of B2
may potentially throw an exception. Doing so may
change the order in which some PEIs are executed.
Finally, we recall our discussions earlier about the
PRE limitation using the example given in Figure 1.

These three examples collectively suggest that the
conventional trick used for converting while loops
into do-while loops does not usually help hoist
exception-throwing expressions out of a loop. It is
possible to try other kinds of control flow restructur-
ing. For example, one may duplicate the so-called
code-motion-preventing (CMP) regions in the CFG
to enable a complete removal of all redundancy com-
putations (Bodik et al. 1998). However, the large
increase in code size can hardly justify the benefit
obtained.



MOV R0,x // get address of receiver x
NULLCHECK guard0,R0

IG_METHOD_TEST R0,A.f(),NEXT_METHOD1,guard0
... // inlined code for A.f()

NEXT_METHOD1: IG_METHOD_TEST R0,B.f(),NEXT_METHOD2,guard0
... // inlined code for B.f()

NEXT_METHOD2: CALL f,guard0

Figure 3: HIR code of a method test in Jikes.

1 L R1,TIBOffset(R0) // get TIB address of receiver x
2 // whose address is kept in R0
3 L R2,A’sOffset(JTOC) // get TIB address of class A
4 L R2,MethodOffset(R2) // get address of method A.f()
5 CMP MethodOffset(R1),R2
6 JNE NEXT_METHOD1
7 ... // execute inlined method A.f()

8 NEXT_METHOD1:
9 L R1,TIBOffset(R0) // get TIB address from receiver

10 L R2,B’sOffset(JTOC) // get TIB address of class B
11 L R2,MethodOffset(R2) // get address of method B.f()
12 CMP MethodOFfset(R1),R2
13 JNE NEXT_METHOD2
14 ... // execute inlined method B.f()

15 NEXT_METHOD2:
16 L R1,TIBOffset(R0) // get TIB address from receiver
17 CALL MethodOffset(R1)

Figure 4: Pseudo assembly code for the HIR code given in Figure 3.

tmp = 0
loop:

...
MOV R0,x // get address of receiver x
NULLCHECK guard0,R0
if (tmp == 1)

INLINE1: ... // inlined code for A.f()
else if (tmp == 2)

INLINE2: ... // inlined code for B.f()
else if (tmp == 3)

UNINLINE: CALL f
else { // tmp == 0

IG_METHOD_TEST R0,A.f(),NEXT_METHOD1,guard0
tmp = 1
goto INLINE1

NEXT_METHOD1:
IG_METHOD_TEST R0,B.f(),NEXT_METHOD2,guard0
tmp = 2
goto INLINE2

NEXT_METHOD2:
tmp = 3
goto UNINLINE
}

...
endloop

Figure 5: Optimised code of a method test when the receiver has a loop-invariant type.



MOV R0,x
NULLCHECK guard0,R0
...

B1

B2

B3

B4

(a) while loop

CALL g ((A) a)

MOV R0,x
NULLCHECK guard0,R0
...

B1

B2

B3

B4

(b) do-while loop

Figure 6: An illustration of PRE’s failure in optimising method tests.

2.2 Dynamic Type Checking

Java is a strongly-typed programming language. Al-
most all type checking can be done at compile time
and then verified by a Java Virtual Machine when
classes are loaded. However, some runtime type
checks are required by Java’s type system. Sev-
eral Java’s dynamic type-checking bytecodes are:
checkcast (casting a value of one type to an-
other), instanceof (testing whether such a cast will
succeed), invokeinterface (dispatching a method
through an interface), aastore (storing an object in
an array) and athrow (catching an exception).

A type check verifies whether a value of one type
(RHS) can be legally assigned to a variable of another
type (LHS). If so, the RHS type is said to be a subtype
of the LHS type and the LHS type is said to be a
supertype of the RHS type.

At its HIR level, Jikes makes use
of instructions such as InstanceOf (for
instanceof), TypeCheck (for checkcast and
invokeinterface), StoreCheck (for arrays) and
some instructions for exceptions to implement
dynamic type checks. InstanceOf and TypeCheck
share the same implementation code except that
the former returns a boolean value while the latter
returns no values. The instructions for exceptions
are irrelevant since there are no redundancies to
eliminate. StoreCheck can be optimised similarly
as the remaining two cases except for the subtleties
to be discussed in Section 3. Below we discuss how
to eliminate redundant type checks specified as an
instance of the TypeCheck instruction called an
interface test.

Figure 7(a) depicts a loop that contains such an
interface test that checks to see if the class of the ob-
ject reference has implemented the specified interface.
Let I be an interface type. Consider the three oper-
ations x.f(), x instanceof I and (I)x. In each
case, the interface test is to ensure that the RHS x
has implemented the interface I. If the object refer-
ence x has a loop-invariant type, Figure 7(b) will be
the optimised version we generate. All instructions
in bold font are introduced by the optimisation. A
temporary, tmp, is initialized to 0 before the loop and
set to 1 during the first iteration, where the original
interface test is executed. In all other iterations of the
loop, the interface test has been replaced by a simple
test against the temporary tmp.

In Jikes, high-level type checking instructions
are implemented using the techniques described in
(Alpern, Cocchi & Grove 2001). Figure 8 gives the as-
sembly code for an interface test taken from (Alpern,
Cocchi & Grove 2001). Note that in our optimised
code, all these instructions will be executed only once

during the first iteration of the loop. It is irrelevant
how these instructions work except for the following
two points. First, the third, fourth and fifth instruc-
tions serve to extend the so-called implements trits ar-
ray. Whether they are needed or not for the interface
I is determined at compile time. Second, the MAYBE
handler will always return the control to the instruc-
tion immediately after each BLE MAYBE instruction.

Several other checks can be optimised similarly.
The number of instructions required depends on the
underlying type-checking bytecode, the LHS type and
RHS type. In the best case, two loads and one com-
pare are required for an equality test (Alpern, Cocchi
& Grove 2001).

For the same reasons we explained before with re-
spect to method tests (Section 2.1.2), PRE cannot
usually remove partial redundancy on dynamic type
checks.

3 Loop-Invariant Type Analysis

Recall that a variable (or object) in a loop has a
loop-invariant type if its dynamic type never changes
during the execution of the loop. Obviously, a loop-
invariant variable (as defined in the standard manner
in (Aho, Sethi & Ullman 1986, p. 639)) has a loop-
invariant type but the converse is not true. A variable
can be assigned to different objects in the loop but if
the type of these objects is the same, then the vari-
able still has a loop-invariant type. This point is il-
lustrated in Figure 9. Other cases can be constructed
along this line.

As will be explained in Figure 10, we perform all
required type analysis just before HIR is translated
to LIR. At this stage, all object references subject to
our type analysis are in symbolic registers. They can
be classified into six categories: (a) this, (b) (scalar)
local variables, (c) parameters, (d) (scalar) fields, (e)
array elements, and (f) objects returned from method
calls. Note that an object returned from a method
invocation can be either a field reference or a reference
to a temporary object created by the callee.

In Cases (a) – (c), we can find (with good accu-
racy) if a variable has a loop-invariant type or not by
using the conventional intra-procedural reaching def-
inition (or type) analysis. In the special case, this is
always loop-invariant.

In Cases (d) – (f), some inter-procedural type and
alias analysis is generally required. Fields (static or
instance) are global variables. Techniques such as im-
mutability analysis (Pechtchanski & Sarkar 2002, Po-
rat, Biberstein, Koved & Mendelson 2000) try to
prove if a field is immutable or not. Other techniques
such as rapid type analysis (Bacon et al. 1996) and



loop:
...
MUST IMPLEMENT INTERFACE ref,type,guard0

NEXT:
...

endloop

(a) An interface test inside a loop

tmp = 0

loop:
...
if (tmp == 0)

goto TYPECHECK
NEXT:

...
endloop

TYPECHECK:
MUST IMPLEMENT INTERFACE ref,type,guard0
tmp = 1
goto NEXT

(b) Optimised interface test

Figure 7: Strength reduction for an interface test when the object ref has a loop-invariant type.

L R1,TIBOffset(RHS) // get TIB address from RHS object
L R1,ImplementsTrits(R1)// get array of trits from TIB
L R2,R2,LengthOffset(R1)// get length of trits array
CMPI R2,LHSInterfaceId // can trits contain this interface?
BLE MAYBE // trits array too small => MAYBE
L R1,LHSInterfaceId(R1) // get trit for this interface
CMPI R1,1 // 1=>yes (class implements interface)
BLT NO // 0=>no
BGT MAYBE //>1=>maybe (further checking needed)

Figure 8: Assembly code for an interface test.

for (i=0; i<N; i++) {
x = new A(i);
x.f();

}

for (i=0; i<N; i++) {
if (...)
x = new A(i);

else
x = new A(i,i);

x.f();
}

Figure 9: An illustration of loop-invariant types.



variable-type analysis (Sundaresan et al. 2000) may
provide sharper analysis to detect variables that are
loop-variant but have loop-invariant types. Our tech-
nique applies directly to array elements if they are
treated as individual scalars. Consider:

1 for (i=0; i < N; i++) {
2 x = new A[N];
3 x[i].f();
4 for (j=0; j < M; j++) {
5 y[j].g();
6 }
7 }

In line 3, each element x[i] is accessed only once. So
there is no redundancy to eliminate on the method
test if the call site is inlined. In line 5, each element
y[j] is accessed N times during the outer loop i.
If this call site is inlined, the redundant method tests
can be optimised as suggested in Figure 5 except that
M different temporaries need to be introduced, one
for each element of y. This does not appear to be
practical. In fact, Jikes will probably inline a call site
in a loop whose receiver is an array element only when
all objects in the array have a common type. The call
site at line 3 is one such an example. We recommend
to apply our technique only in this case to remove
the redundant method tests among the elements of
the array x. In this case, only a single temporary
variable is required as suggested in Figure 5. Similar
subtleties exist for dynamic type checks required in
assignments such as a[i][j] = b in a loop.

4 Experiments

Jikes has two compilers: the baseline compiler and the
optimising compiler (Alpern et al. 2000). The opti-
mising compiler translates bytecode into high-level in-
termediate representation (HIR), low-level intermedi-
ate representation (LIR), machine-specific intermedi-
ate representation (MIR), and finally, machine code.
At each level, many different optimisations are ap-
plied. Figure 10 shows the implementation of our
strength reduction technique in Jikes. Our technique
is added as the third box in the pipeline. In order to
evaluate the effectiveness of our technique, we have
also modified Jikes so that code patching is replaced
by a class test and a method test whichever is appro-
priate. In general, a class test is used only when the
class that contains an inlined method is final.

We created the boot image using the FastAdap-
tiveSemiSpace configuration. Thus, the optimising
compiler (at optimisation level 2) is used to statically
compile all methods in the boot image. We ran the
(modified) Jikes optimising compiler at optimisation
level 1. Thus, the adaptive compilation is disabled.
Our objective is to measure the effectiveness of our
technique in replacing expensive type-related opera-
tions with cheaper ones.

We apply our technique just after Jikes has ap-
plied all its optimisations at the HIR level. These
optimisations include common subexpression elimina-
tion, inlining and intra-procedural flow-sensitive op-
timisations. Jikes has not implemented any inter-
procedural type analysis. In our current implemen-
tation, we conduct our loop-invariant type analysis
only on objects that are this, (scalar) local variables,
and parameters. Since Jikes performs flow-sensitive
intra-procedural type analysis, the exact type for the
receiver x in each of the two examples illustrated in
Figure 9 can be found. So each call can be replaced
with a direct call. These situations also carry over
into dynamic type checks. Therefore, we have reduced
our loop-invariant type analysis to the conventional
loop-invariant analysis. Tables 1 and 2 present the

(conservative) evidence about the existence of loop-
invariant types in the SPECjvm98 benchmark suite.
Table 1 gives the static number of call sites and type
checks while Table 2 highlights their dynamic execu-
tion counts. (Interestingly, there are a lot of unin-
lined call sites with loop-invariant types.) We expect
to see more optimisation opportunities if some inter-
procedural type and alias analysis is available.

Table 3 demonstrates the effectiveness of our tech-
nique in reducing the “strength” of expensive oper-
ations on loop-invariant types. Columns 2 – 4 are
for method tests while Columns 5 – 7 are for dy-
namic checks. Figure 11 duplicates Columns 4 and 7
in graphic form. In Column 2 (named “Before”), we
list the total number of method tests contained inside
the loops. In Column 3 (named “After”), we give
the number of remaining such tests after our tech-
nique has been applied. In Column 4, we show the
percentage of reduced tests in each benchmark. The
percentages for db and mpeg are 94% and 96%, re-
spectively. In the case of compress, there is only one
loop-invariant type inside a loop with a single itera-
tion. Thus, our technique is not beneficial here. For
javac, there are a lot of loops with small iterations.
Despite of this, the percentage reduction is still 7%.
The data for dynamic checks given in Columns 5 –
7 for dynamic checks can be understood in a similar
manner. In particular, the percentage reductions for
mpeg and compress are 61% and 64%, respectively.

5 Related Work

This work overlaps with the prior work on PRE, call
devirtualisations, dynamic type checking and type
analysis.

PRE. PRE (Bodik et al. 1998, Knoop et al. 1994, Cai
& Xue 2003, Morel & Renvoise 1979) is a pow-
erful transformation for removing partial redun-
dancies in computations on a path in a program’s
CFG. It has been primarily applied to eliminate
redundant arithmetic operations and loads. As
we discussed earlier in Sections 1 and 2.1.2, PRE
cannot hoist a PEI out of a loop unless it post-
dominates the header of the loop and doing so
does not change the order in which all excep-
tions are thrown. Thus, converting while loops
to do-while loops can only allow a limited num-
ber of PEIs to be hoisted outside a loop.

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
g

e 
R

ed
u

ct
io

n
 (

%
)

T
es

ts

C
he

ck
s

T
es

ts

C
he

ck
s

T
es

ts

C
he

ck
s

T
es

ts

C
he

ck
s

T
es

ts

C
he

ck
s

T
es

ts

C
he

ck
s

T
es

ts

C
he

ck
s

compress jess db mpeg. mtrt jack javac

Figure 11: Columns 4 and 7 of Table 3.

Call Devirtualisation. A number of techniques
have been invented in order to dispatch a virtual
call efficiently, including Smalltalk-80’s global
cache (Goldberg & Robson 1983, Krasner 1983),
monomorphic inline cache (Deutsch & Schiffman
1984), polymorphic inline cache (Hölzle et al.



B
Y
T

E
C
O

D
E

T
O

H
IR

S
T

R
E
N

G
T

H
R
E
D

U
C
T

IO
N

O
P
T

IM
IS

A
T

IO
N

O
F

H
IR

H
IR

T
O

L
IR

O
P
T

IM
IS

A
T

IO
N

O
F

L
IR

L
IR

T
O

M
IR

O
P
T

IM
IS

A
T

IO
N

O
F

M
IR

F
IN

A
L

A
S
S
E
M

B
L
Y

B
IN

A
R
Y

C
O

D
E

Figure 10: A framework for performing strength reduction in Jikes.

Benchmark Uninlined Call Sites Class Tests Method Tests Dynamic Checks

compress
OutLoop 2223 1 208 51
LoopVar 470 0 81 10
LoopInv 60 0 1 4

jess
OutLoop 3645 1 379 175
LoopVar 853 0 149 61
LoopInv 184 0 46 7

db
OutLoop 2404 1 261 52
LoopVar 552 0 112 24
LoopInv 98 0 2 18

mpegaudio
OutLoop 2630 6 224 64
LoopVar 498 0 82 10
LoopInv 72 1 2 5

mtrt
OutLoop 2506 1 717 51
LoopVar 524 0 163 16
LoopInv 98 0 27 4

jack
OutLoop 4590 7 797 129
LoopVar 1070 0 137 107
LoopInv 255 0 24 60

javac
OutLoop 5946 3 537 316
LoopVar 945 0 99 126
LoopInv 492 0 75 63

Table 1: Static counts of call sites and dynamic type checks obtained for objects that are this, locals and
parameters in the strength reduction pass shown in Figure 10. OutLoop gives the number of a measured
category outside a loop. LoopVar (LoopInv) quantifies loop-variant(-invariant) types, resp.. By combining the
3rd and 4th columns, we obtain “Inlined Call Sites” inside loops.

Benchmark Uninlined Calls Class Tests Method Tests Dynamic Checks
OutLoop 7457 27 561 199

compress LoopVar 451 0 51 44
LoopInv 19726404 0 1 90
OutLoop 12481109 153 2155003 9988762

jess LoopVar 15805547 0 1232641 4346221
LoopInv 4530442 0 5384768 51
OutLoop 56115 18 5808774 136

db LoopVar 67802248 0 824 53204281
LoopInv 28952 0 15333 14923908
OutLoop 15635547 96051 2020906 143147

mpegaudio LoopVar 9346678 0 8877 20
LoopInv 9392989 1 999385 42
OutLoop 13746301 40 223483108 290

mtrt LoopVar 7214491 0 14558714 1699226
LoopInv 1001697 0 3275285 44
OutLoop 6313916 497487 459770 2115415

jack LoopVar 6123017 0 3623573 3670085
LoopInv 2814698 0 1271958 2751762
OutLoop 29364184 1044 2648809 3888563

javac LoopVar 14310164 0 451644 2096883
LoopInv 5226740 0 558977 3370808

Table 2: Dynamic execution counts of the same categories in Table 1.



Benchmark Method Tests Dynamic Checks
Before After Reduce (%) Before After Reduce (%)

compress 52 52 0 134 48 64
jess 6617409 2582358 60 4346271 4346233 0
db 16157 826 94 68128189 57560119 15
mpegaudio 1008263 40123 96 62 24 61
mtrt 17833999 14999335 15 1699270 1699230 0
jack 4895531 3970374 18 6421847 5389520 16
javac 1010621 937849 7 5467691 2214247 59

Table 3: Strength reduction for method tests and dynamic checks in loops.

1991), class test (Calder & Grunwald 1994),
method test (Detlefs & Agesen 1999), code
patching (Ishizaki et al. 2000), and loop splitting
(Chambers & Ungar 1990, Chambers et al. 1996).

The monomorphic inline cache approach
(Deutsch & Schiffman 1984) is very effective at
a monomorphic call site and even at a call site
whose receiver has a loop-invariant type. How-
ever, the technique is based on self-modification
and is not applicable to multi-threaded lan-
guages like Java. In the case of polymorphic
inline cache (Hölzle et al. 1991), a call site is
modified so that a dynamically generated stub
is invoked first. This routine will execute class
tests to see if the receiver class matches one
of the classes seen previously. If it succeeds,
the assumed method is executed. If it fails,
the method lookup is performed to obtain the
address of the invoked method and add one more
class test to the stub routine. As compared to
these caching techniques, our approach exploits
loop-invariant types statically to reduce the cost
of the required tests.

Direct inlining (Detlefs & Agesen 1999) and code
patching (Ishizaki et al. 2000) inline a call site
without a guard test provided there is only a sin-
gle implementation of the callee at the time when
the caller is compiled. If the assumption becomes
invalid due to dynamic class loading, the caller
will be recompiled or patched so that the call site
may be inlined with a guard test. Our approach
is complementary to these techniques in that it
can be called upon whenever a call site, which is
loop-invariant, becomes polymorphic.

Loop splitting (Chambers et al. 1996, Chambers
& Ungar 1990) restructures the control flow to
move all guard tests out of a loop at the cost
of exponential code explosion. In addition, the
technique is not effective if the call site does not
post-dominate the header of the loop.

Dynamic Type Checking. We only mention some
type encoding techniques devised (Alpern, Coc-
chi & Grove 2001, Krall et al. 1997). Our tech-
nique complements these techniques to avoid re-
dundant checks.

Type Analysis. Type analysis helps reduce the set
of dynamic types of an object. In the extreme
case when the set is a singleton, the guard tests
are unnecessary. Class hierarchy analysis (CHA)
(Dean et al. 1995) uses the statically declared
types of variables and the class hierarchy of the
program to determine the set of possible dynamic
types of an object. Rapid type analysis (Bacon
& Sweeney 1996, Bacon et al. 1996) offers more
accurate results by combining CHA and the in-
formation about instantiated classes in the pro-
gram. Variable-type and declared-type analysis

techniques (Sundaresan et al. 2000) make the re-
sults even more precise by propagating the infor-
mation about class instantiation and type dec-
laration, respectively, through implicit and ex-
plicit assignments. Other more powerful but also
more expensive type analysis techniques also ex-
ist (DeFouw, Grove & Chambers 1998, Lenart,
Sadler & Gupta 2000).

6 Conclusion

In this paper, we present a new compiler optimisation
technique, called strength reduction for loop-invariant
types, for eliminating redundant type-related opera-
tions in loops. We describe its application to two
important operations in object-oriented languages:
method tests employed in devirtualisation and dy-
namic type checking. Our technique fills a gap be-
tween partial redundancy elimination (PRE), which
is usually limited to optimising exception-free oper-
ations, and the work on devirtualisation and type
checking, which does not normally address the issue
of loop-oriented optimisations.

We have implemented our technique in Jikes,
a state-of-the-art adaptive compilation system for
Java that supports dynamic class loading and pre-
cise exception semantics. Our statistics gathered on
SPECjvm98 show convincingly the existence of loop-
invariant types even after Jikes’s optimising com-
piler has applied its extensive optimisations at the
HIR level. Our experimental results on SPECjvm98
demonstrate the effectiveness of our technique in re-
placing expensive operations on loop-invariant types
with cheaper ones.

References

Aho, A. V., Sethi, R. & Ullman, J. D. (1986), Compil-
ers: Principles, Techniques and Tools, Addison-
Wesley.

Alpern, B., Attanasio, C. R., Barton, J. J., Burke,
M. G., P.Cheng, Choi, J.-D., Cocchi, A., Fink,
S. J., Grove, D., Hind, M., Hummel, S. F.,
Lieber, D., Litvinov, V., Mergen, M. F., Ngo, T.,
Russell, J. R., Sarkar, V., Serrano, M. J., Shep-
herd, J. C., Smith, S. E., Sreedhar, V. C., Srini-
vasan, H., & Whaley, J. (2000), ‘The Jalapeño
virtual machine’, IBM System Journal 39(1).

Alpern, B., Cocchi, A., Fink, S., Grove, D. & Lieber,
D. (2001), Efficient implementation of Java in-
terfaces: Invokeinterface considered harmless, in
‘16th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and
Applications’, pp. 108–124.

Alpern, B., Cocchi, A. & Grove, D. (2001), Dynamic
type checking in Jalapeño, in ‘USENIX Java Vir-
tual Machine Research and Technology Sympo-
sium’.



Bacon, D. F. & Sweeney, P. F. (1996), Fast static
analysis of C++ virtual function calls, in ‘11th
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages and Applica-
tions’, SIGPLAN Notices, ACM Press, pp. 324–
341.

Bacon, D. F., Wegman, M. & Zadeck, K. (1996),
Rapid type analysis for C++, Technical report,
IBM Thomas J.Watson Research Center.

Bodik, R., Gupta, R. & Soffa, M. L. (1998), Complete
removal of redundant computations, in ‘ACM
SIGPLAN’ 98 Conference on Programming Lan-
guage Design and Implementation’, pp. 1–14.

Cai, Q. & Xue, J. (2003), Optimal and efficient
speculation-based partial redundancy elimina-
tion, in ‘1st IEEE/ACM International Sympo-
sium on Code Generation and Optimization’.

Calder, B. & Grunwald, D. (1994), Reducing indi-
rect function call overhead in C++ programs, in
‘21st Annual ACM Symposium on Principles of
Programming Languages’, pp. 397–408.

Chambers, C., Dean, J. & Grove, D. (1996), Whole-
program optimization of object-oriented lan-
guages, Technical Report TR-96-06-02, Univer-
sity of Washington, Seattle, Washington 98195-
2350 USA.

Chambers, C. & Ungar, D. (1990), Iterative type
analysis and extended message splitting: Op-
timizing dynamically-typed object-oriented pro-
grams, in ‘ACM SIGPLAN ’90 Conference on
Programming Language Design and Implemen-
tation’, pp. 150–164.

Dean, J., Grove, D. & Chamber, C. (1995), Optimiza-
tion of object-oriented programs using static
class hierarchy analysis, in ‘5th European Con-
ference on Object-Oriented Programming’, Vol.
952, Springer, pp. 77–101.

DeFouw, G., Grove, D. & Chambers, C. (1998), Fast
interprocedural class analysis, in ‘25th Annual
ACM Symposium on Principles of Programming
Languages’, San Diego, CA, pp. 222–236.

Detlefs, D. & Agesen, O. (1999), Inlining of vir-
tual methods, in ‘13th European Conference on
Object-Oriented Programming’, pp. 258–278.

Deutsch, L. & Schiffman, A. (1984), Efficient imple-
mentation of the Smalltalk-80 system, in ‘11th
Annual ACM Symposium on Principles of Pro-
gramming Languages’, Salt Lake City, Utah,
United States.

Goldberg, A. & Robson, D. (1983), Smalltalk-80:
The Language and its Implementation, Addison-
Wesley.

Hazelwood, K. & Grove, D. (2003), Adaptive online
context-sensitive inlining, in ‘1st IEEE/ACM In-
ternational Symposium on Code Generation and
Optimization’, San Francisco, California.

Hölzle, U., Chambers, C. & Ungar, D. (1991),
Optimizing dynamically-typed object-oriented
languages with polymorphic inline caches, in
‘ECOOP’91 European Conference on Object-
Oriented Programming’, Springer Verlag Lecture
Notes in Computer Science 512, Springer-Verlag,
Geneva.

Ishizaki, K., Kawahito, M., Yasue, T., Komatsu, H.
& Nakatani, T. (2000), A study of devirtualiza-
tion techniques for a Java just-in-time compiler,
in ‘15th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and
Applications’, pp. 294–310.

Knoop, J., Rüthing, O. & Steffen, B. (1994), ‘Optimal
code motion: Theory and practice’, ACM Trans-
actions on Programming Languages and Systems
16(4), 1117–1155.

Krall, A., Vitek, J. & Horspool, N. (1997), Near opti-
mal hierarchical encoding of types, in ‘11th Eu-
ropean Conference on Object-Oriented Program-
ming’, Springer, Finland, pp. 128–145.

Krasner, G. (1983), Smalltalk-80: Bits of History,
Words of Advice, Addison-Wesley.

Lenart, A., Sadler, C. & Gupta, S. K. S. (2000), SSA-
based flow-sensitive type analysis: Combining
constant and type propagation, in ‘2000 ACM
Symposium on Applied computing’, pp. 813–
817.

Morel, E. & Renvoise, C. (1979), ‘Global optimization
by suppression of partial redundancies’, Commu-
nications of the ACM 22(2), 96–103.

Morrisett, G., Walker, D., Crary, K. & Glew,
N. (1998), From system F to typed assem-
bly language, in ‘25th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages’,
pp. 85–97.

Pechtchanski, I. & Sarkar, V. (2002), Immutability
specification and its applications, in ‘Joint ACM
Java Grande -ISCOPE 2002 Conference’, Seatle,
Washington, USA.

Porat, S., Biberstein, M., Koved, L. & Mendelson, B.
(2000), Automatic detection of immutable fields
in Java, in ‘Proceedings of CASCON 2000’.

Sundaresan, V., Hendren, L., Razafimahefa, C.,
Vallée-Rai, R., Lam, P., Gagnon, E. & Godin,
C. (2000), Practical virtual method call resolu-
tion for Java, in ‘15th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Sys-
tems, Languages and Applications’, pp. 264–280.


