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Abstract

We introduce a new approach to computing interproce-
dural modification side effects for Java programs in the
presence of dynamic class loading. When compile-time
unknown classes can be loaded dynamically, the points-
to and modification sets computed statically based on the
analysed program, called internal world, may be incom-
plete. Thus, the modification side effects cannot be deter-
mined based on such sets alone. We present a technique,
called internal analysis (IA), to classify the references, ob-
jects and call sites in the analysed program so that we can
determine which points-to and modification sets are defi-
nitely complete and which may be not. By combining the
points-to sets and this classification, we obtain a new IA-
based interprocedural side-effect analysis for determining
the modification side-effects of any statement on any vari-
able with good accuracy. We have implemented our al-
gorithms in Soot. This paper demonstrates two impor-
tant applications of this work: partial redundancy elimi-
nation (PRE) and copy propagation for field accesses. We
report significantly increased opportunities in perform-
ing these optimisations over benchmarks when compared
with a recently proposed technique in these areas. Our
techniques are simple since they are flow-insensitive and
achieve these improvements at small analysis costs.

1 Introduction

Interprocedural side-effect analysis is an important tech-
nique because the information it provides can improve the
precision of many analysis techniques such as dependence
analysis and liveness analysis. In addition, many com-
piler optimisation techniques rely directly or indirectly on
side-effect analysis when optimising a program. These
techniques are PRE, copy/constant propagation, redun-
dant load elimination, null pointer check elimination, ar-
ray bound check elimination, instruction scheduling, to
name just a few. Finally, side-effect analysis also plays
an important role in software engineering. One recent ex-
ample is its adaptation to support generation of summaries
of environment behaviour (Tkachuk & Dwyer 2003).

Dynamic class loading, which is an integral part of
object-oriented languages such as Java and C#, presents
challenges to side-effect analysis. The call graph of
the program may be incomplete when some dynamically
loaded classes cannot be determined statically. When
computed based only on the compile-time known classes
in the program, the points-to and modification sets may be
incomplete (i.e., do not contain all possible objects found
when more dynamically loaded classes become statically
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available). Thus, the modification side effects of a state-
ment (assignment or call site) cannot be determined based
on such sets alone. Consider a Java program given in Fig-
ure 1(a). In lines 6 and 7, an object of a compile-time un-
known class is created and assigned to y. This class may
be a subclass of class B containing an overriding method
foo to replace B’s implementation. As a result, the in-
vocation in line 13 with y as the receiver may call this
unknown overriding method foo. By using the points-to
sets computed based on A and B only, we cannot deter-
mine the modification set of this call site, i.e., whether the
call site may modify the five objects created in lines 5 – 6
and 8 – 10.

Some approaches solve this problem by making the
conservative assumption that a method invocation may
modify any object (Hosking, Nystrom, Whitlock, Cutts
& Diwan 2001, Vallée-Rai, Hendren, Sundaresan, Lam,
Gagnon & Co 1999). The modification side effects of
other kinds of statements are also approximated accord-
ingly. As a result, the constant z in line 12 cannot be prop-
agated across the call site in line 13, implying that the pos-
sibly redundant load x.f in line 14 cannot be eliminated.
Other approaches expect the whole program to be avail-
able during the analysis (Razafimahefa 1999, Milanova,
Rountev & Ryder 2002, Clausen 1997, Lhoták 2003). In
order for the statement in line 6 to be analysed, the set
of classes that may be dynamically loaded here must be
explicitly specified (by the user). As a result, all points-
to sets are complete and side-effect analysis can be car-
ried out based on these sets in the normal manner. Sup-
pose that the user indicates that the set just includes B.
These approaches would conclude that x.f in line 12 is
not modified by the call in line 13. Thus, the load in line
14 can be eliminated and replaced with the constant value
z propagated from line 12. However, these optimisations
may be incorrect if a new subclass of class B is loaded in
line 6 at run time.

We introduce a new approach to computing interpro-
cedural modification side effects for Java programs in the
presence of dynamic class loading. The compile-time
known classes in the analysed program form the so-called
internal world. The points-to analysis is first applied to the
internal world as if it were a whole-program. A new tech-
nique, called internal analysis (IA), is then applied to the
internal world to classify all references, objects and call
sites so that we can determine which points-to sets and
modification sets are definitely complete and which may
be not. By combining the points-to sets and this classifica-
tion, we obtain a new IA-based interprocedural side-effect
analysis for determining the modification side-effects of
any statement on any variable with good accuracy.

Consider the program given in Figure 1(a). Figure 1(b)
shows its pointer assignment graph (PAG) (Lhoták &
Hendren 2003), where each node represents either a refer-
ence or a compile-time object identified by its line number.
Let us assume that the internal-world consists of classes A
and B only. Suppose we want to find out if the load x.f
in line 14 can be replaced with the constant z propagated
from line 12. The points-to sets for all references can be
obtained by a visual inspection of the PAG. By performing
the side-effect analysis based on these points-to sets alone,



1 public class A {
2 A f;
3 static B h ;
4 public static void foo1() {
5 A x = new A();
6 Object o = new Unknown();
7 B y = (B) o;
8 A z = new A();
9 B t = new B();

10 B s = new B();
11 A.h = s;
12 x.f = z;
13 y = y.foo(x);
14 A a = x.f;
15 y = t.foo(z);
16 d = x.f;
17 }
18 }
19 public class B extends A{
20 public B foo( A p ) {
21 B t = A.h;
22 t.f = p;
23 return t;
24 }
25 }
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Figure 1: A running example program.

we would conclude that the call in line 13 does not mod-
ify x.f. Thus, the load in line 14 can be eliminated by
copy/constant propagation. To account for an unknown
class that may be loaded in line 6, our internal analysis
classifies all references and objects as shown in the PAG.
This classification tells us that while the points-to set of x
is definitely complete but the modification set of the call
site in line 13 may be incomplete. In addition, the mod-
ification set may contain an object in the points-to set of
x. Thus, the call site may modify x.f, implying that the
load operation in line 14 cannot be safely optimised away.
Similarly, the partially redundant x.f in line 16 with re-
spect to x.f in line 14 cannot be removed safely.

We have implemented our algorithms in Soot, an op-
timising compiler for Java. We demonstrate two impor-
tant applications of this work: PRE and copy propagation
for field accesses. Both optimisations are guided by our
IA-based interprocedural side-effect analysis. We present
our experimental results over four benchmarks from
SPECjvm98 and five other benchmarks. We compare
our work against a recently proposed algorithm which
combines PRE and type-based alias analysis (TBAA)
(Hosking et al. 2001). In comparison with this algorithm,
we eliminate between 0% to 108.0% redundant field ac-
cesses and between 0% to 52.9% redundant loads for copy
propagation. Our analyses are flow-insensitive. These
benefits are obtained at reasonably small analysis costs.

The rest of this paper is organised as follows. Section 2
introduces some background information. Section 3 dis-
cusses our internal analysis. Section 4 describes our IA-
based side-effect analysis. Section 5 presents our exper-
imental results over benchmarks. Section 6 reviews the
related work. Section 7 concludes the paper.

2 Background

By class we mean a class or interface in Java. The
term virtual call means either an invokevirtual or
invokeinterface. The term static call means either
an invokespecial or invokestatic call.

Our approach to conducting side-effect analysis and
optimisation has four steps. First, the points-to sets are

computed for the analysed program by using an Andersen-
style points-to analysis for Java (Lhoták & Hendren 2003).
Second, our internal analysis classifies all references, ob-
jects and call sites in the analysed program so that we can
find out the references with definitely complete points-
to sets and the call sites where all target methods can be
definitely resolved when dynamic class loading is permit-
ted. Third, the modification side effects of a statement are
found by combining the results from the points-to analy-
sis and internal analysis. Finally, some optimisations are
performed on the analysed program.

Section 2.1 defines precisely the class of internal-world
programs to which our approach is applicable. Section 2.2
describes the intermediate representation used for a pro-
gram. Section 2.3 discusses our equivalent representa-
tion of a program using a pointer assignment graph (PAG).
Section 2.4 makes precise the points-to analysis done on
the PAG. Section 2.5 gives a classification of the refer-
ences, objects and call sites in the PAG.

2.1 Internal World

It is probably meaningless trying to analyse all arbitrary,
incomplete Java program. Let us define precisely the class
of programs that can be handled by this work.

Definition 1 Let C be the set of classes, M the
set of the methods in C, F the set of fields de-
clared in C. We define the analysed program, i.e.
the internal world denoted by IW , as a three-tuple:

IW = 〈C, M, F〉
such that (1) all classes in C except the root class (i.e.,
java.lang.Object) have all their superclasses in C,
(2) there is not a reference appeared in M with a type not
in C, (3) there is not a read/write to a field not in F, and
finally, (4) there is not an access (i.e., a call) to a method
not in M.

During the execution of an analysed program, a class
can be loaded dynamically by using a class loader or
Class.forName(). A dynamically loaded class may



Stat. Semantics Syntax
S1 object creation v = new cl()
S2 copy v = `
S3 static load v = cl.f
S4 static store cl.f = v

S5 instance load v = `.f
S6 instance store `.f = v
S7 virtual call site v = `0.op(`1, . . . , `k)
S8 static call site v = cl.op(`1, . . . , `k)

Figure 2: Statements (i.e., instructions) in intermediate
representation.

be any class in C or a subclass of any class in C. In ad-
dition, some methods in M can be native or requested
explicitly by the user not to be involved in static analysis.

Definition 2 A class is internal if it is in C and external
otherwise.

Definition 3 A method is internal if (1) it is a method in
M, (2) it is indicated (by the user) to participate in static
analysis and (3) it is a Java method (i.e. its bytecode in-
structions are fully available). Otherwise, it is external.

2.2 Intermediate Representation

The three-address intermediate representation we use con-
sists of the eight different kinds of statements (i.e., in-
structions) listed in Figure 2. For efficiency reasons,
our internal analysis is flow-insensitive. Thus, the
flow control statements in the program are irrelevant to
our analysis and are ignored. Every Java program is
transformed into such a representation. Every expres-
sion of the form o.newInstance() in a program
is transformed into new cl() if o.newInstance()
is detected statically to be an object of class in C.
Otherwise, o.newInstance() is replaced with new
Unknown(), where Unknown denotes a class that is not
statically known to be in C.

Accesses to multi-dimensional arrays are represented
in the standard manner by accesses to one-dimensional ar-
rays (with the introduction of temporaries). In this work,
a one-dimensional array is interpreted as a single, mono-
lithic object. By introducing a special field, say, sf, all ar-
ray accesses can be represented as instance field accesses.
We do not distinguish accesses to different components of
an array. For example, a[i] and a[j] are represented by
only a.sf. Therefore, as far as our analysis is concerned,
array accesses are expressed in the forms of S5 and S6

given in Figure 2.
By a field access we mean either a static field access or

an instance field access. Let V be the set of local variables
(including this and temporaries) and parameters. Every
instance field can always be expressed in the form of `.f ,
where ` ∈ V is the base and f is an instance field variable.
A static field is of the form cl.f , where the class name cl
is the base and f is a static field variable in that class.

For simplicity, the fields in distinct classes are assumed
to have distinct names. In addition, every method is as-
sumed to return a value assigned to v. If its return type
is void, v is simply considered as a pseudo variable. As
a standard transformation, every method is transformed to
possess a unique return statement of the form return r,
where r ∈ V is called a return variable. Such a statement
does not appear in Figure 2. During the construction of
the PAG for the program (see Section 2.3), the semantics
of a return statement in the callee op is realised as an as-
signment from r to v in the standard manner. Finally, `0

in S7 is called the receiver expression at that call site.
Other language features of Java such as exception, in-

ner class and reflection are all deal with similarly.

Stat. Syntax Edge
S1 v = new cl() Allocation : (v ← new cl())

S2,S3,S4 v = ` Assignment : (v ← `)
S5 v = `.f Load : (v ← `.f)
S6 `.f = v Store : (`.f ← v)

Figure 3: The four types of PAG edges

2.3 Pointer Assignment Graph

The pointer assignment graph (PAG) for a program, with
its statements drawn from Figure 2, is a digraph which
is a graph representation of the program. Nodes in the
graph represents variables, parameters, field accesses and
allocation sites. Edges in the graph represents object cre-
ation, assignment, load, store statements as well as pa-
rameter passing. Figure 3 presents the four types of edges
in the graph. We refer to (Lhoták & Hendren 2003) for
details. One example is given in Figure 1, where an allo-
cation node represents a compile-time object identified by
its line number.

The call graph of the internal world program is built
in the usual manner except that all possible target meth-
ods contained in the internal classes must be included
if they may ever be invoked at a call site. By Defini-
tion 1, these target methods can be found using, for ex-
ample, the class hierarchy analysis (CHA) (Dean, Grove
& Chamber 1995). The main reason for building the call
graph this way is that all possible methods called at a call
site must be examined in order to classify correctly all ref-
erences and objects in the internal world.

The PAG for a program is constructed as follows:

1. The PAGs for all internal methods in the analysed
program are built individually.

2. For every call site in the PAG of every internal
method, we connect this PAG with the PAGs of the
internal methods invokable at the call site as indi-
cated in the call graph. The node x representing an
argument at the call site is linked to the node y repre-
senting the corresponding parameter of a callee by an
assignment edge (y ← x). The node r representing
the return variable of a callee is linked to the node v
representing the LHS of the call statement at the call
site by an assignment edge (v ← r).

2.4 Points-to Analysis

Let O be the set of all compile-time objects created in the
analysed program. The points-to set of a reference v found
on the PAG of the program is:

PTS(v) = {o ∈ O | v may point to o}

Definition 4 Let P be the PAG of a program. Let P ′ be
the PAG of the same program when some external meth-
ods invoked at some call sites become internal, implying
that P is a subgraph of P ′. A points-to or modification set
computed based on P is said to be complete if it remains
unchanged when computed based on every possible P ′.
Otherwise, it is incomplete.

We classify the references, objects and call sites in the
analysed program in order to determine which points-to
sets and modification sets are definitely complete or not.

2.5 Classification of References, Objects and Call
sites

Definition 5 An object may be externally reachable if the
object may be pointed to by a reference in an external
method or by a field of an externally reachable object.



Definition 6 An object is external if it is created in an
external method. An object which is created in an internal
method is











type-unknown if its runtime type is not statically
determined,

semi-internal elif it is externally reachable,
internal otherwise.

A type-unknown object is created by
java.lang.class.newInstance() or java.
lang.reflect.Constructor.newInstance().
Such an object may be externally reachable since its
compile-time unknown constructor may make it so.

Therefore, semi-internal, type-unknown and external
objects are externally reachable objects. But internal ob-
jects are reachable only within internal methods.

An externally reachable object can be manipulated by
an external method as if the object were external. There-
fore, we make a worst-case assumption that a reference
that may point to an external object may also point to any
externally reachable object.

Definition 7 A reference is










external if it may point to an external object
type-unknown elif it may point to a type-unknown object
semi-internal elif it may point to a semi-internal object
internal otherwise

As an external object does not appear in the resolution
of the points-to analysis in IW , an external reference may
have an incomplete points-to set. However, a reference
falling in the other three categories definitely has a com-
plete points-to set. Following from the above assumption,
we state that an external reference may be an alias of an-
other external, type-unknown or semi-internal reference,
i.e. they may point to the same object.

Definition 8 A call site is internal if all the target methods
that may be invoked at that call site are internal methods
and external otherwise.

As the code of an external method is unknown, we
make another conservative assumption that an external
call site may modify any externally reachable object.

The next section describes the analysis technique to
classify references, objects and call sites.

3 Internal Analysis

The internal analysis is a data-flow problem for classifying
all references and objects in the internal world. The semi-
lattice used is (L,u), where L = {>, I, S, U,⊥}. The five
lattice values,>, I, S, U,⊥, represent the uninitialised, in-
ternal, semi-internal, type-unknown and external states,
respectively. They are ordered as ⊥ @ U @ S @ I @ >.
The meet operator u is defined as follows: > u e = e,
⊥ue = ⊥, U uS = U , U u I = U and Su I = S, where
e ∈ L.

As discussed in Section 2.5, type-unknown objects are
externally reachable. Following from the Java language
specification, an object created in an internal method as an
instance of an internal class becomes externally reachable
only if it is

C1. pointed to by a non-private static reference field ,

C2. pointed to by a private static reference field in a class
with at least one external method,

C3. returned by a non-private internal method,

C4. returned by a private internal method in a class with
at least one external method,

C5. pointed to by an instance field of an externally reach-
able object,

C6. pointed to by an argument of an external call site.

Let us explain these rules. For Rules C1 and C2, an
external method can make a reference point to the object
via a static field. For Rules C3 and C4, an internal method
may be invoked at a call site in an external method. There-
fore, the object returned by the internal method may be
pointed by the reference which receives the returned value
at that call site. For Rule C6, the object may be pointed to
by a parameter of an external method that may be invoked
at the call site. As a result, an object that satisfies C1–C4
and C6 may be pointed to by a reference in an external
method so it is externally reachable by Definition 5. Rule
C5 is derived directly from Definition 5.

Each node in the PAG has a cell, called LAT, to hold its
lattice value. The values in these cells may change as our
analysis progresses. The analysis terminates once a max-
imal fixed-point has been reached. The output consists of
the points-to sets of all references and an assignment of
lattice values to all references, objects and call sites in the
PAG.

3.1 Initialisation

All the nodes in the PAG start with >. Every
compile-time object o of the form new cl() cre-
ated in an internal method is initialised as follows:

LAT(o) = LAT(new cl()) =

{

U if cl =Unknown
I otherwise

Let v be a reference. We define:

UpdateP2S(v) = ∀o ∈ PTS(v) : LAT(o)u = S

By Rules C1 and C2, UpdateP2S(v) is performed for ev-
ery static field v satisfying the two rules. In addition, these
fields are initialised to ⊥ if they are not declared as final.
This is because an external method can make v point to an
external object.

By Rules C3 and C4, UpdateP2S(v) is performed for
the return variable v of every internal method defined in
the two rules. Furthermore, the node representing every
parameter of every internal method defined in these two
rules is initialised to ⊥. This is because such a method
may be called from an external method. As a result, the
points-to sets of all its reference parameters should contain
the objects passed by the external method.

Rule C5 is realised in the transfer functions for loads
and stores given in Figure 4.

Finally, let us consider Rule C6. As a special case, a
call site o.newInstance() in Java implicitly invokes
an unknown constructor and is thus regarded as an exter-
nal call site. By this rule, UpdateP2S(v) is performed for
all the arguments of the call site. Rule C6 is also realised
in the transfer functions for external call sites given in Fig-
ure 4.

3.2 Transfer Functions

Figure 4 gives the transfer functions for the four edges
given in Figure 3. These transfer functions serve to prop-
agate the lattice values across the edges representing the
first six statements and parameter passing in the program.
The transfer functions for allocation and assignment edges
are self-explanatory. Let us examine the two transfer func-
tions for a store edge (`.f ← v). In (a), the lattice value
from v is propagated to all `′.f , where `′ is an alias of `,
because ` and `′ may point to some common objects. In
(b), LAT(`) is S, U or ⊥ if and only if ` may point to at
least one externally reachable or external object. There-
fore, an external method may make `.f point to an exter-
nal object. So LAT(`.f ) is set to ⊥. Similarly, all objects
in PTS(v) may become externally reachable (Rule C5).
Hence, UpdateP2S(v) is performed. Note that (b) is ap-
plied to ` but not to its aliases for two reasons. First, if
LAT(`′) is S, U or ⊥, then LAT(`′.f) will be set to ⊥
when a load from or a store into `′.f is evaluated. Second,
it is redundant to perform UpdateP2S(v) for each of its



Edges Transfer Functions
Allocation : (v ← new cl()) LAT(v)u = LAT(new cl())
Assignment : (v ← `) LAT(v)u = LAT(`)

(a) LAT(v)u = LAT(`.f)
Load : (v ← `.f) (b) if LAT(`) = {S, U,⊥}

LAT(`.f) = ⊥
(a) LAT(`′.f)u = LAT(v), for all aliases `′ of `, i.e.,

all `′ such that PTS(`′) ∩ PTS(`) 6= ∅
Store : (`.f ← v) (b) if LAT(`) = {S, U,⊥}

LAT(`.f) = ⊥
UpdateP2S(v)

Figure 4: Transfer functions for edges.

Call Transfer Functions

S7

Let there be n target methods in IW at this call site found using CHA

(a) LAT(S7)=LAT(`0.op(`1, . . . , `k))=











⊥ if n = 0 or one of the n targets is external
I elif op or the declared class of `0 is final
⊥ elif LAT(`0) ∈ {U,⊥}
I otherwise

(b)
{

LAT(v) = ⊥
UpdateP2S(`i) ∀i = 0, . . . , k

}

if LAT(S7) = ⊥

S8

(a) LAT(S8) = LAT(cl.op(`1, . . . , `k)) =
{

⊥ if the target method cl.op is external
I otherwise

(b)
{

LAT(v) = ⊥
UpdateP2S(`i) ∀i = 1, . . . , k

}

if LAT(S8) = ⊥

Figure 5: Transfer functions for call sites.

aliases. Finally, let us consider the two transfer functions
for a load edge (v ← `.f). In (a), the lattice value from
`.f is propagated to v. In (b), if LAT(`) is S, U or⊥, then
LAT(`.f) = ⊥ as explained in (b) of the transfer function
for store edge. This part is repeated for both loads and
stores because a load from `.f or a store into `.f may not
be present in the program.

Figure 5 gives the transfer functions for the two kinds
of call sites given in Figure 2. These functions are nec-
essary since a compile-time unknown method invoked at
an external call site behaves like a blackbox. In the PAG
of the program, there are no assignment edges connect-
ing the arguments to the corresponding parameters of the
unknown method and no assignment edge connecting the
return variable of the unknown method to caller’s node v
representing the return value. Let us examine the transfer
functions for a virtual call site, S7, given in Figure 2. In
(a), there are four cases in determining the new state of a
virtual call site. The first case is obvious. The second case
is justified because a final method or a method declared
in a final class cannot be overridden. The method is the
only target of the call site regardless of the runtime type
of the receiver. In the third case, the call site is external if
its receiver is type-unknown or external. Then an external
method may be invoked at the call site. If the last case is
reached, the call site is internal. The transfer function (b)
comes into play if the call site is external. In this case, v
becomes external since it may point to an external object
which may be returned from an external method invoked
at the call site. In addition, every object pointed to by an
argument at the call site becomes external reachable (C6).

The transfer function for a static call site, S8, are sim-
ilar but simpler.

Our analysis problem is solved iteratively until a max-
imal fixed point is found.

Theorem 1 Our internal analysis provides a under-
approximation of the internal states of references, objects
and call sites in the analysed program.

Proof Follows directly from Rules C1 – C6, the initialisa-
tions stated in Section 3.1 and the transfer functions given
in Figures 4 and 5. �

3.3 Example

Consider the example IW given in Figure 1, where all
compile-time objects are identified by their line numbers.
All nodes in the PAG start with>. Then the four allocation
nodes, 5, 8, 9, and 10 are initialised to I while 6 to U .
The program has one static field A.h, where PTS(A.h) =
{10}. Thus, the node A.h is set to ⊥ and the state of
the node 10 is applied u with S. The nodes this and p,
which represent the two parameters of the public method
foo, are set to ⊥. The variable t, where PTS(t) = {10},
is returned by the method foo. Therefore, the node 10 is
applied u with S again.

Let us examine the internal analysis on the example
briefly. When the statements in lines 6 – 7 are processed,
the node y becomes U . The node y represents the re-
ceiver at the call site y = y.foo(x) in line 13, where
PTS(x) = {5}. Based on the transfer functions for a vir-
tual call site, the state of the node y drops to ⊥ while the
state of the node 5 drops to S. The node x becomes S
eventually due to the statement in line 5. When the store
in line 12 is processed, we apply u with ⊥ to the state
of the node x.f and u with S to the state of the node in
PTS(z) = {8}. The state of the node x.f changes to ⊥
and the state of the node 8 drops to S. Similarly, when
the node t in foo becomes ⊥ and the store in line 22 is
processed, we apply u with ⊥ to the state of t.f and u
with S to the states of the nodes in PTS(p) = {5, 8}.

The maximal fixed point found eventually is depicted
in Figure 1.

4 IA-based Side-Effect Analysis

In Java, a non-field variable can be modified only by an
assignment statement where the variable itself is the left-



hand side (LHS). In contrast, a field variable v.f may be
modified by an assignment to u.f if u and v may point to
the same object. In the presence of dynamic class loading,
the points-to sets may be incomplete. Our internal anal-
ysis allows us to determine which points-to sets are defi-
nitely complete and which may be incomplete. Based on
the information, we compute a modification set for each
statement and then the side-effects on any given variable.

4.1 Computing Modification Sets

The side-effect analysis computes for each statement, a
modification set consisting of all objects that may be mod-
ified by that statement. The modification set of a statement
includes the objects modified by the statement itself and
those modified by any methods that may be invoked di-
rectly or indirectly by that statement.

Let MOD be a mapping from ((M ∪S)× (F∪{sf}))
to (P × L×E), where M is the set of internal methods
in IW , S is the set of statements in these methods, F is
the set of static or instance fields in IW , sf is the special
field representing an array access, P = 2O∪C is the power
set of the set that contains all compile-time objects and
classes, L = {>, I, S, U,⊥} is our lattice set, and finally,
E = {true, false}. (Note that C is defined in Definition 1
and O in Section 2.4.)

The modification set MOD(x, f) specifies that x ∈
M ∪ S may modify the field f ∈ F ∪ {sf} of all the
objects in P . The component L represents the smallest of
the lattice values of all references r in the analysed pro-
gram such that r.f may be modified by x. The E compo-
nent indicates if s contains an external call site or not. We
use MOD(x, f).P , MOD(x, f).L and MOD(x, f).E to
denote the corresponding components of the modification
set.

The modification set of an internal method m ∈ M is
simply taken as the union of the modification sets of all
statements contained in the method:

MOD (m, f) = (∅,>, false) ∪
⋃

s is a
statement

in m

MOD (s, f)

where the existence of (∅,>, false) ensures that
MOD(s, f) is well-defined (in the case when the
method is empty). The union of two modification
sets is defined as: (P1, L1, E1) ∪ (P2, L2, E2) =
(P1 ∪ P2, L1 u L2, E1 ∨ E2).

Figure 6 gives the rules to compute MOD for the 8 ba-
sic statements listed in Figure 2. The first two rules are for
statements S4 and S6 that write static and instance fields,
respectively. In the case of S7, a virtual call site, the mod-
ification set includes the union of the modification sets of
all the possible internal methods that may be invoked at
that call site. To complete the specification of the modifi-
cation set, there are two cases. If the call site is external,
we add (∅,>, true) to the set since an external method may
be invoked at the call site. If the call site is internal, there
is nothing to add. The rule for S8, a static call site, is sim-
ilar but simpler since whether its unique target method is
internal or not can be determined without any flow analy-
sis. Finally, the four remaining statements, S1, S2, S3 and
S5 listed in Figure 2 do not modify any given field g.

Our internal analysis also allows us to determine which
modification sets are definitely complete and which may
be incomplete. The following results follow directly from
Theorem 1 and the rules given in Figure 6. Their proofs
are thus omitted.

Theorem 2 If MOD(s, f).L = ⊥, then MOD(s, f).P
may be incomplete. What are missing in MOD(s, f).P
may be any semi-internal, type-unknown or external (but
not internal) object. If MOD(s, f).E = true, then
MOD(s, f).P may be incomplete. What are missing in

Boolean SideEffectChecker(Statement s, Variable x)
(1) if x is a non-field variable of the form v
(2) if LHS of s is x
(3) return true
(4) elseif x is an instance field of the form v.f
(5) if LHS of s is v
(6) return true
(7) elseif LAT(v) = ⊥ and MOD(s, f).L v S
(8) return true
(9) elseif LAT(v) v S and MOD(s, f).L = ⊥

(10) return true
(11) elseif LAT(v) v S and MOD(s, f).E
(12) return true
(13) elseif PTS(v) ∩MOD(s, f).P 6= ∅
(14) return true
(15) elseif x is a static field of the form cl.f
(16) if MOD(s, f).E
(17) return true
(18) elseif MOD(s, f).P = {cl}
(19) return true
(20) return false
Figure 7: IA-based side-effect checker for programs.

MOD(s, f).P may be any internal class cl ∈ IW in
which f is a field variable and any semi-internal, type-
unknown or external (but not internal) object. Otherwise,
MOD(s, f).P is definitely complete.

4.2 Checking Side Effects
Our algorithm, CHECKER, determines the side-effects of
a statement s on any given variable x, where s and x are in
internal methods in IW . There are three cases depending
on whether x is a non-field variable v, an instance field
v.f or a static field cl.f . CHECKER returns true in the first
case if s modifies v, which is trivial in Java, true in the
second case if s may modify either v or v.f , true in the
third case if s may modify cl.f and false otherwise.

The correctness of our algorithm follows from Theo-
rems 1 and 2. To understand its last two cases, let us see
how they can be simplified based on these two theorems.
But such a method is inefficient and should not be used.
Let E be a special external object created in an external
method. LetA be the set consisting of all semi-internal, all
type-unknown objects and E . If LAT(v) = ⊥, then add all
elements in A to PTS(v). If MOD(s, f).L = ⊥, then add
all elements inA to MOD(s, f).P . If MOD(s, f).E = ⊥,
then add all elements in A and all internal classes in IW
in which f is a field variable to MOD(s, f).P . Then lines
7 – 12 in CHECKER are redundant and can be removed
and lines 16 – 19 can be replaced by:

if cl ∈ MOD(s.f).P
return true

4.3 Example
As before we identify each compile-time object by the
number of the line where it is created. We also identify
a statement by its line number. Below we list the modi-
fication sets of all statements in our running example that
are not empty, i.e., (∅,>, false).

MOD(22, f) = ({10},⊥, false)

MOD(foo, f) =
⋃

s in foo

MOD(s, f)

= MOD(22, f) = ({10},⊥, false)
MOD(11, A.h) = ({A},>, false)

MOD(12, f) = ({5}, S, false)

Since LAT(y) = ⊥ and foo is not final, we have
LAT(y.foo(x)) = ⊥. Hence,



Statement MOD

S4 : cl.f = v MOD(S4, g) =

{

({cl},>, false) if g = cl.f
(∅,>, false) otherwise

S6 : `.f = v MOD(S6, g) =

{

(PTS(`), LAT(`), false) if g = f
(∅,>, false) otherwise

S7 : v = `0.op(`1, . . . , `k)

MOD(S7, g) =
⋃

m ∈M may be invoked from S7

MOD(m, g)

∪

{

(∅,>, true) if LAT(`0.op(`1, . . . , `k)) = ⊥
(∅,>, false) otherwise

S8 : v = cl.op(`1, . . . , `k) MOD(S8, g) =

{

(∅,>, true) if LAT(cl.op(`1, . . . , `k)) = ⊥
MOD(op, g) otherwise

S1, S2, S3, S5 MOD(S1, g) = . . . = MOD(S5, g) = (∅,>, false)

Figure 6: Rules for computing MOD for all the statements in Figure 2.

MOD(13, f) = MOD(foo, f) ∪ (∅,>, true)
= ({10},⊥, true)

MOD(13, g) = (∅,>, true), where g 6= f

Since LAT(t.foo(z)) = I , the modification set for the
statement in line 15 is:

MOD(15, f) = MOD(foo, f) ∪ (∅,>, false)
= ({10},⊥, false)

MOD(foo1, f) =
⋃

s in foo1

MOD(s, f)

= ({5, 10},⊥, true)

MOD(foo1, A.h) =
⋃

s in foo1

MOD(s, A.h)

= ({A},>, true)

Let us apply CHECKER to conduct some
side-effect analysis. The call in line 13 may
modify x.f, i.e., CHECKER(13, x.f) = true
because LAT(x) = S and MOD(13, f).E
= true. Since y may point to an object whose run-
time type is a subclass of B, this call site may invoke a
compile-time unknown overriding method of foo in the
subclass. When x is passed as an argument to the method,
x.f may be modified inside.

The call in line 15 may modify x.f, i.e.,
CHECKER(15, x.f) = true because LAT(x) = S and
MOD(15, f).L = ⊥. Let us give a scenario in which such
a modification takes place. The target of the call in this
statement is certainly the method foo contained in B be-
cause the declared type of t is B and the internal state of
t is I . The external call made in line 13 can make A.h
point to the same object that x points to, i.e. the object 5.
When t is assigned in line 21, t will point to the object
that x points to. So the statement in line 22 that modifies
t.f also modifies x.f.

5 Experiments

We have implemented our internal analysis and IA-based
side-effect analysis algorithms in Soot (Vallée-Rai et al.
1999), a bytecode to bytecode optimiser. In Soot, only
whole-program analyses and optimisations are supported.
There is a preprocessing translator that converts Java byte-
code into a three-address representation called Jimple. All
the statements in Jimple relevant to our analysis are listed
in Figure 2. Recall from Section 2.2 that array accesses are
interpreted as instance field accesses during the analysis.

A program being analysed is represented by its PAG.
The points-to sets for the analysed program are computed

using a points-to analysis pass in Soot (Lhoták & Hendren
2003). We have implemented our internal analysis and
side-effect analysis algorithm as separate passes.

We present our experimental results using nine bench-
marks.1 The first four are from SPECjvm98, jasmin
(version sable-1.1) is a Java assembler interface , jlex
(version 1.2.6) and javacup (version 0.10k) are Java
scanner and parser generators from Princeton University,
jb (version 7.0) is a parser and lexer generator for Java
from Colorado University and jtar (version 1.21) is
GNU’s tar ported to Java. In our experiments, the
internal-world for a benchmark consists of classes and
their methods in both the application and the library that
can be reached statically from any non-private method of
the application.

We measure the precision of an side-effect analysis
with the average number of field accesses modified by a
statement (assignment or call site) in a program. We com-
pare our analysis technique with the type-based alias anal-
ysis (TBAA) (Diwan, McKinley & Moss 1998), which is
recently used in (Hosking et al. 2001) for optimising Java
programs. Table 1 shows that our analysis yields more
precise results across all the benchmarks used. We have
considered only the field accesses and the statements ap-
pearing in the internal methods from the application part
of a benchmark. Our analysis provides a more precise es-
timate about the average number of field accesses that may
be modified per statement than the TBAA approach. The
array accesses, which are discussed in Section 2.2, are in-
cluded in the statistics for instance field accesses.

We also demonstrate two important applications of
IA-based side-effect analysis in compiler optimisations:
partial redundancy elimination (PRE) and copy propaga-
tion for eliminating redundant field accesses, i.e., loads.
PRE is an important optimisation that subsumes loop-
invariant code motion and common subexpression elim-
ination (Morel & Renvoise 1979). Existing PRE algo-
rithms (Horspool & Ho 1997, Knoop, Rüthing & Steffen
1994, Cai & Xue 2003) deal with arithmetic expressions
involving only local variables (e.g., a+b). Recently, Hosk-
ing et al (Hosking et al. 2001) combine PRE with TBAA
to deal with field accesses. In comparison with this earlier
approach (Section 6), our IA-based side-effect analysis al-
lows a more effective PRE to be performed for field ac-
cesses. In our second application, we show further that our
analysis is also more effective in performing copy propa-
gation for field accesses. In our experiments, both opti-
misations are applied only to the internal methods in the
application part of a benchmark.

1Being flow-insensitive, our IA-based side-effect analysis applies to both
single- and multi-threaded Java programs. However, it is well-known that com-
piler optimisations such as PRE and copy propagation cannot be safely applied to a
multi-threaded Java program by assuming the within-thread-as-if-serial semantics
under the existing Java Memory Model (JMM) (Pugh 1999). But this will change
if the JMM specified by JSR 133 is implemented. In this work, we have applied
both PRE and copy propagation to single-threaded Java programs only.
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Figure 8: Analysis costs of PRE and copy propagation
using IA-based approach over the TBAA-based approach.

To the best of our knowledge, this paper is the first
demonstration of these optimisations in Java programs by
considering the interprocedural modification side effects
in the presence of dynamic class loading.

Table 2 compares the two PRE algorithms and the two
copy propagation algorithms in terms of the number of
redundant loads eliminated. We see convincingly that our
IA-based side-effect analysis has successfully enabled sig-
nificantly more redundancies to be eliminated. In PRE,
the improvements over the TBAA-based algorithm range
from 0% to 108.0%. In copy propagation, our algorithm
eliminates between 0% and 52.9% more redundancies.

Table 3 shows that our internal analysis is extremely
efficient. By computing the lattice values of all references
and objects, we are able to determine which points-to and
modification sets are definitely complete or not, providing
sufficient information to compute the modification side ef-
fects. In comparison with the compile time spent by the
points-to analysis pass, the average overhead of our inter-
nal analysis pass for all the benchmarks is only 2.6%.

Finally, Figure 8 presents the analysis costs of our IA-
based approach relative to the TBAA-based approach in
performing both PRE and copy propagation. The costs
for PRE increase from 3.7% to 25.4% with an average of
14.9% over the TBAA-based approach. The costs for copy
propagation increase from 1.9% to 9.3% with an average
of 3.6%. PRE is more expensive among the two optimisa-
tions since several data-flow passes are required in order
to find the optimal placements for inserted temporaries.

6 Related Work

We review the existing work related to internal analysis
and side-effect analysis below.

6.1 Internal analysis

Points-to analysis (Rountev & Ryder 2000, Harrold &
Rothermel 1996) for incomplete programs on imperative
languages has been studied for a long time. Unlike these
approaches, our approach takes into account some new
features of object-oriented languages such as polymor-
phism, dynamic binding and dynamic loading.

Chatterjee et al. (Chatterjee & G.Ryder 2001) present
a points-to analysis for library modules to find def-use re-
lations. The analysis evaluates a parameterised points-
to solution for each method and propagates conservative
assumptions about the clients of the library in top-down
manner. The limitation of the approach is that it does not
examine the affects of statically unknown codes such as
native codes or dynamically loaded codes.

Extant analysis (Sreedhar, Burke & Choi 2000) is de-
signed for the purposes of specialising Java programs in

the presence of dynamic class loading. The technique par-
titions references into two categories: unconditionally ex-
tant references when they just point to objects whose run-
time types are in the closed world and conditionally extant
references otherwise. The internal analysis can obtain the
information about the completeness of a points-to set by
which we apply to side-effect analysis.

Immutability analysis (Porat, Biberstein, Koved &
Mendelson 2000) is a technique for detecting mutability
of fields and classes in a Java program. Field analysis
(Ghemawat, Randall & Scales 2000) exploits the declared
access restrictions placed on fields in order to determine
useful properties of these fields, such as exact type,
nonnull, may leak and only init.

Escape analysis (Blanchet 1998, Blanchet 1999, Choi,
Gupta, Serrano, Sreedhar & Midkiff 1999, Whaley &
Rinard 1999, Vivien & Rinard 2001) detects the objects
that never escape out of a method or thread. An object
escapes a method M if its lifetime may exceed the life-
time of M. An object that does not escape a method can
be possibly allocated on the method’s stack frame. If an
object does not escape a thread, no other threads can ac-
cess the object. The synchronisation operations associated
with the object can be eliminated. In general, our internal
analysis can be regarded as a kind of escape analysis for
detecting objects escaping out of the analysed program.
The major differences are that (1) the access properties of
fields and methods are taken account, (2) the completeness
of points-to sets is determined, and (3) the completeness
of virtual call sites is evaluated in our technique.

Some dynamic points-to analysis techniques for Java
(Pechtchanski & Sarkar 2001, Hirzel, Diwan & Hind
2004) restrict themselves only to loaded classes during
program execution. The analysis and optimisation tech-
niques that make use of the points-to information may re-
quire runtime invalidation and recompilation mechanisms,
which can hurt performance. In addition, side-effect anal-
ysis can not be easily done when some points-to sets are
incomplete. The proposed technique in this paper allows
side-effect analysis and other analysis and optimisation
techniques to be applied without runtime invalidation and
recompilation.

6.2 Side-Effect Analysis
Side-effect analysis for imperative languages has been
studied for a long time. Banning (Banning 1979) is one of
the earliest providing a systematic treatment of this prob-
lem. His approach works on imperative languages without
pointers and where aliasing occurs only through parameter
passing. Cooper and Kennedy (Cooper & Kennedy 1988)
improve Banning’s work by dividing the side-effect prob-
lem into two subproblems: the side effect analysis for
formal parameters and the side-effect analysis for global
variables. Ryder et. al. (Ryder, Landi, Stocks, Zhang
& Altucher 2001) present an interprocedural side-effect
analysis algorithm with pointer aliasing. Like these exist-
ing approaches, our approach is flow-insensitive. How-
ever, our approach works for object-oriented languages
that support dynamic class loading.

Some interprocedural side-effect analysis techniques
have been proposed for Java programs (Clausen 1997,
Razafimahefa 1999, Lhoták 2003, Rountev 2004). How-
ever, they expect the whole program to be present dur-
ing the analysis. Sălcianu and Rinard (Sălcianu &
Rinard 2004) present a static analysis for identifying
pure methods. Their technique is based on a specialised
pointer/escape analysis from (Whaley & Rinard 1999).
Our approach evaluates side-effect based on any flow-
and context-insensitive points-to analysis. This per-
mits the use of a variety of existing points-to analysis
(Lhoták 2003, Berndl, Lhoták, Qian, Hendren & Umanee
2003).Rountev and Ryder (Rountev & Ryder 2001) anal-
yse separately client modules and library modules imple-
mented in C. They construct summary information con-
servatively about the library modules and then use the in-
formation when they analyse the client modules.



Benchmark
(Instance Field Accesses)/Statement (Static Field Accesses)/Statement
TBAA-based IA-based TBAA-based IA-based

compress 80.4 59.2 8.2 5.3
db 59.6 53.8 10.9 9.8
mpegaudio 542.8 392.0 7.6 5.0
jack 414.3 395.3 16.1 15.4
jasmin 552.7 455.5 9.0 7.0
javacup 505.8 423.7 56.9 47.5
jb 134.0 110.1 34.4 28.0
jlex 553.4 461.8 1.8 1.5
jtar 386.0 297.5 30.6 23.8

Table 1: A comparison of the precisions of TBAA-based and IA-based side-effect analysis techniques.

Benchmark
Partial Redundancy Elimination (PRE) Copy Propagation
TBAA-based IA-based (%) TBAA-based IA-based (%)

compress 25 52 (108.0) 13 15 (15.4)
db 10 10 (0.0) 0 0 (n/a)
mpegaudio 421 493 (17.1) 122 143 (17.2)
jack 115 178 (54.8) 216 227 (5.1)
jasmin 71 93 (31.0) 13 13 (0.0)
javacup 39 78 (100.0) 15 20 (33.3)
jb 19 29 (52.6) 17 26 (52.9)
jlex 476 570 (19.7) 25 25 (0.0)
jtar 58 98 (69.0) 28 37 (32.1)

Table 2: A comparison of PRE and copy propagation algorithms w.r.t, redundant loads eliminated.

There are some intraprocedural side-effect analysis
techniques that ‘support’ dynamic class loading (Hosking
et al. 2001, Vallée-Rai et al. 1999). However, they simply
make the worst-case assumption that a call may modify all
objects. A simple side-effect analysis, called a naive side-
effect analysis, is implemented in (Vallée-Rai et al. 1999),
that assumes that a and b may point to the same object
for any two field accesses a.f and b.f. Hosking et
al (Hosking et al. 2001) perform PRE for field accesses
by using the type-based alias analysis (TBAA) (Diwan
et al. 1998) to provide a more accurate side-effect anal-
ysis. Let the declared types of v and w be T1 and T2, re-
spectively. Then v and w may be aliases iff T1 and T2 are
identical or one is a subclass of the other. Therefore, v.f
and w.g may be aliases iff f = g and v and w are aliases.
Our experimental results over benchmark programs show
that our IA-based side-effect analysis provides a more ac-
curate information than the approach.

7 Conclusion

In this paper, we solve an important problem for efficient
execution of Java programs. We describe a framework
for interprocedural side-effect analysis and optimisation
in the presence of dynamic class loading. When classes
that are dynamically loaded are unknown at compile time,
the points-to and modification sets may be incomplete. We
present an internal analysis technique for classifying ref-
erences in the internal-world program into internal, semi-
internal, type-unknown and external references. By com-
bining points-to analysis and internal analysis, we present
an algorithm for computing interprocedural modification
side effects when dynamic class loading is permitted. We
have evaluated the precision of our side-effect analysis
and demonstrated its effectiveness in two important appli-
cations — PRE and copy propagation for field accesses.
Our experimental results using benchmarks show signifi-
cant benefits of our analysis techniques in compiler opti-
misations at reasonably small analysis costs.
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