
Ownership Types for Object Synchronisation

Yi Lu, John Potter, and Jingling Xue

Programming Languages and Compilers Group
School of Computer Science and Engineering

University of New South Wales
Sydney, NSW 2052, Australia

{ylu,potter,jingling}@cse.unsw.edu.au

Abstract. Shared-memory concurrent programming is difficult and er-
ror prone because memory accesses by concurrent threads need to be
coordinated through synchronisation, which relies on programmer disci-
pline and suffers from a lack of modularity and compile-time support.
This paper exploits object structures, provided by ownership types, to
enable a structured synchronisation scheme which guarantees safety and
allows more concurrency within structured tasks.

1 Introduction

Shared-memory concurrent programming remains complex and error-prone, de-
spite it having become essential in the multicore era. Most object-oriented (OO)
languages adopt unstructured parallelism, where threads may be ubiquitously
spawned with arbitrary lifetimes. It is notoriously difficult to catch concurrency
errors, such as data-races, atomicity violations and deadlocks, because they are
caused by unexpected thread interleaving. In practice, “most Java programs are
so rife with concurrency bugs that they work only by accident” [15]. Lee argues
that if we are to have any hope of simplifying parallel programming for the vast
majority of programmers and applications, then parallel programming models
must greatly constrain the possible interleaving of program executions [19].

Programming models with more disciplined parallelism have attracted recent
interest. Based on hierarchical fork/join parallelism where tasks are managed
lexically [14, 18], a number of structured parallel programming models [2, 10,
31] are emerging. They are able to forbid task interference in type systems or
program analysis, guaranteeing deterministic behaviour [2, 31] or allowing the
compiler to find implicit parallelism from sequential object-oriented programs
[10]. While significantly simplifying concurrency, these models preclude task in-
terference thereby having limited applicability to object-oriented programs with
extensive sharing and mutation. Finally, by not allowing synchronisation, these
models cannot allow task interference, which essentially reduces their applica-
tion to immutable object applications; immutability makes concurrency easier,
but there are undoubtedly applications that need to combine concurrency and
mutability. In this paper, we use an ownership type and effect system to reason
about interference and synchronisation for parallel tasks.

2

When there is potential interference between parallel tasks, we infer a syn-
chronisation requirement which needs to be met by a suitable lock (or other
synchronisation technique) to prevent the interference. Our type system ensures
atomicity for each task, thereby guaranteeing serialisability of all tasks. When
there is no interference between tasks, no synchronisation is necessary.

Meeting synchronisation requirements involves choices. Too little synchroni-
sation may not preserve program safety, while too much synchronisation com-
promises concurrency and increases the chances of deadlock. Moreover, there is
a tradeoff between the choices of synchronisation granularity. Choosing a coarse
granularity results in less overhead (synchronisation requires runtime resources)
but may reduce concurrency. For example, when we enforce synchronisation with
coarse-grained locks, objects protected by the same lock can never be accessed
in parallel (e.g. SafeJava, see Section 3.3). On the other hand, using a fine granu-
larity increases the overhead of synchronisation. The fundamental problem here
is that synchronisation is a whole program requirement, which is hard to localise
to a single class or module. All code that accesses a piece of shared state must
know and obey the same synchronisation convention regardless of who developed
the code or where it is deployed. Large object-oriented programs are typically
developed and deployed in a modular way by different programmers. As each
programmer may follow their own conventions on synchronisation (e.g. some
use finer granularity, others use coarser granularity) which are not formally or
precisely specified, understanding and writing synchronised code is difficult and
error prone.

We support modular reasoning about parallel tasks using ownership types
and effects. Ownership types [8, 9] allow programmers to structure the object
store hierarchically as an ownership tree; ownership-based effects [5, 6, 8] use
ownership tree to reason about side effects in object-oriented programs and to
capture potential conflict between tasks. A major contribution of the paper is
the ability to automatically infer finer-grained synchronisation requirements for
parallel tasks, sufficient to prevent any potential interference between them.
Such implicit synchronisation eases the design and understanding of concurrent
object-oriented programs by hiding lower level concurrency safety requirements.
Code is less fragile.

Another key novelty comes from the combination of object ownership with
structured task parallelism: when the two structures align well, we expect to
see good concurrency. For example, a task synchronising on an object (coarser
granularity) may be able to allow its subtasks to access the object’s subob-
jects without explicit synchronisation, even though the sub-tasks may still be
in conflict with external sub-tasks. Such structural refinement of granularity
and interference-based on-demand synchronisation strategy can reduce overhead
without needlessly sacrificing potential concurrency (as shown in the examples
given in later sections). Moreover, with structured parallelism, it is simpler to
achieve lock ordering so then there is no chance of deadlock from multiple locks.

This paper presents the basics of our model: Section 2 discusses ownership
types, object aliasing and ownership-based effects; Section 3 introduces our struc-
tured parallel task model and discusses synchronisation requirements with an
example; Section 4 formally presents static semantics and dynamic semantics of

3

the type system; Section 5 provides more discussion and reviews related work,
followed by a brief summary of our contributions in Section 6. The complete for-
malism including rules and properties and synchronisation inference algorithms
are included in an extended version of this paper [22].

2 Ownership Types and Effects in a Nutshell

Originally ownership types were proposed to provide object encapsulation [9,
8, 20, 24]. Here we use ownership types to describe effects as structured sets of
objects, similar to what has been done by others [5, 8, 23, 6, 10], without enforcing
encapsulation. First we provide a quick overview of ownership types, and indicate
how our model of structured objects allows us to statically reason about objects
being disjoint, guaranteeing non-aliasing properties for program variables. Then
we discuss how program effects can be succinctly summarised using ownership
structure. Ultimately our concern is to provide a practical means for reasoning
about conflicting effects of concurrent behaviours.

2.1 Ownership Types and Aliasing

In an ownership type system, every object has a fixed owner, either world, for
root objects, or another object; we say that an object is strictly inside its owner.
The ownership relation establishes a dynamic tree structure, rooted at world,
with every object created as a child of its owner. Ownership types allow us to
reason statically about hierarchical object structures.

Owners are often called (ownership) contexts in ownership type systems.
Classes are parameterised by formal context parameters, possibly with con-
straints such as inside �, strictly inside ≺ or disjoint #. The first formal context
parameter of a class determines the owner of this object within the class. Types
are formed by binding actual contexts to their class parameters; the first context
argument of a type determines the actual owner of objects of the type. Within
a class definition, contexts can use formal class parameters, the root context
world, the current context this and final expressions (see Section 4). Consider the
following Java-style example:

class Customer {
final Account<this> sav = new Account<this> ();

final Account<this> chq = new Account<this> ();

void transfer(int amt) <this> { sav.withdraw(amt); chq.deposit(amt); }
}

The context argument of the Account type for the read-only sav and chq fields
specifies the owner for the objects referenced by those fields. In this case, it
is the current object this of class Customer, meaning that a customer owns
savings and cheque accounts. We omit formal parameters of a class when none
are used in its definition, as for Customer. Ownership types are often used for
object encapsulation by constraining references. For instance, accounts cannot
be directly accessed unless through their owning customer. This enables object

4

access control and localised reasoning on objects. However, in this paper, we
do not enforce encapsulation or constrain references because our type system
relies only on (ownership) effects: ownership determines object structure, and
structured objects allow us to succinctly summarise effects. Encapsulation can
still be enforced independently if desired.

Even without enforcing encapsulation, ownership types allow us to derive
more distinctions for reasoning about object aliasing. We rely on this in two
related ways: we can determine when effects are disjoint, and when synchronisa-
tion requirements are non-overlapping. For example, objects with different (i.e.
non-aliased) owners must be non-aliased. Also, objects cannot alias their own-
ers: x ≺ y implies x ⊗ y (we write this must-not-alias relation with ⊗). Beside
ownership, there are a variety of type-based techniques for determining when
reference variables must not alias the same object, such as uniqueness [17], lin-
earity [32], regions [30], freshness and more. They can be used in our type system
to enhance alias reasoning, but we do not consider all of them for the simplicity
of the formalism. In the above code, we can determine that sav and chq refer to
distinct objects, because they are initialised to fresh objects in their declaration,
and are not permitted to be re-assigned. Alternatively, if we want sav and chq
to be mutable fields, we can simply let them have different owners in order to
distinguish the objects they refer to.

2.2 Ownership Effects

Effect systems [25] offer abstract views of program behaviours, identifying, for
example, subsets of memory affected by read and write operations. The key
idea for ownership effect systems is to specify memory effects on whole subtrees
of objects. An effect on an object subsumes effects on objects that it owns.
This allows effects to be abstracted to higher level contexts where the details of
individual objects may be unknown.

For the Customer class above, the method transfer has effect this, which
means the body of the method may access (read or write, directly or indirectly
via calls) the fields of the current object and any object inside (transitively owned
by) the current object. The body of the transfer method calls sav.withdraw
to access the balance field in the savings account, defined by:

class Account {
int balance = 0;

void deposit(int amount) <this> { balance += amount; }
void withdraw(int amount) <this> { balance -= amount; }

}

The effect of the call sav.withdraw is {sav}, found by substituting the target
sav for the declared method effect {this} in class Account. Similarly the effect of
chq.deposit is {chq}. The effect of the transfer is sound because the combined
effect of its body, {sav, chq}, is subsumed by (that is, is a smaller effect than)
the effect of the calling context (the Customer object): both the sav and chq
objects are inside the Customer object in the ownership tree.

5

Such static knowledge of effects is needed in the type system of Section 4 to
determine the effect of tasks and then infer synchronisation to protect them if
they may interfere with each other. An effect, denoted as ε, is simply a set of
objects indicating a read or write dependency on that object; semantically the
effect includes any sub-objects of the specified set. Disjointness of effects ε1 # ε2
says that the two effects do not overlap: this is interpreted semantically, so
disjointness implies that there are no common sub-objects for the two given sets.
If two program behaviours have disjoint effects then they are non-interfering.
Because ownership is tree structured, disjointness of owners is inherited by their
sub-objects; thus we can separate whole collections of objects just by separating
their owners. In summary, ownership type systems model hierarchical object
structures; each context in an effect specifies a tree of objects rooted at the
context, thus allowing large effects to be summarised in a single context.

3 Structured Parallelism and Synchronisation

Fork-join frameworks [14, 18] typically assume that subtasks do not interfere
with one another; recent type systems enforce such non-interference [2, 10]. We
present a similar structured model for parallel tasks, but allow tasks to interfere.

3.1 Structured Parallelism with Effects

Since all possible sibling tasks can be identified lexically, the synchronisation
requirement for a task need only prevent potential interference with its siblings,
and not with any other tasks in the program, which are dealt with by the parent.
Such a model relies on knowledge of the task structure and an effect system which
can track all the effects of subtasks. Since the effects of subtasks are subsumed
by the effect of their parents, subtasks may inherit their parents’ protection. For
instance, subtasks of a parent task are correctly synchronised with the subtasks
of the parent’s siblings through the synchronisation (if any) of the parent tasks.

We adopt a parallel-let form in which subtasks are forked, and may return a
result which can only be used in the continuation after all subtasks complete:

par {
x1 = sync (π1) e1,
. . . ,
xn = sync (πn) en

} e
Here, e is the continuation for the tasks ei, which assign their return values to
the local variables xi which may be used in e. Each task is guarded by an inferred
synchronisation requirement sync (πi) which depends on the overlap between
the effect of ei and the effects of all its siblings, as discussed below. We present a
particular example of an effect system in Section 4. For now, we simply assume
that an effect ε of an expression e is a set denoting all memory locations or
objects which may be read or written in the computation of e; overlaps of such
effects are used to define tasks’ synchronisation requirements π which correspond
to the sets of objects that the tasks must synchronise on. The notation ε1 # ε2

6

means that the two effects are guaranteed to be disjoint (and the computations
of e1 and e2 are non-interfering).

The intended operational behaviour for synchronisation is simple. Sibling
tasks synchronising on the same object are mutually excluded within the same
par. A dynamic semantics for our type system is presented in Section 4, which
ensures a task will only proceed if its sync requirement π does not overlap with
those of the currently active sibling tasks.

Each synchronisation requirement for a par can be implemented as a lock-
set. These lock-sets can be minimised to anti-chains in the ownership order. To
ensure deadlock freedom it is only necessary to ensure that individual locks for
the tasks of a par are acquired in a consistent order; there is no risk of deadlock
from locking associated with different pars. It is possible to refine coarse-grain
locks, pushing sync requirements onto subtasks, adapting techniques discussed
elsewhere [29, 16]. Such fine-grain approaches should increase concurrency at the
cost of greater locking overhead. They will still preserve data-race freedom, but
may allow interleaving of subtask behaviours, so program serialisability may not
be preserved. The coarse grain approach adopted in this paper preserves atom-
icity, hence serialisability, of all tasks. Instead of using lock-sets, we could use
other means, such as software transactions, to implement the synchronisation
requirements, which then become static advice about which objects need to be
checked for conflict and need for task roll-back. Our focus here is to combine ob-
ject ownership types with effects of tasks to infer synchronisation requirements.

3.2 Ownership-Based Synchronisation Requirements

For two parallel tasks with effects ε1 and ε2, we consider two different kinds of
constraints on their sync requirements π1 and π2. Each of the constraints are
sufficient to prevent concurrent activation of potentially interfering tasks thus
ensuring safety; we denote this safety condition as (π1) ε1 ⊥ (π2) ε2.

The first constraint says that a mutex, where the sync requirements overlap,
is always good enough, irrespective of the effects:

π1 ∩ π2 6= ∅ (1)

In practice we often want to maximise concurrency, so we would only choose this
form if we know that the effects definitely overlap. Then we can simply choose
π1 and π2 to be an arbitrary singleton mutex. Because the sync requirements
overlap, our dynamic model ensures that the two tasks can only be run in mutual
exclusion—thus ensuring serialisability.

At runtime, the effects and sync requirements correspond to sets of objects.
However, static effect systems only capture approximations of the runtime ef-
fects, and have to deal with possible aliasing amongst program variables. In
the transfer method of the Customer example of Section 2, we might allow
sav.withdraw and chq.deposit to run in parallel. If we could not guarantee
that sav and chq were never aliased, then we would need to protect them with
sync(sav) and sync(chq). The second form of constraint copes with possible
(rather than definite) overlap of effects, but attempts to allow maximal concur-
rency when the possible overlap is not actually manifested at runtime (e.g. if
sav and chq referred to distinct accounts).

7

class Customer {
final Account<this> sav = new Account;

final Account<this> chq = new Account;

void transfer(int amt) <this> {
par {
sync() sav.withdraw(amt),

sync() chq.deposit(amt)

};
}
int creditCheck() <this> {
return par {
s = sync() sav.balance(),

c = sync() chq.balance()

} (s + c);

}}

class Bank {
...

void touch(Customer<this> cus1, Customer<this> cus2) {
par {
sync(cus1) cus1.transfer(10),

sync(cus2) cus2.creditCheck()

};
} }

Fig. 1. Customer with Inferred Synchronisation

π1 ⊗ π2 =⇒ ε1 # ε2 (2)

This is a variation of the conditional must-not-aliasing safety requirement intro-
duced in [26]. It allows us to write sync requirements, without knowing whether
they will actually inhibit concurrent activation or not. The safety condition (2)
says that if the sync requirements are not aliases (hence will not block con-
current activation) then the task side effects must not be aliased (that is, non-
interfering). The converse statement may be easier to understand: whenever the
tasks may interfere, then the sync requirements must also. This means that we
can choose the sync requirements for potentially overlapping subtasks by re-
stricting the sync requirement to just that part of the effect which may overlap
with the other task. We give an example of this below.

3.3 An Example

We adopt the bank account example of [5] to discuss our inferred synchronisation
(details of the algorithm are omitted in the short paper). In the listing of Figure 1
we provide a two-level ownership structure: a bank owns a list of customers while
a customer may own a list of accounts, as illustrated for our model in Figure 2.

Instead of explicit synchronisation, we infer sync requirements to guaran-
tee the task safety; these are shown in grey italic. In class Customer, subtasks
are spawned (in the par block) to access the accounts in the transfer and

8

All objects may be synchronised.

Memory: unstructured
Parallelism: unstructured
Synchronisation: explicit, arbitrary (unsafe)

Java

sav1 chq1
chq2

cus
sav2

cus1

Only root objects are synchronised.
No concurrency within an ownership tree.
Memory: structured
Parallelism: unstructured
Synchronisation: explicit, coarsest

SafeJava

bank

cus2

sav1 sav2chq1 chq2

sav chq

Allows	 concurrency	 within	 an	 ownership	 tree.	
Memory:	 	 	 structured	
Parallelism:	 	 structured	
Synchronisa5on:	 	 implicit	 (when	 necessary),	 fine	

Ownership	 SynchronisaDon	

cus1	

bank	

cus2	

sav1	 sav2	 chq1	 	 chq2	

No	 synchronisaDon	 if	 customers	 are	 not	 aliases.	
Memory:	 	 	 structured	
Parallelism:	 	 structured	
Synchronisa5on:	 	 none	 if	 no	 interference	

cus1	

bank	

cus2	

sav1	 sav2	 chq1	 	 chq2	

Ownership	 SynchronisaDon	

Fig. 2. Comparison of models: circles are objects; filled circles are synchronised; objects
are in ownership trees; boxes are tasks; tasks contain objects they use and subtasks.

creditCheck methods. In both of these methods, all the subtasks have inferred
sync()—the empty parenthesis means no synchronisation is required. Why is
this safe? Let us look at the transfer method. The effect, as declared, of the
transfer is the current object this. Such an effect is used by the type system as
a safety contract between the tasks created inside the method body (subtasks)
and the task that calls the method (parent task). When the method is called,
the parent task guarantees that the call is safe—no other tasks may interfere
with it. Within the method body of transfer, the calls on sav.withdraw(amt)
and chq.deposit(amt) cannot interfere: the call on sav.withdraw(amt) will
only access objects inside sav while chq.deposit(amount) will only access ob-
jects inside chq—being initialised with new account objects, the final fields sav
and chq must refer to distinct objects. Since sav and chq can own no objects
in common, there is no chance of interference. Therefore, no synchronisation is
required for these tasks.

Consider the touch method in the Bank. The call cus1.transfer(10) has
side-effect {cus1} and cus2.creditCheck() has {cus2}. But we cannot guar-
antee that cus1 and cus2 are not aliases, so those two calls may interfere. Syn-
chronisation is required. By synchronising each call on different variables, cus1
and cus2, we only block concurrent execution when they are actual run-time
aliases. Our type system allows this conditional blocking by safety condition (2).
To perform a safe inter-customer transfer (not in the example), a bank-level task

9

Programs P ::= L e

Classes L ::= class c〈p〉 [C t]opt where p R p {[final]opt t f ; M}
Constraints R ::= ≺ | � | #
Methods M ::= t m(t x) ε {e}
Effects ε, π ::= ∅ | {k} | ε ∪ ε
Contexts k ::= world | p | e
Types t ::= c〈k〉
Variables z ::= x | this
Expressions e ::= z | new t | e.f | e.f = e | e.m(e) | a; e
Tasks a ::= x = s π e
Sync states s ::= sync
Environments Γ ::= ∅ | Γ, p | Γ, p R p | Γ, z : t | Γ, π ⊗ π
Identifiers c, p, f,m, x

Table 1. Syntax and Type Environment

would process transactions on two customers; our inference algorithm would add
both customers into the sync requirement for the task.

We illustrate the difference between Java, SafeJava and our model in Figure 2,
whose caption explains the notation. In Java, all shared objects may be accessed
by any thread. Java allows arbitrary synchronisation which does not provide
safety. The simplest mechanism for thread-safety is to employ the per-object
monitor. SafeJava [5] extends previous type systems for data race freedom [12],
with ownership types where objects are encapsulated within threads or on the
heap. In SafeJava, at most one thread can be active within a tree at any one
time; this may be problematic for some applications.

By way of contrast, Figure 2 highlights the ability for tasks in our model to
concurrently access objects inside an ownership tree (i.e. protected by the same
coarse-grained lock). Unlike in SafeJava, accounts can be both encapsulated
and accessed concurrently. If potential interference is inferred (because the two
customer variables may be aliases for the same object), then synchronisation
may be needed, but not necessarily at the top of the hierarchy. The tasks may
run in parallel if the two customers are different objects. If we can determine that
the two customers are indeed distinct, then no synchronisation is required at all,
as in the last diagram. The diagrams make it clear that our model provides a
general structure of active objects and synchronisation patterns. This generality
is achieved without explicit synchronisation.

4 A Type System for Ownership Synchronisation

Our type system focuses on static checking of ownership synchronisation require-
ments, ensuring that runtime computations cannot interfere with one another.
In this section, we summarise key type rules and a small step dynamic seman-
tics. The syntax of a core language with ownership types and effects is given in
Table 1. We allow final expressions to be used as owner contexts (including final
fields and read-only variables) since they cannot change [5]. Type environments
Γ record context parameters, the assumed ordering between them, and the types
of variables.

10

[VARIABLE]
z : t ∈ Γ

Γ ` z : t ! ∅ [NEW]
Γ ` t

Γ ` new t : t ! ∅

[SELECT]
Γ ` e : t ! ε (t′ f) ∈ fields(t, e)

Γ ` e.f : t′ ! ε ∪ {e}

[FINAL]
Γ ` e : t ! ε (final t′ f) ∈ fields(t, e)

Γ ` e.f : t′ ! ε

[UPDATE]
Γ ` e : t ! ε (t′ f) ∈ fields(t, e) Γ ` e′ : t′ ! ε′

Γ ` e.f = e′ : t′ ! ε ∪ ε′ ∪ {e}

[CALL]
method(m, t, e, e) = t′ t ε′ ... Γ ` e : t ! ε Γ ` e : t ! ε

Γ ` e.m(e) : t′ !
⋃
ε ∪ ε ∪ ε′

[PARALLEL]

Γ ` e : t ! ε Γ, x : t ` e : t ! ε ∀k ∈
⋃
π · Γ ` k

∀i, j ∈ 1..|e| · i 6= j =⇒ Γ ` (πi) εi ⊥ (πj) εj
Γ ` x = sync π e; e : t !

⋃
ε ∪ ε

[SUBSUMPTION]
Γ ` e : t′ ! ε′ ` t′ ≤ t Γ ` ε′ v ε

Γ ` e : t ! ε
Table 2. Expression Typing Rules

The parallel-let expression is the only construct for expressing parallelism in
this simple language. In the examples, we have used essentially the same syntax,
with the explicit keyword par, which we now omit in the abstract syntax. Like
conventional let expressions, our parallel-let introduces local variables to be used
in the expression after the semicolon. The semicolon serves as a join boundary;
the expression after the semicolon will only be evaluated after all the concurrent
expressions join. The sync requirements π may be declared by the programmer
or inferred by the compiler. The type system considers π given and ensures they
are sufficient for guaranteeing safety.

Table 2 defines expression types and effects, which are largely standard ex-
cept [PARALLEL]. The fields() and method() functions look up types for fields and
methods from the class definition. [FINAL] states that accessing final fields has
no side effect, because they are read-only. Sync requirements are checked in the
last premise of [PARALLEL]. The elements in a sync requirement must be valid
contexts, such as final expressions.

In Table 3 the antecedent for [S-MUTEX] states that the sync requirements
overlap, and thus will always ensure the tasks execute in mutual exclusion, which
is safe. [S-COND] corresponds to safety condition (2) of Section 3. Details of these
rules are left to [22].

[S-MUTEX]
k ∈ π k ∈ π′

Γ ` (π) ε ⊥ (π′) ε′

[S-COND]
Γ, π ⊗ π′ ` ε # ε′

Γ ` (π) ε ⊥ (π′) ε′

Table 3. Synchronisation Rules

11

Locations l
Variables z ::= ... | l
Sync states s ::= ... | synced | rel

Objects o ::= f 7→ l

Heaps H ::= l 7→ ot
Eval states S ::= H; e

Eval contexts E ::= [] | E.f | E.f = e | l.f = E | E.m(e) | l.m(E) | l, E, e

Table 4. Extended Syntax for Dynamic Semantics

Table 4 defines the extended syntax and features used in the dynamic se-
mantics. In order to formalise the properties of the type system, we establish a
connection between the static and dynamic semantics by including ownership in
the dynamic semantics (preserved in the types of objects in the heap). But the
ownership information does not affect how expressions are evaluated; ownership
is only used for static type checking so it need not be available at runtime. We
extend the syntax of variables with runtime locations l. Sync state synced indi-
cates locks have been acquired and rel indicates locks have been released. A heap
is a mapping from locations to objects with their types; an object maps its fields
to locations. The initial state is (∅; e) where e is the body of the main method.
We use standard evaluation contexts to reduce the number of evaluation rules.

Table 5 presents a small step operational semantics. The transition rules are
mostly standard [12, 11, 2], where each single step is atomic and task interleaving
is modelled as random choices (in [R-INT]). The label on the transition ε is the
effect of the transition, which may either be empty (∅) or a singleton location
({l}). For simplicity, we adopt the object creation semantics from [6] where all
fields are initialised with new objects, hence [R-NEW] has no side effect.

The sync requirement of a task must be met in order for the task to be
executed. The synced function tracks the total requirements for all the active
(synced) tasks in its argument; it is used to ensure non-overlapping of sync
requirements from different active tasks. This semantics is similar to [11], which
abstracts away from a specific implementation as seen in [12]. The premise of
[R-ACQ] blocks a task unless its sync requirement has no overlap with synced,
the other active tasks’ synchronisation, thus preventing any possible interference.
(This premise just uses set intersection; there is no effect subsumption or context
ordering as we do not depend on ownership information at runtime.) Once a task
is active, it remains non-interfering with any other active task. This is the essence
of the safety guarantee for serialisability. Note that [R-ACQ] is an atomic step
no matter how many objects need to be synchronised in the sync requirement,
hence is not prone to deadlock (see discussion in Section 3). [R-REL] removes a
task from the active set, and releases its sync; its π no longer contributes to the
active requirements synced. [R-JOI] ensures the order of sequential execution.
The reduction rules for other expressions are mostly standard.

In database systems, serial means that transactions do not overlap in time
and cannot interfere with each other, i.e., as if all transactions in the system had
executed serially, one after another. Serialisability is usually proved by using
an acyclic precedence graph [27]. A precedence graph for a schedule contains a
node for each transaction and an edge from transaction Ti to Tj if an action in

12

[R-SEL]
H(l) = ot (t′ f) ∈ fields(t, l)

H; l.f
{l}−−→ H;H(l)(f)

[R-FIN]
H(l) = ot (final t′ f) ∈ fields(t, l)

H; l.f
∅−−→ H;H(l)(f)

[R-CAL]
H(l) = ot method(m, t, l, l) = ... e

H; l.m(l)
∅−−→ H; e

[R-NEW]

l /∈ dom(H) H1 = H, l 7→ ∅t (... t f) = fields(t, l)

∀i ∈ 1..|f | · Hi; new ti
∅−−→ Hi+1; li

H; new t
∅−−→ H|f |+1[l 7→ (f 7→ l)t]; l

[R-ASS] H; l.f = l′
{l}−−→ H[l 7→ H(l)[f 7→ l′]]; l′

[R-SYN]
H; e

∅−−→ H ′; e′

H; a, x = sync {e} e, a′; e′ ∅−−→ H; a, x = sync {e′} e, a′; e′

[R-ACQ]
{l} ∩ synced(a, a′) = ∅

H; a, x = sync {l} e, a′; e′ ∅−−→ H; a, x = synced {l} e, a′; e′

[R-REL] H; a, x = synced π l, a′; e
∅−−→ H; a, x = rel π l, a′; e

[R-INT]
H; e

ε−−→ H ′; e′

H; a, x = synced π e, a′; e′′
ε−−→ H ′; a, x = synced π e′, a′; e′′

[R-JOI] H;x = rel π l; e
∅−−→ H; [l/x]e [R-CTX]

H; e
ε−−→ H ′; e′

H;E[e]
ε−−→ H ′;E[e′]

Table 5. Small Step Operational Semantics

Ti occurs before an action in Tj and they conflict. Serialisable means that the
precedence graph for any possible schedule is acyclic. In our system, all tasks run
in a completely isolated fashion, even though they may execute concurrently with
other (non-interfering) tasks. To prove serialisability, we represent a schedule

with an arbitrary number of transitions. For example, a schedule S
G

==⇒ S3 is

a sequence of transitions S
ε1−−→
x1

S1
ε2−−→
x2

S2
ε3−−→
x3

S3, where actions are denoted

by their task names and effects. We only track actions in active (synced) tasks
because [R-INT] is the only case where tasks may interfere. We write G ` x1 ε1B
x3 ε3 to denote that, in the schedule G, an action in task x1 with effect ε1 occurs
before another action in task x3 with effect ε3.

Theorem 1 (Serialisability) states that tasks associated with conflicting ac-
tions must always appear in the same order in a schedule, so the precedence
graph is indeed acyclic as required. Because tasks are lexically scoped and hi-
erarchically defined, all parallel tasks are serialisable. We can therefore rely on
conventional techniques for reasoning about state-based updates in a sequential
style. Serialisability subsumes data race freedom such as that provided in [5, 11].

13

Theorem 1 (Serialisability)

Given H; (x = s π e; e) is a well-formed eval state and H; (x = s π e; e)
G

==⇒
H ′; (x = s′ π e′; e), if G ` xi εi B xj εj and εi ∩ εj 6= ∅, then G 6` xj ε′j B xi ε

′
i.

5 Discussion and Related Work

This research attempts to combine concurrency and OO using ownership types
and effects to reason about structured object synchronisation. Programmers can
take the advantage of domain knowledge of object structures, specified via own-
ership types and effects, to design concurrency and synchronisation. In general,
finer-grained object structures not only allow finer-grained reasoning on task
effects and their overlapping, but also provide the opportunity for finding more
allowable concurrency in structured parallelism, supported by our structured
synchronisation scheme. With the ability to locally reason about tasks, program-
mers may control and possibly reduce interference between tasks to allow more
tasks to run in parallel; they may also split tasks to achieve a finer granularity
of execution and synchronisation.

We adopt a whole-task synchronisation approach for ensuring parallel tasks
are executed in isolation, like previous type systems for atomicity [13]. By mak-
ing all tasks serialisable and synchronisation implicit, we simplify concurrent
programming and allow programmers to focus on their program logic as they
would for sequential programs within any task. However, structured parallelism
is not as flexible as a free-range threading model. Fortunately, it is possible to
ensure threads do not interfere with serialisable tasks [22], so that programmers
can choose to use threads or tasks as appropriate.

Our type and effect system supports modular, compile-time type checking,
and relies only on effects for preventing task interference, but otherwise placing
no restriction on references as seen in previous ownership types for encapsulation.
For example, an owned object can be typed and referenced from outside its owner
by naming the owner argument of the type with a read-only variable. But this
may be somewhat limited due to the naming restriction of ownership types [5]. To
completely remove naming restriction and provide for liberal reference to owned
objects in ownership type systems, we have proposed ownership abstraction [21]
and variances [20]. For simplicity we do not adopt these earlier schemes in this
paper. In addition, like [5], our type system does not distinguish read and write
effects as done in [8, 6]. This is somewhat over-conservative in that it does not
allow simultaneous reads of an object. We believe that adding a treatment of
read-write effects to our type system should not be difficult, at the cost of extra
effect annotations.

Reasoning about concurrent programs is difficult, in part because behaviour
of code is rather informally and imprecisely specified. Effect annotations enhance
program reasoning [6, 4]. Our type system uses explicit and checkable type and
effect annotations as a means of recording programmer intent. On the other hand,
annotations add programming overhead. With sensible defaults we can reduce
the annotation load so that not all type occurrences need explicit annotations.
Different ownership inference techniques have been studied elsewhere, e.g. [28,
5].

14

Much work has addressed the challenges of shared-memory concurrent pro-
gramming. Here we restrict attention to directly related work. In JOE [8], Clarke
and Drossopoulou introduced an ownership-based effect system. MOJO [6] de-
veloped these ideas further, focusing on the use of multiple ownership to increase
the precision of effects. Ownership domains [1] provided a richer structure than
ownership tree, which may be useful for more precise effect reasoning. In this
paper, we only consider ownership trees for objects, but it should be feasible to
extend the ideas to other object structures.

Previous attempts to utilise ownership types for object synchronisation are
rather limited and structureless. In SafeJava [5], objects are encapsulated within
threads or on the heap. Concurrent access to shared objects on the heap from dif-
ferent threads is guaranteed to be safe by synchronising on the root objects—an
object can only be accessed when holding the lock on its root owner. Moreover,
no external reference to non-root objects is allowed. Thus, within a root object,
all behaviour is single-threaded; this is the coarsest-grained ownership synchroni-
sation. In [11], data-races on objects are controlled by synchronisations on their
direct owners; different levels of object access do not rely on higher-level synchro-
nisations, and must be separately synchronised. It is finer-grained than SafeJava.
Unlike these previous techniques which rely on a fixed granularity throughout
system, we provide a more unified and structured ownership synchronisation
discipline. Moreover, [5, 11] and other type-based race detection techniques [12]
only check for the sufficiency of synchronisation, called the locking discipline, re-
quiring all accesses to shared data to be protected by a common lock regardless
of thread interference. This can lead to excessive locking even when synchronisa-
tion is unnecessary, for example, there is no need to protect a location shared by
different tasks but will never be accessed concurrently. In our model, we apply
synchronisation only when there is potential interference, hence achieve a more
precise interference-based discipline.

Java 7 provides library support for structured parallelism based on Lea’s
fork/join framework [18], which in turn, is based on Cilk [14]. Although able to
access shared memory, parallel tasks are typically assumed to work with distinct
subsets of memory, and consequently, should not interfere with one another.
Deterministic Parallel Java (DPJ) [2] proposed a region-based effect system to
enforce noninterference among tasks in the fork/join model, thus guarantee-
ing deterministic semantics. Synchronisation is never needed because tasks may
never conflict with one other. Such determinism is useful for certain programs
(e.g. scientific applications) where interference is limited, but too strong in real-
istic object-oriented programs with extensive sharing and mutation. The latest
work on DPJ [3] recognises the necessity and challenge for nondeterminism, by
allowing interference in some branches of the task tree. Programmers are required
to explicitly declare atomic blocks and place every access to shared memory in-
side atomic blocks, so that data race freedom can be guaranteed by software
transactional memory (STM). Beside the limitations of STM at this moment
[7], it does not support threads because thread interference cannot be captured
by their type and effect systems. Rather than regions, [10] uses an ownership-
based effect system to reason about data dependencies and allow the compiler
to parallelise code wherever task interference is not possible. These models are

15

special cases of ours (except some special features, such as index-parameterised
array types [2]), where the inferred sync requirements are empty. By scheduling
parallel tasks whose sync requirements overlap to execute in sequential order, our
behavioural model is reduced to theirs. With synchronisation, our model allows
more concurrency than deterministic programming which requires all potentially
interfering tasks to be executed in a specified order, though synchronisation may
have runtime overhead.

6 Conclusion

In this paper we have proposed the use of ownership types to enforce a struc-
tured synchronisation discipline for safe execution of structured tasks. We use
ownership effects to reason about interference between parallel tasks, and estab-
lish synchronisation requirements that guarantee serialisability. Synchronisation
requirements can be inferred to simplify concurrent programming, thus lower-
ing the bar for programmers—they are not responsible for choosing appropriate
synchronisation. The strong serialisability property simplifies reasoning about
concurrent programs by allowing every piece of code to be reasoned about sep-
arately without fear of interference. Although this paper has focused on struc-
tured parallelism, it can be extended to coexist with conventional unstructured
threads. With this work, we hope to stimulate further exploration of how object
and effect structure can facilitate safe and efficient concurrent programming.

References

1. J. Aldrich and C. Chambers. Ownership domains: Separating aliasing policy from
mechanism. In ECOOP, 2004.

2. R. L. Bocchino Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komuravelli,
J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A type and effect system for
Deterministic Parallel Java. In OOPSLA, 2009.

3. R. L. Bocchino Jr., S. Heumann, N. Honarmand, S. V. Adve, V. S. Adve, A. Welc,
and T. Shpeisman. Safe nondeterminism in a deterministic-by-default parallel
language. In POPL, 2011.

4. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation.
In POPL, 2003.

5. C. Boyapati and M. Rinard. A parameterized type system for race-free Java pro-
grams. In OOPSLA, 2001.

6. N. Cameron, S. Drossopoulou, J. Noble, and M. Smith. Multiple Ownership. In
OOPSLA, 2007.

7. C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chat-
terjee. Software transactional memory: Why is it only a research toy? ACM Queue,
2008.

8. D. Clarke and S. Drossopoulou. Ownership, encapsulation and disjointness of type
and effect. In OOPSLA, 2002.

9. D. Clarke, J. Potter, and J. Noble. Ownership types for flexible alias protection.
In OOPSLA, 1998.

10. A. Craik and W. Kelly. Using ownership to reason about inherent parallelism in
object-oriented programs. In CC, 2010.

16

11. D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universe Types for Race
Safety. In VAMP, 2007.

12. C. Flanagan and M. Abadi. Types for safe locking. In ESOP, 1999.
13. C. Flanagan, S. N. Freund, M. Lifshin, and S. Qadeer. Types for atomicity: Static

checking and inference for Java. TOPLAS, 30(4):1–53, 2008.
14. M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5

multithreaded language. In PLDI, 1998.
15. B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java Concur-

rency in Practice. Addison-Wesley Professional, 2005.
16. G. Golan-Gueta, N. G. Bronson, A. Aiken, G. Ramalingam, M. Sagiv, and E. Ya-

hav. Automatic fine-grain locking using shape properties. In OOPSLA, 2011.
17. J. Hogg. Islands: aliasing protection in object-oriented languages. In OOPSLA,

1991.
18. D. Lea. A Java fork/join framework. In Java Grande, 2000.
19. E. A. Lee. The problem with threads. IEEE Computer, 39(5):33–42, 2006.
20. Y. Lu and J. Potter. On ownership and accessibility. In ECOOP, 2006.
21. Y. Lu and J. Potter. Protecting representation with effect encapsulation. In POPL,

2006.
22. Y. Lu, J. Potter, and J. Xue. Ownership Types for Object Synchronisation. Ex-

tended version, available at http://www.cse.unsw.edu.au/~ylu/0813.pdf.
23. Y. Lu, J. Potter, and J. Xue. Validity invariants and effects. In ECOOP, 2007.
24. Y. Lu, J. Potter, and J. Xue. Ownership downgrading for ownership types. In

APLAS, 2009.
25. J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL, 1988.
26. M. Naik and A. Aiken. Conditional must not aliasing for static race detection. In

POPL, 2007.
27. C. Papadimitriou. The theory of database concurrency control. Computer Science

Press, Inc., New York, NY, USA, 1986.
28. A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership for generic

Java. In OOPSLA, 2006.
29. J. Potter and A. Shanneb. Incremental lock selection for composite objects. Journal

of Object Technology, 6(9):477–494, 2007.
30. M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value lambda-

calculus using a stack of regions. In POPL, 1994.
31. M. T. Vechev, E. Yahav, R. Raman, and V. Sarkar. Automatic verification of

determinism for structured parallel programs. In SAS, 2010.
32. P. Wadler. Is there a use for linear logic? In PEPM, 1991.

