The International Conference on Application Specific Array Processors,
297--308, Venice, 1993.

A New Formulation of the Mapping Conditions
for the Synthesis of Linear Systolic Arrays

Jingling Xue
School of Electrical and Electronic Engineering
Nanyang Technological University
Singapore 2263

Abstract
This paper presents a new formulation for mapping algorithms into linear systolic ar-
rays. The closed-form mecessary and sufficient mapping conditions are derived to identify
mappings without computation conflicts and data link collisions. These mapping conditions
are easy to check because their constituent variables are the space-time mapping matriz and
the problem size parameters. The design of optimal arrays is a mathematic programming
problem, which can be solved by a systematic enumeration of its search space.

1. Introduction

Most existing systolic design methods are restricted to the cases where n-dimensional
algorithms are mapped into (n—1)-dimensional systolic arrays. For detail, see [3, 4] and
references therein. The mapping conditions are linear and have closed-form expressions.
The design of optimal systolic arrays is an integer programming problem [4].

There have been several attempts on mapping n-dimensional algorithms into lower di-
mensional arrays [1, 2, 4, 5, 6]. Lee and Kedem [2] gave a set of necessary and sufficient
conditions on mappings without computation conflicts and communication conflicts (data
link collisions). A computation conflict occurs if more than one computation of an algo-
rithm are mapped to the same processor and the same time step. A communication conflict
(data link collision) occurs if more than one datum are so mapped that they travel along
the same data link at the same time step. The two mapping conditions proposed in [2]
to avoid these two conflicts are referred to here as the computation and communication
constraints, respectively. However, their verification is done by analysis of all computations
in the iteration space, which is too expensive to be practically feasible.

Shang and Fortes [6] presented a set of closed-form conditions on computation conflict-
free mappings. In their methodology, the issue of communication conflicts was not ad-
dressed. Ganapathy and Wah [1] proposed a parameter-based method in which the opera-
tions of the array are captured by a set of parameters, and the constraints are derived to
avoid computation and communication conflicts. However, the computation constraint is
assumed to be implied by the communication constraint. It is therefore not part of their
constraints for the correctness of a mapping, although it should be in certain cases. Their
communication constraint ([1, Thm. 3]) does not have closed-form expressions and contains
a few parameters that need to be further defined every time when it is applied to individual
variables. How this is done in general was not mentioned.

This paper is concerned with the derivation of closed-form computation and communica-
tion constraints on the design of linear systolic arrays from three-dimensional algorithms.
Depending on the shapes of the domains of input and output data, different closed-form
communication constraints are provided. Often the absence of communication conflicts on
one link implies the absence of computation conflicts. Conditions are provided that check

297

for this situation so that the computation constraint can be eliminated. If the conditions
are not satisfied, we simply enforce the conditions by adding the communication constraint
for an imaginary variable. So much of the text is devoted to the derivation of closed-form
communication constraints.

2. Algorithm model

Z (Q) denotes the set of integers (rationals). Z" (Q") denotes its n-fold Cartesian
product. The starting point of our synthesis method is a single-assignment algorithm
(called uniform dependence algorithm in [6]) adhering to the following format:

INPUT: iny, =P

iny, =P,
OUTPUT: outy,=Q1
outy, =Qy
LOOPS: for z; from [b; to ub; do

for z,, from [b,, to ub,, do

51
Sr
where
o Vi,---,V; are the variables of the algorithm; they form the variable set V.
e Set iny, € Z" (outy, € Z") is called the input (output) space of variable V;. V;(I) for
all vectors I in iny, (outy,) represent the input (output) data of V;. By convention,

empty input and output spaces need not be declared in the algorithm.
o The loops define a space ® of points (z1,--,,) called the iteration space (& CZ"):

& = {(z1,--,2n) | (Vi:0<i<n:1b;<z;<ub;)}

The bounds Ib; and rb; are linear expressions in the loop indices z; to z;_; and in
additional variables that specify the problem size. The loops have unit stride.
e Statement 5; in the loops has the following form:

Ied, — f(Wi(I-9y),..)
V() =
T€d®, — f(W(I-9,),...)

®; € /" and ¥ € 2" are disjoint if j and k differ. The three dots in the argument
list of f; stand for an arbitrary but fixed number of similar arguments. The constant
vectors ¢; € /" are called dependence vectors. The graph whose vertices are the
points of the iteration space and whose edges are the dependences between the points
is called the dependence graph. If V is defined for the entire iteration space, we write

V() = fW{I-9),--)

Without loss of generality, we assume that each variable V in the algorithm is associated
with one dependence vector, denoted 9y .

298

— |0 R |
- TH By R

Figure 1: The linear systolic array model.

3. Array model
Fig. 1 displays the linear systolic array, which has the following properties:

The execution of the array is governed by a global clock that ticks in unit time.
Only the two border processors are connected to the host.

Only neighbouring processors are connected directly with each other.

If a variable is stationary, its elements are stored in the local processor memories
of the array. If a variable is moving, its elements move along a fixed link with a
constant velocity. A link is a line of channels all of which have the same number of
delay buffers. A buffer retains a value for one time step, i.e., one clock tick.

4. The space-time mapping

A space-time mapping, II, that describes a linear systolic array is an 2 xn matrix:

w= 2=y

where A€ 7 is called the scheduling vector and o € Z the allocation vector. A point I in the
iteration space is computed at processor ol at time step Al.
We write flow(V') for the velocity with which the elements of a variable V' travel:

flow(V) = ody /Ay

Thus, the number of buffers associated with a channel for variable V is —1, where

|f|ov}l(V)|
the 1 accounts for the fact that evaluation of a point takes unit time. A variable V is
moving if flow(V') # 0 and is stationary if flow(V) = 0. We make the convention that a
variable V' moves to the right if flow(V')>0 and to the left if flow(V) <0. The coordinates

of the two border processors of the array can be calculated as follows:
Pmin = (min I:T€® :01) Pmax = (max I : 1€ :01)
The time steps at which data are input and output are defined as follows.
e Function input specifies the steps at which input data are input into the array:

input : V —iny — 7
. B flow(V)>0 — Al — (01— pmin)/flow(V)
nput(V)(T) = { ow(V)<0 — Al = (01 poan)/flow(V)

e Function output specifies the steps at which output data are output from the array:

output : V — outy — 7
) flow(V)>0 — AT — (01— pmax)/flow(V)
output(V)() = { flow(V)<0 — Al — (01— pmin)/flow(V)

299

The mapping conditions for the correctness of space-time mappings for linear systolic
arrays are given below. The notation f : D — R denotes that function f is injective from
domain D to range R. For z,y€Z, we write z|y iff z divides y.

Definition 1 (Mapping conditions) A space-time mapping, II, is correct iff

o (YV:VeV:Ay>0) (Precedence Constraint)

eI1:8% — 7° (Computation Constraint)

o YV VeV flow(V)#£0 = ody|Ady) (Delay Constraint)
(VV: VeV flow(V)#0 = input(V):iny — Z) L .

* (VV: VeV flow(V)#0 = output(V) : outy — Z) (Communication Constraint)

These mapping conditions are essentially the same as those proposed by Lee and Kedem
[2], except that our communication constraint is both a necessary and sufficient condition
on communication conflict-free mappings.

The precedence constraint ensures that the dependences prescribed in the algorithm are
respected. It remains the same as in the synthesis of (n — 1)-dimensional arrays. The
computation constraint ensures that the mapping is computation conflict-free. The delay
constraint states that the number of buffers on any channel for a moving variable is a
non-negative integer. The communication constraint ensures that the mapping is commu-
nication conflict-free. It is redundant in the synthesis of (n—1)-dimensional arrays.

Both the computation and communication constraints depend on the index vectors and
do not have closed-form expressions. Any formulation of finding correct and optimal map-
pings based directly on these conditions can only be effective for the problems of small sizes.
In what follows, we focus on the derivation of the closed-form and index vector-independent
computation and communication constraints. We shall drop the antecedent flow(V') in the
delay and the communication constraints. It is understood that the two constraints are
only applicable for moving variables. Similarly, whenever we apply functions input and
output to a variable V or write ody | Ay, we mean that V' is a moving variable.

5. Simplifying the computation and communication constraints

We present our results in a more general setting by extending the functions input and
output so that they are of types V — Q" — Q and V — Q" — Q, respectively. The main
results are summarised in three theorems. Thm. 1 presents the condition under which the
computation constraint can be eliminated. Thms. 2 and 3 present the condition under
which the communication constraint can be simplified. For ease of presentation, we first
present two technical lemmata, which are useful in the proof of Thms. 1 — 3. The correctness

of the two lemmata can be proved by a simple algebraic calculation. We write 13v. g
I=J+mdy for some me Q.

Lemmal (1)(VV,I:VeVAIEQ":I3% T = input(V)(I)=input(V)(J))
(2) (VV,I:VeEVAIEQ™: 12y = output(V')(I)=output(V')(J))

This lemma has the following implication. The input (output) space of a variable V

cannot contain two distinct points I and J such that 12, J. Otherwise the two data V()
and V(J) would be input (output) at the same time under any space-time mapping.

Lemma 2 (Y V,I: VeV AITeQ" :output(V)(I)=input(V)(I)+|(Pmax— Pmin)/flow(V)]).

This lemma says that a datum of V' takes |(pPmax—Pmin)/flow(V')| to travel across the array.

300

The sufficient conditions for the elimination of the computation constraint are presented

below. Let X and Y be two sets and ¥ be a vector in Z”. We write X —— Y if, when
projected along 9 onto a fixed hyperplane, the projection of X is a (not necessarily strict)

subset of the projection of Y. That is, if X 2, Y, then for every I in X thereis J in Y
such that 7<%~ J. Assume that a mapping satisfies the precedence constraint for variable

vy . ¢ . . .
V and that ® —%iny (® —% outy) holds. Then the absence of communication conflicts for
the input (output) data of V implies the absence of computation conflicts.

Theorem. 1 Let My #0. (1) If <I>i91>inv, then (input(V):iny — 7)) = (II: & — 7)
(2) If aQ'EALoutV, then (output(V):outy — Z)= (Il : & — 7)

Proof. We prove (1) by contradiction. The proof of (2) is similar. Let there be two distinct
points I,J € ® such that II7 =11J, i.e., A\I=AJ Aol =0J. Since Ay #0, 1. 7 does
not hold. By further using ® By, iny, we know that iny must contain two distinct points
I' and J' such that T 2% I’ and J ¥ J'. We show that input(V)(I") = input(V')(J') and
thus achieve the impossible. By Lemma 1, input(V)(I)=input(V)(I’) and input(V)(J)=
input(V')(J'). It suffices to show that input(V)(I) = input(V)(J). This follows from the
proof hypothesis AI=AJ A 6] =0J and the definition of input. a

Next, we consider the elimination of redundant communication constraints. In general,
there are two communication constraints associated with a variable: one for the input space
and the other for the output space. One of these two constraints can be eliminated if a
certain relationship between the input and output spaces holds. The following theorem
identifies such a relationship. Let X be a set in Z" and a € Z", the set {z+a | z€ X}
is called the translation of X by a. Let X and Y be two sets and ¥ be a vector in Z".

We write X = Y if there exists a vector o€ Z” such that X — (Y +o0). If outy 2, iny

(iny »ﬁ—v>outv), then a mapping that is communication conflict-free for the input (output)
data of V' is also communication conflict-free for the output (input) data of V.

Theorem. 2 (1) If outy rﬂ—v>inv, then (input(V) :iny — Z) = (output(V') : outy — Z)

(2) If iny ﬁLoutV, then (output(V) :outy — Z) = (input(V) :iny — 7Z)
Proof. For reasons of symmetry, we only prove (1). Since input(V) : iny — Z, it follows
from algebraic calculations that input(V) : (iny +a) — Z for any vector a in Z". By
Lemma 2, we obtain output(V') : (iny +a) — Z. The assumption that outy 2V, iny means
that there is an o € Z" such that outy By, (iny +0). With the a being replaced by o, we
have output(V) : (iny +0) — Z. That outy By, (iny 4 0) implies that, for every I in outy,

there is J in iny+o such that <% J. By Lemma 1, we have output(V')(I)=output(V)(J)

and consequently {output(V)(K) | K € outy} C {output(V)(K) | K € (iny +0)}. Since

output(V) : (iny +0) — Z, we conclude that output(V) : outy — Z.]
The following theorem is a straightforward generalisation of Thm. 2.

Theorem. 3 Let V and W be two variables such that 9y =mdw (meQ).

1) finy r——>1nW, then (input(W) :inyy — Z) = (input(V) :iny — 7Z)

2) If iny 2y, outw, then (output(W) :outwy — Z) = (input(V) :iny — Z)

3)
)

4) If outy »19—>outw, then (output(W) : outw — Z) = (output(V) : outy — Z)

If outy |——>1nW, then (input(W) :inwy — Z) = (output(V) : outy — Z)

301

6. Transforming the computation into communication constraint

If there exists a moving variable V such that & By, iny, then the computation constraint
can be eliminated (Thm. 1). Otherwise, we replace the computation constraint by the
following communication constraint: We imagine there exists a pseudo-variable, denoted

T, such that & &inp. The dependence vector dr of the pseudo-variable I' can be chosen
to be any vector in Z". The input space inr is defined as

inp = (8-9p)\

. . o . dp .

(®—9Jr is the translation of ® by —9Jr.) The very definition of inr ensures that & —Zinp.
o . . . p .

In general, it is preferable to choose Jr as a dependence vector, say dy. Since inp —iny

and inp — outy, the communication constraint for variable V can be eliminated (Thm. 3).

7. Transforming the communication constraint

As the central part of the paper, this section is concerned with the derivation of the
closed-form necessary and sufficient conditions for mapping three-dimensional algorithms
into linear arrays without communication conflicts (i.e., data link collisions).

The variables in systolic algorithms represent either the matrices or the vectors in the
corresponding problem specifications. These matrices are usually diagonal, rectangular or
triangular matrices. Vectors can be dealt with similarly as diagonal matrices. The type of a
matrix determines the shape of the input and output spaces of the corresponding variable,
which consequently dictates the derivation of the closed-form communication constraint.
For reasons of symmetry, we only consider the input spaces. Often we shall speak of the
communication constraint for a variable rather than for the input space of a variable. All
results presented in this section apply for the output spaces.

We shall use the following notations. If 2 and y are integers, not both zero, then their
greatest common divisor, gcd(z,y), is the largest positive integer that divides both z and
y. We define gcd(0,0)=0. The sign is the usual sign function. Let P and @ be two points
in Z". The notation PQ stands for the line connecting the two points P and Q, inclusive.
Let V' be a variable. Let €3, be a vector in /" where s is in the set {z,y, z}. We write &}
for the time difference between the input of two input data V(I+ef,) and V(I):

6y = input(V)(I+ef)—input(V)(I) = ey —oey(Ady/ody)

7.1. Lines

The input space iny is a line if it is one-dimensional. Let ej, be a vector parallel to the
line. The closed-form communication constraint follows from the definition of 7.

Theorem. 4 Letiny be a line. The communication constraint for V is satisfied iff 63; #0.

7.2. Parallelograms

The input space iny is a parallelogram if it satisfies the following property (Fig. 2):
It contains four distinct index points, denoted by O, P, @ and R. We write num{, and
num}, for the number of index points on the edges OP and OQ, respectively. We define
el =(P—-0)/(num§ —1) and e}, =(Q —0)/(numj, —1). Then

iny = {04+(G-1)el+(j—1)ey; | 0<i<num} A 0<j<numf}

302

Figure 2: (a) The parallelepiped input space. (b) An instance: numf, =5 and num}, =3.

That is, O, P, Q and R are the four vertices of the parallelogram and ef and e}, are the
vectors parallel to two adjacent edges. For ease of presentation, we define a matrix, named
Ay and called the input matriz, of size numj, x numj, as follows:

0 o - (numf; —1)6%
Ay = 6%, 6,465 .- 6%+ (numf, —1)6%
(num}, —1)67, (num}, —1)67,+6% --- (num} —1)67 + (numi —1)6%

The (%,7)-th element of the input matrix, denoted Aé}j, is the time difference between the
input of V(0) and V(O +(i—1)e},+ (5 —1)e},), which is calculated as

A%}j = input(V)(O+(i—1)ey,+(j—1)ey) —input(V)(0) = (i—1)6y+(j—1)6;

So the communication constraint for V is satisfied iff Ay contains no identical elements.

To ensure that all elements of Ay are distinct, the necessary and sufficient conditions
must include & # 0 and 6, #0. To derive the remaining conditions, we divide all input
matrices into four groups by the case analysis: (1) 6% >0 and 6, >0, (2) 6% >0 and 6, <0,
(3) 6% <0 and 63, >0 and (4) 6} <0 and 67, <0. We examine two input matrices from the
first two groups. The analyses in (3) and (4) are similar to (1) and (2), respectively.

0 3 6 9 12 0o 2 4
Ay = 1 4 7 10 13 Ay = -4 -2 0
2 5 8 11 14 -8 —6 -4

(a) num{; =5,num}, =3,65=3,6;, =1 (b) num§ =3,num}, =3,65 =2,6}, =4

The communication constraint in (a) is satisfied, since Ay has no identical elements. In
general, since 6f >0 and 6}, >0, all elements of the input matrix are distinct iff all elements
in its first row and first column are distinct. If we scan the first row left to right and the
first column top to bottom, the first pair of identical elements must be at the positions

5:‘!
by
ged (6%, &%)

and have the value

&%

1 v @
(ged (63, 8%)

+1) = (1,2) and (+1,1) = (4,1)

52.6%,
ged (6%, 63,)

In general, the input matrix does not contain identical elements iff

AL +sign(85) x = 3

6% T 61:2/ Y
oy, 57~ " el)

303

The input matrix in (a) has no identical elements, because 3= W >numj, =3 holds.

Next, we consider the input matrix in (b). Since the input matrix contains identical
elements 0 and —4, the communication constraint is violated. In general, since 6§; >0 and
6% < 0, all elements of the input matrix are distinct iff all elements in its first row and
last column are distinct. If we scan the first row right to left and the last column top to
bottom, the first pair of identical elements must be at the positions

—by 5%

m) = (l,l) ELIld (m-l—l,numv) = (2,3)

(1, numj; —

and have the value
61‘"}5%’,
ged(6%, 63,)

1,numy

Ay vV +sign(67;) x

In general, the input matrix does not contain identical elements iff

—_— numj; Oor ——— ———~ num
ged(65,6) — VT ged(8g.8y) T~
Y
The input matrix in (b) contains identical elements, because neither 2 = _7gcd(§‘m/ 57 >
\4
numj; =3 nor 1= T(i‘”;y) >numj, =3 holds.

Theorem. 5 Letiny be a parallelogram. The communication constraint for V is satisfied

uf

numy, IIUIIIV

T 51/
6% #0 and max(|6V|y , L4) > ged(6%, 6%) (1)

Proof. The conditions of (1) imply 67, #0. The proof is conducted by the case analysis:
(1) 6567 >0 and (2) 6563 <O.

e 6365 > 0. The input matrix Ay contains identical elements iff there are identical
elements in its first row and first column. If we scan the first row left to right and
the first column top to bottom, the first pair of identical elements are located at the

positions (1, L)—}—l) and (L)—I—l 1) and have the value A} +sign(6%)x

(62,67 a(sz 67
z sY
gcd§(5f 57y Hence, the input matrix Ay does not contain identical elements iff either
% >numf; or W >num},, which is equivalent to max <m|15m|y , n1|15m|I > >
ged (6%, 6%,).
e 656% <0. The proof is similar to the first case (see the forgoing discussions). a

7.3. Trapezoids
The input space iny is a trapezoid if it satisfies the following properties (Fig. 3):

1. Four index points, denoted O, P, @ and R, are the vertices of the trapezoid. @) and
R may be identical.

2. OP is parallel to and contains no less index points than QR.

3. Let num%, num}, and num?, be the number of index points on OP, OQ and PR,
respectively. Then numj, =num$,.

304

\‘ ‘2/ e o o o o o o o
_______ v 7V e o o o
Y X

o o

Figure 3: (a) The trapezoidal input space. (b) An instance: num§ =8 and num}, =num} =3.

4. Let e, =(P—0)/(num} —1), 5, =(Q —0)/(num3j, — 1) and e}, =(R—P)/(num$, —1).
(By using the conditions given so far, e}, — e}, and e}, are co-linear.) Then

Yy _ oz
iny = {O+(i—1)e7{,+(j—1)e"§|0<i§num7{,/\0<jSnum"{,—(i—l)eVeTeV}
3

A trapezoid is a triangle if Q@ = R and a parallelogram if e}, = e}.

By definition, if the input space iny is a trapezoid, e}, —ef, must be an integral positive
multiple of ef,. This multiple is the difference of the index point counts on any two adjacent
line segments in the trapezoid that contain index points and are parallel to OP.

Let X be the point such that OP and QX are parallel and OQ and PX are parallel.
Let Y be the point such that OP and Y R are parallel and OY and PR are parallel. Then,
the trapezoidal input space iny is the intersection of the parallelogram OPXQ and the
parallelogram O PRY . Therefore, the input matrix Ay for the trapezoidal input space iny
can be defined as either of the following;:

Y z
Ev_*ty

(P1) Ay is the input matrix for the parallelogram O PX Q with the last num$, —(i—1)

elements in the ¢-th row being removed.

T
ey

z

(P2) Ay is the input matrix for the parallelogram O PRY with the first num@—(i—l)ﬁg‘ﬁ

v
elements in the i-th row are removed.

As is for the parallelepiped input space, the necessary and sufficient conditions must
include 6% #0, 63 #0 and 6% #0 if all elements of the input matrix are distinct. To derive
the remaining conditions, we distinguish the two cases: (1) §%6;, >0 and (2) 6563, <0. In
the first case, the input matrix is regarded as being defined in (P1). The transformation
of the communication constraint is carried out as if the input space is the parallelogram
OPX(Q. That is, the communication constraint is satisfied iff all elements of the first row
and first column of the input matrix are distinct, i.e., iff

X(551 _I6t)

> ged (6%, 67
num:{//anum%> Ea) (Vs V)

In the second case, the input matrix is regarded as being defined in (P2). The transforma-
tion of the communication constraint is carried out as if the input space is the parallelogram
OPRY. That is, the communication constraint is satisfied iff all elements of the first row
and last column of the input matrix are distinct, i.e., iff

max(5| M) > ged(63, 67)

’
numj, numf;

305

Theorem. 6 Let iny be a trapezoid. The communication constraint for V is satisfied iff

8| 16% |
K] T
numy, > numy,

s 5:': 52 s Z
and §6§%6), <0 — max (m|11‘§1|‘2,’m|11‘§1|‘$,) > ged(6§, 6%)

65 #0 and L6 >0 — max(>chd(5€—,6§“’,)

(4)

Proof. The conditions of (4) imply that 6}, #0 and 6% #0. The rest of the proof follows
from the forgoing discussions. a
Thm. 6 has a special case in which 7, is not needed.

Theorem. 7 Letiny is a trapezoid such that ef,+e% :ez{,. The communication constraint

for V is satisfied iff

6% &Y &Y — 6%
6% #0 and max(| Vly | Vl | 14 d

’ z? T
numV numV numV

) > ged (55, 61)

7.4. Arbitrary input spaces

This section is very brief due to space limitations. We distinguish the two cases:

1. The input space iny is a two-dimensional set. First, construct a minimal enclosing
parallelogram or trapezoid of the input space. Then, apply the respective method for
parallelograms (Sect. 7.2) or for trapezoids (Sect. 7.3).

2. The input space iny is a three-dimensional set. First, project the input space along 9y
onto an arbitrarily chosen hyperplane (the projected input space is two-dimensional).
Second, scale the projected input space such that the scaled input space is integral.
Finally, we are back to the first case.

It makes no difference onto which hyperplane the input space is projected.

Theorem. 8 The communication constraint for the input space of V is equivalent to the
communication constraint for the scaled input space of V.

Proof. A simple algebraic manipulation. a

8. A summary

Let us summarise the process for the derivation of the closed-form necessary and sufficient
conditions on computation and communication conflict-free mappings. Let IOspace be the
set of all input and output spaces, which are referred to as the spaces below.

1. Transform all spaces in JOspace into parallelograms or trapezoids (Sect. 7.4).

2. Transform the computation constraint (Sect. 6). Eliminate the computation con-
straint if possible, or replace it by the communication constraint for an imaginary
variable T' by adding the minimal enclosing parallelogram or trapezoid of inr to
IO space.

3. Eliminate all redundant spaces in IOspace (Thms. 2 and 3).

4. Transform the communication constraints for the spaces in IOspace (Thms. 4 — 7).

To find optimal and conflict-free mappings for linear arrays, we solve the following;:
Minimise cost(II)
Subject to The precedence constraint

The delay constraint
The transformed communication constraint

306

Figure 4: The dependence graph for LU decomposition (m=3).

where cost(II) denotes some cost function (e.g., the latency) for a space-time mapping.

9. An example and related work

To compare our work with the related work, let us consider LU decomposition. LU
decomposition is the unique decomposition of a non-singular mxm matrix A into a lower-
triangular matrix L and an upper-triangular matrix U such that A=LU. The elements of
the upper triangle of L and the elements of the lower triangle U are 0; the diagonal elements
of L are 1. An algorithm for LU decomposition can be found in [7]. The corresponding
dependence graph is displayed in Fig. 4. There are three variables A, L and U which are
associated with the following dependence vectors:

94=(0,0,1), 91 =(0,1,0), ¥y = (1,0,0)
The input and output spaces are:
ing = {(4,5,0) | 0<4,7<m}
outy, = {(¢,m, k) | k<i<mAO0<k<m}
outy = {(m,7,k) | k<j<mA0<k<m}
The output space of A and the input spaces of L and U are of no interest.

Since & 24 ing, the computation constraint can be eliminated (Thm. 1). The input
space ing is a parallelogram: €% = (1,0,0), e} = (0,1,0) and num% = num? = m. The
output space outz, is a triangle: e} = (—1,0,0), ¢% =(0,0,1), €% = (1,0,1) and num} =
numy =num$ =m—1. The output space outy is a triangle: e, =(0,-1,0), ef; =(0,0,1),
e =(0,1,1) and num} =numf, =numf =m. We obtain

A A A
6ﬁ2>\1—01ﬁ 6%/:0'1%—}\1 65:0'2i—>\2
Y — N8 Y N, —ga 22 Y — o go L
5A—>\2 0203 5L—>\3 C730—2 ‘sU_A3 0301

62 = (}\1-|->\3)—(0'1-|-0'3)%22 55 = (}\2+>\3)—(U2+U3)Al

o1
The communication constraint for the input space iny is given in Thm. 5. Since ef+e} =
ey and ef+ef =ef;, the communication constraints for outz and outy are given in Thm. 7.
(In this case, 6} and 67 are not needed.)
The problem of finding optimal and conflict-free mappings can be formulated as follows:

Minimise cost(Il)
Subject to A1 >0, A2>0, A3>0 (Precedence Constraint)
o1|M1, 02| X2, 03|23 (Delay Constraint)
5 0, max(| 5], 64)) > mged(83, 6%),
6% 0, max(|63), 63], |65 — 62)) > (m— 1) ged(65, 62),
65, 70, max(|65 |, 85,165 —35) > m ged 85, 6%)
(Communication Constraint)

307

By using Lee and Kedem’s mapping conditions, the problem formulation would be:

Minimise cost(II)

Subject to A; >0, A2>0, A3>0 (Precedence Constraint)
o1|M1, 02| A2, 03|A3 (Delay Constraint)
(:® — 77%) (Computation Constraint)

(VI,J:I,Jed :~(I245T) = AI-J)oda#Mac(I-J))
(VI,J:1,Jed :~(I32T) = MI-J)odL £\ o(I-J))
(VI,J:1,Jed : ~(I3%0) = \I-J)ody#Myo(I-T))

(Communication Constraint)

The computation constraint is redundant. In addition, both the computation and commu-
nication constraints depend on the index vectors and do not have closed-form expressions.
Thus, the total number of constraints depends on the problem size. By using integer
programming techniques, only problems of small sizes can be solved efficiently.

It is unclear how Ganapathy and Wah’s method [1] can be used to obtain the problem
formulation same as ours. Ganapathy and Wah’s communication constraint [1] improves
Lee and Kedem’s [2] because the index vectors in the latter are replaced by a few parameters
that depend on the problem-size parameters. But the issue of defining these parameters in
general and then coming up with closed-form constraints was not addressed. By classifying
the input and output spaces in terms of their shapes, this issue has been successfully
addressed here for the case where three-dimensional algorithms are mapped to linear arrays.

Finally, Ganapathy and Wah proposed an enumeration method to systematically gener-
ate optimal mappings — the scheduling vector first followed by the allocation vector. One
component in their objective functions is the completion time, which is taken as the time
spent on performing all computations of an algorithm. It depends on the scheduling vector
only. In lower dimensional (pure) systolic arrays, the time spent on the soaking (draining)
of the input (output) data can be significant. If this is taken into account, the completion
time also depends on the allocation vector. Then a new enumeration method is called for.

10. Acknowledgement

Thanks to the referees for helpful comments and to J. A. B. Fortes for discussions.

References
[1] K. Ganapathy and B. W. Wah. Synthesizing optimal lower dimensional processor arrays. In
Int. Conf. on Parallel Processing, pages 96-103, Aug. 1992.

[2] P. Lee and Z. Kedem. Mapping nested loop algorithms into multidimensional systolic arrays.
IEEE Trans. on Parallel and Distributed Systems, 1:64-76, Jan. 1990.

[3] P. Quinton and V. van Dongen. The mapping of linear recurrence equations on regular arrays.

J. VLSI Signal Processing, 1(2):95-113, Oct. 1989.

[4] S. K. Rao. Regular Iterative Algorithms and their Implementations on Processor Arrays. PhD
thesis, Department of Electrical Engineering, Stanford University, Oct. 1985.

[5] V.P. Roychowdhury and T. Kailath. Subspace scheduling and parallel implementation of non-
systolic regular iterative algorithms. J. VLST Signal Processing, 1(2):127-142, Oct. 1989.

[6] W. Shang and W. A. B. Fortes. On time mapping of uniform dependence algorithms into lower
dimensional processor arrays. IEEE Trans. on Parallel and Distributed Systems, 3(3):350-363,
May 1992.

[7] J. Xue and C. Lengauer. The synthesis of control signals for one-dimensional systolic arrays.
Integration, 14(1):1-32, Nov. 1992.

308

