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ABSTRACT

We introduce a points-to analysis for Java, called EMU, that enables
developers to perform pointer-related queries in programs under-
going constant changes in IDEs. EMU achieves its fast response
times by adopting a modular approach to incrementally updating
method summaries upon code changes: the points-to information in
a method is summarised indirectly by CFL reachability rather than
directly by points-to sets. Thus, the impact of a code change made
in a method is localised, requiring only its affected part to be re-
summarised just to reflect the change. EMU achieves its precision
by being context-sensitive (for both method invocation and heap ab-
straction) and field-sensitive. Our evaluation shows that EMU can
be promisingly deployed in IDEs where the changes are small.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Techniques; F.3.2
[Logic and Meaning of Programs]: Program Analysis

General Terms

Algorithms, Languages, Experimentation, Performance

Keywords

Points-to analysis, CFL reachability, Summarisation

1. INTRODUCTION

Points-to analysis is widely used in static analysis tools. It is es-
pecially important for object-oriented languages in which the exten-
sive uses of pointer-induced heap accesses, subtyping and dynamic
dispatch make it hard to understand value-flow in a program. Stud-
ies over several decades have focused on obtaining precise points-to
information efficiently, with impressive progress in points-to analy-
sis for Java [6, 7, 8, 9]. However, existing algorithms are not formu-
lated to be used in environments like IDEs where the software is still
being developed. In such environments, a points-to analysis must
(1) work well in response to small but frequent edits (Frequent
Code Changes); (2) handle each code change quickly without dis-
rupting developer productivity (Non-Intrusiveness), and (3) an-
swer queries as precisely as possible within a small time budget
(Demand Queries with Limited Budgets).

We introduce a new approach, called EMU, to points-to analysis
for Java that simultaneously satisfies these three constraints. There
are three contributions. First, by leveraging recent advances on
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Figure 1: An abstraction of Java programs

demand-driven points-to analysis [6, 7, 9], EMU is the first formu-
lated for IDEs by Context-Free-Language (CFL) reachability. Sec-
ond, EMU achieves efficiency and precision by adopting a mod-
ular approach to incrementally updating method summaries. To
achieve efficiency, method summaries are expressed indirectly by
CFL reachability rather than directly by points-to sets, so that the
impact of a code change in a method is bounded in EMU (requiring
only its affected part to be re-summarised) rather than unbounded
traditionally [2, 10] (requiring program-wise updates in the worst
case). To achieve precision, EMU is context-sensitive for (method
calls and heap abstraction) and field-sensitive. Finally, we have im-
plemented EMU in Soot, a Java analysis framework integrated into
the Eclipse IDE. We describe our evaluation with a representative
client, SafeCast, using seven Java programs. For small changes,
such as adding/deleting statements, EMU can answer each query
under 0.054 secs on average and under 0.87 secs in the worst case.

2. CFL-REACHABILITY-BASED ANALYSIS

CFL reachability [6, 7, 9] is an extension of graph reachability
[4]. As our analysis is flow-insensitive, a program is represented
by a Pointer Assignment Graph (PAG), with threes types of nodes,
objects, and local/global variables. Every edge is oriented in the di-
rection of value flow, representing a statement as a label in Figure 1.

Array elements are modeled by collapsing all elements into a
special field arr. No two classes (methods) contain the same iden-
tically named global (local) variable. Figure 2 gives an example,
providing an abstraction for the Java container pattern. Figure 3
shows its PAG: (1) o; denotes the abstract object o created at the
allocation site in line ¢; (2) ret, tmpl and tmp2 are temporaries;
and (3) this,, denotes the “this” parameter of method m.

Each realisable flowsTo-path in a PAG has a string formed by
concatenating in order the labels of edges in the path, where Id/st
pairs on the same field must be matched (field sensitivity) and en-
try/exit pairs for the same callsite must be matched (context sensi-
tivity). An object is in the points-to set of a variable if there is a
SflowsTo-path from the object to the variable. Two variables x and y
may be aliases, denoted x alias y, if an object flowsTo both x and
Y.
Let us see how to discover o5 as a pointed-to target for ¢1. In
Figure 2, 022 flows to hl, which is the actual parameter passed



class Hashtable {
Object[] key;
Object[] wval;
Hashtable () {
Object[] sl = new Object [MAXSIZE];
Object[] s2 = new Object[MAXSIZE];
this.key = sl;
this.val = s2;}
void put (Object k, Object wv) {
.hashCode () ;
this.key;

o~

Object[] tl
tl[index] = k;
Object[] t2 this.val;
t2[index] = v;}
Object get (Object k) {
int index = k.hashCode();
17 Object[] t = this.val;
18 return t[index]; }}
19 class Element{ Object f; }
20 class Main {
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21 static void main(...) {

22 Hashtable hl = new Hashtable();

23 Element el = new Element () ;

24 el.f = new String("hello");

25 String k1 = "first";

26 hl.put(kl, el);

27 Hashtable h2 = new Hashtable();

28 Element e2 = new Element () ;

29 e2.f = new String("world");

30 String k2 = "second";

31 h2.put (k2, e2);

32 Element e3 = (Element) hl.get (kl);
33 Element e4 = (Element) h2.get (k2);
34 Object m = e3.£f; }}

Figure 2: A Java example
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Figure 3: PAG for the Java example.

to the formal parameter thisrqshtabie Of constructor Hashtable
and thispu: of put. So thismashtabie alias thisp,: because 022:

thismashtable 8SSIgN h1 NEW o022 new hl assign thisput

For each edge z £ vy, its inverse edge is y & . We then know
that o5 flowsTo t1 (so t1 points to 05) due to the flowsTo-path:

o5 new sl st(key) thismashtavie alias thisp. ld(key) t1

Note that the flowsTo and alias relations are recursively defined.
Similarly, we find that 024 flowsTo m and 029 flowsTo m. When
context sensitivity is considered, only the former flows7o path is
realisable. In Figure 2, 024 is initially inserted by calling put in
line 26 into Hashtable hl, which is created in line 22, and later
retrieved by calling get in line 32 and saved into m. This flowsTo
path is realisable because entry,; — entry,, — entry,, —
entry,, — entry,, — exitsz is. In contrast, the flowsTo path cor-
responding to 029 flowsTo m is not realisable because entry,;, —
entry,; — entry,, — entry,, — entry,, — exXitsz is not.
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Figure 4: Structure of EMU.
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Figure 5: Abstract domains.

3. THE EMU POINTS-TO ANALYSIS

The EMU framework comprises three phases as shown in Fig-
ure 4. The key observation is that, as shown in Figure 3, we can
distinguish the edges in a PAG: local edges (new, assign, Id or st)
and global edges (assignglobal, entry or exit). For each method
parameters and return variables, the summarisation process uses
the local reachability analysis to construct and maintain a CFL-
reachability summary. Such summaries enables fast on-demand
points-to queries to be answered, as they can be recomputed quickly
and independently in response to code changes.

3.1 Whole-Program Summarisation

As a once-off initialisation, we compute and store local CFL-
reachability summaries of all methods. We construct deduction
rules (similar to [1]) from a program as specified in Figure 1 with
the additional abstract domains in Figure 5. The state s indicates
the direction in which the analysis traverses: along a flowsTo path if
s = 51 oraflowsTo path if s = Sa. A context (call stack) c is an or-
dered sequence of call sites. Similarly, a field stack k is an ordered
sequence of directed fields. Directed fields are used to distinguish
the traversal directions of Id and st edges, where f is the inverse of
f. A cache I" maps a variable and a direction of the analysis to its
summary. A summary o is a set of context-insensitive local states.
The global states ¢ are used by points-to queries discussed later.

We specify our local reachability analysis using deductive reach-
ability formulations. The reachability analysis is described by a set
of deduction rules in the form of: ¢{n, s, k) == {(n’,s’, k">, which
follow only local edges and are context-independent. Each local
edge in a PAG is translated into one or more deduction rules. For
example, given a points-to query for variable v in state S1 with field
stack k, we may conclude that v reaches o with field stack &’ if we
can derive a reachable path: (v, S1, k) = (o, 5, k">.

The summarisation is based on the deduction rules given in Fig-
ures 6 and 7. Figure 6 shows the construction of summaries by
using the local reachability analysis defined in Figure 7.

During this phase, we compute a flowsTo summary in S for each
parameter and a flows7o summary in S; for a return, with the field
stack being empty initially. The process exhaustively searches for
and includes (1) all reachable local objects (always in state S1) and
(2) all reachable local variables connected to an incoming global
edge in S1 or an outgoing global edge in Sa.

o= {<07 Sh k> | <’U, S, ,@> = <O’. Sl>k>} .U
{(n, Sl,k> | (’U,s,@') _ (n, 51,k> A n exit/entry/assignglobal n’} o

{(n', Sa, k) | {v, s, Ty == {n,S2,k) A n’

exit/entry/assignglobal
———————n}

SuM(v, s) = o

Figure 6: Summarisation by local reachability analysis.
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Figure 8: Summary update for code changes.

For put in Hashtable, our summarisation produces:

D({thisput, S2)) = <k, S1, fkey:f@@, S1, —val:—arry
I'((v, S2) = (thisput, S1,arrwal)y
T((k, S2)) = (thisput, S1,arr:key)

3.2 Incremental Summary Update

After its installation, EMU enters into a ready state, as shown
in Figure 4. If a code change is made in a method, then its local
reachability summaries are updated. Existing incremental points-to
analyses [3, 5, 11] typically cache the points-to sets of the vari-
ables queried earlier and update (often approximately) all affected
points-to sets after a code change, leading to unbounded (slow) and
imprecise propagation of changed points-to information. Since our
summaries store local reachability relations, we only need to update
the affected summaries for the modified methods. Such modularity
leads to a fast and precise analysis suitable for IDEs.

The summaries for all modified methods are updated indepen-
dently. To update a method, the rules given in Figure 8 are applied.
The (update) rule performs the actual re-summarisation while the
others determine what summaries are affected and need to be re-
computed for different types of edges. We do not distinguish edge
insertions and deletions, by treating both as edge changes.

Changes of all local edges are treated uniformly in (local-edge),
where we update summaries of variables that n may flow to (in S2)
and summaries of variables that n’ may points to (in S1). Then
in (update), we first search for the affected variables in the given
direction, then recompute their summaries in the reversed direction
(note that S; = S and S2 = S1), and finally, update the cache.

Changes of global edges are treated individually. In (entry), we
recompute the summaries of local variables that v may point to.
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Figure 9: Summaries (with field stacks omitted) before and af-
ter deleting "t2 [index] = v" in put in line 14 in Figure 2.
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Figure 10: Summary-based points-to analysis.

We do not consider n that is a parameter of another method whose
summaries are in the cache and not affected. Similarly, in (exit), we
only need to update summaries of local variables that v may flow
to, because n is a return variable in another method.

For changes made on a global assignment in (global-from) and
(global-to), we consider only the local variables (if any) involved in
the assignment. Otherwise, then no summaries are affected.

To re-summarise put in Figure 9, we apply (local-edge) to find
that the summaries of v and this,,: are affected but not k:

I({thisput, S2p) = {k, S1, —key:—arry
I'((v, 52)) = &

[({k, S2)) = {thisput, S1, arr:key)

3.3 On-Demand Points-to Queries

With up-to-date summaries, EMU answers on-demand points-to
queries by using local summaries and traversing global edges. EMU
performs on-demand points-to analysis as described in Section 2
except it uses summaries to speed up the analysis.

Figure 10 gives the deduction rules for our summary-based on-
demand points-to analysis in the form of: T',¢ — I',¢’ where I"
contains all up-to-date summaries. We distinguish two types of field
stacks: local field stacks used in method summaries and global field
stacks used here for on-demand points-to analysis.

During points-to analysis, a variable v points to an object o in
context ¢ if we can derive a points-to path (or a flowsTo path):
¢, 51,3, 3> — T,{o,51,,c> where the final global field
stack is empty—all fields introduced by Id and st edges must have
been matched up. The local field stack that appears in a summary
may contain specially annotated fields (i.e., —d) to be matched on
the global field stack. We may remove a field from the global field
stack by defining a syntactical equivalence on two types of field
stacks: k:d:—d:k’ = k:k’ Gk =k k:@ = k which is
used by the (summary) rule to merge both.

Given a points-to query for variable v, we find its point-to set
(denoted as PTS(v)) by deriving all possible points-to paths:

PTS(U) = {(07 C) |F7<v7 517‘@7 .®> — F7<07 31767 C>}
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Figure 11: Global reachability analysis.

In Figure 10, (local) is used for queried local variables that have
no summaries (local variables other than method parameters and re-
turns), in which case, we need to perform a local reachability anal-
ysis. The (global) rule deals with context-dependent global edges by
a global reachability analysis specified in Figure 11. The (summary)
rule looks up and reuses the existing summaries available in the
cache and requires that any to-be-matched fields in the local field
stack of a summary to be matched on the global field stack.

Figure 11 gives the rules for the global reachability analysis:
{n,s,cy — {n', s’, ¢’ to handle context-dependent global edges.

4. EVALUATION

We evaluate the suitability of EMU for deployment in an IDE
in terms of its efficiency and precision in response to small code
changes. For a program, we randomly selected four kinds of changes
(each with 10 statements) corresponding to adding/deleting assign-
ments and calls. We describe our evaluation with a representative
client, SafeCast, which checks for the safety of downcasts, us-
ing seven Java programs from the Dacapo benchmark suite. We
exclude the downcasts provably safe by a context-insensitive anal-
ysis to show that context sensitivity is critical to achieving higher
precision needed. We compare EMU with DEM, a state-of-the-art
demand-driven refinement-based points-to analysis [7], both imple-
mented in Soot. All experiments were conducted on an Intel Xeon
3.0GHz processor with 16 GB memory, running RedHat Enterprise
Linux 5 (kernel 2.6.18) and Sun JDK 1.6.0.

Benchmark | #M (K) | #Q | Change ” BD{;M (secs) EMU (Fecs)

||IT|U

| CT [ DT
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sablecc-i 21.4 358 | @ 126.7 77.0 63.6 0.013 | 32.0
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1 12. 281 a 35.9 15.5 12. 0.014 4.8
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| 108 | 1221 | 2 432 [ 14538 || 24 | 02015 [ 577
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b 17.4 5| a 140.1 | 192:4 || 745 | 0016 | 690
chart 746821 Geic 1413 | 1919 || 7*° | 07007 | 689
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Table 1: Analysis times of SafeCast by DEM and EMU.

Table 1 gives the analysis times from DEM and EMU. The “#M
(K)” column gives the number of reachable methods for each pro-
gram. The “#Q” column gives the number of queries. In the “Change”
column, the four tests are performed. The analysis times are given

@7.5K 030K m75K

100% 100%
80% 80%
60% 60%
40% + 40% +
20% - 20% +
0% g : : : g
3

Figure 12: Precision of SafeCast.

in the last five columns. Let us consider DEM first. After a code
change, the time taken per query is given by BT + CT/#Q, where
BT represents the time spent on rebuilding the PAG and CT the
time spent to answer all queries. The cost for rebuilding the PAG
after each code change is too high to to be directly deployed in
IDEs. As for EMU, Whole-Program Summarisation happens only
once for a program. IT gives the time for computing the local CFL-
reachability summaries for all methods in its PAG. After each code
change, the (amortised) time per query is given by DT/#Q if in-
cremental summary update can complete before on-demand query
starts and is bounded by (UT+DT)/#Q otherwise. Here, UT gives
the time for updating the summaries affected by the code change
and DT gives the time in answering the queries issued. In addition,
EMU is about 3 x faster in answering queries than DEM. EMU can
answer each query under 0.054 secs on average and under 0.87 secs
in the worst case. There are no significant performance variations
among the four tests due to the modularity of our approach.

We measure the precision with different budgets against an ex-
haustive analysis. Figure 12 compares DEM and EMU with the pre-
cision of SafeCast being defined as the percentage of queries that
gives the same answers as the exhaustive analysis under three bud-
gets, 7.5K, 30K and 75K. For DEM, the average precision percent-
ages are 29.16%, 75.55% and 87.38%. respectively. For EMU, bet-
ter ones, 54.19%, 89.34% and 99.61%, are achieved, respectively.

We measured the memory usage of the whole JVM heap with and
without summaries. EMU consumes slightly more memory than
DEM, ranging from 21MB to 70MB across the seven benchmarks
with an average of 46.25MB. This translates into percentage in-
creases ranging 3.27% to 16.24% with an average of 6.94%.
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