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ABSTRACT

This paper solves the open problem of extracting the maximal num-
ber of iterations from a loop that can be executed in parallel on chip
multiprocessors. Our algorithm solves it optimally by migrating
the weights of parallelism-inhibiting dependences on dependence
cycles in two phases. First, we model dependence migration with
retiming and formulate this classic loop parallelization into a graph
optimization problem, i.e., one of finding retiming values for its
nodes so that the minimum non-zero edge weight in the graph is
maximized. We present our algorithm in three stages with each be-
ing built incrementally on the preceding one. Second, the optimal
code for a loop is generated from the retimed graph of the loop
found in the first phase. We demonstrate the effectiveness of our
optimal algorithm by comparing with a number of representative
non-optimal algorithms using a set of benchmarks frequently used
in prior work.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Compilers, Opti-

mization

General Terms

Algorithms, Performance, Languages

Keywords

Loop parallelization, loop transformation, retiming, data depen-
dence graph, iteration-level parallelism

1. INTRODUCTION
Chip multiprocessors, such as Intel Dual-Core processors, AMD

Phenom processors, IBM Cell processors, ARM11 MPCore pro-
cessors, TI TMS320DM6467 DaVinci processors and Freescale
MSC812x Quad-Core DSP processors, are widely used in both
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general-purpose and embedded computing. The importance of har-
nessing parallelism in programs to fully utilize their computation
power cannot be over-emphasized. While programmers can utilize
multiple-threaded application development environments to gener-
ate coarse-grain parallel programs with thread-level parallelization
in practice [29], loop parallelization at the granularities of loop it-
erations is generally too hard to be done manually. A lot of auto-
matic loop parallelization techniques have been developed for par-
allel/vector compilers in the previous work [1, 31, 2, 17, 34, 32,
33]. Based on data dependence analysis, various techniques, such
as scalar renaming, scalar expansion, scalar forward-substitution,
dead code elimination and data dependence elimination, have been
proposed [2, 4, 18]. Most of these techniques, however, focus on
instruction-level parallelism. In this paper, we propose an iteration-
level loop parallelization technique that supplements this previous
work by enhancing loop parallelism. We target at iteration-level
parallelism [3] by which different iterations from the same loop
kernel can be executed in parallel.

At the iteration level, based upon the degree of parallelism, loops
can be mainly classified into three categories: serial loops (DOSER),
parallel loops (DOALL) [13], and partially parallel loops (DOACR)
[10]. Without any loop transformations, all iterations in a DOSER
loop must be executed sequentially due to the dependences between
successive iterations. For a DOALL loop, all its iterations can be
executed in parallel since it exhibits no inter-iteration dependences.
In the case of a DOACR loop, its successive iterations can be par-
tially overlapped because of inter-iteration data dependences. In
this paper, we focus on maximizing loop parallelism for DOSER
and DOACR loops. The main obstacle to their parallelization lies
in the presence of dependence cycles, a dependence relation in a
set of statements to which the statements are strongly connected
via dependence relations [9].

There have been numerous studies to enhance loop parallelism
by exploiting data dependences of dependence cycles [20, 23, 24, 2,
30, 4]. In [20], a partitioning technique is proposed to group all iter-
ations of a loop together to form a dependence chain if the greatest
common divisor of their dependence distances is larger than one.
In [23, 24], cycle-shrinking groups consecutive dependence-free it-
erations to form the innermost loop kernel of a new set of nested
loops. In [27], cycle-shrinking is generalized to multi-dimensional
loops. In [2], node splitting is used to eliminate anti- or output-
dependences by adding new copy statements. In [4], node splitting
is extended to nested loops. In [30], cycle breaking is used to par-
tition a loop into a series of small loops. Unlike the previous work,
this work applies loop transformation to change inter-iteration data
dependences so that better loop parallelism can be achieved. In



fact, optimal parallelism is guaranteed by the proposed technique
in this paper.

In our proposed technique, loop transformation is modeled by
retiming [15, 22]. Retiming is originally proposed to minimize the
cycle period of a synchronous circuit by evenly distributing regis-
ters. It has been extended to schedule data flow graphs on parallel
systems in [7, 6, 21]. For loop transformation, retiming is used un-
der the name of "index shift method" for parallelizing nested loops
[16]. In [25], a loop optimization method is proposed to optimize
nested loops by combining the index shift method [16] and the gen-
eralized cycle shrinking [27]. In [26], retiming is applied in loop
transformation for nested loop fusion. In [11], a loop transforma-
tion technique is proposed in an attempt to fully parallelize an in-
ner loop through retiming an outer loop. Most of the above work
focuses on instruction-level parallelism and on loop parallelism.
However, none considers DOACR parallelism. To our knowledge,
this work is the first to optimally solve the iteration-level loop par-
allelization problem with dependence migration modeled by retim-
ing.

In this paper, we propose an optimal iteration-level loop par-
allelization technique with loop transformation to maximize loop
parallelism. Our basic idea is to migrate inter-iteration data depen-
dences by regrouping statements of a loop kernel in such a way
that the number of consecutive independent iterations is always
maximized. We construct a dependence graph to model the data
dependences among the statements in a loop and then use retim-
ing to model dependence migration among the edges in the depen-
dence graph. As a result, this classic loop optimization problem is
transformed into a graph optimization problem, i.e., one of finding
retiming values for its nodes so that the minimum non-zero edge
weight in the graph is maximized. To solve the graph optimiza-
tion problem incrementally, we classify a dependence graph into
one of the three types: a DAG (Directed Acyclic Graph), a Cyclic
Graph with Single Cycle (CGSC), and a Cyclic Graph with Mul-
tiple Cycles (CGMC). This allows us to present our technique in
three stages. For DAGs and CGSCs, we give two polynomial al-
gorithms to find their optimal solutions, respectively. For CGMCs,
we find their optimal solutions based on an integer linear program-
ming formulation, which can be solved efficiently for the depen-
dence graphs found in real code. Finally, we give a loop trans-
formation algorithm for generating the optimized code for a given
loop, including its prologue, loop kernel, and epilogue based on the
retiming values for the loop.

This paper makes the following contributions:

• We present for the first time an optimal loop parallelization
technique for maximizing the number of concurrently exe-
cuted loop iterations in a DOACR loop.

• We demonstrate the effectiveness of our technique by com-
paring with a number of representative (non-optimal) tech-
niques using a set of benchmarks that are frequently used in
prior work.

The rest of this paper is organized as follows. Section 2 presents
some basic concepts about dependence graphs and retiming, for-
malizes the problem addressed, and gives an overview of our op-
timal loop parallelization technique. In Section 3, we present our
technique incrementally by considering three different types of de-
pendence graphs and presenting three algorithms to find their opti-
mal retiming functions, with each being built on the preceding one.
In Section 4, we give an algorithm for generating the optimal code
for a loop based on a retiming function. Section 5 evaluates and an-
alyzes the proposed technique against existing loop parallelization
techniques. Section 6 concludes and discusses future work.

2. BASIC CONCEPTS AND MODELS
In this section, we introduce basic concepts and models that are

used in the later sections. We introduce the notion of dependence
graph in Section 2.1. In Section 2.2, we examine briefly how to
use retiming to model dependence migration among the edges in
a dependence graph. We include a brief discussion on iteration-
level parallelism in Section 2.3. Finally, we define the problem
addressed in Section 2.4.

2.1 Dependence Graph
Given a loop, its dependence graph G = (V, E, w) is an edge-

weighted directed graph, where V is the set of nodes with each
node representing a statement in the loop, E = {(u, v) : u →
v ∈ V } is the edge set that defines the dependence relations for all
nodes in V with (u, v) denoting the edge from node u to node v,
and w : E 7→ Z is a function that associates every edge (u, v) ∈ E
with a nonnegative weight known as its dependence distance. By
convention, an edge (u, v) represents an intra-iteration dependence

if w(u, v) = 0 and an inter-iteration dependence otherwise (i.e.,
if w(u, v) > 0). In either case, w(u, v) represents the number
of iterations involved. These two kinds of dependence are further
explained as follows:

• Intra-iteration dependence w(u, v) = 0. Such a dependence
occurs in the same iteration between a pair of statements. If
there exists an intra-iteration dependence between two state-
ments u and v within the same iteration, then statement v
reads the results generated by statement u.

• Inter-iteration dependence w(u, v) > 0. Such a dependence
occurs when two statements from different iterations are de-
pendent on each other. If there exists an inter-iteration de-
pendence between u and v, then the execution of statement
v in iteration i + w(u, v) reads the results generated by u in
iteration i. Thus, the earliest iteration in which v can be exe-
cuted is w(u, v) iterations later than the iteration in which u

is executed.

for i = 2 to 100

S1: A[i] = B[i] + C[i-1]

S2: D[i] = A[i] * 2

S3: C[i] = A[i-1] + C[i]

S4: E[i] = D[i] + C[i-2]

endfor
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A[2] = B[2] + C[1]

D[2] = A[2] * 2

C[2] = A[1] + C[2]

E[2] = D[2] + C[0]

A[3] = B[3] + C[2]

D[3] = A[3] * 2

C[3] = A[2] + C[3]

E[3] = D[3] + C[1]

S1:

S2:

S3:

S4:

A[4] = B[4] + C[3]

D[4] = A[4] * 2

C[4] = A[3] + C[4]

E[4] = D[4] + C[2]

S1:

S2:

S3:

S4:

A[5] = B[5] + C[4]

D[5] = A[5] * 2

C[5] = A[4] + C[5]

E[5] = D[5] + C[3]

S1:

S2:

S3:

S4:

Iteration  i =  3 Iteration  i =  4 Iteration  i =  5

Figure 1: A loop kernel from [14]. (a) Loop kernel. (b) Depen-

dence graph. (c) Intra- and inter-iteration dependences.

We use a real loop application from [14] to show how to use a
dependence graph to model a loop. The loop kernel is shown in
Figure 1(a) and its corresponding dependence graph in Figure 1(b).
This loop has both intra-iteration and inter-iteration dependences.
For example, the weight of (S1, S2) is zero, indicating an intra-
iteration dependence between S1 and S2. The weight of (S3, S4)
is 2, indicating an inter-iteration dependence between S3 and S4

with a distance of 2.



Figure 1(c) illustrates how iteration-level loop parallelism can be
constrained by dependences with the first four iterations shown. Let
us examine intra-iteration dependences first. In each iteration, S2

must be executed after S1 since A[i] read by S2 should be written
by S1 first. In addition, S2 and S4 also have an intra-iteration de-
pendence (due to D[i]). In general, intra-iteration dependences are
confined to the same iteration and thus do not inhibit iteration-level
parallelism. Let us next examine inter-iteration dependences in the
loop. S4 in iteration 4 reads C[2]. Nevertheless, according to the
execution order of loop iterations, C[2] should be written first by
statement S3 in iteration 2. Thus, S4 in iteration i can only be exe-
cuted until after S3 in iteration i− 2 has been executed. Likewise,
S3 in iteration i can only be executed until after S1 in iteration i−1
has been executed. As a result, we cannot execute more than each
iteration in parallel since every iteration requires results from the
preceding two iterations. Hence, inter-iteration dependences are
the major obstacle to iteration-level parallelism.

2.2 Retiming and Dependence Migration
Retiming [15] is used to model dependence migration, and it is

defined as follows.

DEFINITION 2.1. Given a dependence graph G = (V, E, w),

a retiming r of G is a function that maps each node in V to an

integer r(v). For a node u ∈ V , the retiming value r(u) is the

number of dependence distances (edge weights) drawn from each of

its incoming edges and pushed to each of its outgoing edges. Given

a retiming function r, let Gr = 〈V, E, wr〉 be the retimed graph

of G obtained by applying r to G. Then wr(u, v) = w(u, v) +
r(u)− r(v) for each edge (u, v) ∈ E in Gr .

As defined above, by retiming a node, dependences are moved
from its incoming edges to its outgoing edges; thus, dependence
relations can be changed. On the other hand, a retiming function
can be directly mapped to a loop transformation by which we can
obtain a new loop that has the corresponding dependence relations.
How to perform this mapping is discussed in detail in Section 4.
As retiming can be directly mapped to loop transformation, a re-
timing function must be legal in order to preserve the semantic
correctness of the original loop. A retiming function r is legal if
the retimed weights of all edges in the retimed graph Gr are non-
negative. An illegal retiming function occurs when one of the re-
timed edge weights becomes negative, and this situation implies a
reference to non-available data from a future iteration. If Gr is a
retimed graph of G derived by a legal retiming function, then Gr is
functionally equivalent to G [15].

For simplicity, we normalize a retiming r such that the minimum
retiming value(s) is always zero [5]. A retiming function r can be
normalized by subtracting minv r(v) from r(v) for every v in V .

As an example shown in Figure 2, the retiming value r(S3) = 1
conveys that one unit of dependence distance is drawn from the
incoming edge of node S3, S1 → S3, and pushed to both of its
outgoing edges, S3 → S1 and S3 → S4. Therefore, by applying
r(S3) = 1, the execution of S3 is moved forward, and correspond-
ingly, the original inter-iteration dependence between S1 and S3 is
transformed into an intra-iteration dependence. Figure 2(c) shows
the new loop kernel obtained based on this retiming function. Fig-
ure 2(d) illustrates the iteration-level parallelism in the new kernel,
indicating that its two consecutive iterations can be executed in par-
allel since they are now independent.

2.3 Iteration-Level Parallelism
Iteration-level parallelism is achieved when different iterations

from a loop can be executed in parallel. However, loop iterations

(c)

Prologue:

S3: C[2] = A[1] + C[2]

New loop kernel:

for i = 2 to 99

S1: A[i] = B[i] + C[i-1]

S2: D[i] = A[i] * 2

S3: C[i+1] = A[i] + C[i+1]

S4: E[i] = D[i] + C[i-2]

endfor

Epilogue:

S1: A[100] = B[100] + C[99]

S2: D[100] = A[100] * 2

S4: E[100] = D[100] + C[98]
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i =  3

S1: A[3] = B[3] + C[2]

S2: D[3] = A[3] * 2

S3: C[4] = A[3] + C[4]

S4: E[3] = D[3] + C[1]

i =  5

S1: A[5] = B[5] + C[4]

S2: D[5] = A[5] * 2

S3: C[6] = A[5] + C[6]

S4: E[5] = D[5] + C[3]

i =  9 9

S1: A[99] = B[99] + C[98]

S2: D[99] = A[99] * 2

S3: C[100] = A[99] + C[100]

S4: E[99] = D[99] + C[97]

i =  2

S1: A[2] = B[2] + C[1]

S2: D[2] = A[2] * 2

S3: C[3] = A[2] + C[3]

S4: E[2] = D[2] + C[0]

i =  4

S1: A[4] = B[4] + C[3]

S2: D[4] = A[4] * 2

S3: C[5] = A[4] + C[5]

S4: E[4] = D[4] + C[2]

i =  9 8

S1: A[98] = B[98] + C[97]

S2: D[98] = A[98] * 2

S3: C[99] = A[98] + C[99]

S4: E[98] = D[98] + C[96]

Figure 2: Loop transformation for Figure 1(b). (a) Original de-

pendence graph (with the minimum non-zero edge weight be-

ing 1). (b) Transformed dependence graph with the minimum

non-zero edge weight being 2. (c) New loop kernel after loop

transformation. (d) A graphical representation of parallelism

in the transformed loop.

must be executed in accordance with their inter-iteration depen-
dences. Thus, inter-iteration dependences inhibit iteration paral-
lelization. For example, in Figure 1(c), S3 and S4 have an inter-
iteration dependence with a distance of 2. As a result, the i-th and
(i−2)-th iterations cannot be executed in parallel. Moreover, every
two consecutive iterations cannot be executed in parallel either as
there is also an inter-iteration dependence between S1 and S3 with
a distance of 1. Therefore, the minimum inter-iteration dependence
distance in a loop (i.e., the minimum non-zero edge weight in its
dependence graph) bounds the amount of parallelism exploitable in
the loop from above.

The focus of this work is on maximizing the minimum non-zero
edge weight with dependence migration and loop transformation.
Given a dependence graph for a loop, its minimum non-zero edge
weight, β, represents the parallelism degree of the loop, which im-
plies the absence of inter-iteration dependences within β consec-
utive iterations. We say that this loop is β-parallelizable. If the
loop can be fully parallelized, it is said to be fully-parallelizable.
For example, the loop in Figure 2 is 2-parallelizable, which can be
obtained from the transformed dependence graph.

2.4 Problem Statement
For a dependence graph used to model a given loop, the prob-

lem of performing optimally iteration-level loop parallelization is



defined as follows:
Given a dependence graph G = (V, E, w) of a loop, find a re-

timing function r of G such that the minimum non-zero edge weight

β of the transformed dependence graph Gr = 〈V, E, wr〉 is maxi-

mized.

Existing solutions [20, 23, 24, 2, 30, 4] to this problem are all ap-
proximate for DOACR loops. Our solution, as outlined in Figure 3,
solves the problem optimally (for the first time) in two phases. In
the first phase, we introduce a dependence migration algorithm to
find a retiming function for a given dependence graph such that β
in the graph is maximized. In the second phase, we apply a loop

transformation algorithm to generate the optimal code for the given
loop based on the retiming function found.

Phase 1 Phase 2

Dependence

Graph

Dependence

Migration

Loop

Transformation

Transformed

Loop

Retiming
Function

Figure 3: Optimal retiming-based loop parallelization.

3. DEPENDENCE MIGRATION ALGORITHM
In this section, we introduce our dependence migration algo-

rithm (DMA) given in Algorithm 3.1 to find a retiming function
for a given dependence graph so that the minimum non-zero edge
weight in the retimed graph is maximized. For efficiency reasons
and also to ease understanding, DMA finds an optimal retiming
function by performing a case analysis based on the structure of
the dependence graph.

Algorithm 3.1 DMA(G, LG, α)

Input: A dependence graph G = (V, E, w) of a loop LG and a
positive integer α.

Output: A retiming function of G.

1: SNode_SCC←0; MNode_SCC←0; SCycle_F lag←0.
2: Let SCC_Num be the number of SCCs found in G.
3: for each SCC do

4: Let N_Num (E_Num) be its node (edge) count.
5: if N_Num == 1 then SNode_SCC ++.
6: if N_Num > 1 then MNode_SCC ++.
7: if E_Num == N_Num then

8: SCycle_F lag ← 1.
9: Let CG be the cycle (VSCC , ESCC , w).

10: end if

11: end for

12:
13: if SNode_SCC == SCC_Num then

14: DAG_Migration(G, α)
15: else if MNode_SCC == 1 && SCycle_F lag == 1 then

16: Single_Cycle_Migration(G, CG).
17: else

18: Multi_Cycle_Migration(G).
19: end if

We classify a dependence graph into one of the three types: a
DAG (Directed Acyclic Graph), a Cyclic Graph with Single Cycle
(CGSC) and a Cyclic Graph with Multiple Cycles (CGMC), based
on the structure of the SCCs (Strongly Connected Components)
in the graph. For DAGs and CGSCs, two algorithms are given to
find their optimal retiming functions polynomially. For CGMCs, an
optimal algorithm is given based on an integer linear programming

formulation. These three different types of dependence graphs, as
illustrated in Figure 4, are classified as follows:

• DAGs. If every SCC in G has one node only, then G is a
DAG. In this case, DAG_Migration is invoked to retime G.
An example DAG with four singleton SCCs are shown in
Figure 4(a).

• CGSCs. In such a graph G, one SCC is actually a single
cycle and each other SCC has one node only. In this case,
Single_Cycle_Migration is invoked to retime G. An example
is given in Figure 4(b).

• CGMCs. In this general case, every graph G has more than
one cycle. Multi_Cycle_Migration comes into play to retime
G. Figure 4(c) gives a dependence graph with multiple cy-
cles.
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Figure 4: Three types of dependence graphs. (a) DAG. (b)

CGSC. (c) CGMC

3.1 DAG_Migration
This algorithm given in Algorithm 3.2 finds a retiming function

for a DAG so that the transformed loop is α-parallelizable for any
positive integer α given. This implies that wr(u, v) = w(u, v) +
r(u)− r(v) ≥ α for every edge (u, v) in G after retiming. Hence,
in lines 1 – 3, these retiming constraints form a system of linear
inequalities. A solution to the system found by the Bellman-Ford
algorithm represents a retiming function of G as desired (lines 4 –
8) [15].

Algorithm 3.2 DAG_Migration(G, α)

Input: A DAG G = (V, E, w) and a positive integer α.
Output: A retiming function r′ of G.

1: for each edge (u, v) in G do

2: Generate a retiming constraint: r(v)− r(u) ≤ w(u, v)−α
3: end for

4: Build the constraint graph G′ such that its node set is V and
there is a directed edge from u to v with the weight w(u, v)−α
if r(v)− r(u) ≤ w(u, v)− α is a retiming constraint.

5: Let G′′ be obtained from G′ by adding a pseudo source node
s0 and a zero-weighted edge from s0 to every node in G′.

6: Obtain a retiming function r by applying the Bellman-Ford al-
gorithm to the single-source constraint graph G′′.

7: Let r′ be a retiming function normalized from r.
8: Return r′.

An example is shown in Figure 5. The original DAG G is shown
in Figure 5(a), in which the minimum non-zero edge weight is 1.
Thus, the parallelism of the original loop is 1. Suppose that α, the
expected degree of parallelism, is 3. By imposing wr(u, v) ≥ 3 for
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Figure 5: An illustration of DAG_Migration. (a) Original DAG.

(b) Retiming constraints. (c) Constraint graph. (d) Single-

source constraint graph and retiming function (inside the box)

obtained by Bellman-Ford. (e) Transformed DAG by the retim-

ing function. (f) Transformed DAG by the normalized retiming

function.

each edge (u, v) in G, we obtain a system of retiming constraints
given in Figure 5(b). Based on this system, the constraint graph G′

is built as shown in Figure 5(c). This gives rise to the single-source
constraint graph G′′ shown in Figure 5(d), for which the solution
found by Bellman-Ford is shown inside the box. For example, the
weight of the shortest path from S0 to S1 is 0, i.e. r(S1) = 0. The
transformed dependence graph is shown in Figure 5(e) with the re-
timing function r shown. The retiming values of some nodes are
negative. However, they are legal since there is no negative edge
weight in the transformed dependence graph. The transformed de-
pendence graph with the normalized retiming function r′ is shown
in Figure 5(f). It can be seen that the edge weights remain un-
changed after the normalization, and the minimum non-zero edge
weight is β = α = 3. Therefore, the parallelism of the transformed
loop is β = 3.

THEOREM 3.1. Let α be a positive integer. If the dependence

graph G = (V, E, w) of a loop LG is a DAG, then a α-parallelizable
loop can be obtained from LG by DAG_Migration in polynomial

time.

PROOF. First, DAG_Migration is a polynomial-time algorithm.
Second, as shown in Algorithm 3.2, we can always obtain a retim-
ing function such that the weight of each edge in the transformed
dependence graph is greater than or equal to α. Hence, the trans-
formed loop is α-parallelizable.

3.2 Single_Cycle_Migration
A polynomial algorithm is proposed for a dependence graph with

a single cycle. As shown in Algorithm 3.3, we first choose an edge
(u, v) in the cycle such that the weights of all other edges in the
cycle can be migrated to (u, v). According to the retiming def-
inition, for an edge (u, v), the retimed edge weight wr(u, v) =
w(u, v) + r(u) − r(v). In order to let the retimed weight of an
edge in the cycle be 0 (i.e. wr(u, v) = 0), r(v) should equal
w(u, v)+r(u). Therefore, from node v to u along the path, we can
repeatedly calculate the retiming value of each node in the cycle.

Algorithm 3.3 Single_Cycle_Migration(G, CG)

Input: A CGSC G = (V, E, w) with its single cycle CG ∈ G.
Output: A retiming function of G.

1: θ ← the weight of the cycle CG.
2: Select the edge (u, v) in cycle CG with the biggest weight.
3: k ← v.
4: Adj[k]← adjacent node of k (Adj[k] ∈ CG).
5: Let the retiming value of each node in G be 0.
6: while Adj[k] 6= v do

7: r(Adj[k])← w(k, Adj[k]) + r(k).
8: k← Adj[k].
9: end while

10: Fix the retiming value of each node in the cycle CG.
11: Call DAG_Migration(G, θ) to let the weight of all edges not in

CG be greater than or equal to θ.
12: Return the retiming function obtained.

For node v, r(v) = 0; For all other nodes in the cycle, the retim-
ing value of a node equals to the summation of the weight of its
incoming edge and the retiming value of its parent. As a result, the
weight of edge (u, v) equals the cycle weight θ while the weight
of all other edges in the cycle becomes zero. Next, we fix the re-
timing values of all nodes in the cycle to guarantee the weight of
the cycle remains constant. At last, we let the weight of all edges
not belonging to the cycle be greater than or equal to θ by invok-
ing Algorithm 3.2. After the processing of Algorithm 3.3, we can
obtain a retiming function, and the minimum non-zero edge weight
in the transformed dependence graph based on is equal to the cycle
weight θ. Therefore, the transformed loop is θ-parallelizable. An
example is shown in Figure 6.
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Figure 6: An illustration of Single_Cycle_Migration by an ex-

ample loop. (a) Original dependence graph. (b) The edge

weights in the cycle have all been migrated to (S2, S3) with

r(S1) = 1, r(S2) = 2, and r(S3) = 0. (c) Transformed de-

pendence graph with the minimum non-zero edge weight 4. (d)

Transformed dependence graph with the normalized retiming

values.

The original dependence graph is shown in Figure 6(a), in which
the minimum non-zero edge weight is 1. Thus the parallelism of



the original loop is 1. The dependence migration of the cycle is
shown in Figure 6(b), in which all weights in the cycle is migrated
to edge (S2, S3). Then, by fixing the retiming values of the nodes
in the cycle (S1, S2, S3), we apply DAG_Migration algorithm to
obtain the retiming values of all other nodes by making their edge
weights be no less than 4 as shown in Figure 6(c). The normalized
dependence graph is shown in Figure 6(d). Since the minimum
non-zero edge weight in the transformed dependence graph is 4,
the transformed loop is 4-parallelizable.

THEOREM 3.2. Given a dependence graph G = (V, E, w) of

a loop, if G is a graph with single cycle CG, and the weight of cycle

CG is θ(θ ≥ 0), then the transformed loop is θ-parallelizable.

To prove this, we need Property 3.1 [15] below.

PROPERTY 3.1. Let G = (V, E, w) be a graph and r a retim-

ing function of G. Then the summation of the edge weights in a

cycle remains a constant after retiming.

The proof of Theorem 3.2 is shown as follows.

PROOF. Based on Property 3.1, the cycle weight (the summa-
tion of the edge weights of a cycle) cannot be changed by retiming.
Therefore, for the cycle in G, the possible maximum non-zero edge
weight is the cycle weight θ . In order to achieve this, we need to
move all dependences into one edge in such a way that the weight
of one edge equals to the cycle weight, while the weight of all other
edges in the cycle equals 0. At the same time, for all edges not be-
longing to the cycle, we need to make their non-zero edge weight
be no less than θ in order to achieve θ-parallelizable. Algorithm 3.3
shows how to achieve this.

3.3 Multi_Cycle_Migration
In this section, we propose an algorithm, Multi_Cycle_Migration,

to construct an integer linear programming (ILP) formulation, by
which the optimal solution can be obtained for the dependence
graph with multiple cycles. The Multi_Cycle_Migration algorithm
is shown in Algorithm 3.4.

Algorithm 3.4 Multi_Cycle_Migration(G)

Input: A CGMC G = (V, E, w) .
Output: A retiming function of G.

1: Let δ (ϕ) be the minimum (maximum) SCC weight.
2: for each edge (u, v) ∈ E do

3: Add the following constraints into the ILP formulation:
8

>

>

<

>

>

:

w(u, v) + r(u)− r(v) ≥ 0
w(u, v) + r(u)− r(v) + (1− ε(u, v))× ϕ ≥ T

w(u, v) + r(u)− r(v)− ϕ× ε(u, v) ≤ 0
ε(u, v) = 0 or 1

4: end for

5: Set the objective function: Maximize T where T ∈ [0, δ].
6: Find the feasible retiming values that satisfy the ILP formula-

tion, and return the retiming function.

In Algorithm Multi_Cycle_Migration, we first find the minimum
SCC weight δ and the maximum SCC weight ϕ in the given depen-
dence graph. Then an integer linear programming formulation is
constructed. The objective function of this ILP formulation is to
maximize T which is an integer variable (T ∈ [0, δ]). In the ILP
model, T is the expected minimum non-zero edge weight that we
attempt to achieve by retiming. And the minimum SCC weight δ

is used as the upper bound of T since it is the possible maximum
value that we can obtain for the minimum non-zero weight.

For each edge (u, v) in G, the constraints are added into the ILP
formulation. In the constraints, w(u, v) denotes the original edge
weight; w(u, v) + r(u) − r(v) denotes the weight of each edge
(u, v) after retiming (i.e. wr(u, v) = w(u, v) + r(u) − r(v));
ε(u, v) is an integer variable that satisfies 0 ≤ ε(u, v) ≤ 1. Thus
ε(u, v) can be 0 or 1 in our ILP model. The first constraint is
obtained by wr(u, v) = w(u, v) + r(u) − r(v) ≥ 0, which is
based on the legality of a retiming function we discuss in Section 2
(A retiming function r is legal if the retimed weights of all edges
in the retimed graph Gr are non-negative). The second and third
constraints are a pair to force that the retimed edge weight can only
be either 0 or a value no less than T . When ε(u, v) = 0, this pair
of constraints become:



w(u, v) + r(u)− r(v) + ϕ ≥ T
w(u, v) + r(u)− r(v) ≤ 0

Since ϕ is selected as the maximum weight and w(u, v) + r(u)−
r(v) ≥ 0, in this case, we can obtain w(u, v) + r(u)− r(v) = 0,
which means that the retimed edge weight is zero.

Correspondingly, when ε(u, v) = 1, this pair of constraints be-
come:



w(u, v) + r(u)− r(v) ≥ T

w(u, v) + r(u)− r(v)− ϕ ≤ 0

In this case, we can guarantee that the retimed edge weight is not
less than T (w(u, v) + r(u) − r(v) ≥ T ). At the same time,
we set wr(u, v) ≤ ϕ(w(u, v) + r(u) − r(v) − ϕ ≤ 0), that is,
any retimed edge weight cannot be larger than ϕ, the maximum
cycle weight. The reason is that for any edge in a cycle, based on
Property 3.1 and the legality of retiming, its retimed edge weight
cannot be larger than ϕ; for any edge not belonging to cycles, as
shown in Section 3.1, their retimed edge weight can achieve any
nonnegative integer. Therefore, we can use ϕ as the upper bound
for retimed edge weights.

Figure 7 shows an example of Multi_Cycle_Migration algorithm.
Figure 7(a) shows the original loop. Figure 7(b) shows the corre-
sponding dependence graph with single SCC, in which there are
two cycles. In this example, the minimum SCC weight equals the
maximum SCC weight, i.e. δ = ϕ = 6. The objective function
of our ILP formulation is to maximize T whose upper bound is 6.
Figure 7(c) shows the transformed dependence graph with the max-
imized minimum non-zero edge weight 3. So the parallelism of the
transformed loop 3. Figure 7(d) shows the prologue, new loop ker-
nel and epilogue. Figure 7(e) shows three consecutive iterations
that can be executed in parallel.

In the following, we prove Multi_Cycle_Migration algorithm
gives the optimal solution for a given dependence graph with mul-
tiple cycles.

THEOREM 3.3. An optimal solution can be obtained by Algo-

rithm Multi_Cycle_Migration if G is a dependence graph with mul-

tiple cycles.

PROOF. As discussed above, from our ILP formulation, we can
guarantee that any retimed edge weight can only be either 0 or a
value no less than T . In the ILP model, we set up the upper bound
of T as the minimum SCC weight, since it is the maximum value
we can obtain for all possible minimum non-zero weights. The
objective function of the ILP formulation is to maximize T . There-
fore, using the ILP model, we maximize the minimum non-zero
edge weight.
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New loop kernel:

for i = 2 to 197

S4: D[i] = A[i-2] * 3

S2: B[i+1] = A[i] + 2

S3: C[i+1] = B [i+1] / D[i]

S1: A[i+3] = C[i+1] * 3

endfor

Epilogue:

S4: D[198] = A[196] * 3
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S3: C[199] = B[199] / D[198]
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for i = 2 to 200

S1: A[i] = C[i-2] * 3

S2: B[i] = A[i-1] + 2

S3: C[i] = B [i] / D[i-1]

S4: D[i] = A[i-2] * 3

endfor

Figure 7: An illustration of Multi_Cycle_Migration by an ex-

ample loop. (a) Original loop kernel. (b) Original dependence

graph. (c) Transformed dependence graph with the minimum

non-zero edge weight 3. (d) New loop kernel. (e) A graphic

representation of the parallelism in the transformed loop.

4. LOOP TRANSFORMATION ALGORITHM
In this section, we propose a loop transformation algorithm for

generating the optimized code for a given loop, including the loop
kernel, prologue and epilogue, based on the retiming values ob-
tained by the DMA algorithm in the first phase. The loop transfor-
mation algorithm is shown in Algorithm 4.1.

From Algorithm Loop_Transformation, we can see that the up-
per bound and lower bound of the original loop are assigned to M
and L respectively. For example, in Figure 7(a), the upper bound
M = 200 and the lower bound L = 2. Then some copies of a
node u are put into prologue or epilogue according to M , L and
the retiming value of each node. At the same time, the indexes of
the new loop kernel are transformed. In addition, the execution se-
quence of each node in the new loop kernel must be sorted based on
the intra-iteration dependences between any two nodes in the trans-
formed dependence graph. Finally, we set the new upper bound of
the loop index for the new loop kernel. As a result, the code of the
transformed loop is produced. An example is given in Figure 7 to
show how to obtain the new loop kernel, prologue, epilogue, and
the loop indexes from the retiming values.

Algorithm 4.1 Loop_Transformation(Gr , r(u), LG)

Input: Transformed graph Gr = (V, E, wr), retiming r, and the
original loop LG.

Output: The transformed loop LGr
with new loop kernel, pro-

logue and epilogue.

1: Let M (L) be the upper (lower) bound of the loop index of LG.
2: rmax = maxu∈V (r(u)).
3: for each node u ∈ V do

4: /* Generate the prologue of the loop LGr
*/

5: for i = L to (L + r(u)− 1) do

6: Put u into the prologue where the loop index equals i.
7: end for

8: /* Generate the epilogue of the loop LGr
*/

9: for i = 1 to (rmax − r(u)) do

10: Put u into the epilogue where the loop index equals M −
i + 1.

11: end for

12: /* Generate the loop kernel of the loop LGr
*/

13: Increase the loop index of u by r(u) in the new loop kernel.
14: end for

15: /* Sort the execution sequence in the new loop kernel */
16: for each edge (u, v) ∈ E do

17: if wr(u, v) = 0 then

18: Move u in front of node v in the new loop kernel.
19: end if

20: end for

21: Let M − rmax be the upper bound of the loop index of LGr
.

22: Return LGr

5. EVALUATION
In this section, we evaluate our technique with a set of bench-

marks frequently used in iteration-level loop parallelization. The
benchmarks include six loop kernels with single cycle or multi-
ple cycles which are obtained from [24, 4, 14, 8, 12, 19]. We
use these benchmarks to test the effectiveness of our loop paral-
lelization technique. Our ILP model for graph with multiple cy-
cles is implemented based on the open source linear programming,
LP_solve_5.5[28]. We compare our approach with the previous
work in [23, 20]. The basic information of these loops is shown in
Table 1.

Table 1: Loop parallelism of DMA vs. cycle-shrinking and par-

titioning [23, 20].

Iteration-Level Parallelism

Cycle Cycle-

Benchmarks Original Shrinking Our

Num. & Partition Tech.

[23, 20]

SHRINKING [24] 1 2 2 5

BREAKING [4] 1 1 1 6

LPDOSER [14] 1 1 1 2

REORDER [8] 1 1 1 4

BMLA [12] 2 1 1 3

EDDR [19] 2 1 1 3

As shown in Table 1, the original parallelism of SHRINKING is
2 while the parallelism of other loops is 1. We apply both cycle-



Prologue:

S1: A[3] = B[1] - 1

S1: A[4] = B[2]  1

New loop kernel:

DO I = 3, N-2

S2: B[I] = A[I-3] * K

S1: A[I+2] = B[I] - 1

ENDO

Epilogue:

S2: B[N-1] = A[N-4] * K

S2: B[N] = A[N-3] * K

Prologue:

S3: C[2] = A[1] + C[2]

New loop kernel:

for i = 2 to 99

S1: A[i] = B[i] + C[i-1]

S2: D[i] = A[i] * 2

S3: C[i+1] = A[i] + C[i+1]

S4: E[i] = D[i] + C[i-2]

endfor

Epilogue:

S1: A[100] = B[100] + C[99]

S2: D[100] = A[100] * 2

S4: E[100] = D[100] + C[98]

Original loop kernel:

for i = 2 to 100

S1: A[i] = B[i] + C[i-1]

S2: D[i] = A[i] * 2
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endfor
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New loop kernel:

for i = 1 to 1022
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endfor
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ENDO
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ENDO
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for i = 1 to N-3

S4: D[i] = 2 * C[i]

S1: A[i+1] = 2 * D[i]

S2: B[i+1] = 3 * D[i]

S3: C[i+3] = A[i+1] + B[i+1]

Endfor

Epilogue:

S4: D[N-2] = 2 * C[N-2]

S1: A[N-1] = 2 * D[N-2]

S2: B[N-1] = 3 * D[N-2]

S4: D[N-1] = 2 * C[N-1]

S1: A[N] = 2 * D[N-1]

S2: B[N] = 3 * D[N-1]

S4: D[N] = 2 * C[N]

Original loop kernel:

for i = 1, N

S1: A[i] = 2 * D[i-1]

S2: B[i] = 3 * D[i-1]
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S4: D[i] = 2 * C[i]

ENDO
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DO I = 3, N

S1: A[I] = B[I-2] - 1

S2: B[I] = A[I-3] * K

ENDO

Original loop kernel:

for i = 1 to 1024

S1: B[i] = A[i+2] + D[i+1]

S2: F[i+3] = B[i-1] + E[i] 

S3: C[i] = B[i+1] + F[i-1]

endfor
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Prologue:

S1: A[0] = F[B[-3] + D[2]]

S2: B[0] = G[C[1]]

S3: C[0] = H[A[-1]]

S1: A[1] = F[B[-2] + D[3]]

S2: B[1] = G[C[2]]

S3: C[1] = H[A[0]]

S2: B[2] = G[C[3]]

S3: C[2] = H[A[1]]

S2: B[3] = G[C[4]]

New loop kernel:

for i = 0 to N

S4: D[i] = K[A[i-1]]

S1: A[i+2] = F[B[i-1] + D[i+4]]

S3: C[i+3] = H[A[i+2]]

S2: B[i+4] = G[C[i+5]]

Endfor

Epilogue:

S4: D[N-3] = K[A[N-4]]

S4: D[N-2] = K[A[N-3]]

S4: D[N-1] = K[A[N-2]]

S1: A[N-1] = F[B[N-4] + D[N+1]]

S4: D[N] = K[A[N-1]]

S1: A[N] = F[B[N-3] + D[N+2]]

S3: C[N] = H[A[N-1]]

Original loop kernel:

for i = 0 to N

S1: A[i] = F[B[i-3] + D[i+2]]

S2: B[i] = G[C[i+1]]

S3: C[i] = H[A[i-1]]

S4: D[i] = K[A[i-1]]

endfor
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Figure 8: Optimal transformations obtained by our loop parallelization technique.



shrinking [23] and partitioning [20] to these loops. It can be seen
that both cycle-shrinking [23] and partitioning [20] cannot improve
the loop parallelism for these loops. The numbers in the last col-
umn show the parallelism achieved by applying our technique. The
results show that our technique can remarkably enhance the paral-
lelism for these loops. Taking loop BREAKING as an example,
the best result by cycle-shrinking and partitioning is 1 while our
technique can obtain 6. Therefore, by applying our technique, we
can parallelize these loops and achieve various degrees of iteration-
level parallelism.

Figure 8 shows how our technique works on each of these six
loops and it confirms that our technique can effectively improve
loop parallelism compared to the previous work. For each loop
kernel in Figure 8, we can see that it will be first modeled by a cor-
responding dependence graph. Then a dependence graph is trans-
formed by using the dependence migration algorithm introduced
in Section 3. Finally, according to the retiming values obtained in
the first phase, a new loop kernel with prologue and epilogue can
be generated by using our loop transformation algorithm given in
Section 4. In a transformed dependence graph, it is noticeable that
the weight of some edges is zero while the weight of other edges
is a non-zero integer. In addition, we can see that the minimum
non-zero edge weight in a cycle within a transformed dependence
graph equals to the cycle weight. This means that the minimum
non-zero edge weight in the transformed dependence graph is max-
imized. Correspondingly, the parallelism of the original loop kernel
is maximized.

6. CONCLUSION
In this paper, we have proposed an optimal two-phase iteration-

level loop parallelization approach to maximize the loop parallelism.
In the first phase, we solve the dependence migration problem that
is to find a retiming value of each node in a given dependence
graph such that the minimum non-zero edge weight in the depen-
dence graph can be maximized. In the second phase, based on the
retiming function obtained in the first phase, we proposed a loop
transformation algorithm to generate the transformed loop kernel,
prologue, and epilogue. We conducted experiments on a set of
benchmarks frequently used in iteration-level loop parallelization
in the previous work. The results show that our technique can ef-
ficiently obtain the optimal solutions and effectively improve loop
parallelism compared to the previous work.

There are several directions for future work. First, in the paper,
we only discuss how to apply our technique in iteration-level paral-
lelism. In fact, after iterations are parallelized, they can be directly
vectorized. How to combine this technique with loop vectoriza-
tion is one direction for future work. Second, our technique can be
applied to optimize the innermost loop for nested loops. It is an
interesting problem to extend this approach to solve iteration-level
parallelism of nested loops.
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