
2004 International Conference on Compiler Construction, April 1 -- 2

Region-Based Partial Dead Code Elimination on

Predicated Code

Qiong Cai1, Lin Gao2† and Jingling Xue1‡

1 School of Computer Science and Engineering, University of New South Wales,
Sydney, NSW 2052, Australia

2 Institute of Computing Technology, Chinese Academy of Sciences

Abstract. This paper presents the design, implementation and experi-
mental evaluation of a practical region-based partial dead code elimina-
tion (PDE) algorithm on predicated code in an existing compiler frame-
work. Our algorithm processes PDE candidates using a worklist and
reasons about their partial deadness using predicate partition graphs. It
operates uniformly on hyperblocks and regions comprising basic blocks
and hyperblocks. The result of applying our algorithm to an SEME re-
gion is optimal: partially dead code cannot be removed without changing
the branching structure of the program or potentially introducing new
predicate defining instructions. We present statistic evidence about the
PDE opportunities in the 12 SPECint2000 benchmarks. In addition to
exhibit small compilation overheads, our algorithm achieves moderate
performance improvements in 8 out of the 12 benchmarks on an Itanium
machine. Our performance results and statistics show the usefulness of
our algorithm as a pass applied before instruction scheduling.

1 Introduction

EPIC architectures such as the Intel IA-64 combine explicit instruction-level par-
allelism (ILP) with instruction predication. In order to realise their performance
potential, the compiler must expose and express increasing amounts of ILP in
application programs. Region-based compilation as proposed in [12] and imple-
mented in the IMPACT [8] and ORC [19] compilers repartitions the program
into regions to replace functions as the units of compilation. By exploiting the
static/dynamic profile information, the compiler can successfully create regions
that more accurately reflect the dynamic behavior of the program. In partic-
ular, by forming regions containing cycles across the function boundaries, the
potential for the compiler to expose more ILP is increased [12, 20]. By selecting
the sizes and contents of regions appropriately, the compiler can also tradeoff
compilation cost and the use of aggressive ILP techniques.

† Lin Gao is a Visiting Research Associate at the University of New South Wales since
February 2003. She is supported by an ARC Grant DP0211793.

‡ Jingling Xue gracefully acknowledges Intel’s donation of Itanium computers.

1



Predicated execution, supported by EPIC architectures, allows parallel exe-
cution of instructions from multiple control paths and aids in efficient instruc-
tion scheduling. In this architectural model, an instruction may be guarded by
a boolean predicate, which determines whether the instruction is executed or
nullified. The values of predicates are manipulated by a set of predicate defin-
ing instructions. To explore predication, the compiler generally uses a technique
called if-conversion [1], which eliminates branch instructions and replaces af-
fected instructions with predicate defining instructions and predicated forms.
This technique enlarges the scope of instruction scheduling and avoids branch
misprediction penalties that may be caused by the eliminated branches.

This paper discusses the design, implementation and experimental evaluation
of a new, practical region-based partial dead code elimination (PDE) algorithm
on predicated code. An assignment is partially dead if there is a path along which
the value computed by the assignment is never used, and is fully dead if it is
partially dead along all such paths. Dead code appears frequently as a result
of the optimisations applied earlier, including partial redundancy elimination
(PRE), strength reduction and global copy propagation. PDE, which subsumes
the dead code elimination (DCE), is an aggressive global optimisation. It is
harder than PRE due to the second-order effects clearly exemplified in [18].

Existing PDE algorithms [5, 11, 18] are developed for non-predicated code
assuming functions as compilation units. These algorithms are inadequate when
instructions are predicated. Consider the following code snippet:

x = a + b (p1)

y = x + 1 (p2)

x = c - d (p3)

Being insensitive to the three predicates, classic PDE algorithms cannot deter-
mine if the first assignment is partially or fully dead or even dead at all.

The contributions of this work are summarised as follows:

– We introduce a practical region-based PDE algorithm on predicated code.
By using the notion of Predicate Partition Graph (PPG) [10, 14], our algo-
rithm operates uniformly on predicated blocks (known as hyperblocks [20])
and SEME (Single-Entry Multiple-Exit) regions comprising basic blocks and
hyperblocks.

– The result of applying our algorithm to a region is optimal: partially dead
code in the resulting program cannot be removed without changing the
branching structure of the program or potentially introducing non-existent
predicate defining instructions, which impair some program executions.

– We have implemented our PDE algorithm in the ORC compiler [19]. We
apply PDE just before its instruction scheduling pass since doing so can
potentially reduce critical path lengths along frequently executed paths [5].
We present statistic evidence about the PDE opportunities in all the 12
SPECint2000 benchmarks despite that DCE has been applied several times
earlier. We obtain moderate performance improvements in 8 out of 12 bench-
marks on an Itanium machine at small compilation overheads.



Our running example is the CFG depicted in Figure 1, where the three re-
gions formed are highlighted by dashed lines. Suppose the compiler applies if-
conversion [1] to eliminate the branchs in block 2. This leads to Figure 1(b),
where the blocks 2 – 5 have been merged into a new hyperblock HB. In ad-
dition, we have inserted the so-called interface blocks [4], I1 – I4 at all region
exits to simplify the design and implementation of our algorithm. Let us explain
briefly the effectiveness of our algorithm using the SEME region R2 depicted in
Figure 1(b). To begin with, the assignment x = b + d in block 6 is moved into
block I3. As for the y = c + d (p3) in block HB, nothing needs to be done.
At this stage, we obtain Figure 1(c). For the other three assignments, our algo-
rithm first sinks a = c + e into blocks I2 and I3 to get Figure 1(d). By sinking
a = c + e, we are able to eliminate the partial deadness of y = a + c (along the
edge (2, 3) in Figure 1(a)). In actuality, y = a + c is first removed from HB and
the so-called compensation code y = a + c (p4) is inserted into HB just after the
predicate defining instruction for p4. Figure 1(e) depicts the resulting program
so far. Finally, x = b+ c in block 1 is partially dead along path 1−HB− 6− I3.
The elimination of this partial deadness is illustrated in Figure 1(f): x = b + c

has been removed from block 1 and then inserted into blocks I1 and I2.
The rest of this paper is organized as follows. Section 2 gives the back-

ground information about regions, predication, if-conversions and PPGs. Sec-
tion 3 presents our PDE algorithm. Section 4 proves its correctness, termination
and optimality. In Section 5, we discuss the implementation of our algorithm
in ORC and present our performance results for the SPECint2000 benchmarks.
Section 6 compares with the related work. Section 7 concludes the paper.

2 Preliminaries

Our algorithm applies to any SEME region comprising basic blocks and hy-
perblocks. However, this work is carried out in the context of ORC, which is a
region-based compiler for the Intel’s Itanium Processor family. Section 2.1 defines
the regions handled by our algorithm and discusses if-conversion and regional
CFGs. Section 2.2 introduces PPGs and the queries used by our algorithm.

2.1 Regions

The ORC compiler [19] uses a region formation algorithm similar to interval anal-
ysis. As a result, the division of a CFG into regions puts a hierarchical structure
on the CFG, called the region tree. There are four kinds of regions: (1) loop
regions, (2) SEME regions, (3) MEME (Multiple-Entry Multiple-Exit) regions,
and (4) improper regions (or irreducible regions). By default, ORC produces
MEMEs only temporarily in an intermediate step and eventually converts every
such an MEME into multiple SEMEs (with tail duplication [20] if necessary).

Consider the three regions formed in Figure 1(a). The leaf R2 is an SEME
consisting of blocks 1 – 6. The leaf R3 is a loop region formed by block 7 alone.
The root region R1 contains R2, R3 and block 8.



�����
�������	�

�� ��
 ����

�����
�����
�������	�

�� ��� ����

�����
��� ���

 !" #��$ %
&' (()� !�

*�&��

��� �+"*"��

,

-

. /

0

1

2

3

R4

R5

R6

789:;
<=><?8;@<A
9B CD E<=F

G8H:;
H8;:I
<J><K8;@<A
G8;:L E<JF
MNIEGFE<JF
<O><P8;@<A
9B DDQE<OF

RSTUV

WXYZ[\R\]^

_

`a

b

c

d

Re

Rf

Rg

Th iij

Th iij

Th iik Th iik

lm

ln

lo lp

(a) Region formation (b) If-conversion

qrstu
vwxvyruzv{
s| }~ �vw�

�r�tu
�rut�
v�xv�ruzv{
�rut� �v��
�������v��
v�xv�ruzv{
s| ~~��v��

����������

�

��

�

�

�

R�

R�

R�

��   ¡

��   ¡

�¢�£¤
��   ¥

��   ¥

¦§

¦̈

¦©
¦ª

«¬­®¯
°±²°³¬¯́ °µ
­¶ ·¸ ¹°±º

»¬¼®¯
°½²°¾¬¯́ °µ
»¬¯®¿ ¹°½º
ÀÁÂ¹»º¹°½º
°Ã²°Ä¬¯́ °µ
­¶ ¸¸Å¹°Ãº

ÆÇÈÉÊËÌËÍÎ

Ï

ÐÑ

Ò

Ó

Ô

RÕ

RÖ

R×
ØÙ ÚÚÛ

ÊÜÝÞÈ
ØÙ ÚÚÛ

ÌÜØÞß
ÊÜÝÞÈ
ØÙ ÚÚà

ØÙ ÚÚà

áâ

áã

áä áå

(c) After PDE for x = b + d and y = c + d (p3) (d) After PDE for a = c + e

æçèéê
ëìíëîçêïëð
èñ òó ôëìõ

ëöíë÷çêïëð
øçùéê ôë÷õ
øçêéú ôëöõ
ûüýôøõôëöõ
ëþíëÿçêïëð
èñ óó�ôëþõ

���������	




��




�

�

R�

R�

R�
�� ���

�����
�� ���

�����
�����
�� ���

�� ���

��

��

�� � 

!"#!$%&'!(
)* +, -!".

!/#!0%&'!(
1%23& -!0.
1%&34 -!/.
567-1.-!/.
!8#!9%&'!(
)* ,,:-!8.

;<=>?@A@BC

D

EF

G

H

I

RJ

RK

RL

AMNOP
NQ RRS

?MPO=
AMNOP
NQ RRS

AMNOT
?MPO=
NQ RRU

NQ RRU

VW

VX

VY VZ

(e) After PDE y = a + c (f) After PDE for x = b + c

Fig. 1. A running example.



��� �� �� �� �	

R
 R�

�
��������
������ ������

�
����
������� 
�����
��! ����"#���������$��%
������ ��&��$�

'()*+

,

-.

/

)0 112

)0 112
)0 113

45

46
47

8

9: ;;<=>

R1 R2 R3

?@

?A

?B

?C

D D E E

F F

?G?H ?I

(a) Regional CFGs (b) PPG for R2

Fig. 2. Regional CFGs and the PPG for R2 in our running example.

We assume that if-conversion is applied to the regions created during the
region formation phase wherever appropriate. Often, an SEME subregion within
a region is fully converted into a single, branch-free block of predicated code.
The resulting block is known as a hyperblock [20].

Our algorithm operates on a region by traversing the nodes in its regional
CFG. Figure 2(a) shows the regional CFGs for our example. As in the ORC
compiler, the back edge around block 7 is not included in the regional CFG of the
loop region R3. This is because back edges cannot be handled by if-conversion.
Note that for each leaf region, we have inserted the interface blocks [4] (depicted
in dashes), one for each of its region exits. As a result, the successors of every
original node in a leaf region must all reside in that region.

In this study, we restrict ourselves to two kinds of leaf regions: SEMEs and
innermost loop regions. So the innermost loop regions are considered as SEMEs.
Therefore, our PDE algorithm is applicable to SEMEs only.

2.2 Predicate Partition Graph

Our algorithm eliminates partial deadness in an SEME region using the unique
Predicate Partition Graph (PPG) [10, 14] associated with the region. From now
on, the term block means either a basic block or a hyperblock. The PPG tracks
uniformly control flow and explicit use of predicates in a region. A predicate
assigned to a block is called a control predicate and a predicate which explicitly
appears in the instruction is called a materialised predicate. The control predicate
of a block is viewed as a predicate combining all of the conditions which control
whether the block will be executed or not. By convention, the control predicate
of the unique entry block of an SEME region is p0, which denotes the always true

predicate. Thus, every instruction can put into the following predicated form:

v = π (p)

where v is a variable, π an expression and p its materialised predicate. If p = p0,
we simply write the instruction as v = π (without the materialised predicate).



Let α be an instruction in a block. The following notations are used:

– BBα: the block in which α resides
– M-PRED(α): the materialised predicate of α

– C-PRED(BBα): the control predicate of BBα

– E-PRED(α): the executing predicate of α such that α is executed iff it holds:

E-PRED(α) =

{

C-PRED(BBα) if M-PRED(α) = p0

M-PRED(α) otherwise

Consider the regional CFG for R2 shown in Figure 2(a), which consists of
three blocks 1, HB and 6. We find that C-PRED(1) = p0, C-PRED(HB) = p1 and
C-PRED(6) = p5. Consider the two instructions a = c + e and y = c + d (p3) in
HB. We find that M-PRED(a = c + e) = p0 and M-PRED(y = c + d (p3)) = p3.
Thus, E-PRED(a = c+e) = C-PRED(HB) = p1 and E-PRED(y = a+ c (p3)) = p3.

In a PPG, a node represents a predicate p and a directed edge (p, q) represents
that there exists a partition r in p such that q is a subset of r [10, 14]. Figure 2(b)
depicts the PPG for the region R2 in our example, where the edges from the
same partition are conventionally decorated to have the same label. For example,
p1 has two distinct partitions: p1 = p3 ∪ p4 and p1 = p5 ∪ p6.

Our PDE algorithm relies on the following queries on a region’s PPG. Our
illustrating example is R2 shown in Figure 2(a) and its PPG in Figure 2(b).

– IsDisjoint(p, q): asks whether the domain of predicate p overlaps with that of
predicate q. Two predicates are disjoint iff they can reach a common ancestor
in the PPG through different edges of the same partition. For example,
IsDisjoint(p3, p4) = IsDisjoint(p4, p2) = true but IsDisjoint(p4, p5) = false.

– IsSubset(p, q): asks whether the domain of p is a subset of the domain of q. For
example, IsSubset(p3, p1) = IsSubset(p3, p0) = true but IsSubset(p3, p4) = false.
We shall write p ⊆ q if IsSubset(p, q) holds and p ⊂ q if p ⊆ q but p 6= q.

– LUB Diff(p, q): returns the set of predicates such that the union of their do-
mains is the smallest superset of the domain of p subtracted by the domain of
q, i.e., LUB Diff(p, q) ⊇ p−q, where the equality holds when q ⊆ p [10, 14]. In

our algorithm, LUB Diff(p, q) is called only when q ⊂ p. In addition, the result
of this operation is simplified such that if all child predicates in a partition ap-
pear in p−q, then these child predicates are replaced with their parent pred-
icate. For example, LUB Diff(p1, p3) = {p4} and LUB Diff(p0, p3) = {p2, p4}.

We assume that all the critical edges in the regional CFG of a region have
been split. This simplifies the construction of the PPG for the region and the
code insertions required in code motion/sinking transformations.

3 Region-Based PDE on Predicated Code

There are two main challenges in designing a PDE algorithm that works for
regions comprising both basic blocks and hyperblocks. First, we must handle
uniformly explicit branches and if-converted branches. We solve this first problem



by using a region’s PPG to guide the PDE process. Second, sinking an instruction
across a branching node and later a join node is not straightforward in a worklist
solution. Once again the branches at these branching and join nodes can be
explicit or if-converted branches. We solve this second problem by sinking copies
of an instruction with appropriate predicates at a branching node. We use a forest
as a data structure to record the arriving copies at a join node. We combine the
arriving copies at the join node into a single instruction once we have detected
that a copy has arrived from each of its incoming edges by comparing predicate
relations. Section 3.1 introduces our criterion of optimality. Section 3.2 presents
our PDE algorithm. Section 3.3 illustrates it with our running example.

3.1 Scope

Our PDE algorithm operates on SEME regions, one at a time. It achieves a
complete removal of partial deadness in an SEME region in the following sense.

Definition 1 (Optimality). Let α be any instruction in an SEME region R,

which is regarded as being distinct from every other instruction in R. After hav-

ing completed assignment sinking and elimination for all instructions in R, let

α1, . . . , αn be all the copies of α in the resulting program, which satisfy:

1. E-PRED(α1) ⊆ E-PRED(α), . . . , E-PRED(αn) ⊆ E-PRED(α),
2. E-PRED(α1), . . . , E-PRED(αn) are existing predicates in the PPG of R, and

3. E-PRED(α1), · · · , E-PRED(αn) are mutually disjoint.

Such a transformation, which is assumed to be semantics-preserving, is optimal

if ∪n
i=1E-PRED(αi) is the smallest possible.

Our PDE algorithm guarantees this optimality. Since we apply PDE before
instruction scheduling, all necessary optimisations have already been performed.
Therefore, we refrain from changing the branching structure of the program. We
use only the existing predicates that are subsets of E-PRED(α). Thus, we do not
introduce any new predicate defining instructions. Implicit in the optimality cri-
terion is that the dynamic count of instructions along any path is not increased.

In comparison with Knoop, Rüthing and Steffen’s PDE algorithm on non-
predicated code [18], our algorithm shares the same two properties as illustrated
in Figures 3(a) and (b). First, we eliminate the partial deadness shown in Fig-
ure 3(a) by performing assignment sinking. In the transformed code, the exe-
cuting predicate p − q for the instruction in block 3 satisfies p − q ⊆ p. Second,
we do not eliminate the partial deadness shown in Figure 3(b) since p and q

are not related. However, we can remove the partial deadness of x = a + b (p)
along path 1-3-4 in two ways. If control flow restructuring is used as in [5], it
is possible to ensure that the dynamic count of instructions is not increased
along any path. But the new predicates introduced due to restructuring may
increase the pressure for predicate registers. If restructuring is not used, some
new predicate defining instructions may be introduced along some path. As a



��������

����	�
�

�

� 


�

��������

��������

� �

�

� �

� !"#$%& � !"#$'&

� (")$*&

+ ,

-

. /

before before before

01234567 018395:;67

<

= >

?

@ABCDEFG

@AHCIEJG

K L

M

N O

PQRSTUVW PQRSTUXW

PQYSZU[W

\ ]

^

_ `

after after after

(a) q ⊂ p (b) p 6⊆ q and q 6⊆ p (c) p 6⊆ q and q 6⊆ p

Fig. 3. Scope of our PDE algorithm.

result, the dynamic count of instructions along the path will be increased. This
explains the existence of Restrictions 1 and 2 in Definition 1. Unlike [18], how-
ever, Figure 3(c) shows that we do not remove the partial deadness removable
by simultaneously sinking two distinct instructions that happen to be identical.
We can modify our algorithm slightly to deal with this scenario but have not
done so since this case should not occur frequently in real code. This is why in
Definition 1 all instructions are regarded as being distinct. Finally, Restriction
3 in Definition 1 is a basic requirement of any PDE algorithm.

3.2 Algorithm

Both code motion and deadness are governed by data dependences. There are
three kinds of dependences between two distinct instructions: α : v = π and δ:

– DEFINED(v, δ): v is modified by δ in BBδ.
– USED(v, δ): v is used by δ in BBδ.
– KILLED(π, δ): some operands of π are modified by δ in BBδ.

which are used to define the two predicates used directly by our algorithm:

– DEP(α, δ) =df DEFINED(v, δ) ∨ USED(v, δ) ∨ KILLED(π, δ). There is a data
dependence between α and δ iff DEP(α, δ) holds.

– DEFINED-NOT-USED(α, δ) =df DEFINED(v, δ)∧¬USED(v, δ). Essentially, α is
partially dead with respect to δ only if DEFINED-NOT-USED(α, δ) holds.

Figure 4 gives our algorithm, called PPDE, for performing PDE on an SEME
region consisting of basic blocks and hyperblocks. Line 2 creates the empty
interface blocks at all region exits as illustrated for R2 in Figure 1(b). This
ensures that all successors of every original node in R are contained in R itself.
This simplifies the design of our algorithm so that we can move code out of R

easily (line 21). Line 3 initialises W with all PDE candidates sorted in the reverse



1 PROCEDURE PPDE (R: SEME Region)

2 Create an empty interface block (with a branching instruction) for each region exit
3 Initialise the worklist W with all PDE candidates in R

sorted in the reverse topological order of their data dependences
4 while W is not empty
5 α = first PDE candidate from W , which, say, has the form v = π (p)
6 Remove α from W
7 if v is not live out of R and the def-use chain of v in R is empty
8 Delete α from BBα // α fully dead
9 continue

10 if α does not have the same form v = π as Prev
11 P = NULL
12 Prev = α
13 β = instruction next to α in BBα // β = NULL if α is the last in BBα

14 if (¬ Sink(R, α, β))
15 for each descendant block BB of BBα in R sorted in topological order
16 if ¬IsDisjoint(E-PRED(α), C-PRED(BB))
17 β = first instruction of BB
18 if Sink(R, α, β)
19 break
20 Delete the empty blocks (including empty interface blocks)
21 Move the interface blocks at the non-main exits of R into the parent region of R

Fig. 4. The PDE algorithm on predicated code.

topological order of their dependences. PPDE terminates when W is empty (line
4). The PDE candidates in the worklist are processed sequentially, one at a time.
As the algorithm proceeds, the candidates are removed from and new candidates
added only to the beginning of the worklist in lines 43, 71 and 79. Thus, it is
sufficient to understand how one PDE candidate is processed.

In lines 5 – 6, we remove the first PDE candidate α from the worklist. Like the
existing PDE algorithms [5, 11, 18], we make use of live-in/out and def-use chains
and assume that this information is updated wherever appropriate. Hence, in
lines 7 – 8, we delete α when it is fully dead and are done with this instruction.
Otherwise, line 14 calls Sink to perform sinking and elimination in the block
containing α. If this returns false, we continue the PDE process for α in the
descendant blocks BB rooted at BBα in region R. We skip every descendant
block that is not on a path starting from α since α cannot be partially dead
there (line 16). The PDE process for α is completed when the call to Sink in line
18 returns true or when all such descendant blocks have been processed. Then
the same PDE process repeats on the next candidate in the worklist.

Lines 10 – 12 are concerned with sinking the multiple copies of an instruction
created at a branching node. This will be explained in Section 3.3.

At the end of PPDE, we do two things. In line 20, we clear up the regional
CFG by deleting all empty blocks such as block 6 in Figure 1(c). In line 21, we
move the interface blocks at the non-main region exits into the parent region of
R. This strategy tends to reduce the critical path lengths along the frequently
executed paths leaving the main exit(s) of the region R [5].



22 PROCEDURE Sink(R: SEME Region, α, β: Instruction)
23 p = E-PRED(α)
24 for(δ = β; δ 6= NULL; δ = instruction next to δ in instruction list of BBβ)
25 q = E-PRED(δ)
26 if ¬IsDisjoint(p, q)
27 Case 1 if p = q

28 if DEP(α, δ)
29 if DEFINED-NOT-USED(α, δ)
30 Delete α from BBα // α is fully dead
31 return true
32 else
33 if δ is an exit of BBβ

34 Move α before δ
35 return false
36 else
37 Move α after δ and then set δ to point to α

38 Case 2 else if p ⊃ q

39 if ¬DEFINED-NOT-USED(α, δ)
40 θ = Create a copy of α
41 C-PRED(θ) = C-PRED(δ), M-PRED(θ) = M-PRED(δ)
42 Insert θ before δ
43 Insert θ at the beginning of W
44 else do nothing // α is partially dead
45 CompensationInsert(R, α, δ)
46 Delete α from BBα

47 return true

48 Case 3 else if p ⊂ q
49 if DEP(α, δ)
50 if DEFINED-NOT-USED(α, δ)
51 Delete α from BBα // α is fully dead
52 DelInst(P , α)
53 return true
54 else
55 if AddInst(P , α, δ)
56 return true

57 Case 4 else
58 if DEP(α, δ)
59 return true
60 return false
61 PROCEDURE DelInst(P : Forest, α: Instruction)
62 Delete the node α and its parent if α is its unique child from P (if α exists)
63 PROCEDURE AddInst(P : Forest, α, δ: Instruction)
64 if the node α does not exist in P
65 Add the directed edge δ → α to P
66 Let α1, . . . , αn be all children of δ in P
67 if

⋃n

i=1
E-PRED(αi) = E-PRED(δ)

68 θ = Create a copy of α
69 C-PRED(θ) = C-PRED(δ), M-PRED(θ) = M-PRED(δ)
70 Insert θ before δ
71 Insert θ at the beginning of W
72 Delete the nodes α1, . . . , αn and δ from P
73 Delete α1, . . . , αn from BBα1

, . . . BBαn

74 return true
75 return false

Fig. 4. The PDE algorithm on predicated code (cont’d).



76 PROCEDURE CompensationInsert(R: SEME Region, α, δ: Instruction)

77 for each predicate r in LUB Diff(E-PRED(α), E-PRED(δ))
78 θ = Create a copy of α such that E-PRED(δ) = r
79 Insert θ at the beginning of W
80 BB = the block in which r is defined
81 if BB = BBδ // BBδ is a hyperblock
82 Insert θ after the predicate defining instruction for r
83 else
84 for each successor BBs of BB in the region CFG of R
85 if C-PRED(BBs) = r
86 Insert θ at the entry of BBs

87 break

Fig. 4. The PDE algorithm on predicated code (cont’d).

3.2.1 Sinking and Elimination

The procedure Sink aims at eliminating the partial deadness of α in BBα with
respect to the instruction δ starting from β in BBβ . In lines 23 and 25, p and q are
the executing predicates of α and δ, respectively. The procedure is driven entirely
by comparing the predicate relations between p and q. If IsDisjoint(p, q) = true in
line 26, the executions of α and δ are mutually exclusive. Thus, α is not partially
dead with respect to δ. The next iteration of for loop in line 24 is executed.
Otherwise, there are the four cases depending on the relations between p and q.
In Case 1, lines 33 – 37 have the effect of moving α into BBδ when α and δ are in
two different blocks. Case 2 is concerned with a branching point while Case 3 a
merging point. In Case 4, α cannot be sunk any further if there is a dependence
from α to δ.

3.2.2 Compensation Code Insertion

The procedure CompensationInsert inserts copies of α at the indicated insertion
points with the executing predicates in LUB Diff(E-PRED(α), E-PRED(δ)).

3.3 Example

Let us trace briefly the execution of our algorithm on the region R2 shown in
Figure 1(b). In line 2, the three interface blocks I1 – I3 are created as shown in
Figure 1(b). In line 3, W = (x = b+d, y = c+d (p3), a = c+e, y = a+c, x = b+c),
where the instructions have been sorted in the reverse topological order of their
dependences. Consider the first PDE candidate α =df x = b+d in block 6, where
x is live out of R2. Since β = NULL in line 13, the call to Sink in line 14 returns
false immediately. I3 is the unique successor of block 6. In line 17, β is set to
point to the singleton instruction brBB8 in block I3. During the call to Sink in
line 18, Case 1 is executed so that x = b + d will be moved into the beginning of
block I3. This is all that can be done for the first PDE candidate. Let us see how



PPDE deals with the second PDE candidate α =df y = (c + d) (p3) in W . This
time, β =df use(y) (p3) in line 13. Sink is called in line 14. Case 1 is executed
again. Due to the flow dependence between the two instructions, Sink simply
returns true in line 31. The resulting program so far is depicted in Figure 1(c).

At this time, W = (a = c + e, y = a + c, x = b + c). PPDE removes α =df

a = c + e from W in lines 5 – 6 and sets β =df p3, p4 = cmp... in line 13. After
lines 10 – 12, we have P = NULL and Prev =df a = c + e. In line 14, Sink is
called. In the first iteration of the for loop in line 24, Case 1 is executed since
p = q = p1. So a = c + e and p3, p4 = cmp... are swapped. In the next iteration,
δ points to y = c + d (p3). Hence, q = p3. Since p1 ⊃ p3, Case 2 is executed.
Note that DEFINED-NOT-USED(α, δ) = false. Thus, a = c + e is removed from
HB and a = c + e (p4) and a = c + e (p3) are inserted after p3, p4 = cmp... in
that order. Both instructions are added to W so that W = (a = c + e (p4), a =
c + e (p3), y = a + c, x = b + c). Finally, Sink returns true to PPDE.

Next, PPDE removes α =df a = c + e (p4) from W . As before, P = NULL

and Prev =df= a = c + e. In line 14, Sink is called. Eventually, α is moved
just before δ =df p5, p6 = cmp... in Case 1. Since p = p4 and q = p1, we have
p4 ⊂ p1. Then Case 3 is executed, during which AddInst is called. The edge
set for the forest P becomes {p5, p6 = cmp... → a = c + e (p4)}. AddInst

returns false. The remaining PDE process for a = c + e (p4) does not cause any
code motion. When PPDE removes α =df a = c + e (p3) from W , P remains
unchanged after lines 10 – 12. In line 14, Sink is called. Eventually, δ will point
to p5, p6 = cmp... in Case 1. Then q = p1. Since p3 ⊂ p1, Case 3 is executed,
during which AddInst is called again. In line 65, the edge set for P becomes
{p5, p6 = cmp... → a = c + e (p4), p5, p6 = cmp... → a = c + e (p3)}, where
p3 ∪ p4 = p1. In the if statement beginning in line 67, a = c + e (p4) and
a = c + e (p3) are combined and the resulting instruction a = c + e is inserted
just before p5, p6 = cmp... and into W . Thus, W = (a = c+e, y = a+c, x = b+c).
The processing of a = c + e will cause it to be split in Case 2 of Sink into two
copies that are eventually moved into blocks I2 and I3 as shown in Figure 1(d).

At this time, W = (y = a + c, x = b + c). By appling PPDE to y = a + c,
Case 2 of Sink is executed. The partial deadness of this instruction is eliminated
as shown in Figure 1(e). The result of performing PDE on the last candidate
x = b + c in block 1 is shown in Figure 1(f). Basically, x = b + c is split at the
end of block 1 such that one copy is moved into I1 and the other, which is moved
into HB, is dealt with in the same way as a = c+e before. The only difference is
that x = b+ c, which is partially dead along path 1−HB−6− I3, is eliminated.

Finally, all three interface blocks I1 – I3 are not empty. Those at the non-main
region exits are moved into the parent region of R2, i.e., R1.

4 Correctness, Termination, Optimality

Theorem 1 (Correctness). PPDE preserves the semantics of the program.

Proof. We argue that every assignment sinking or elimination preserves the
semantics of the program. In line 8, we delete α because it is fully dead. Let us



� � � �� �
� � �� 	 
 �� �

�� 

� � � � � �� �� �

� � � �
� � 
 �� �� 	 
 �� �

� � � 
 � � � � ���
� � 
 �� �� 	 
 �� �

� � � � �
� �� � �� 	 
 � �

� � � � �
� � � � � � � �� � � � � �� 
 � �

� � �� � 	 
 �� �

Fig. 5. The code generation (CG) module in ORC with PDE incorporated.

examine Cases 1 – 3 in Sink. In Case 1, we delete α because it is fully dead (line
30). The else statement is justified due to the lack of dependences between α and
δ. In Case 2, we delete α because it is partially dead (line 46). In addition, the
compensation instructions are inserted correctly by CompensationInsert (line
45). Otherwise, α is not partially dead. But we have also inserted a copy of α,
called θ, correctly in lines 40 – 42. In Case 3, we delete α because it is fully dead
(line 51), and also update the data structure P (line 52). In the else statement,
we combine the instances of α arriving at a merging point only when the equality
in line 67 holds. The semantics of the program is preserved by lines 68 – 74. �

Theorem 2 (Termination). PPDE terminates.

Proof. We argue that W , which starts with a finite number of PDE candidates,
will be empty. Let αi and αi+1 be two adjacent candidates in W . After having
removed αi from W , PPDE will eventually remove αi+1 from W . To see this, we
note that during the PDE process on αi, Sink can add new PDE candidates only
at the beginning of W . There can only be finitely many since R is cycle-free. �

Theorem 3 (Optimality). PPDE is optimal.

Proof. As a loop invariant for the while loop in line 4, all the PDE candidates
in W are always in the reverse topological order of their data dependences. Each
PDE candidate is moved downwards as far as possible: some of its copies are
deleted iff they are dead, some are blocked due to dependences and the remaining
ones are moved into interface blocks. So PPDE is optimal by Definition 1.

5 Experimental Results

We have implemented our PDE algorithm in the code generation (CG) module
of the Open Research Compiler (ORC) [19] (version 2.1). Figure 5 depicts the
compiler framework in which our PDE algorithm is used and evaluated. Our
PDE pass is invoked just before the instruction scheduling pass. This phase-
ordering not only eliminates all partial deadness before scheduling (Theorem 3)
but also achieves an overall effect of reducing the cycles distributed into the eight
Itanium stall categories (Figure 7).

We evaluate this work using all 12 SPECint2000 benchmarks. The bench-
marks are compiled at the “O2” optimisation level with inlining switched on
(except for eon). Inlining enables the frequently executed blocks in multiple
functions to be formed into a single region. The profiling information is col-
lected using the train inputs and is used by ORC in all profile-guided optimisa-
tions (including region formation). However, all benchmarks are executed using



0

1

2

3

4

5

6

7

Dy
na

m
ic

 R
ed

uc
tio

n 
(%

)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

SP
EC

in
t2

00
0

PDE (Strictly Partial)

DCE

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

S
p

ee
d

u
p

 (
%

)

16
4.

g
zi

p

17
5.

vp
r

17
6.

g
cc

18
1.

m
cf

18
6.

cr
af

ty

19
7.

p
ar

se
r

25
2.

eo
n

25
3.

p
er

lb
m

k

25
4.

g
ap

25
5.

vo
rt

ex

25
6.

b
zi

p
2

30
0.

tw
o

lf

S
P

E
C

in
t2

00
0

(a) Opportunities (b) Speedups

Fig. 6. Opportunities and speedups for SPECint2000.

-2.5E+10

-2.0E+10

-1.5E+10

-1.0E+10

-5.0E+09

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

3.0E+10

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

Cy
cl

e 
Re

du
ct

io
ns

ISSUE_LIMIT_CYCLE
DEPENDENCY_SCOREBOARD_CYCLE
TAKEN_BRANCH_CYCLE
PIPELINE_BACKEND_FLUSH_CYCLE
UNSTALLED_PIPELINE_CYCLE
INST_ACCESS_CYCLE
RSE_ACTIVE_CYCLE
DATA_ACCESS_CYCLE

Fig. 7. Cycle reductions in stall categories for SPECint2000.

the reference inputs. The measurements were performed on an Itanium machine
equipped with a 667MHz Itanium processor and 1GB of memory. We report
the PDE opportunities, performance speedups and compilation overheads for
the benchmarks. We also collect dynamic execution statistics to understand how
PDE impacts various cycle metrics for a program using the pfmon tool.

The PDE candidates are rather comprehensive, including instructions on
logical operations, arithmetic operations, shift operations, move operations (be-
tween registers), float conversion operations (e.g., fcvt), zero-extension opera-
tions (e.g., zxt) and multimedia operations. The non-PDE candidates are typi-
cally those with side effects, including instructions on memory operations (e.g.,
load and store) and cache operations. Another reason for excluding load instruc-
tions is that the instruction scheduler in ORC tends to move them up against the
control flow. The other non-PDE candidates are compare and branch instruc-
tions and any instructions marked as being non-movable by the ORC compiler.

Figure 6 shows the benefits of PDE for the benchmarks. In Figure 6(a), we
see convincingly the existence of PDE opportunities. This is true even though
ORC has applied DCE several times earlier in the compilation process. For each



program, we measure the opportunity as the dynamic count of partially dead
instructions eliminated over the dynamic count of PDE candidates executed
using the profiling information from the reference inputs. In Figure 6(b), we see
the execution time speedups over the ORC configuration. The positive speedups
are obtained in 8 out of 12 benchmarks. The speedups for crafty and twolf

are 2.81% and 2.53%, respectively. The performance degradations for gcc, mcf,
parser and vortex are noted. The overall speedup for SPECint2000 is 1.01%.

The implementation of our PDE algorithm accounts for small compilation
overheads for all the benchmarks, which range between 0.41% and 3.40% with
an average of 1.41%. The benchmarks are cross-compiled on a 2.6GHz Pentium
4 PC with 2GB memory running Redhat Linux 8.0. There are several reasons
for this efficiency. First, the leaf regions are small. Second, the average number
of join nodes in the leaf regions is also small. Third, the PDE candidates are
processed in the reverse topological order of their dependences. So PPDE on a
leaf region terminates quickly.

To understand how PDE affects performance, we use pfmon to measure dy-
namic execution statistics through the eight Itanium performance monitors. Fig-
ure 7 presents the cycle reductions in the eight Itanium stall categories [13] for
each program in both the ORC and ORC+PDE configurations. The dominat-
ing category (i.e., the one with the largest cycle reduction in absolute value) is
PIPELINE BACKEND FLUSH CYCLE for gzip, DEPENDENCY SCOREBOARD CYCLE for
parser and perlmk, INST ACCESS CYCLE for eon and gap and
DATA ACCESS CYCLE for the remaining seven benchmarks. Clearly, PDE affects
the cycles in the stall category DATA ACCESS CYCLE more profoundly than the
other seven categories. This category counts the number of cycles that the
pipeline is stalled when instructions are waiting for the source operands from
the memory subsystem. Of the seven benchmarks for which DATA ACCESS CYCLE

is the dominating stall category, the cycles in DATA ACCESS CYCLE are decreased
in vpr, gcc, crafty and twolf but increased in gcc, mcf and vortex. This phe-
nomenon may be attributed to the aggressive nature of code sinking inherent in
our PDE algorithm. By sinking instructions as low as possible along the control
flow, the lifetimes are decreased for some variables but increased for the others.

6 Related Work

Most existing PRE algorithms [6, 7, 15, 17] and PDE algorithms [5, 11, 18] are
developed for non-predicated code. They are inadequate when instructions are
predicated. There are some earlier research efforts on performing PRE on predi-
cated code [9, 16]. In particular, Knoop, Collard and Ju’s PRE algorithm is based
on SI-graphs, which are not as widespread as hyperblocks. By avoid introducing
new predicate defining instructions, their algorithm guarantees that the dynamic
count of instructions along any path is not increased. Later, Collard and Djelic
[9] introduce a PRE algorithm on a single hyperblock by using first-order logi-
cal operations on predicates. They allow the synthesis of new predicate defining
instructions. As a result, the instruction count along some path can be impaired.



August [3] discusses by an example how to perform PDE for a single hy-
perblock based on a predicate flow graph (PFG) [2]. The IMPACT compiler [8]
supports DCE on predicated code. The ORC compiler performs DCE only on
non-predicated IRs. We are not aware of any earlier region-based PDE algorithm
on predicated code that works uniformly on basic blocks and hyperblocks.

Several approaches to predicate analysis have been described in the liter-
ature [10, 14, 21]. The predicate query system (PQS) introduced in [10, 14] is
based on the PPG. This is the system implemented in the ORC compiler. PQS
can accurately represent predication conforming the style of if-conversion. The
Predicate Analysis System (PAS) introduced in [21] is more powerful since it can
accurately accommodate arbitrary predicate formulations. Our algorithm can be
easily adapted when a PAS-based system is used provided it also supports the
queries on control and materialised predicates at the same time.

7 Conclusion

Region-based compilation increases scheduling opportunities, which is critical
for improving the performance of programs running on ILP architectures. Pred-
icated execution on these architectures is an effective technique for dealing with
conditional branches. The contribution of this research is the development of a
practical algorithm for performing region-based PDE on predicated code. This
algorithm is optimal in the sence that it can eliminate all partial deadness that
can be removed without changing the branching structure of the program or po-
tentially introducing new predicate defining instructions. We have implemented
this algorithm in the ORC compiler for the Intel’s Itanium Processor family.
In our implementation, PDE is applied just before instruction scheduling. This
strategy not only eliminates all partial deadness but also achieves an overall ef-
fect of reducing the cycles distributed into the eight Itanium stall categories. We
present statistic evidence about the PDE opportunities in real code. We demon-
strate that our PDE algorithm can achieve moderate performance improvements
for the SPECint2000 benchmarks at small compilation overheads.

References

1. J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conversion of con-
trol dependence to data dependence. In 10th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages, pages 177–189. ACM Press, 1983.

2. David I. August, Wen mei W. Hwu, and Scott A. Mahlke. A framework for bal-
ancing control flow and predication. In 30th ACM/IEEE International Symposium
on Microarchitecture, pages 92–103. IEEE Computer Society, 1997.

3. David Isaac August. Systematic Compilation For Predicated Execution. PhD thesis,
University of Illinois at Urbana-Champaign, 2002.

4. J. Bharadwaj, K. Menezes, and C. McKinsey. Wavefront scheduling: path based
data representation and scheduling of subgraphs. In 32nd ACM/IEEE Interna-
tional Symposium on Microarchitecture, pages 262–271, 1999.



5. Rastislav Bodik and Rajiv Gupta. Partial dead code elimination using slicing
transformations. In ACM SIGPLAN’ 97 Conference on Programming Language
Design and Implementation, pages 159–170. ACM Press, 1997.

6. Rastislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Complete removal of redun-
dant computations. In ACM SIGPLAN’ 98 Conference on Programming Language
Design and Implementation, pages 1–14, 1998.

7. Qiong Cai and Jingling Xue. Optimal and efficient speculation-based partial re-
dundancy elimination. In 1st IEEE/ACM International Symposium on Code Gen-
eration and Optimization, pages 91–102, 2003.

8. P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and Wen-Mei Hwu. IM-
PACT: An architectural framework for multiple-instruction-issue processors. In
18th International Symposium on Computer Architecture (ISCA), pages 266–275,
New York, NY, 1991. ACM Press.

9. Jean-Francois Collard and Ivan Djelic. A practical framework for redundancy
elimination on EPIC processors. Technical report, PRiSM, 2000.

10. David M. Gillies, Dz ching Roy Ju, Richard Johnson, and Michael Schlansker.
Global predicate analysis and its application to register allocation. In 29th
ACM/IEEE International Symposium on Microarchitecture, pages 114–125, 1996.

11. Rajiv Gupta, David A. Berson, and Jesse Fang. Path profile guided partial dead
code elimination using predication. In 5th International Conference on Parallel
Architectures and Compilation Techniques, pages 102–113, 1997.

12. Richard E. Hank, Wen-Mei Hwu, and B. Ramakrishna Rau. Region-based compi-
lation: an introduction and motivation. In 28th ACM/IEEE International Sympo-
sium on Microarchitecture, pages 158–168. IEEE Computer Society Press, 1995.

13. Intel. Intel Itanium processor reference manual for software development, Decem-
ber 2001.

14. Richard Johnson and Michael Schlansker. Analysis techniques for predicated code.
In 29th ACM/IEEE International Symposium on Microarchitecture, pages 100–113,
1996.

15. Robert Kennedy, Sun Chan, Shin-Ming Liu, Raymond Lo, and Peng Tu. Par-
tial redundancy elimination in SSA form. ACM Transactions on Programming
Languages and Systems, 21(3):627–676, 1999.

16. Jens Knoop, Jean-Francois Collard, and Roy Dz ching Ju. Partial redundancy
elimination on predicated code. In 7th International Static Analysis Symposium.
Springer-Verlag, 2000.

17. Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Optimal code motion: The-
ory and practice. ACM Transactions on Programming Languages and Systems,
16(4):1117–1155, July 1994.

18. Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimina-
tion. In ACM SIGPLAN’ 94 Conference on Programming Language Design and
Implementation, pages 147–158. ACM Press, 1994.

19. Yang Liu, Zhaoqing Zhang, Ruliang Qiao, and Roy Dz ching Ju. A region-based
compilation infrastructure. In 7th Workshop on Interaction between Compilers and
Computer Architectures, 2003.

20. Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and Roger A.
Bringmann. Effective compiler support for predicated execution using the hyper-
block. In 25th ACM/IEEE International Symposium on Microarchitecture, pages
45–54. IEEE Computer Society Press, 1992.

21. John W. Sias, Wen-Mei Hwu, and David I. August. Accurate and efficient pred-
icate analysis with binary decision diagrams. In 33rd ACM/IEEE International
Symposium on Microarchitecture, pages 112–123. ACM Press, 2000.


