2005 International Conference on Compiler Construction, Pages 271 -- 286.

Completeness Analysis
for Incomplete Object-Oriented Programs

Jingling Xue and Phung Hua Nguyen

Programming Languages and Compilers Group
School of Computer Science and Engineering
University of New South Wales
NSW 2032, Sydney, Australia

Abstract. We introduce a new approach, called completeness analysis,
to computing points-to sets for incomplete Java programs such as library
modules or applications in the presence of dynamic class loading. One
distinctive feature of this work is that the access and modification proper-
ties of fields are taken into account. By combining with a whole-program
points-to analysis, completeness analysis yields not only the required
points-to sets but also determines which points-to sets and call sites are
complete (when the pointed-to objects and target methods are statically
resolvable) or not. Such a compositional approach yields more precise
points-to sets than those computed by the points-to analysis alone. In
addition, our technique also determines (for the first time) which objects
may be incompletely detectable, i.e., may be missing in some statically
computed points-to sets. We provide experimental evidence to demon-
strate that better analysis precision in benchmarks is obtained when the
field access and modification properties are exploited. In particular, we
are able to find significantly more complete and mono call sites in an in-
complete program, which is useful in devirtualisation and inlining. Our
analysis is simple since it is flow- and context-insensitive and achieves
these improvements at reasonably small analysis costs.

1 Introduction

For object-oriented languages such as Java and Cf, points-to analysis finds
many applications in compilers and software engineering. However, most exist-
ing points-to analysis methods [9, 13] require the whole program to be available.
Their inadequacies are being recognised as modern applications rely increasingly
more on component programming and software libraries. When applied to com-
ponents or library modules alone, whole-program methods may yield incomplete
points-to sets (i.e. the ones that may not contain all the pointed-to objects at
run time), and consequently, incomplete call sites (i.e., the ones whose sets of
target methods resolved statically may not contain all methods invoked at run
time). In addition, these methods cannot tell whether or not a points-to set or
call site is complete or not, making their results hardly useful. The situation
is further aggravated by some features in Java and Cf#. Due to the presence of

dynamic class loading and/or native methods, an application written in these
languages may be incomplete in its entirety at analysis time.

This work addresses the problem of computing the points-to sets for an
incomplete object-oriented program and also determining at the same time
whether these sets and call sites are complete or not. There are some existing
methods that are proposed (intentionally or otherwise) to solve this problem.
The extant analysis (EA) [16] is developed mainly to support devirtualisation
and inlining. For that reason, EA takes as input the points-to sets for a program
and produces as output the set of runtime types in the analysed program for each
reference. As a by-product of this process, one can deduce that the point-to set
of a reference is complete iff all its runtime types are guaranteed to be known in
the analysed program. Several techniques reported in [20,21] combine points-to
analysis and escape analysis [2,4]. Their results can be used to determine the
completeness of points-to sets and call sites.

A common problem with these earlier efforts is that they do not exploit
the access and modification properties of fields although similar properties for
methods are considered somewhat. As a result, they do not provide sufficient
precision about the completeness of points-to sets and call sites. Given an in-
complete program, applying whole-program analysis alone is inadequate because
the reciprocal modification effects between the program and unknown code are
not accounted for. In the presence of unknown code, some points-to sets are in-
evitably incomplete. As a result, some alias relations cannot be determined based
on the computed points-to sets alone. In order to obtain better analysis preci-
sion, we believe that the reciprocal modification effects between an incomplete
program (i.e., the analysed code) and the unknown (i.e., unanalysed) code must
be taken into account as accurately as possible. In this work, we exploit the ac-
cess and modification properties of fields (static or instance) to improve analysis
precision. To substantiate this claim, we present a flow- and context-insensitive
analysis, called completeness analysis (CA), for incomplete Java programs and
demonstrate its benefits in increasing analysis precision in benchmark programs.

The contributions of this work are summarised as follows:

— We present a new compositional approach to conducting points-to analysis
for incomplete Java program. By composing with a whole-program points-
to analysis, we obtain not only the points-to sets for the program but also
determine which point-to sets and call sites are complete or not.

— We exploit the access and modification properties of fields in our analysis.
To the best of our knowledge, this is the first work using these properties
to compute the points-to sets for incomplete object-oriented programs. As
a result, our points-to sets are more precise than those computed by the
points-to analysis alone.

— We introduce for the first time the notion of object detectability, which
played an important role in completeness analysis. A compile-time object cre-
ated in an analysed program is incompletely detectable if it may be pointed to
by a reference at run time but is missing in its statically computed points-to
set and (completely) detectable otherwise. Since the access and modification

properties of fields are considered, object detectability is different from ob-
ject reachability used in escape analysis [2,4,20,21]. If an object escapes
from a function or thread, so are all the reachable objects. If an object is in-
completely detectable, a directly or indirectly reachable object may be either
completely or incompletely detectable.

— We have implemented our complete analysis in Soot [19]. When the access
and modification properties of fields are exploited, we obtain better analysis
precision in benchmarks, in particular, significantly more mono call sites,
i.e., more opportunities for devirtualisation and inlining.

The rest of this paper is organised as follows. Section 2 introduces the lan-
guage model used. Section 3 presents our completeness analysis. Section 4 dis-
cusses our experimental results. Section 5 reviews the related work. Section 6
concludes the paper and discusses some future work.

2 Language Model

For simplicity, we describe our approach for a subset of Java with the features
most relevant to points-to analysis. The points-to analysis for a Java program
is carried out in an intermediate representation (IR) of the program. As our
approach is flow- and context-insensitive, IR consists of only the seven kinds of
statements listed in Table 1. Furthermore, the features such as multi-inheritance
interface and multi-threading do not pose any problems. Of the seven statements,
the first and last are explained below and the other five are self-explanatory.

| Syntax | | Semantics |
{ =new C Object Creation
{=r Assignment
{=C.f Static Field Load
Cf=r Static Field Store
b=nr.f Instance Field Load
Lf=r Instance Field Store
op(ao, ..., an, %) Call Site

Table 1. Instruction set for the IR on which points-to analysis is conducted, where £
and r are reference variables, f a field, op a method name, and C a class name.

In Java, objects can be created either explicitly via new or implicitly, say, via
a Java reflection method newInstance. In the latter case, the object creation
statement can be replaced by ¢ = new C'if C is detected statically to be the class
name of the implicitly created object. Otherwise, the object creation statement
used is £ = new Unknown, where Unknown can be any class in the analysed
program or any new class that may be loaded dynamically at run time.

For notational convenience, each method is denoted op(po, .. ., pn,), Where
Do, - - -, P are its n + 1 formal input parameters and r its formal output param-
eter. As is clear in Table 1, the return statements in a method are not explicitly

represented. Instead, every return statement in a method is replaced by an as-
signment to the formal output parameter of that method. Correspondingly, a call
site has the form op(ag, ..., an,), where ag,...,a, are the n + 1 actual input
parameters and £ is the actual output parameter. If op is an instance method,
then ag denotes the receiver of the call. Otherwise, op is static and can be con-
veniently regarded as an instance method if ag is set to be the name of the class
in which op is declared. In Java, parameter passing is call by value.

Accesses to arrays are handled similarly to instance field accesses by introduc-
ing a special field, say, sf. We do not distinguish accesses to different components
of an array. For example, x[i] and x[j] are both represented by x. sf.

The term fized call site is used to denote (1) an invokestatic, (2) an
invokespecial, (3) a call site whose (unique) target is declared to be final
or in a final class, or (4) a sealed call site [22]. All other kinds of call sites
are called non-fized. In a fixed call site, all target methods that may be invoked
are known at compile time. This is obvious in the first three cases. The target
methods of a sealed call site are confined to be in the underlying sealed package.

The term reference is used to denote all kinds of accesses such as variable
accesses, static field accesses and instance field accesses.

The semantics of the following field and method modifiers in Java are ex-
ploited in our analysis: private, protected, public and final. In the absence
of the first three modifiers, the default (i.e., package) access is assumed.

3 Completeness Analysis for Incomplete Programs

The whole-program points-to analysis requires the entire program, i.e. all its
classes and methods, to be available at analysis time. An incomplete program
includes only a subset of these classes. In addition, some methods in a class (e.g.,
native methods) may be unavailable to participate in static analysis.

3.1 Incomplete Programs

Definition 1 An incomplete program, F, is a triple F = (Lp,Mp,Fr), where
Lg is the set of classes in F', Mg the set of methods in Ly and Fg the set
of fields declared in Lr such that (1) all classes in Lr except the root class
java.lang.0Object have all their superclasses in Ly, (2) there is not a reference
in M whose type is not in Lp, (3) there is not a read/write to a field not in
Fp, and finally, (4) there is not an access (i.e., a call) to a method not in Mp.

According to this definition, our work is applicable to library modules or
applications supporting native methods and dynamic class loading.

We use IMp C Mp to denote the set of all analysed methods whose code is
available for static analysis and define EMp = Mg\ IMp. Although the methods
in EMp are unanalysed, their signatures are always available by Definition 1.

Sr denotes the set of statements and @ p the set of compile-time objects
created in IMp, respectively. Let Vg be the set of references in Sg.

Let Ugr symbolise the unknown code, i.e., the code in EMr and outside F.

Let us define the (in)accessibility of the fields and methods in IMp with
respect to Ug. A method in IMpg is accessible if it can be invoked in Ug and
inaccessible otherwise. A field in F' is accessible if it can be accessed by some
statements in Up and inaccessible otherwise. For example, a private field is
inaccessible if there does not exist any unanalysed method in the class in which
the field is declared. %, denotes the set of all inaccessible fields in F.

Let Fé be the set of all final fields in F'. In Java, final fields are initialised
only once in the initialisers or constructors in analysed methods.

3.2 Applying Whole-Program Analysis to F

We use an Andersen-style analysis [1, 9] because of its reasonable precision and
efficiency. Let PTr(¢) be the points-to-set of a reference ¢ in Vp. By convention,
we assume that PTp(¢) = () if £ ¢ Vp. The points-to analysis requires an
approximation of the call graph for F. A call graph is the relation Cp C SpxMp
such that (s, op) € Cp iff s is a call site statement and op is a method that may be
a target of the call site. We use CHA (Class Hierarchy Analysis) [5] to construct
such a call graph. A more precise alternative [17] is to construct the call graph
on-the-fly as the points-to sets of call site receivers are being computed. However,
the improved precision may not justify the computational cost [9].

An analysed program F' consists of only the seven different kinds of state-
ments given in Table 1. The rules for computing the points-to sets of F' are:

Rule P1 If3 s:[(=new C] € Sp, then {0} C PTx(L).
Rule P2 If3 s:[(= r] € Sp, then PTr(r) C PTr(().
Rule P3 If3 s:[({ = C.f] € Sp then PTp(C.f) C PTr(f).
Rule P4 If 3 s:[C.f = 1] € Sg then PTy(r) C PTp(C.f).
Rule P5 If3 s:[(= r.f] € Sp then PTw(r.f) C PTr(().

Rule P6 If3s:[(.f =r]€Sp A IU.f € Vp st. PTp({) N PTr(l') £ 0, i.e.,
£ and ¢ are aliases (with nonempty points-to sets), then PTr(r) C PTr(¢'.f)

Rule P7 If 3 s:[op(ao, .. .,an,£)] € Sk AT op(po, ..., pn,7) € Mp s.t. (s,0p) €
(CF, then PTF(ao) g PTF(pQ), .. .,PTF(an) g PTF(pn) G,’Ild PTF(T) g PTF(E)

The points-to analysis for F' consists of solving the constraints for all its
statements to determine the points-to sets of all references in the program.

3.3 Inadequacies of Whole-Program Analysis

When a whole-program points-to analysis technique is applied to an incomplete
program F', the following two assumptions are conventionally made:

— All methods in EMp are considered to have an empty body.

— The points-to sets of all formal input parameters of all methods that are
accessible (in the unknown code Up) are initialised to be empty.

Due to the lack of knowledge about Up, a reference (inside F' or outside) is said
to be incomplete if its statically computed points-to set may not contain some
object pointed to at run time — such an object can be created either inside F' or
outside. In addition, a call site in F may be incomplete when the set of target
methods that are statically resolved may not contain a method that is invoked
at run time — such a method is declared in the unknown code outside F. (The
methods in EMp cannot be missing since their declarations are available.)

unknown code Ugp

Case 1
Call Site (/Method
F

Method Call Site
Case 2 \

Fig. 1. Two kinds of troublesome missing caller-callee relations in Cg.

There are several reasons why a points-to sets can be incomplete. First, while
the call graph Cg constructed using CHA over-approximates all caller-callee
relations within F', some relations that happen during program execution can
be missing if F' is incomplete. As illustrated in Figure 1, there are two kinds of
troublesome missing caller-callee relations in Cp. In Case 1, the objects passed
to an unknown method in Ug can be used in an unknown way. In addition, the
type of the returned object is unknown. In Case 2, the situation is reversed.
Second, static fields can be accessed by the unknown code Ug. Third, due to the
first two reasons, instance fields can also be accessed indirectly in Up.

Finally, if some points-to sets are incomplete, the alias relations captured by
Rule P6 may also be incomplete. This is because £ and £’ can still be aliases even
if PTr(¢) N PTr(¢') = 0. So Rule P6 needs to be augmented later by Rule C6.

3.4 Completeness Analysis (CA)

In the previous section, we argued that whole-program analysis is inadequate
if the analysed program is incomplete. In this section, we present a technique,
called completeness analysis (CA), to detect which points-to sets and call sites
may be incomplete and which compile-time objects may be missing (i.e., incom-
pletely detectable) in some points-to sets. Our approach is compositional. By
combining with a whole-program points-to analysis technique, our completeness
analysis also produces at the same time the points-to sets with better precision
(Theorem 1).

Our approach is flow- and context-insensitive. If an analysed program F’ is not
incomplete, Rules P1 — P7 given in Section 3.2 are sufficient. Otherwise, we rely
on Rules C1 — C9, which are introduced in Section 3.4, to carry out the so-called

completeness analysis. By applying both sets of rules to an incomplete program
F' and solving the derived constraints for all the statements in F' iteratively, the
desired results are found as a fixed point to these constraints.

Completeness; Detectability; Aliases Let P(F') be the set of all possible
programs that include F as a subset. Let W € P(F). Let My be the set of
methods in the program W and Vyy the set of the reference variables in Mly,. The
following two concepts are defined conceptually (but not physically constructed).
Let PTw (¢) be the points-to set of £ € Vi observed during program execution.
Let Cy be the call graph of W also observed during program execution.

To determine which objects may be missing in some points-to sets and which
references may have such points-to sets, the following notions are introduced.

Definition 2 An object 0 € O is incompletely detectable if 3 W € P(F) such
that

— 3¢eVr:0€ PTw()\ PTr(¢), or
— 3€€Vw\VF:0€PTw(€).

and (completely) detectable otherwise. A reference ¢ € Vg is incomplete if 3 W €
P(F) such that PTw (¢) \ PTr(£) # 0 and complete otherwise. Every reference
¢ € Viy \ Vr in every program W € P(F) is incomplete, i.e., every reference
¢ & Vi is incomplete.

Recall the convention that PTr(¢) = 0 if £ ¢ Vp. Therefore, an object in
@ is incompletely detectable if it may be pointed to by a reference (inside F
or outside) at run time but is missing in its statically computed points-to set. A
reference (inside F' or outside) is incomplete if it may point to an object at run
time such that the object is missing in its points-to set. Note that a complete
reference may or may not include incompletely detectable objects in its points-to
set.

To find out the missing caller-callee pairs (s, op) in the call graph Cp C
Sr xMp (built statically), the notion of incomplete call site is introduced below.
Essentially, a call site in F' is incomplete if its set of statically resolved target
methods does not include a method that may be invoked at run time.

Definition 3 f3 W € P(F)A3se€ SpAJope My s.t. (s,0p) € (Cw \ Cp),
then s is said to be an incomplete call site and complete otherwise.

We discussed earlier that the points-to sets computed for an incomplete pro-
gram is insufficient to determine all the alias relations. The notions of refer-
ence completeness and object detectability are used below to provide an over-
approximation of all missing aliases.

Definition 4 Let £ and ¢’ be two references in W € P(F). Both are aliases,
denoted C-Alias(¢,¢'), if £ is incomplete and ¢’ is either incomplete or complete
with its points-to set containing at least one incompletely detectable object, or
vice versa.

According to the above definition, C-Alias(¢, ¢) is true iff £ is incomplete.

Rules Let O, R* and S? be the set of incompletely detectable objects, incom-
plete references and incomplete call sites in an incomplete program F', respec-
tively. Rules C1 — C9 for computing these sets are introduced below. In each
rule, the statements or field accesses (among others) to which the rule is applied
is indicated. There are no extra rules for object creation statements ¢ =new C,
where C' is a known class in F', and for assignment statements since they are
covered by Rules P1 and P2.

Rule C1 (s:[¢ = new Unknown]) o5 € O, where o, is the object created at s.

In the following two rules for static fields, the corresponding access and mod-
ification properties are used to determine whether they are applicable.

Rule C2 (C.f =r) If f ¢ Fi, then PTr(r) C O'.

As f ¢ Fi., there may exist a static load £ = C.f in the unknown code Up,
where £ € Vp, ie., £ € Vi \ Vg for some W € P(F). By Rule P4, C. f will point
to the objects pointed to by r. But these objects may be assigned to £ in Up. By
Definition 2, the objects that r points to are marked as incompletely detectable.

Rule C3 (C.f) If f & (Fi, UFYL), then C.f € R

If f & (F% UF?), there may exist a static store C.f = r in the unknown code
Up, where r € Vg. The objects pointed to by r may not appear in the points-to
set of C'.f when F is analysed. By Definition 2, C.f is incomplete.

If the access and modification properties of instance fields were ignored, the
following two rules would be sufficient for handling instance field loads and stores.
We discuss them first in order to motivate Rules C4 — C6 used in our analysis.

Rule S1 (0.f) If{ € R*V PTr({) N O # 0, then L.f € R".
Rule S2 ((.f =7r) If{ € RV PTr({) N O # 0, then PTr(r) C O.

If the access and modification properties of f are ignored, we must assume
conservatively the existence of an instance field access ¢'.f in the unknown code
Up, where ¢/ ¢ V. If £ € RV PTr(£)NO* # 0, then C-Alias(¢, ') may hold, i.e.,
£ and ¢’ are potentially aliases. However, when F is analysed as a whole program,
PTr(€) N PTr({') = 0 is possible. In this case, Rule P6 will not be applied. We
need Rule S1 for the following reason. If there exists a store £'.f = r in Up, the
pointed-to objects by r may not belong to the points-to set of £.f. By Definition
2, £.f is incomplete. We need Rule S2, because if there exists a load into ¢’.f in
Up, then all the objects pointed by r may be incompletely detectable.

By exploiting the access and modification properties of instance fields, we
have relaxed the assumption about the always existence of of a field access £'.f
in the unknown code Up. Rules S1 and S2 are replaced by Rules C4 — C6.

Rule C4 ((.f) If f & (FL UFL) A (£ € RV PTp(£) N O #), then £.f € R

Rule C5 ((.f =1) If f ¢ Fiu A({ € RiV PTp(£) NO' # 0), then PTr(r) C O

Rule C6 (£.f =7) If f € (FLUFL)AT V.f € Vi s.t. C-Alias(,£') holds, then

Rule C4 is refined from Rule S1 since it is applied only when there may be
an instance field store ¢’. f = r in the unknown code Ug. Rule C5 is refined from
Rule S2 since it is applied only when there may be an instance field access £’. f in
Up. In this case, the objects pointed to by ¢'.f may be incompletely detectable
since they can be assigned to a reference in Up. Rule C6 is applied only when
V'.f € Vg holds. In this case, there cannot be any store of the form ¢'.f = r in
Up. If £ and ¢ are aliases, then a store to ¢'.f is also a store to £.f in disguise.
Rule C6 is the rule in completeness analysis that enables better points-to sets
to be computed. In this rule, £ = ¢’ is possible. So the rule will be applied if £ is
incomplete, since by Definition 4, C-Alias(¢, ¢) is true iff £ is incomplete.

Rule C7 (s:[op(ag,-..,an,{)] for Case 1 in Figure 1). There are three parts:

1. Suppose s is a non-fixed call site. If ag € R*V (PTr(ap) includes an instance
of Unknown), then s € S°.
2. If s € S%, then PTr(a1),..., PTr(a,) C O" and £ € R'.
3. If there exists (s,o0p) € Cp such that op € EMp, then
(a) PTr(ay),...,PTr(a,) C O' and £ € R, and
(b) Ap C O, where Aq is the set of all receiver objects in PTr(ag) on which
op is invoked at s (Ap can be statically determined from PTr(ag)).

Part 1 determines whether a call site is incomplete or not. As discussed in
Section 2, a fixed call site is complete since its set of target methods can be
statically resolved. Under the stated conditions, an overriding method in a class
outside F' may be invokable at s. Such a caller-callee relation is not available in
the call graph Cg. Thus, s is incomplete by Definition 3. Clearly, s is incomplete
if ag is incomplete or complete but may point to an instance of Unknown.

Part 2 applies to a call site at which an unknown method op outside F' may be
invoked. The objects pointed to by aq, . .., a,, may be missing in the points-to sets
of the corresponding formal input parameters of op, and thus, are incompletely
detectable. The receiver ag is excluded since it is the incompleteness of ag rather
than the nature of its pointed-to objects that causes op to be invoked at s. The
actual output parameter £ is incomplete since its points-to set may not include
the object returned by the unknown method op.

Part 3 applies to a call site at which an unknown method op in EMg may
be invoked. Therefore, Part 3(a) is exactly the same as Part 2. In Part 3(b),
the receiver objects that cause op to be invoked are marked as incompletely
detectable since they may be assigned to some unknown references in op.

Rule C8 (op(po,p1;---,pn,7) € MF for Case 2 in Figure 1). If op is acces-
sible (i.e., invokable) in Ug, then py,,...,p, € R* and PTr(r) C O".

If op is accessible, there may exist a call site s : [op(ag,...,an,)] in Up.
The effect of the assignments due to parameter and result passing cannot be
considered when F' is analysed. Thus, the points-to sets of p; and £ cannot contain
the objects in the points-to sets of a; and r, respectively. Hence, pq,...,p, are
incomplete and all objects pointed to by r are incompletely detectable.

Rule C9 (PTr(r)C PTr(r") Created by Rules P1 — P7 and C6) Ifr € R?,
then ' € R".

The incompleteness of points-to sets is propagated during the points-to anal-
ysis. If r is incomplete, a missing object in its points-to set is also missing in the
points-to set of ' when PTr(r) C PTr(r'). So ' is incomplete by Definition 2.

As explained in Section 3.4, we combine Rules P1 — P7 and C1 — C9 to
compute not only the points-to sets of all references but also the information
about the completeness of references and call sites as well as object detectability.

Thanks to Rule C6, such a compositional approach enables better points-
to sets to be computed. Essentially, a reference may be accurately identified as
being complete even though it is incomplete if Rule C6 is not used.

Theorem 1. Let r be a reference in F. Let PTr(r) be the points-to set of r
computed according to CA. Let PTy(r) be computed according to CA’, i.e., a
version of CA in which C4 — C6 are replaced by S1 and S2. The following two
statements are true: (a) if v is complete in CA’, then r is also complete in CA,
and in addition, PTp(r) = PTR(r), (b) if v is incomplete in CA’, then r may
be complete or incomplete in CA, and in addition, PTr(r) 2 PTp(r).

4 Experiments

In this section, we provide experimental evidence that completeness analysis can
yield better precision when the field access and modification properties are ex-
ploited. We have implemented our completeness analysis in Soot [19], a bytecode
to bytecode optimiser. In Soot, only whole-program analyses and optimisations
are supported. A preprocessing translator converts Java bytecode into a three-
address IR called Jimple. The points-to sets for an analysed program are com-
puted using the points-to analysis pass in Soot [9]. We have implemented our
completeness analysis by composing it with this existing points-to analysis.
Due to the space limitation, we discuss briefly how we have handled some
other Java language features not present in Table 1. Java exceptions are dealt
with as follows. All formal input parameters of a catch statement are initialised
to be incomplete. All objects that may be thrown by a throw statement are
marked as incompletely detectable objects. Reflection methods are treated as
native ones with some extra rules. For example, all fields that may be accessed
by get or set are considered as accessible fields. We do not address the Java
class reloading since it may potentially modify code on-the-fly and so could affect
our assumptions about the analysed program. We also assume that all native
methods respect the access and modification properties of fields and methods.
In our experiments, three approaches are compared: CA, CAO and EA. CA
denotes our complete analysis technique. CAQ is the version of CA when the

field modifiers are ignored. Precisely, the following changes are made to our
rules. Rules C4 — C6 are replaced by Rules S1 and S2 and Rule C2 — C3 by:

Rule S3 (C.f =r) PTr(r) C O
Rule S4 (C.f) If f ¢ FL, then C.f € R.

The extant analysis' (EA) [16] can be used for completeness analysis even
though it was originally designed for inlining and devirtualisation. EA is chosen
because it is applicable to incomplete Java programs and can also be carried out
based on the same kind of points-to analysis, i.e., flow- and context-insensitive
Andersen-style points-to analysis. In EA, an extant reference is complete while
a non-extant reference is incomplete. A call site is complete if its receiver is
complete and incomplete otherwise. EA cannot handle object detectability since
their extant or non-extant objects can be completely or incompletely detectable.

4.1 Benchmarks

Table 2 gives some statistics about the 12 benchmarks used in our experiments.
The first seven are from SPECjvm98, jbb is from SPECjbb2000, jlex is a Java
scanner generator from Princeton University, jtar is GNU’s tar ported to Java
(version 1.21), jtb is a Java tree builder from Purdue University (version 1.2.2),
and finally, soot (version 2.0.1) is the Java bytecode-to-bytecode optimiser [19],
in which our completeness analysis is implemented.

In our experiments, the analysed program for a benchmark consists of all
classes in the application and the classes in Java library reachable statically
from the application. The analysis starts with the methods in these classes that
may be invoked from outside and continues to analyse the methods that may
be reachable statically from these methods. All packages in a benchmark are
assumed to be sealed [18]. For each benchmark (including application and library
code), Columns 2 — 4 give the total number of its classes, methods and fields
and Columns 5 — 8 summarise the access and modification information about
its fields. These statistics show convincingly the existence of opportunities for
completeness analysis to exploit the field modifiers for better analysis precision.

4.2 Analysis Precision

Table 3 compares CA, CA0 and EA in finding complete points-to sets, call
sites and detectable objects in the application part of a benchmark. In all the
benchmarks, CA is more precise than CA0, which is more precise than EA.
CA performs better than CAQ because CA fully exploits the field modifiers
in Rules C2 — C6 while CAO considers only the final modifier in Rule S4. As
shown in Table 2, a benchmark typically has a significant number of fields that
are inaccessible by the unknown code and/or that embrace the final modifier.

! We do not make the optimistic assumptions as in [16] and ignore all fixed call sites
(defined in Section 2) in Tables 3 and 4 since they can all be resolved statically.

Fields

Benchmark||Classes| Methods Inaccessible Final

Total Static|[Instance|Static[Instance
compress 2059 | 21563 | 5245| 730 1647 | 1865 491
jess 2201 22226 | 5314 | 732 1699 1862 488
db 2051 | 21563 | 5229 | 727 1634 | 1862 488
javac 2225 | 22764 | 5491 | 730 1799 | 1928 488
mpegaudio || 2104 | 21896 | 5364 | 770 1724 | 1896 488
mtrt 2073 | 21699 | 5265 | 728 1669 | 1862 488
jack 2104 21844 | 5301 | 731 1666 1864 490
jbb 2158 22677 | 5736 | 913 1888 1989 491
jlex 652 6345 1571 | 325 662 492 142
jtar 2132 22092 | 5560 | 911 1746 | 2035 495
jtb 785 7926 2012 | 361 723 540 141
soot 2459 20062 | 3842 | 374 2290 644 491
|t0tal || 23003 | 232657 |55930| 8032 | 19147 |18839| 5181 |

Table 2. Java Applications

Points-to sets Objects Non-fixed call sites

Benchmark Completely
Total Complete Total | detectable | Total Complete
EAJCA0] CA CA0] CA EA [CAD] CA

compress 205 4 46 | 106 | 24 5 23 11 3 3 3
jess 4685 | 152 | 1176 | 1679 | 458 | 37 | 78 | 677 | 23 | 92 | 235
db 353 | 29 | 91 | 164 | 23 8 13 | 140 | 36 | 38 | 84
javac 9437 | 123 | 1604 | 2045 | 808 | 44 | 109 | 1932 | 40 | 143 | 288
mpegaudio || 2876 | 4 | 1435|2404 |1040 | 1 | 1013 | 37 0 0 3
mtrt 1330 | 75 | 284 | 516 | 128 | 22 | 35 | 868 | 118 | 156 | 195
jack 2848 | 49 | 938 | 1469 | 218 | 16 | 41 | 851 | 13 | 98 | 498
jbb 10222 | 522 | 2341 | 3389 | 577 | 166 | 266 | 2521 | 152 | 222 | 629
jlex 2532 (1633|2038 | 2169 | 184 | 77 | 91 | 553 | 452|484 | 486
jtar 3123 (273 | 1177 | 1770 | 272 | 45 | 73 | 483 | 66 | 197 | 303
jtb 11780 | 176 | 2888 | 3192 | 820 | 25 | 77 |2676 | 253 | 609 | 772
soot 81762 |2501|13011{21369| 5631 | 484 | 1080 (25987|1080|2313|6176
[total [[131153]5541[27029]40272]10183] 930 | 2899 [36736[2236]4355/9672]

Table 3. Benefits from exploiting field access and modification modifiers.

Taking advantage of their existence has resulted in more accurate analysis. Com-
pared to CAO, CA has found 49.0% more complete points-to sets, 122.1% more
complete call sites and 211.7% more detectable objects overall.

In EA; all the field modifiers are ignored. CAO performs better than EA
mainly due to the fact that CAO distinguishes completely from incompletely
detectable objects while EA does not. As a result, CAO has succeeded in clas-
sifying many non-extant references as complete references. The exploitation of
the final modifier in Rule S4 contributes about 4.0% and 0.1% to the improved
precisions of CAQ in determining complete points-to sets and call sites, respec-
tively. The concept of object detectability has other applications. For example, it

CA
Benchmark| | EA |CAO [Increase over EA(%)[Increase over CAO (%)
compress 3 3 3 0.0 0.0
jess 23 | 92 | 235 921.7 155.4
db 36 | 38 | 83 130.6 118.4
javac 40 | 143 | 243 507.5 69.9
mpegaudio|| 0 | 0 | 3 n/a nja
mtrt 118 | 156 | 195 65.3 25.0
jack 10 | 95 | 489 4790.0 414.7
jbb 152 | 220 | 623 309.9 183.2
jlex 452|484 | 484 7.1 0.0
jtar 66 | 197|303 359.1 53.8
jtb 253|609 | 772 205.1 26.8
soot 1080]2295|5928 448.9 158.3
[Eotal [[2233[4332]9361] 319.2 | 116.1 |

Table 4. A comparison of analysis techniques in determining mono call sites.

has helped us in developing an interprocedural side-effect analysis for incomplete
programs, which cannot be discussed here due to the space limitation.

The knowledge about whether a call site is complete or not can be exploited
in a number of ways. A complete call site is a call site whose targets are guaran-
teed to be in the analysed program. Some compiler optimisations can be applied
to complete call sites. A complete call site that has a unique target can be de-
virtualised or inlined without any test (Section 4.3). In addition, some complete
call sites such as invokeinterface can be virtualised or annotated to eliminate
unnecessary dynamic type checks associated with them.

4.3 Mono Call Sites

A call site is a mono call site if it has a unique target method. These call
sites can be devirtualised or inlined safely without any runtime tests. Table
4 compares CA, CA0O and EA in detecting the mono call sites from among the
set of the non-fixed call sites in the application part of each benchmark. CA has
detected significantly more mono call sites than CAO and EA. CA improves EA
by 319.2% overall. By exploiting the field modifiers, CA performs as well as CAQ
in compress and jlex and outperforms CAOQ in all the remaining benchmarks,
resulting in a total increase of 116.1% in analysis precision.

4.4 Analysis Costs

Our experiments are conducted on a 2.4GHz Intel Xeon PC with 2GB memory.
Figure 2 gives both the time and memory overheads of the points-to analysis
and completeness analysis combined relative to the points-to analysis alone. The
analysis time for jlex has decreased slightly and that for jtb remains unchanged.

10

Analysis Time Increase (%)

%

8
6
4
2
[}
2

P& F PSSP
&Q@\w R
O
© &

>
&
o

d . O
¢V

Fig. 2. Analysis costs of completeness analysis relative to the points-to analysis alone.

The analysis times for the remaining benchmarks range from 3.4% (for db) to
9.1% (for soot). The overall time increase for all the benchmarks is 6.2%. Due
to Rule C6, the number of iterations required for constructing some point-set
sets can be reduced. The memory overheads for all the benchmarks are small,
ranging from 3.9% and 7.3%. The overall memory increase is only 5.9%.

5 Related work

Many points-to analysis techniques exist for object-oriented programs but there
is little work done when these programs are incomplete. However, points-to anal-
ysis for incomplete programs in imperative languages has been studied [7,15].

Rountev et. al. [14] study points-to analysis for incomplete Java programs
in order to detect receiver types. Their approach works by creating placeholders
that serve as representatives for unknown code. A limitation of this work is that
dynamic class loading is not permitted. Chatterjee et al. [3] present a points-
to analysis for library modules in order to find def-use relations. The analysis
evaluates a parameterised points-to solution for each method and propagates
conservative assumptions about the clients of the library in a top-down manner.
A limitation of this approach is that it does not examine the effects of threads.

Extant analysis [16] is designed for the purposes of specialising Java pro-
grams in the presence of dynamic class loading. The technique partitions the
references of a program into two categories: (unconditionally) extant references
when they only point to the objects whose runtime types are in the analysed
program and conditionally extant (i.e., non-extant) references otherwise. Our
experimental results show that our completeness analysis yields more precise
information about the completeness of points-to sets and call sites.

Escape analysis [2,4,20,21] detects the objects that never escape out of a
method or thread. An object escapes a method if its lifetime may exceed the
lifetime of that method. An object that does not escape a method can be possibly
allocated on the method’s stack frame. If an object does not escape a thread, no
other threads can access the object. The synchronisation operations associated
with the object can be eliminated. For these reasons, if o is an escaped object, so
will the objects pointed to by o.f. This facilitates the above two optimisations.
However, in completeness analysis, if o is incompletely detectable, the objects
pointed to by o.f may be completely or incompletely detectable. Therefore, an
incompletely detectable object is an escaped object but the converse is not true.
So our object detectability analysis is different from escape analysis.

Some dynamic points-to analysis techniques for Java [8,10, 12] restrict them-
selves only to the classes loaded during program execution. They do not deter-
mine the completeness of points-to sets. As a result, the analysis and optimisa-
tion techniques that make use of the points-to information may require runtime
invalidation and recompilation mechanisms, which can hurt performance.

None of these above approaches exploit the access and modification properties
of fields when computing points-to sets. These properties are, however, exploited
in other kinds of analyses. Immutability analysis [11] is a technique for detecting
mutability of fields and classes in a Java program. Field analysis [6] exploits the
declared access restrictions placed on fields in order to determine such useful
properties of these fields as exact_type, nonnull, may leak and only_init.

6 Conclusion

In this paper, we describe a framework for points-to analysis and optimisation
for incomplete object-oriented programs. As an analysed program is incomplete,
some of its points-to sets and call sites may be incomplete. We present an com-
pleteness analysis technique combined with a whole-program points-to analysis
to determine which points-to sets (call sites) may be incomplete in the sense that
their pointed-to objects (target methods) are not statically resolvable. We intro-
duce the notion of object detectability and show how such an information can
be obtained as part of the completeness analysis. To the best of our knowledge,
this is the first work that exploits the field access and modification properties in
performing completeness analysis for incomplete object-oriented Java programs.
We demonstrate by experiments that such an exploitation leads to better analy-
sis precision. Our approach is compositional, which enables better points-to sets
to be computed than those obtained when the points-to analysis is applied alone.

In this paper, completeness analysis is combined with a flow- and context-
insensitive points-to analysis. One future work is to extend our approach to
accommodate other kinds of points-to analyses. Another future work is to exploit
type-based alias analysis to improve the precision of the results.

References

1. Lars Ole Andersen. Program Analysis and Specialization for the C' Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994.

2. Bruno Blanchet. Escape analysis: Correctness proof, implementation and exper-
imental results. In 25th Annual ACM Symposium on Principles of Programming
Languages, pages 25—37, January 1998.

3. Ramkrishna Chatterjee and Barbara G.Ryder. Data-flow-based testing of object-
oriented libraries. Technical Report 433, Rutgers University, 2001.

4. Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C. Sreedhar, and
Samuel P. Midkiff. Escape analysis for Java. In 14th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages and Applications, pages 1—-
19, November 1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Jeffrey Dean, David Grove, and Craig Chamber. Optimization of object-oriented
programs using static class hierarchy analysis. In 5th Furopean Conference on
Object-Oriented Programming, volume 952, pages 77-101. Springer, Aug. 1995.
Sanjay Ghemawat, Keith H. Randall, and Daniel J. Scales. Field analysis: Getting
useful and low-cost interprocedural information. In ACM SIGPLAN °00 Confer-
ence on Programming Language Design and Implementation, June 2000.

Mary Jean Harrold and Gregg Rothermel. Separate computation of alias informa-
tion for reuse. IEEE Transaction on Software Engineering, 22(7):442-460, 1996.
Martin Hirzel, Amer Diwan, and Michael Hind. Pointer analysis in the presence of
dynamic class loading. In 18th Furopean Conference on Object-Oriented Program-
ming, June 2004.

Ondfej Lhotdk and Laurie Hendren. Scaling Java points-to analysis using Spark. In
12th International Conference on Compiler Construction, volume 2622 of LNCS,
pages 153-169, Warsaw, Poland, April 2003. Springer.

Igor Pechtchanski and Vivek Sarkar. Dynamic optimistic interprocedural analysis:
a framework and an application. In 16th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications, October 2001.

S. Porat, M. Biberstein, L. Koved, and B. Mendelson. Automatic detection of
immutable fields in Java. In Proceedings of CASCON 2000, 2000.

Feng Qian and Laurie Hendren. Towards dynamic interprocedural analysis in
JVMs. In 8rd ACM SIGPLAN Symposium on Virtual Machine Research and Tech-
nology, May 2004.

Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Points-to analysis for
Java based on annotated constraints. Technical Report DCS-TR-424, Rutgers
University, November 2000.

Atanas Rountev, Ana Milanova, and Barbara G. Ryder. Fragment class analysis
for testing of polymorphism in java software. In 25th International Conference on
Software Engineering, May 2003.

Atanas Rountev and Barbare G. Ryder. Practical points-to analysis for programs
built with libraries. Technical Report 410, Rutgers University, February 2000.
Vugranam C. Sreedhar, Michael Burke, and Jong-Deok Choi. A framework for
interprocedural optimization in the presence of dynamic class loading. In ACM
SIGPLAN 00 Conference on Programming Language Design and Implementation,
pages 196-207, June 2000.

M. Streckenbach and G. Snelting. Points-to for Java: A general framework and an
empirical comparison. Technical report, University Passau, November 2000.

Sun Microsystems. Java 2 software development kit version 1.2.2, July 1999.
Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, FEti-
enne Gagnon, and Phong Co. Soot: a java optimization framework.
http://www.sable.mcgill.ca/soot, 1999.

Frédéric Vivien and Martin C. Rinard. Incrementalized pointer and escape anal-
ysis. In ACM SIGPLAN ’01 Conference on Programming Language Design and
Implementation, pages 35—46, June 2001.

John Whaley and Martin Rinard. Compositional pointer and escape analysis for
Java programs. In 14th ACM SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages and Applications, pages 187-206, November 1999.
Ayal Zaks, Vitaly Feldman, and Nava Aizikowitz. Sealed calls in Java packages.
In 15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages and Applications, October 2000.

