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Abstract. We show that classic PRE is also a maximum flow problem, thereby
revealing the missing link between classic and speculativePRE, and more impor-
tantly, establishing a common high-level conceptual basisfor this important com-
piler optimisation. To demonstrate this, we formulate a new, simple unidirectional
bit-vector algorithm for classic PRE based only on the well-known concepts of
availability and anticipatability. Designed to find a unique minimum cut in a flow
network derived from a CFG, which is proved simply but rigorously, our algo-
rithm is simple and intuitive, and its optimality is self-evident. This conceptual
simplicity also translates into efficiency, as validated byexperiments.

1 Introduction

Partial redundancy elimination (PRE) is a compiler optimisation that eliminates com-
putations that are redundant on some but not necessarily allpaths in a program. As
a result, PRE encompasses both global common subexpressionelimination and loop-
invariant code motion. Over the years, PRE has also been extended to perform other
optimisations at the same time, including strength reduction [8, 12, 16, 18], global value
numbering [3] and live-range determination [21]. For thesereasons, PRE is regarded as
one of the most important optimisations in optimising compilers.

As a code transformation, PRE eliminates a partially redundant computation at a
point by inserting its copies on the paths that do not alreadycompute it prior to the point,
thereby making the partially redundant computation fully redundant. PRE problems
come in two flavours:classic PREandspeculative PRE. Classic PRE, as described in
the seminal work [22], inserts a computation at a point only if the point issafe(or
down-safe) for the computation, i.e., only if the computation is fullyanticipatable at the
point. On the other hand, speculative PRE may insert a computation at a point even if
the computation is partially but not necessarily fully anticipatable at the point. If the
computation cannot cause an exception and if the execution frequencies of the flow
edges in a CFG are available, speculative PRE may find transformations missed by
classic PRE, thereby removing more redundancies in dynamicterms than classic PRE.

In the case of classic PRE, Knoop, Rüthing and Steffen invented an optimal unidi-
rectional bit-vector formulation of the problem [17, 19]. This algorithm, known as Lazy
Code Motion (LCM), was later recasted to operate in static single assignment (SSA)
form [15]. Subsequently, a number of alternative formulations have been proposed [7–
9, 23]. While LCM and other earlier algorithms [8, 9] find codeinsertion points by
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modelling the optimisation as a code motion transformation, the latter ones [7, 23] avoid
this by identifying code insertion points directly. Apparently, a search for a conceptual
basis upon which an optimal formulation of classic PRE can beboth developed and
understood more intuitively has been the driving force behind these research efforts.
Up to now, however, this conceptual basis has been elusive. All existing algorithms are
developed and reasoned about at the low level of individual program paths.

While classic PRE is profile-independent, speculative PRE is profile-guided. Given
a weighted CFG, where the weights of the flow edges represent their execution frequen-
cies, we have shown previously that speculative PRE is a maximum flow problem [26].
Finding an optimal transformation on a CFG amounts to findinga special minimum cut
in a flow network derived from the CFG. Furthermore, different optimal transformations
on a CFG may result if the weights of the flow edges in the CFG differ.

In this paper, we show for the first time that classic PRE is also a maximum flow
problem. This is the key to the main contribution of our paper: to provide a uniform
approach for classic and speculative PRE. The insight behind this finding lies in the fol-
lowing assumption made about classic PRE [17, 19]: all control flow edges are nonde-
terministic, or equivalently, have nonzero execution frequencies. We show that finding
the optimal transformation for a CFG amounts to finding a unique minimum cut in a
flow network derived from the CFG. Since all insertions in a CFG must be safe in clas-
sic PRE (as mentioned above), this unique minimum cut is invariant of the execution
frequencies of the flow edges in the CFG. This establishes theconnection and highlights
the main difference between classic and speculative PRE. More importantly, our find-
ing provides a common high-level conceptual basis upon which an optimal formulation
of PRE can be more systematically and intuitively developedand proved.Every PRE
algorithm, if being optimal, must find the unique minimum cuton a flow network that
is derived from a CFG.As a result, tedious and non-intuitive reasoning that has been
practised at the lower level of control flow paths is dispensed with.

Based on this insight, we have developed a new, simple algorithm for classic PRE.
Our formulation, applicable to standard basic blocks, consists of solving four unidirec-
tional bit-vector data-flow problems based only on the well-known concepts of avail-
ability and anticipatability. Designed to find a unique minimum cut in a flow network
derived from a CFG, which is proved simply but rigorously, our data-flow equations
reason positively about the global properties computed without using logical negations.
Such a formulation is intuitive and its optimality self-evident. This conceptual simplic-
ity also translates into efficiency, as demonstrated by our experimental results.

The rest of this paper is organised as follows. Section 2 gives the background in-
formation. Section 3 shows that classic PRE is a maximum flow problem. We do so
constructively by giving an algorithm, MIN-PRE, that consists of solving three data-
flow problems and invoking a min-cut algorithm to find a uniqueminimum cut in a
flow network derived from a CFG. Section 4 compares and contrasts classic and specu-
lative PRE when both are viewed as maximum flow problems. In Section 5, we derive
from MIN-PRE a simple algorithm, called SIM-PRE, for classic PRE by solving four
data-flow problems only. Section 6 discusses some experimental results. Our simple al-
gorithm uses fewer bit-vector operations than three algorithms across 22 SPECcpu2000
benchmarks on two platforms. Section 7 reviews the related work and concludes.



2 Background

A control flow graph (CFG),G = (N, E, W ), is a weighted directed graph, whereN is
the set of basic blocks (or nodes),E the set of control flow edges andW : N ∪E 7→ IN.
Given a node or edgex, W (x) represents its execution frequency (under an arbitrary
input). In addition,ENTRY ∈ N denotes itsentry blockandEXIT ∈ N its exit block,
which are both empty. Furthermore, every block is assumed tolie on some path from
ENTRY to EXIT. Let pred(G, n) be the set of allimmediate predecessorsof a blockn

in G andsucc(G, n) the set of allimmediate successorsof a blockn in G.

Assumption 1 For everyG = (N, E, W ), we have the following tautology:

∀ n ∈ N :
∑

m∈pred(G,n) W (m, n) =
∑

m∈succ(G,n) W (n, m)

As in [17, 19], we consider a non-SSA intermediate representation, where each
statement has the formv = e such thatv is a variable ande a single-operator expres-
sion. As is customary, we assume that local common subexpression elimination (LCSE)
has already been applied to all basic blocks. Given an expressione, the following three
local predicates associated with a blockn are used in the normal manner.ANTLOCn is
true if e is locally anticipatable on entry to blockn (i.e., blockn contains an upwards
exposed computation ofe). COMPn is true if e is locally available on exit from block
n (i.e., blockn contains a downwards exposed computation ofe). TRANSPn is true if
block n does not contain any modification toe. PRE is a global optimisation. So only
the upwards and downwards exposed computations ofe, called thePRE candidates,
will be considered. A block can contain at most two PRE candidate computations. It is
important to be reminded thatANTLOCn andCOMPn can both be true in blockn, in
which case, either a common PRE candidate ofe is locally available and anticipatable
simultaneously, implying thatTRANSPn = trueor two distinct PRE candidates ofe

are locally available and anticipatable, respectively, implying thatTRANSPn = false.
A PRE transformation for an expression is realised by replacing all redundant com-

putations of the expression by a new temporary that is initialised correctly at suitable
program points. We adopt the definition of PRE as used in LCM [19] except that we will
make use of edge insertions as in [7, 23, 26] rather than node insertions; these insertions
serve to make all the partially redundant computations fully redundant. Therefore, we
do not have to splitcritical edges, i.e., the edges leading from nodes with more than
one immediate successor to nodes with more than one immediate predecessor.

The fundamental assumption in classic PRE as stated clearlyin LCM [17, 19] is that
all control flows in a CFG are nondeterministic. Equivalently, we have:

Assumption 2 GivenG = (N, E, W ). In classic PRE,∀ x ∈ (N ∪ E) : W (x) > 0.

A directed graphF = (V, A) is aflow networkif it has two distinguished nodes, a
sources and asink t, in V and a nonnegativecapacity(or weight) for each edge inA.
Let S andT = V − S be a partition ofV such thats ∈ S andt ∈ T . We denote by
(S, T ) the set of all (directed) edges with tail inS and head inT : (S, T ) = {(n, m) ∈
A | n ∈ S, m ∈ T }. A cut separatings from t is any edge set(C, C), wheres ∈ C,
C = V − C is the complement ofC andt ∈ C. Thecapacityof this cut is the sum



of the capacities of allcut edgesin the cut. Aminimum cutis a cut separatings from t

with minimum capacity. Themax-flow problemconsists of finding a flow of maximum
value from the sources to the sinkt. The max-flow min-cut theorem of [10] dictates
that such a flow exists and has a value equal to the capacity of aminimum cut.

3 Classic PRE as a Maximum Flow Problem

In classic PRE, only safe insertions are used as discussed previously. Based on this
safety constraint and Assumption 2, we show that classic PREon a CFG is a maximum
flow problem and a special minimum cut on a flow network derivedfrom the CFG leads
to the construction of the unique (lifetime) optimal transformation for the CFG — the
uniqueness was known earlier in [17, 19]. These results provide a common high-level
conceptual basis for developing, understanding and reasoning about PRE algorithms.

In Section 3.1, MIN-PRE is presented and illustrated by an example. In Section 3.2,
we give an intuitive explanation why classic PRE is a maximumflow problem. In Sec-
tion 3.3, we see that the optimality proof in this context is straightforward.

3.1 MIN-PRE

In classic PRE, a computation of an expressione is said to beredundant(partially or
fully) if it can be eliminated by using safe code insertions of the formte = e, wherete
is a new temporary. A computation ofe is said togeneratesome redundancies if it can
cause another computation ofe (both may be identical, as in a loop) to be redundant.

To shed the light on the nature of classic PRE on a CFG, we specify such a transfor-
mation for an expressione by using the following three sets (as in the GCC compiler):

DELETE gives the set of blocks where the upwards exposed computations of e are
redundant (partially or fully). Every such computation will be replaced by a new
temporaryte. Note that a computation ofe that is downwards but not also upwards
exposed cannot be redundant (i.e., removable using safe code insertions only).

COPY gives the set of allcopy blockswhere the downwards exposed computations
of e generate redundancies in the blocks given inDELETE but these computations
themselves (when they are also upwards exposed) are not redundant. Such a com-
putation will be replaced byte and preceded by acopy insertion ofte = e. Note
that a computation ofe that is upwards but not also downwards exposed cannot
generate any redundancies (i.e., cause other computationsto be redundant).

INSERT gives the set of edges, calledinsertion edges, on whichte = e will be in-
serted, thereby making all partially redundant computations ofe fully redundant.

This definition distinguishes clearly the different roles that the three different code mod-
ifications play in a PRE transformation. As we shall see shortly, DELETE andINSERT
are so closely related that both can be built simultaneously. However, more information
about redundancy-generating computations is needed in order to buildCOPY.

A transformation iscorrectif every use ofte is identified with a definition ofte = e

in every execution path. The total number of computations ofe eliminated by a transfor-
mation inG = (N, E, W ) is given by

∑
b∈DELETE W (b) −

∑
e∈INSERT W (e). A
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Fig. 1. A running example.

transformation iscomputationally optimalif this term is maximised and islifetime op-
timal (or optimalfor short) if the live ranges of all definitions ofte are also minimised.

Our running example is given in Figure 1. An optimal PRE algorithm will take as
input the CFG shown in Figure 1(a) and produce as output the transformed CFG as
shown in Figure 1(f). The optimal transformation for the example is specified by:

DELETE = {6, 9, 11}
COPY = {5, 6}

INSERT = {(4, 6), (7, 9)}
(1)



Figure 2 gives a mincut-based algorithm, MIN-PRE, for classic PRE by modelling it
as a maximum flow problem. The reader is invited to read the algorithm since it is made
to be self-contained. Below we explain its steps and illustrate them by our example.

We start with a weighted CFG,G = (N, E, W ), where the weights of its blocks
and flow edges are their execution frequencies. In the example given in Figure 1(a),
we do not actually show the weights. As we shall see later, theoptimal transformation
in classic PRE is independent of the weights in a CFG. In Steps1 and 2, we compute
the standard global properties, availability and anticipatability, on G. Based on this
information, in Step 3, we derive an important subgraphGeg from G. Geg contains
everyessential edge(m, n) ∈ E such thatESS(m, n) = AVAILOUTm · ANTINn

holds and its two incident nodesm, n ∈ N . Figure 1(b) depicts this subgraph for the
running example. By definition, the following two properties aboutGeg are true.

Lemma 1. Letn be a node inG such thatANTLOCn = true. If the upwards exposed
computation inn is not fully redundant, thenn is always included inGeg.

Note thatn in the above lemma may also be contained inGeg even ifn is fully redun-
dant, in which case,n must have at least one outgoing edge that is essential.

In Figures 1(a) and (b), we see thatGeg contains block 2, 5, 6, 9 and 10 but not 11.

Lemma 2. For every computationally optimal transformation, itsINSERT must be a
subset of the edge setEeg of Geg.

Proof. By Assumption 2, a transformation whoseINSERT contains(m, n)6∈Eeg such
thatAVAILOUTm=true(ANTINn=false) cannot be computationally optimal (safe).⊓⊔

Thus,Geg is the fundamental subgraph ofG where code insertions are to be made
to make all the partially redundant computations (i.e., those that are removable by using
safe code insertions only) inG fully redundant.

In Step 4, we obtain a multi-source, multi-sink flow network,Gmm, fromGeg. Fig-
ure 1(c) depicts this network for our example, where block 2 has been split (conceptu-
ally). Note thatN ss

eg = {2}. Intuitively, an insertion oft = a+b that makes the upwards
exposed computationa + b in block 6 fully redundant must be made “below” block 2.
Hence, the conceptual split. Note that the sources and sinksare:Smm = {1, 2−, 3, 7, 8}
andTmm = {2+, 5, 6, 9, 10}. By construction,Smm ∩ Tmm = ∅ holds. Finally,N (E)
relates the nodes (edges) inGmm to those inG. We haveN (2+) = N (2−) = 2
andN (n) = n for other nodesn. As a result,E(1, 2+) = (1, 2), E(2−, 4) = (2, 4),
E(2−, 5) = (2, 5) andE(m, n) = (m, n) for other edges.

By construction, the following two lemmas about the structure of Gmm are imme-
diate. Lemma 3 says that every sink inGmm contains an upwards exposed computation
(which cannot be fully redundant since at least one of its incoming edges is essential).
The correctness of this lemma can be verified in Figure 1(c). Lemma 4 gives the key
reason why classic PRE can be more efficiently solved by data-flow analysis only and
also reveals its difference with speculative PRE (Section 4).

Lemma 3. Letn be a node inGmm. Thenn ∈ Tmm iff ANTLOCN (n) = true.

Proof. Follows from the construction ofGeg and the derivation ofGmm from Geg by
means of the conceptual split as conducted in Step 4 of MIN-PRE. ⊓⊔



(1) Compute global availability onG:

AVAILINn =

8

>

<

>

:

false if n = ENTRY
Y

m∈pred(G,n)

AVAILOUTm otherwise

AVAILOUTn = COMPn + AVAILINn · TRANSPn

(2) Compute global anticipatability onG:

ANTOUTn =

8

<

:

false if n = EXIT
Y

m∈succ(G,n)

ANTINm otherwise

ANTINn = ANTLOCn + ANTOUTn · TRANSPn

(3) DefineGeg = (Neg, Eeg, Weg) as a subgraph ofG:
Neg = {n ∈ N | ∃ m ∈ N : ESS(m, n) ∨ ∃ m ∈ N : ESS(n, m)}
Eeg = {(m, n) ∈ E | ESS(m,n)}

whereESS(m, n) = AVAILOUTm · ANTINn for all (m, n) ∈ E.
(4) Derive a multi-source, multi-sink networkGmm =(Nmm, Emm, Wmm) from Geg as

follows. A source(sink) is a node without predecessors (successors). LetN ss
eg={n∈Neg

| ANTLOCn ∧ TRANSPn ∧ pred(Geg, n) 6= ∅ ∧ succ(Geg, n) 6= ∅}. For every such a
source-sink noden ∈ N ss

eg, containing instructionsI1, . . . , Ip, such thatIk is the first
modification to expressione, replacen by two new nodesn+ andn−, wheren+ contains
I1, . . . , Ik−1 andn− containsIk, . . . , Ip, such that the incoming (outgoing) edges ofn
in Geg are now directed into (out of)n+ (n−) and no edges exist betweenn+ andn−.
(If Ik is of the formh = e such thate is upwards exposed, and also modified byh,
i.e., the LHS ofIk, then split conceptuallyh = e into h′ = e; h = h′ before splittingn.)
Let Smm ={n∈Nmm | pred(Gmm, m)=∅} andTmm ={n∈Nmm | succ(Gmm, m)=∅}.
LetN : Nmm 7→ N such thatN (n+) = N (n−) = N (n) = n.
Let E : Emm 7→ E such thatE(m,n) = (N (m),N (n)).

(5) Derive a single-source, single-sink flow networkGss = (Nss, Ess, Wss) from Gmm as
follows. Introduce two new nodes,s andt, add an edge with weight∞ from thesource
s to every node inSmm and an edge with weight∞ from every node inTmm to thesinkt.

(6) Find a unique minimum cut,E−1(CΛ) = (Λ, Λ), in Gss, as follows:

(a) Apply any min-cut algorithm to find a maximum flowf in Gss.
(b)LetGf

ss=(Nss, E
f
ss, W

f
ss) be the residual network induced byf [5], where

Ef
ss = {(u, v) ∈ Ess | Wss(u, v) − f(u, v) > 0}

W f
ss = Ef

ss 7→ IN, whereW f
ss(u, v) = Wss(u, v) − f(u, v)

(c) LetΛ={n∈Nss | there is a path fromn to sinkt in Gf
ss} andΛ=Nss\Λ.

(d)LetCΛ =Cins
Λ ∪--- Ccopy

Λ , whereCcopy
Λ ={(m, n)∈CΛ | ∀ p∈pred(G, n) : (p, n)∈CΛ}.

(7) Solve the “live range analysis forte” in G:

LIVEOUTn =

8

<

:

false if n = EXIT
X

m∈succ(G,n)

(LIVEINm · ((n, m) 6∈ CΛ)) otherwise

LIVEINn = ANTLOCn + LIVEOUTn · TRANSPn

(8) Define the optimal transformation as follows:
DELETE = {n ∈ N | ANTLOCn ∧ UE-REDUNDn}
COPY = {n ∈ N | COMPn ∧ LIVEOUTn ∧ (TRANSPn ∨ UE-REDUNDn)}
INSERT = Cins

Λ

whereUE-REDUNDn = ({(m,n) ∈ E | m ∈ pred(G, n)} 6⊆Ccopy
Λ ) for all n ∈ N .

Fig. 2. A mincut-based algorithm, MIN-PRE, for classic PRE onG = (N, E, W ).



Lemma 4. For everyn ∈ Nmm \ (Smm ∪ Tmm), the following statement is true:

∑

m∈pred(Gmm,n)

W (m, n) 6
∑

m∈succ(Gmm,n)

W (n, m) (2)

Proof. For everyn ∈ Nmm \ (Smm ∪ Tmm), we must haven ∈ Geg. It suffices to
show that all outgoing edges ofn in G are included inGmm, i.e.,∀ m ∈ succ(G, n) :
(n, m) ∈ Nmm. By Lemma 3,ANTLOCn = false. Sincen 6∈ Smm, then there
must exist an incoming edge(p, n) of n in Gmm such thatESS(p, n) = true, i.e.,
AVAILOUTp = false and ANTINn = true. WhenAVAILOUTp = false, we have
AVAILINn = false. Note thatANTLOCn ∧ ANTINn =⇒ TRANSPn. Furthermore,
ANTLOCn ∧TRANSPn =⇒ COMPn. Thus,AVAILOUTn = falseandANTOUTn =
true. WhenANTOUTn = true, by definition, we have∀ m ∈ succ(G, n) : ANTINm =
true. Hence,∀ m ∈ succ(G, n) : ESS(n, m) = AVAILOUTn ∧ ANTINm = true,
implying that∀ m ∈ succ(G, n) : (n, m) ∈ Nmm. ⊓⊔

In Step 5, we obtain a single-source, single sink flow networkGss fromGmm in the
normal manner. In Step 6, we find a unique minimum cutE−1(CΛ) onGss by applying
the “Reverse” Labelling Procedure of [10], whereΛ is the smallest possible (Lemma 8).
Figure 1(d) depictsGss for our example, together with the following minimum cut:

CΛ = {(1, 2), (2, 5), (3, 5), (4, 6), (7, 9), (8, 10)}
Cins

Λ = {(4, 6), (7, 9)}
Ccopy

Λ = {(1, 2), (2, 5), (3, 5), (8, 10)}
(3)

Such a partition ofCΛ into Cins
Λ andCcopy

Λ is significant due to the fundamentally differ-
ent roles they play in definingDELETE, COPY andINSERT given in Step 8. Accord-
ing to their definitions in Step 6(d),Cins

Λ (Ccopy
Λ ) includes a cut edge(m, n) iff some but

not all (all) incoming edges ofn in the original CFG,G, are cut edges.
In order to defineDELETE, we need to know if a computation is redundant or not.

This is trivial for downwards but not also upwards exposed computations.

Lemma 5. Letn be a node inG such thatCOMPn = true. If TRANSPn = false, then
the downwards exposed computation inn is not redundant.

To check if an upwards exposed computation is redundant or not, we apply Lemma 6,
which makes use of the predicateUE-REDUNDn introduced at the end of Step 8.

Lemma 6. Let n be a node inGmm, wheren′ = N (n) is the corresponding node
in G. ThenUE-REDUNDn′ = false iff the upwards exposed computation inn′ is not
redundant (i.e., not removable by using safe code insertions only).

Proof. To prove “=⇒”, we note that MIN-PRE finds the minimum cut(Λ, Λ) by ap-
plying the “Reverse” Labelling Procedure of [10] toGss. Therefore,n must be a sink
in Gmm, which impliesANTLOCn′ = trueby Lemma 3. LetX be the set of all nodes
in Gmm \ (Smm ∪ Tmm) lying on a path from a source inGmm to n. By Lemma 4,
UE-REDUNDn′ = false, i.e., all incoming edges ofn′ in G are included inCcopy

Λ iff
∀ p ∈ X :

∑
m∈pred(Gmm,p) W (m, p) =

∑
m∈succ(Gmm,p) W (p, m). To prove “⇐=”,



we know thatn′ must be contained inGeg by Lemma 1. By Lemma 3,n is a sink node
in Gmm. By Lemma 4, the upwards exposed computation inn′ is not redundant iff
∀ p ∈ X :

∑
m∈pred(Gmm,p) W (m, p) =

∑
m∈succ(Gmm,p) W (p, m). A combination

of the results proved so far concludes the proof. ⊓⊔

Looking at Step 8, we find thatCcopy
Λ is sufficient for definingDELETE (Lemmas 5

and 6) whileCins
Λ is sufficient for definingINSERT. However, Lemmas 5 and 6 do not

tell us if a computation that is not redundant generates any redundancies or not. This
means that some extra information is required in order to defineCOPY completely.

A naive solution is to copy atall blocks containing non-redundant computations:

COPYall ={n ∈ N | COMPn∧(TRANSPn ∨ UE-REDUNDn)} (4)

Then,COPYall, together withDELETE and INSERT given in Step 8, will yield a
computationally optimal transformation (as implied by theproof of Theorem 1). In
terms of LCM, this transformation corresponds to ALCM (Almost LCM) [17, 19].

For the running example, such a computationally optimal transformation is:

DELETE = {6, 9, 11}

COPYall = {5, 6, 10}
INSERT = {(4, 6), (7, 9)}

(5)

whereDELETE and INSERT are the same as in (1). This results in the transformed
code in Figure 1(e). However, the definition oft in block 10 is only used in that block.
Such a copy operation should be avoided since the live range of t is unnecessarily intro-
duced. The downwards exposed computations of this kind are known to beisolated[17,
19]. In Step 7, we solve a third data-flow problem so thatCOPY ⊆ COPYall is defined
in Step 8 with all these isolated blocks being excluded. Notethat a copy is required in a
blockn if it contains a downward exposed computation, which generates redundancies
and is not upwards exposed (i.e.,COMPn ∧ LIVEOUTn ∧ TRANSPn (Lemma 5)) or
if it contains an upward exposed computation, which generates redundancies and is not
redundant itself (i.e.,COMPn ∧ LIVEOUTn ∧ UE-REDUNDn (Lemma 6)).

This problem can be understood as one of solving the live variable analysis for
temporaryte on the transformed CFG realised byDELETE andINSERT andCOPYall.
By comparingCOPYall andCOPY, we see that we include a block inCOPY by also
requiring te to be live on exit from that block. This guarantees that the downwards
exposed computation ofe in such a block must generate some redundancies.

Consider Figure 1(e),LIVEOUT5 = LIVEOUT6 = truebut LIVEOUT10 = false.
Hence,COPY includes only blocks 5 and 6. The final transformation is given in (1),
which results in the optimally transformed code shown in Figure 1(f).

Remark.If we apply the (normal) Labelling Procedure of [10] in Step 6of MIN-PRE,
(Λ, Λ) will be found such thatΛ is the largest. The PRE transformation obtained using
such a cut will correspond to the Busy Code Motion (BCM) as described in [17, 19].

3.2 (Full) Availability as the Single Commodity

Consider classic PRE carried out optimally on a CFGG for an expressione. All (par-
tially or fully) redundant computations ofe, which must be upwards exposed, as iden-



tified by DELETE, areconsumersof the value ofe. All downwards exposed compu-
tations ofe that generate redundancies and are not redundant themselves, as identified
by COPY, areproducersof the value ofe. Classic PRE can be modelled as a single-
commodity maximum flow problem. The value ofe (i.e., the commodity) is to be routed
from the existing producers to the existing consumers underthe condition thate must
be (fully) available at the consumers. To achieve this full availability, new producers,
as identified byINSERT, can be introduced inG, or precisely,Gss under the safe
constraint that only the existing consumers can receive thevalue ofe. The cost of in-
troducing these new producers (i.e., the number of computations ofe incurred) is equal
to the maximum flow onGss. In order to be computationally optimal, their placements
are the cut edges of a minimum cut as implied in the proof of Theorem 1. In the optimal
transformation, new producers must be installed accordingto the unique minimum cut
found by applying essentially the “Reverse” Labelling Procedure of [10] toGss.

3.3 Optimality

First of all, we recall Lemma 10 from [14] on the structure of all minimum cuts.

Lemma 7. If (A, A) and (B, B) are minimum cuts in an s-t flow network, then
(A ∩ B, A ∩ B) and(A ∪ B, A ∪ B) are also minimum cuts in the network.

This lemma implies immediately that a unique minimum cut(C, C) exists such that
C is thesmallest, i.e., thatC ⊂ C′ for every other minimum cut(C′, C′). Note that⊂
is strict. In addition, this lemma is valid independently ofany maximum flow that one
may use to enumerate all maximum cuts for the underlying network.

In fact, for the minimum cut(Λ, Λ) found by MIN-PRE,Λ is the smallest.

Lemma 8. Let Scut be the set of minimum cuts inGss = (Nss, Ess, Wss). Consider
the minimum cut(Λ, Λ) in Gss found by MIN-PRE. Then:

Λ ⊆ C for all (C, C) ∈ Scut (6)

where the equality in⊆ holds iffΛ = C.

Proof. By Assumption 2,Gss is ans-tflow network with positive edge capacities only.
In Step 6 of MIN-PRE, we find the minimum cut(Λ, Λ) by applying essentially the
“Reverse” Labelling Procedure of [10]. Its construction ensures that (6) holds with re-
spect to the maximum flowf used. Lemma 7 implies that this “smallest minimum cut”
is independent of the maximum flowf . Hence, (6) is established. ⊓⊔

Theorem 1. The transformation found by MIN-PRE is (lifetime) optimal and unique.

Proof. Consider an expressione in G = (N, E, W ). LetLO denote the transformation
found by MIN-PRE, which is represented byDELETE, INSERT andCOPY. Let a
lifetime optimal transformation be represented byDELETET , INSERTT andCOPYT .
By Lemma 6,DELETE = DELETET . By also applying Lemma 6 and noting thatn ∈
COPY iff it generates redundancies inDELETE, we must haveCOPY = COPYT .
Recall thatE−1(CΛ) = (Λ, Λ) is the minimum cut found by MIN-PRE in its Step 6,



whereCΛ = Cins
Λ ∪--- Ccopy

Λ . By Lemma 2,INSERTT must be drawn from the edges of
Geg. Clearly,E−1(Ccopy

Λ ∪--- INSERTT ) must be a cut sinceT cannot be valid other-
wise. Furthermore,E−1(Ccopy

Λ ∪--- INSERTT ) must be a minimum cut. Otherwise,LO

constructed using a minimum cut will cause fewer computations ofe to be evaluated.
Let E−1(Ccopy

Λ ∪--- INSERTT ) = (Λ′, Λ′). By Lemma 8,Λ ⊆ Λ′. Thus, the equality in
Λ ⊆ Λ′ must hold. Otherwise, the live ranges ofte = e in LO will be better than those
in T . Hence,LO = T is lifetime optimal, which is unique since(Λ, Λ) is. ⊓⊔

4 Classic PRE vs. Speculative PRE

In [26], we formulated speculative PRE as a maximum flow problem. This work shows
that classic PRE is also a maximum flow problem. We recognise immediately that the
fundamental difference between the two optimisations liesonly in Step 2 of MIN-PRE.
In the case of speculative PRE, we will compute partial anticipatability rather than full
anticipatability. As a result, two seemingly different PREproblems are unified.

We compare and contrast classic and speculative PRE by usingFigures 1 and 3.
In Figure 3(a), our example CFGG is annotated with two different edge profiles. Fig-
ures 3(b) and 3(c) depict (identically) the flow networkGspre

ss obtained by applying
MIN-PRE toG except that partial anticipatability is computed in its Step 2. Compared
to Gss in Figure 1(d) in classic PRE,Gspre

ss has two more edges:(3, 7) and(7, 8).
The difference between classic and speculative PRE translates into the structural

difference betweenGmm andGspre
mm, from whichGss andGspre

ss are derived. Lemma 4
that is valid forGmm in classic PRE is not valid forGspre

mm in speculative PRE. For ex-
ample, block 8 inGspre

ss given in Figure 3(b) or 3(c) is one such a counterexample node.
As a result,Gspre

ss is generally an arbitrary flow network, implying that speculative PRE
needs to be solved optimally using a min-cut algorithm. In addition, speculative PRE is
profile-sensitive. Different execution profiles can resultin different optimal transforma-
tions as illustrated in Figures 3(b) and 3(c). In both cases,only the execution frequencies
on edges(7, 8) and(7, 9) are different. Note that the solution shown in Figure 3(b) is
the same as the one found in classic PRE (Figure 1(d)). In speculative PRE, the benefit
of an optimal transformation depends on the accuracy of the profiling information used.
More computations may be evaluated if the profiling information used is completely in-
accurate. On the other hand, classic PRE is profile-independent and thus conservative.
Never will more computations be evaluated in the transformed code. Due to Lemma 4,
different profiles always result in the same optimal transformation, as implied in Theo-
rem 1. The reader can verify that MIN-PRE will return exactlythe same minimum cut
in Figure 1(d) for the two execution profiles given in Figure 3(a).

5 SIM-PRE: A Simple Mincut-Motivated Algorithm

Due to the special structure ofGmm, and consequently,Gss, as identified in Lemma 4,
we can find the unique minimum cutE−1(CΛ) = Cins

Λ ∪--- Ccopy
Λ = (Λ, Λ) found in

Step 6 of MIN-PRE by solving one data-flow problem. Based on MIN-PRE, we have
developed a simple and efficient algorithm, called SIM-PRE and given in Figure 4, for
classic PRE by solving four data-flow problems. Steps 1 and 2 remain the same. In
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(a)G annotated with two
edge profilesW1 andW2

(b) Lifetime optimal solution
wrt edge profileW1 onGspre

ss

(c) Lifetime optimal solution
wrt edge profileW2 onGspre

ss

Fig. 3. Profile-sensitivity of speculative PRE. In (a), the CFG fromFigure 1(a) is annotated with
two different edge profiles. If an edge is labelled byx, W1(e) = W2(e) = x. If an edge label is
x
y

, W1(e) = x andW2(e) = y. The optimal solutions forW1 andW2 are given in (b) and (c).

Step 3, we solve a data-flow problem inG but the problem can be understood as one
of computing global availability on the optimally transformed graph,Gopt, of G. The
two global properties,T G-AVAILINn andT G-AVAILOUTn, are defined for the entry
and exit of every blockn in Gopt. T G-AVAILOUTn is computed in the normal manner.
In the case ofT G-AVAILINn, an expressione is available on entry to blockn in Gopt

if it is already available inG. In addition, ife is available along some incoming edges
of blockn but not along some others(m, n) in Gopt and if e is (fully) anticipatable on
entry ton in G, then(m, n) ∈ Cins

Λ must be an insertion edge. Afterte = e has been
made on all these insertion edges,T G-AVAILINn = truewill hold. Hence, we have:

UE-REDUNDn = T G-AVAILINn (7)

which leads directly to:

Cins
Λ = {(m, n) ∈ E | T G-AVAILOUTm ∧ T G-AVAILINn}

Ccopy
Λ =

⋃
n∈N :ANTLOCn∧UE-REDUNDn

{(m, n) ∈ E | m ∈ pred(G, n)}
(8)

To defineCOPY, we do not use the “live variable analysis” given in Step 7 of
MIN-PRE. Instead, we solve a different data-flow problem, which is simpler for two
reasons. First, we do not need to compute the predicate(m, n) ∈ CΛ on flow edges. Sec-
ond, the meet operator will use fewer bit-vector operationsthan before. This problem
can be understood as one of computing partial anticipatability for an expressione on the



(1) Compute global availability onG:
(2) Compute global anticipatability onG:
(3) Compute global availability perceived to be done on the transformed CFG:

T G-AVAILINn =

8

<

:

false if n = ENTRY

AVAILINn + ANTINn ·
X

m∈pred(G,n)

T G-AVAILOUTm otherwise

T G-AVAILOUTn = COMPn + T G-AVAILINn · TRANSPn

(4) Compute a restricted form of partial anticipatability on the transformed CFG:

T G-PANTOUTn =

8

<

:

false if n = EXIT

T G-AVAILOUTn ·
X

m∈succ(G,n)

T G-PANTINm otherwise

T G-PANTINn = ANTLOCn + T G-PANTOUTn · TRANSPn

(5) Define the optimal transformation as follows:
DELETE = {n ∈ N | ANTLOCn ∧ T G-AVAILINn}

COPY = {n ∈ N | COMPn ∧ T G-PANTOUTn ∧ (TRANSPn ∨ T G-AVAILINn)}

INSERT = {(m, n) ∈ E | T G-AVAILOUTm ∧ T G-AVAILINn}

Fig. 4. A mincut-motivated algorithm, SIM-PRE, for classic PRE onG = (N, E, W ).

transformed graphGopt but only at the points wheree is available inGopt. (Note that
T G-PANTINn, which is not used, can be true on entry to blockn if ANTLOCn = true.)

Theorem 2. The transformation found by SIM-PRE is lifetime optimal.

Proof. Let LO be the transformation found by MIN-PRE, which is represented by
DELETE, INSERT andCOPY andSIM the transformation found by SIM-PRE, which
is represented byDELETESIM , INSERTSIM andCOPYSIM . By Lemma 4, (7) and (8)
hold. By Lemmas 5 and 6,DELETE = DELETESIM andINSERT = INSERTSIM .
By definition,T G-PANTOUTn = trueiff te is live on exit fromn. SoT G-PANTOUTn

= LIVEOUTn. Thus,COPY = COPYSIM . This means thatLO=SIM. ⊓⊔

6 Experimental Results

We evaluate the efficiencies of SIM-PRE and three other algorithms (denoted by LCM-
DS, LCM-DS+COPY and E-Path) in terms of the total number of bit-vector operations
performed on benchmark programs. All algorithms are implemented in GCC 3.4.3 and
invoked to operate at its RTL (Register Transfer Language).We have applied the four
algorithms to all 22 C/C++/FORTRAN SPECcpu2000 benchmarkscompiled on two
different platforms: Intel Xeon and SUN UltraSPARC-III. Due to architectural differ-
ences, the RTL representations on two platforms are drastically different.

LCM-DS denotes the GCC’s implementation of a variant of LCM that was de-
scribed in [9]. This algorithm assumes that the result of an expression is always avail-
able in a distinct temporary. Therefore,COPY is not computed. Since this assumption
is not valid for RTL, GCC does a brute-force search on a CFG to computeCOPY for
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Fig. 5. A comparison of four algorithms on Xeon.

each expression separately. There is no way to translate these graph traversal operations
into equivalent bit-vector operations. Therefore, LCM-DS+COPY denotes the algo-
rithm formed by combining LCM-DS and the 4th data-flow analysis used in SIM-PRE
for computingCOPY. E-Path is a recent new algorithm presented in [7].

SIM-PRE, LCM-DS+COPY and E-Path each solve four data-flow problems while
LCM-DS solves only three (as discussed above). The first two problems, availability
and anticipatability, are all the same. These algorithms differ only in how the remaining
problem(s) are formulated. The efficiency of an algorithm ismeasured in terms of the
number of bit-vector operations performed by all data-flow problems in an algorithm.

All algorithms are implemented using the bit-vector routines provided by GCC and
operate on the same set of PRE candidate expressions used by GCC. A PRE candidate
expression is always the RHS of an assignment, where the LHS is a virtual register. The
RHS expressions that are constants or virtual registers areexcluded (since no computa-
tions are involved). So are any expressions such as call expressions with side effects.

Figure 5 gives the (normalised) bit-vector operations consumed by four algorithms
on Xeon. In LCM-DS (and LCM-DS+COPY), the data-flow equations for computing
EARLIEST andLATER are expensive due to the excessive use of logical negations and
somewhat complex equations employed. In E-Path, the equations used in the last two
data-flow problems are more complex than those in SIM-PRE. Inparticular, the meet
operators inEps ini andSA outi are more expensive to evaluate. Figure 6 gives our ex-
perimental results on UltraSPARC-III. In both computer platforms, SIM-PRE requires
fewer bit-vector operations than each of the other three algorithms. The key reason for
SIM-PRE’s efficiency is that the equations in solving its last two data-flow problems
are simpler. Since these two problems are formulated to find aunique minimum cut
for a CFG, we reason positively about the two global properties without using logical
negations. So the number of bit-vector operations used are reduced.

7 Related Work and Conclusions

LCM [17, 19] and its extensions [8, 15] find code insertion points by modelling the op-
timisation as a code motion transformation as suggested in [6]. This approach is char-
acterised by a few concepts, such asearliest, latestandisolated, that are not inherent in
the PRE problem itself. Alternatively, some formulations of classic PRE [7, 23] avoid
these concepts by identifying code insertion points directly. The driving force behind
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the development of these different formulations has probably been the insatiable desire
to find a good conceptual basis upon which an optimal formulation of classic PRE can
be easily developed, understood and reasoned about. However, in all existing formula-
tions of classic PRE, data-flow equations are still cleverlybut ad hocly designed. Their
optimality is usually not obvious to their users and their proofs tedious and non-intuitive
since the proofs have always been conducted at the low level of individual paths. This
work provides a common high-level conceptual basis upon which an optimal formula-
tion of PRE can be developed and proved. All optimal algorithms must find one way or
another the unique minimum cut on a flow networkGss derived from a CFG.

Classic PRE has been extended to perform other important optimisations, including
strength reduction [8, 12, 16, 18], global value numbering [3], live-range determination
[21], code size reduction [24], redundant load/store elimination [21] and data specula-
tion [20]. Its scope has also been extended by means of code restructuring [2].

The earliest papers on speculative PRE can be found in [11, 13]. There are three
computationally optimal algorithms for speculative PRE [1, 4, 25]. Later we also devel-
oped a lifetime optimal algorithm [26]. This work shows thatboth seemingly different
problems are inherently related and can be unified under a common conceptual basis.

PRE is an important optimisation in optimising compilers and also serves as a clas-
sic classroom example for iterative and worklist data-flow analysis. The results and
insights presented in this work are expected to be valuable in both settings.

References

1. R. Bodik. Path-Sensitive Value-Flow Optimizations of Programs. PhD thesis, University of
Pittsburgh, 1999.

2. R. Bodik, R. Gupta, and M. L. Soffa. Complete removal of redundant computations. In
Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language Design and
Implementation, pages 1–14, 1998.

3. P. Briggs and K. D. Cooper. Effective partial redundancy elimination. InProceedings of the
ACM SIGPLAN ’94 Conference on Programming Language Design and Implementation,
pages 159–170, 1994.

4. Q. Cai and J. Xue. Optimal and efficient speculation-basedpartial redundancy elimination.
In 1st IEEE/ACM International Symposium on Code Generation and Optimization, pages
91–104, 2003.

5. T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to Algorithms. Cambridge,
Mass.: MIT Press, 1990.



6. D. M. Dhamdhere. A fast algorithm for code movement optimisation. SIGPLAN Not.,
23(10):172–180, 1988.

7. D. M. Dhamdhere. E-pathpre: partial redundancy elimination made easy.SIGPLAN Not.,
37(8):53–65, 2002.

8. V. M. Dhaneshwar and D. M. Dhamdhere. Strength reduction of large expressions.Journal
of Programming Languages, 3:95–120, 1995.

9. K.-H. Drechsler and M. P. Stadel. A variation on Knoop, Rüthing, and Steffen’s lazy code
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24. O. Rüthing, J. Knoop, and B. Steffen. Sparse code motion. In Conference Record of the
27th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Boston, Massachusetts), pages 170 – 183. ACM, New York, 2000.

25. B. Scholz, R. N. Horspool, and J. Knoop. Optimizing for space and time usage with specu-
lative partial redundancy elimination. InProceedings of the 2004 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for EmbeddedSystems, pages 221–230,
2004.

26. J. Xue and Q. Cai. Profile-guided partial redundancy elimination using control speculation: a
lifetime optimal algorithm and an experimental evaluation. Technical Report UNSW–CSE–
TR–0420, School of Computer Science and Engigeering, University of New South Wales,
Jul. 2004.


