CC 06, pages 139 -- 154, 2006.

A Fresh Look at PRE asa Maximum Flow Problem

Jingling Xue and Jens Knoop

1 Programming Languages and Compilers Group, School of Ctenficience and
Engineering, University of New South Wales, Sydney, NSW2@%ustralia
2 Technische Universitat Wien, Institut fir Computersren,
Argentinierstraf3e 8, 1040 Wien, Austria

Abstract. We show that classic PRE is also a maximum flow problem, tlyereb
revealing the missing link between classic and specul&RE, and more impor-
tantly, establishing a common high-level conceptual basithis important com-
piler optimisation. To demonstrate this, we formulate a,remple unidirectional
bit-vector algorithm for classic PRE based only on the Welbwn concepts of
availability and anticipatability. Designed to find a unéguinimum cut in a flow
network derived from a CFG, which is proved simply but rigesty, our algo-
rithm is simple and intuitive, and its optimality is selfident. This conceptual
simplicity also translates into efficiency, as validatedcelsperiments.

1 Introduction

Partial redundancy elimination (PRE) is a compiler optatitn that eliminates com-
putations that are redundant on some but not necessaripatils in a program. As
a result, PRE encompasses both global common subexpredisionation and loop-
invariant code motion. Over the years, PRE has also beendedeto perform other
optimisations at the same time, including strength redud8, 12, 16, 18], global value
numbering [3] and live-range determination [21]. For theessessons, PRE is regarded as
one of the most important optimisations in optimising colensi.

As a code transformation, PRE eliminates a partially rednbdomputation at a
point by inserting its copies on the paths that do not alreadypute it prior to the point,
thereby making the partially redundant computation futgdundant. PRE problems
come in two flavoursclassic PREandspeculative PREClassic PRE, as described in
the seminal work [22], inserts a computation at a point oflihé point issafe (or
down-safgfor the computation, i.e., only if the computation is fullgticipatable at the
point. On the other hand, speculative PRE may insert a caatipatat a point even if
the computation is partially but not necessarily fully aitatable at the point. If the
computation cannot cause an exception and if the executemuéncies of the flow
edges in a CFG are available, speculative PRE may find tranafmns missed by
classic PRE, thereby removing more redundancies in dyntemits than classic PRE.

In the case of classic PRE, Knoop, Rithing and Steffen it@cean optimal unidi-
rectional bit-vector formulation of the problem [17, 19hi$ algorithm, known as Lazy
Code Motion (LCM), was later recasted to operate in statiglsi assignment (SSA)
form [15]. Subsequently, a number of alternative formuolasi have been proposed [7—
9, 23]. While LCM and other earlier algorithms [8, 9] find couhsertion points by

modelling the optimisation as a code motion transformatiomlatter ones [7, 23] avoid
this by identifying code insertion points directly. Appatly, a search for a conceptual
basis upon which an optimal formulation of classic PRE cardih developed and
understood more intuitively has been the driving force behthese research efforts.
Up to now, however, this conceptual basis has been eluslexiating algorithms are
developed and reasoned about at the low level of individradam paths.

While classic PRE is profile-independent, speculative PRidfile-guided. Given
a weighted CFG, where the weights of the flow edges reprdseingtxecution frequen-
cies, we have shown previously that speculative PRE is amaxiflow problem [26].
Finding an optimal transformation on a CFG amounts to findisgecial minimum cut
in a flow network derived from the CFG. Furthermore, différgptimal transformations
on a CFG may result if the weights of the flow edges in the CF@&if

In this paper, we show for the first time that classic PRE is alsnaximum flow
problem. This is the key to the main contribution of our paperprovide a uniform
approach for classic and speculative PRE. The insight behia finding lies in the fol-
lowing assumption made about classic PRE [17,19]: all abfibw edges are nonde-
terministic, or equivalently, have nonzero execution freacies. We show that finding
the optimal transformation for a CFG amounts to finding a uaigninimum cut in a
flow network derived from the CFG. Since all insertions in &8JfRust be safe in clas-
sic PRE (as mentioned above), this unique minimum cut isriamtof the execution
frequencies of the flow edges in the CFG. This establishesaieection and highlights
the main difference between classic and speculative PRIEe Maportantly, our find-
ing provides a common high-level conceptual basis uponwéicoptimal formulation
of PRE can be more systematically and intuitively developed provedEvery PRE
algorithm, if being optimal, must find the uniqgue minimumaut flow network that
is derived from a CFG.As a result, tedious and non-intuitive reasoning that has be
practised at the lower level of control flow paths is dispensih.

Based on this insight, we have developed a new, simple #itigofior classic PRE.
Our formulation, applicable to standard basic blocks, me®f solving four unidirec-
tional bit-vector data-flow problems based only on the waltwn concepts of avail-
ability and anticipatability. Designed to find a unique minim cut in a flow network
derived from a CFG, which is proved simply but rigorouslyr data-flow equations
reason positively about the global properties computelowit using logical negations.
Such a formulation is intuitive and its optimality self-dent. This conceptual simplic-
ity also translates into efficiency, as demonstrated by rpeemental results.

The rest of this paper is organised as follows. Section 2sgiie background in-
formation. Section 3 shows that classic PRE is a maximum flmblpm. We do so
constructively by giving an algorithm, MIN-PRE, that castsi of solving three data-
flow problems and invoking a min-cut algorithm to find a uniqun@mimum cut in a
flow network derived from a CFG. Section 4 compares and cststidassic and specu-
lative PRE when both are viewed as maximum flow problems. tii@e5, we derive
from MIN-PRE a simple algorithm, called SIM-PRE, for clasBIRE by solving four
data-flow problems only. Section 6 discusses some expetatresults. Our simple al-
gorithm uses fewer bit-vector operations than three aligors across 22 SPECcpu2000
benchmarks on two platforms. Section 7 reviews the relatarttand concludes.

2 Background

A control flow graph (CFG) = (IV, E, W), is a weighted directed graph, whe¥eis

the set of basic blocks (or nodeg) the set of control flow edges afd : NUE +— IN.
Given a node or edge, W (x) represents its execution frequency (under an arbitrary
input). In addition ENTRY € N denotes it®entry blockand EXIT € N its exit block
which are both empty. Furthermore, every block is assumédigé mn some path from
ENTRYto EXIT. Let pred G, n) be the set of alimmediate predecesson$ a blockn

in G andsuc€G, n) the set of alimmediate successoo$ a blockn in G.

Assumption 1 For everyG = (N, E, W), we have the following tautology:
VneN: Y cpredam W(m.n) =3, csucea.ny W(n.m)

As in [17,19], we consider a non-SSA intermediate repregiemt, where each
statement has the form= e such that is a variable and a single-operator expres-
sion. As is customary, we assume that local common subesipreslimination (LCSE)
has already been applied to all basic blocks. Given an esipres the following three
local predicates associated with a blackre used in the normal mann&NTLOC,, is
true if e is locally anticipatable on entry to bloak (i.e., blockn contains an upwards
exposed computation @). COMP,, is true if e is locally available on exit from block
n (i.e., blockn contains a downwards exposed computation)of RANSP,, is true if
block n does not contain any modification ¢0PRE is a global optimisation. So only
the upwards and downwards exposed computations oélled thePRE candidates
will be considered. A block can contain at most two PRE caatdid¢omputations. It is
important to be reminded thaNTLOC,, andCOMP,, can both be true in block, in
which case, either a common PRE candidate igflocally available and anticipatable
simultaneously, implying that RANSP,, = trueor two distinct PRE candidates ef
are locally available and anticipatable, respectivelypliimg thatTRANSP,, = false

A PRE transformation for an expression is realised by répdpall redundant com-
putations of the expression by a new temporary that is lisiéid correctly at suitable
program points. We adopt the definition of PRE as used in LCO]i¢kcept that we will
make use of edge insertions as in [7, 23, 26] rather than mz@¢tions; these insertions
serve to make all the partially redundant computationy fitdblundant. Therefore, we
do not have to splitritical edgesi.e., the edges leading from nodes with more than
one immediate successor to nodes with more than one immaquiiadecessor.

The fundamental assumption in classic PRE as stated cladrGM [17, 19] is that
all control flows in a CFG are nondeterministic. Equivalgntte have:

Assumption 2 GivenG = (N, E,W). Inclassic PREY z € (NUE) : W(x) > 0.

A directed grapht’ = (V, A) is aflow networkif it has two distinguished nodes, a
sources and asinkt, in V' and a nonnegativeapacity(or weigh) for each edge im.
LetS andT = V — S be a partition oft such thats € S andt € 7. We denote by
(S,T) the set of all (directed) edges with tail hand head irf": (S,T) = {(n,m) €
A|n € S;m e T}. A cutseparating from ¢ is any edge setC, C), wheres € C,

C =V — C is the complement of’ andt € C. Thecapacityof this cut is the sum

of the capacities of altut edgesn the cut. Aminimum cuis a cut separating from ¢
with minimum capacity. Thenax-flow problentonsists of finding a flow of maximum
value from the source to the sinkt. The max-flow min-cut theorem of [10] dictates
that such a flow exists and has a value equal to the capacitynafiemum cut.

3 Classic PRE asa Maximum Flow Problem

In classic PRE, only safe insertions are used as discuss®ibpsly. Based on this
safety constraint and Assumption 2, we show that classic #RECFG is a maximum
flow problem and a special minimum cut on a flow network deriveth the CFG leads
to the construction of the unique (lifetime) optimal traorsfiation for the CFG — the
uniqueness was known earlier in [17, 19]. These resultsigecy common high-level
conceptual basis for developing, understanding and ré@agabout PRE algorithms.

In Section 3.1, MIN-PRE is presented and illustrated by aamgxe. In Section 3.2,
we give an intuitive explanation why classic PRE is a maxinilanv problem. In Sec-
tion 3.3, we see that the optimality proof in this contextiaightforward.

3.1 MIN-PRE

In classic PRE, a computation of an expressias said to beedundant(partially or

fully) if it can be eliminated by using safe code insertiofishe form¢. = e, wheret,

is a new temporary. A computation efs said togeneratesome redundancies if it can

cause another computation@tboth may be identical, as in a loop) to be redundant.
To shed the light on the nature of classic PRE on a CFG, wefysaih a transfor-

mation for an expressionby using the following three sets (as in the GCC compiler):

DELETE gives the set of blocks where the upwards exposed compusatie are
redundant (partially or fully). Every such computationhviié replaced by a new
temporaryt.. Note that a computation efthat is downwards but not also upwards
exposed cannot be redundant (i.e., removable using saésigsertions only).

COPY gives the set of altopy blocksvhere the downwards exposed computations
of e generate redundancies in the blocks giveBDELETE but these computations
themselves (when they are also upwards exposed) are notdadi Such a com-
putation will be replaced by, and preceded by eopyinsertion oft. = e. Note
that a computation of that is upwards but not also downwards exposed cannot
generate any redundancies (i.e., cause other computatibesedundant).

INSERT gives the set of edges, callatsertion edgeson whicht, = e will be in-
serted, thereby making all partially redundant computestiof e fully redundant.

This definition distinguishes clearly the different rolkatithe three different code mod-
ifications play in a PRE transformation. As we shall see $hdELETE andINSERT
are so closely related that both can be built simultaneoHsiywever, more information
about redundancy-generating computations is needed ér twdbuild COPY.

A transformation isorrectif every use of. is identified with a definition of, = ¢
in every execution path. The total number of computatioresadiiminated by a transfor-

mation inG = (N, E‘7 W) is given byZbEDELETE W(b) — ZeGlNSERT W(e) A

(d) Gss (e) Comp. Optimal Solution| (f) Lifetime Optimal Solution

Fig. 1. A running example.

transformation icomputationally optimaif this term is maximised and iifetime op-
timal (or optimalfor short) if the live ranges of all definitions ¢f are also minimised.

Our running example is given in Figure 1. An optimal PRE aildpon will take as
input the CFG shown in Figure 1(a) and produce as output Hrestormed CFG as
shown in Figure 1(f). The optimal transformation for the rexde is specified by:

DELETE = {6,9,11}
COPY = {5,6} (1)
INSERT = {(4,6),(7,9)}

Figure 2 gives a mincut-based algorithm, MIN-PRE, for dlaPRE by modelling it
as a maximum flow problem. The reader is invited to read theréilgn since it is made
to be self-contained. Below we explain its steps and ilatstthem by our example.

We start with a weighted CFG7 = (N, E, W), where the weights of its blocks
and flow edges are their execution frequencies. In the exagipén in Figure 1(a),
we do not actually show the weights. As we shall see latemfienal transformation
in classic PRE is independent of the weights in a CFG. In Stegrsd 2, we compute
the standard global properties, availability and anti@paity, on G. Based on this
information, in Step 3, we derive an important subgrdph from G. G, contains
everyessential edgém,n) € E such thatESS(m,n) = AVAILOUT,, - ANTIN,
holds and its two incident nodes,n € N. Figure 1(b) depicts this subgraph for the
running example. By definition, the following two propesti@boutG., are true.

Lemmal. Letn be a node inG such thatANTLOC,, = true If the upwards exposed
computation im is not fully redundant, then is always included iff7eg.

Note thatr in the above lemma may also be containedrip even ifn is fully redun-
dant, in which case; must have at least one outgoing edge that is essential.
In Figures 1(a) and (b), we see tl@t, contains block 2, 5, 6, 9 and 10 but not 11.

Lemma 2. For every computationally optimal transformation, i8SERT must be a
subset of the edge s&t, of Gg.

Proof. By Assumption 2, a transformation whod¢SERT contains(m, n)ZE., such
thatAVAILOUT ,,,=true(ANTIN,,=false cannot be computationally optimal (safé).

Thus,Ge, is the fundamental subgraph 6fwhere code insertions are to be made
to make all the partially redundant computations (i.e., gbthat are removable by using
safe code insertions only) i@ fully redundant.

In Step 4, we obtain a multi-source, multi-sink flow netwak,,,, from Ge,. Fig-
ure 1(c) depicts this network for our example, where bloclag been split (conceptu-
ally). Note thatVg; = {2}. Intuitively, an insertion of = a+ b that makes the upwards
exposed computatiam+ b in block 6 fully redundant must be made “below” block 2.
Hence, the conceptual split. Note that the sources and aieks,,,,, = {1,2—,3,7,8}
andT,,., = {2+,5,6,9,10}. By constructionS,,,, N Tr..m = 0 holds. Finally V' (€)
relates the nodes (edges) G#,,,, to those inG. We haveN (2+) = N(2—) = 2
andN (n) = n for other nodes:. As aresult£(1,2+) = (1,2), £(2—,4) = (2,4),
£(2—,5) = (2,5) and&(m,n) = (m,n) for other edges.

By construction, the following two lemmas about the stroetof G,,,,,, are imme-
diate. Lemma 3 says that every sinkiify,,,, contains an upwards exposed computation
(which cannot be fully redundant since at least one of itermicg edges is essential).
The correctness of this lemma can be verified in Figure 1(gnina 4 gives the key
reason why classic PRE can be more efficiently solved by fiiataanalysis only and
also reveals its difference with speculative PRE (Sectjon 4

Lemma 3. Letn be a node irG,,,m. Themn € Ty, iff ANTLOC () = true

Proof. Follows from the construction df., and the derivation ofs,,,,,, from G, by
means of the conceptual split as conducted in Step 4 of MIE-PR a

(1) Compute global availability o6

false if n = ENTRY
AVAILIN,, = H AVAILOUT,, otherwise
mepreda,n)
AVAILOUT,, = COMP,, + AVAILIN,, - TRANSP,,

(2) Compute global anticipatability of:

false if n =EXIT
ANTOUT,, = { H ANTIN,,, otherwise
meSUCGG,n)
ANTIN, = ANTLOC, + ANTOUT,, - TRANSP,,

(3) DefineGeg = (Neg, Eeg, Weg) as a subgraph af':

Neg={n € N|3Im e N :ESS(m,n)VIm e N :ESS(n,m)}

Eee = {(m,n) € E | ESS(m,n)}

whereESS(m, n) = AVAILOUT,, - ANTIN,, for all (m,n) € E.
(4) Derive a multi-source, multi-sink netwotk,m = (Nmm, Emm, Wmm) from Geg as

follows. A source(sinK is a node without predecessors (successors)Nept{n € Neg

| ANTLOC,, A TRANSP,, A predGeg,n) # 0 A SUCEGeg,n) # (}. For every such a

source-sink node € N, containing instructionsy, . . ., I, such thatly; is the first

modification to expressios, replacen by two new nodes+ andn—, wheren+ contain

Ii,...,I—1 andn— containsly, . .., I, such that the incoming (outgoing) edgeswof

in Geg are now directed into (out of)+ (n—) and no edges exist betweer andn—.

(If I is of the formh = e such that is upwards exposed, and also modifiedhyy

i.e., the LHS ofI}, then split conceptualljt = e into A’ = e; h = h’ before splittingn.)

Let Srm ={n € Nymm | pred Grym, m)=0} andTrm = {n € Npm | SUCEG mm, m)=0}.

Let N : Ny — N such thatV' (n+) = N(n—) = N(n) = n.

Let& : Epm — E such tha(m,n) = (N (m),N(n)).
(5) Derive a single-source, single-sink flow netwdrks = (Nss, Ess, Wss) from G as

follows. Introduce two new nodes,andt, add an edge with weiglhb from thesource

s to every node b, and an edge with weight from every node i}, to thesink,
(6) Find a unique minimum cug = (Ca) = (4, A), in G, as follows:
(a) Apply any min-cut algorithm to find a maximum flofvin G...
(b) LetGL,=(N.s, Ef,, W¥,) be the residual network induced 5], where

Esfs = {(u,v) € ESS | Wss(u7 U) - f(u7v) > 0}

sts = Es,fs — IN, Wherests(uy ’U) - Wss(u7 U) - f(u7 ’U)
(c) LetA={n € N, | there is a path from to sinkt in G, } andA= N\ A.
(d)LetCa=C 5 C™, whereCS™={(m,n) €Ca |V p€predG,n) : (p,n) ECa}.
(7) Solve the “live range analysis fo¢” in G:

false if n=EXIT
LIVEOUT, = { >~ (LIVEIN,, - ((n,m) ¢ Ca)) otherwise
meSUCGG,n)
LIVEIN,, = ANTLOC,, + LIVEOUT,, - TRANSP,,

(8) Define the optimal transformation as follows:
DELETE = {n € N | ANTLOC,, A UE-REDUND,, }
COPY = {n € N | COMP,, A LIVEOUT,, A (TRANSP,, vV UE-REDUND,)}
INSERT = Cips
whereUE-REDUND,, = ({(m,n) € E | m € predG,n)}ZC™)foralln € N.

Fig.2. A mincut-based algorithm, MIN-PRE, for classic PRE@n= (N, E, W).

Lemmad4. Foreveryn € Nym \ (Smm U Tmm), the following statement is true:

Z Wim,n) < Z W(n, m) (2)

mepPredaG m,n) meSUCEG mm 1)

Proof. For everyn € Ny \ (Smm U Tinm), We must haver € G, It suffices to
show that all outgoing edges afin G are included inG,,,,, i.e.,¥ m € suc¢G,n) :
(n,m) € Npym. By Lemma 3,ANTLOC,, = false Sincen ¢ S,.., then there
must exist an incoming edg@, n) of n in G, such thatESS(p,n) = true i.e.,
AVAILOUT, = falseand ANTIN,, = true WhenAVAILOUT, = falsg we have
AVAILIN,, = false Note thatANTLOC,, A ANTIN,, =— TRANSP,,. Furthermore,
ANTLOC,, A TRANSP,, = COMP,,. Thus, AVAILOUT,, = falseandANTOUT,, =
true WhenANTOUT,, = trug by definition, we hav& m € suc€G, n) : ANTIN,,, =
true Hence¥Y m € sucd¢G,n) : ESS(n,m) = AVAILOUT,, A ANTIN,,, = true
implying that¥ m € sucdG,n) : (n,m) € Npm. 0

In Step 5, we obtain a single-source, single sink flow netwykfrom G,,,,,, in the
normal manner. In Step 6, we find a unique minimum&ut (C,) on G, by applying
the “Reverse” Labelling Procedure of [10], whetés the smallest possible (Lemma 8).
Figure 1(d) depict&s; for our example, together with the following minimum cut:

Ca={(1,2),(2,5),(3,5),(4,6),(7,9),(8,10)}
C}{ls = {(47 6), (77 9)} Q)
leopy = {(17 2), (27 5), (37 5), (87 10)}

Such a partition of 4 into CiPs andC°™ is significant due to the fundamentally differ-
ent roles they play in defininDELETE, COPY andINSERT given in Step 8. Accord-
ing to their definitions in Step 6(d¥is (C™) includes a cut edgen, n) iff some but
not all (all) incoming edges of in the original CFG (7, are cut edges.

In order to defindELETE, we need to know if a computation is redundant or not.
This is trivial for downwards but not also upwards exposeuhgotations.

Lemmab. Letn be a node inG such thatCOMP,, = true If TRANSP,, = false then
the downwards exposed computatiomiis not redundant.

To check if an upwards exposed computation is redundantipweapply Lemma 6,
which makes use of the predicdl&€-REDUND,, introduced at the end of Step 8.

Lemma®6. Letn be a node inG,,,, wheren’ = N (n) is the corresponding node
in G. ThenUE-REDUND,,, = falseiff the upwards exposed computationrihis not
redundant (i.e., not removable by using safe code insestiry).

Proof. To prove ‘=", we note that MIN-PRE finds the minimum cqti, A) by ap-
plying the “Reverse” Labelling Procedure of [10]€&;. Thereforen must be a sink
in G, Which impliesANTLOC,,, = trueby Lemma 3. LetX be the set of all nodes
iNn Grum \ (Smm U Trm) lying on a path from a source i@,,,,,, to n. By Lemma 4,
UE-REDUND,,, = falsg i.e., all incoming edges of’ in G are included irC}’™ iff

VP EX Y epredt) WM P) = Xinesucec,,,..p) W (P, m)- TO prove =",

we know that:’ must be contained i, by Lemma 1. By Lemma 3; is a sink node
in G- By Lemma 4, the upwards exposed computatiomins not redundant iff

Vpe X) epredcm.p W (M) = Xmesucea,,,.p W (P, m). A combination
of the results proved so far concludes the proof. O

Looking at Step 8, we find th&t;”™ is sufficient for definindELETE (Lemmas 5
and 6) whileC'ys is sufficient for definingNSERT. However, Lemmas 5 and 6 do not
tell us if a computation that is not redundant generates adyndancies or not. This
means that some extra information is required in order tmd€fOPY completely.

A naive solution is to copy all blocks containing non-redundant computations:

COPY?!={n € N | COMP, A(TRANSP,, v UE-REDUND,,)} (4)

Then,COPYa“, together withDELETE and INSERT given in Step 8, will yield a
computationally optimal transformation (as implied by t@of of Theorem 1). In
terms of LCM, this transformation corresponds to ALCM (AlstaCM) [17, 19].

For the running example, such a computationally optimaidfarmation is:

DELETE = {6,9,11}
copy*! — {5,6,10} (5)
INSERT = {(4,6),(7,9)}

whereDELETE andINSERT are the same as in (1). This results in the transformed
code in Figure 1(e). However, the definitioniah block 10 is only used in that block.
Such a copy operation should be avoided since the live raingis annecessarily intro-
duced. The downwards exposed computations of this kindravevik to basolated[17,
19]. In Step 7, we solve a third data-flow problem so @Y C copY™is defined
in Step 8 with all these isolated blocks being excluded. Nwdéa copy is required in a
blockn if it contains a downward exposed computation, which gelesnedundancies
and is not upwards exposed (i.€QMP,, A LIVEOUT,, A TRANSP,, (Lemma 5)) or
if it contains an upward exposed computation, which geesnadundancies and is not
redundant itself (i.,e COMP,, A LIVEOUT,, A UE-REDUND,, (Lemma 6)).

This problem can be understood as one of solving the livealségianalysis for
temporaryt, on the transformed CFG realised DELETE andINSERT andCOPY™"".
By comparingCOPY*!! andCOPY, we see that we include a block @OPY by also
requiringt. to be live on exit from that block. This guarantees that thevdeards
exposed computation efin such a block must generate some redundancies.

Consider Figure 1(eL,IVEOUT; = LIVEOUTg4 = truebut LIVEOUT ;g = false
Hence,COPY includes only blocks 5 and 6. The final transformation is giire(1),
which results in the optimally transformed code shown iruFégL(f).

RemarklIf we apply the (normal) Labelling Procedure of [10] in Stepf1IN-PRE,
(A, A) will be found such thatl is the largest. The PRE transformation obtained using
such a cut will correspond to the Busy Code Motion (BCM) ascdbsd in [17, 19].

3.2 (Full) Availability asthe Single Commodity

Consider classic PRE carried out optimally on a G&Gor an expression. All (par-
tially or fully) redundant computations ef which must be upwards exposed, as iden-

tified by DELETE, areconsumer®f the value ofe. All downwards exposed compu-
tations ofe that generate redundancies and are not redundant themsadvielentified
by COPY, areproducersof the value ofe. Classic PRE can be modelled as a single-
commodity maximum flow problem. The valuecfi.e., the commodity) is to be routed
from the existing producers to the existing consumers utigecondition that must

be (fully) available at the consumers. To achieve this fudliability, new producers,
as identified byINSERT, can be introduced i, or precisely,G,s under the safe
constraint that only the existing consumers can receivevéhee ofe. The cost of in-
troducing these new producers (i.e., the number of compuatofe incurred) is equal

to the maximum flow ori7 . In order to be computationally optimal, their placements
are the cut edges of a minimum cut as implied in the proof obFém 1. In the optimal
transformation, new producers must be installed accoririge unique minimum cut
found by applying essentially the “Reverse” Labelling Rxdhare of [10] toG .

3.3 Optimality

First of all, we recall Lemma 10 from [14] on the structure bfainimum cuts.

Lemma?7. If (A, A) and (B,B) are minimum cuts in an s-t flow network, then
(AN B,AN B)and(AU B, AU B) are also minimum cuts in the network.

This lemma implies immediately that a unique minimum @itC) exists such that
C'is thesmallesti.e., thatC' c C” for every other minimum cutC’, C’). Note thatc
is strict. In addition, this lemma is valid independentlyamfy maximum flow that one
may use to enumerate all maximum cuts for the underlying ordw

In fact, for the minimum cutA, A) found by MIN-PRE A is the smallest.

Lemma8. LetS.,: be the set of minimum cuts @, = (Nss, Ess, Wss). Consider
the minimum cuf4, A) in G4 found by MIN-PRE. Then:

AC Cforall (C,C) € Seus (6)
where the equality i holds iff A = C.

Proof. By Assumption 2(7 is ans-tflow network with positive edge capacities only.
In Step 6 of MIN-PRE, we find the minimum cqtl, A) by applying essentially the
“Reverse” Labelling Procedure of [10]. Its constructiorseres that (6) holds with re-
spect to the maximum floyf used. Lemma 7 implies that this “smallest minimum cut”
is independent of the maximum flofv Hence, (6) is established. a0

Theorem 1. The transformation found by MIN-PRE is (lifetime) optimataunique.

Proof. Consider an expressiaerin G = (N, E, W). Let LO denote the transformation
found by MIN-PRE, which is represented BELETE, INSERT and COPY. Let a
lifetime optimal transformation be representeddyl ETE -, INSERT, andCOPY 7.
By Lemma 6 DELETE = DELETE . By also applying Lemma 6 and noting that
COPY iff it generates redundancies DELETE, we must haveCOPY = COPY7.
Recall thatt=1(Cx) = (4, A) is the minimum cut found by MIN-PRE in its Step 6,

whereC, = Cip g C°™. By Lemma 2INSERT, must be drawn from the edges of
Geg. Clearly, E71(C™™ 8 INSERT7) must be a cut sinc& cannot be valid other-
wise. FurthermoreS —! (C7"™ 8 INSERT7) must be a minimum cut. Otherwise(
constructed using a minimum cut will cause fewer computetiof e to be evaluated.
Let&~1(CF™ B INSERTy) = (A’, A). By Lemma 8,4 C A’. Thus, the equality in
A C A’ must hold. Otherwise, the live rangestpf= e in LO will be better than those
in T. Hence,LO = T is lifetime optimal, which is unique sindet, A) is. O

4 Classic PRE vs. Speculative PRE

In [26], we formulated speculative PRE as a maximum flow pobIThis work shows
that classic PRE is also a maximum flow problem. We recogniseddiately that the
fundamental difference between the two optimisationsdidg in Step 2 of MIN-PRE.
In the case of speculative PRE, we will compute partial dizbility rather than full
anticipatability. As a result, two seemingly different PRE&blems are unified.

We compare and contrast classic and speculative PRE by Egjouges 1 and 3.
In Figure 3(a), our example CFG is annotated with two different edge profiles. Fig-
ures 3(b) and 3(c) depict (identically) the flow netwakL™ obtained by applying
MIN-PRE to G except that partial anticipatability is computed in itsgs8 Compared
to G, in Figure 1(d) in classic PRE7SP™ has two more edges$3, 7) and(7, 8).

The difference between classic and speculative PRE ttassiiato the structural
difference betweety,,,, andG;Pre, from whichG,, andGSL™ are derived. Lemma 4
that is valid forG,,,,, in classic PRE is not valid fo&P*e in speculative PRE. For ex-
ample, block 8 inGEE™ given in Figure 3(b) or 3(c) is one such a counterexample node
As aresultGSE™ is generally an arbitrary flow network, implying that spextivie PRE
needs to be solved optimally using a min-cut algorithm. Ildithoh, speculative PRE is
profile-sensitive. Different execution profiles can resullifferent optimal transforma-
tions as illustrated in Figures 3(b) and 3(c). In both casely, the execution frequencies
on edgeg7,8) and(7,9) are different. Note that the solution shown in Figure 3(b) is
the same as the one found in classic PRE (Figure 1(d)). lruiggée PRE, the benefit
of an optimal transformation depends on the accuracy ofribiipg information used.
More computations may be evaluated if the profiling inforioratised is completely in-
accurate. On the other hand, classic PRE is profile-indegrerachd thus conservative.
Never will more computations be evaluated in the transfaroezle. Due to Lemma 4,
different profiles always result in the same optimal transiation, as implied in Theo-
rem 1. The reader can verify that MIN-PRE will return exat¢tig same minimum cut
in Figure 1(d) for the two execution profiles given in Figu(e)3

5 SIM-PRE: A SmpleMincut-M otivated Algorithm

Due to the special structure 6f,,,,,, and consequently,, as identified in Lemma 4,
we can find the unique minimum cét1(C,) = Cits 9 CT™ = (4, 4) found in

Step 6 of MIN-PRE by solving one data-flow problem. Based oNNPRE, we have
developed a simple and efficient algorithm, called SIM-PIR& given in Figure 4, for
classic PRE by solving four data-flow problems. Steps 1 anen2am the same. In

(a) G annotated with two (b) Lifetime optimal solution | (c) Lifetime optimal solution
edge profiled¥; andW» wrt edge profildl; on G2 | wrt edge profileiV, on GEE™°

Fig. 3. Profile-sensitivity of speculative PRE. In (a), the CFG frBigure 1(a) is annotated with
two different edge profiles. If an edge is labelleddyi; (e) = Wa(e) = z. If an edge label is
<, Wi(e) = z andW>(e) = y. The optimal solutions foi/; andW> are given in (b) and (c).

Step 3, we solve a data-flow problem@hbut the problem can be understood as one
of computing global availability on the optimally transfoed graph(Gop¢, of G. The
two global properties7 G-AVAILIN,, and7 G-AVAILOUT,,, are defined for the entry
and exit of every block in Gop¢. 7G-AVAILOUT,, is computed in the normal manner.
In the case off G-AVAILIN,,, an expression is available on entry to block in Gopt

if it is already available irG. In addition, ife is available along some incoming edges
of blockn but not along some othe(s:, n) in Gopt and ife is (fully) anticipatable on
entry ton in G, then(m,n) € Ci'* must be an insertion edge. After = e has been
made on all these insertion edg&s7-AVAILIN,, = truewill hold. Hence, we have:

UE-REDUND,, = 7G-AVAILIN,, (7

which leads directly to:

Cirs = {(m,n) € E | TG-AVAILOUT,, A TG-AVAILIN,, }
Ci™ = Unenantioc, sUereDURD,, 1(m>1) € B | m € predG,n)}

To defineCOPY, we do not use the “live variable analysis” given in Step 7 of
MIN-PRE. Instead, we solve a different data-flow problemjclilis simpler for two
reasons. First, we do not need to compute the predipate) € C4 on flow edges. Sec-
ond, the meet operator will use fewer bit-vector operatihias before. This problem
can be understood as one of computing partial anticipaafmt an expression on the

(8)

(1) Compute global availability o6y
(2) Compute global anticipatability of:
(3) Compute global availability perceived to be done on thagformed CFG:

false if n = ENTRY
TG-AVAILIN,, = {AVAILINn + ANTIN,, - Z T G-AVAILOUT,, otherwise
mepreda,n)
TG-AVAILOUT,, = COMP,, + TG-AVAILIN,, - TRANSP,,

(4) Compute a restricted form of partial anticipatability the transformed CFG:

false if n=EXIT
TG-PANTOUT,, = ¢ TG-AVAILOUT,, - Z TG-PANTIN,,, otherwise
meSUCEG,n)
TG-PANTIN,, = ANTLOC,, + 7G-PANTOUT,, - TRANSP,,

(5) Define the optimal transformation as follows:

DELETE = {n € N | ANTLOC,, A TG-AVAILIN,,}

COPY = {n € N | COMP,, A TG-PANTOUT,, A (TRANSP,, v TG-AVAILIN,,)}
INSERT = {(m,n) € E | TG-AVAILOUT,,, A TG-AVAILIN,, }

Fig. 4. A mincut-motivated algorithm, SIM-PRE, for classic PRE@Gn= (N, E, W).

transformed graphi,,; but only at the points whereis available inG,,¢. (Note that
T G-PANTIN,,, which is not used, can be true on entry to bladk ANTLOC,, = true)

Theorem 2. The transformation found by SIM-PRE is lifetime optimal.

Proof. Let LO be the transformation found by MIN-PRE, which is represeitg
DELETE, INSERT andCOPY andSIMthe transformation found by SIM-PRE, which
is represented bBRELETE g7/, INSERT g;3, andCOPY gjp,. By Lemma 4, (7) and (8)
hold. By Lemmas 5 and ®ELETE = DELETEg;,, andINSERT = INSERT g, .
By definition, 7 G-PANTOUT,, = trueiff ¢ is live on exit fromm. So7 G-PANTOUT,,

= LIVEOUT,,. Thus,COPY = COPY gj),. This means thdtO=SIM. O

6 Experimental Results

We evaluate the efficiencies of SIM-PRE and three other #lgos (denoted by LCM-
DS, LCM-DS+COPY and E-Path) in terms of the total number t¥kictor operations
performed on benchmark programs. All algorithms are imgletad in GCC 3.4.3 and
invoked to operate at its RTL (Register Transfer Languagfe) have applied the four
algorithms to all 22 C/C++/FORTRAN SPECcpu2000 benchmadmpiled on two
different platforms: Intel Xeon and SUN UltraSPARC-III. Btio architectural differ-
ences, the RTL representations on two platforms are dadlstitifferent.

LCM-DS denotes the GCC's implementation of a variant of LOMttwas de-
scribed in [9]. This algorithm assumes that the result ofxgression is always avail-
able in a distinct temporary. Therefo@QPY is not computed. Since this assumption
is not valid for RTL, GCC does a brute-force search on a CFQtoputeCOPY for

O SIM-PRE B LCM-DS OLCM-DS+COPY O E-Path

Bit-Vector Operations

s & & F & & RS S DN PSR >
LN T TR LT EELL S T LS $
§ & @ T TSP ‘”:\)Q”‘A S LE & "*,« £

Fig.5. A comparison of four algorithms on Xeon.

each expression separately. There is no way to translate traph traversal operations
into equivalent bit-vector operations. Therefore, LCM4®PY denotes the algo-
rithm formed by combining LCM-DS and the 4th data-flow anaysed in SIM-PRE
for computingCOPY. E-Path is a recent new algorithm presented in [7].

SIM-PRE, LCM-DS+COPY and E-Path each solve four data-flombfgms while
LCM-DS solves only three (as discussed above). The first tieblpms, availability
and anticipatability, are all the same. These algorithrfisddnly in how the remaining
problem(s) are formulated. The efficiency of an algorithrmisasured in terms of the
number of bit-vector operations performed by all data-flsabpems in an algorithm.

All algorithms are implemented using the bit-vector roasimprovided by GCC and
operate on the same set of PRE candidate expressions us€dyA3RE candidate
expression is always the RHS of an assignment, where the $ HSirtual register. The
RHS expressions that are constants or virtual registema@taded (since no computa-
tions are involved). So are any expressions such as cakssions with side effects.

Figure 5 gives the (normalised) bit-vector operations aamed by four algorithms
on Xeon. In LCM-DS (and LCM-DS+COPY), the data-flow equatidar computing
EARLIEST andLATER are expensive due to the excessive use of logical negatimhs a
somewhat complex equations employed. In E-Path, the exngatised in the last two
data-flow problems are more complex than those in SIM-PRpalticular, the meet
operators inEps_in; andSA_out; are more expensive to evaluate. Figure 6 gives our ex-
perimental results on UltraSPARC-III. In both computertfaans, SIM-PRE requires
fewer bit-vector operations than each of the other threerdlgns. The key reason for
SIM-PRE’s efficiency is that the equations in solving itst lwgo data-flow problems
are simpler. Since these two problems are formulated to findigue minimum cut
for a CFG, we reason positively about the two global propsnvithout using logical
negations. So the number of bit-vector operations useckageed.

7 Redated Work and Conclusions

LCM [17,19] and its extensions [8, 15] find code insertionieiby modelling the op-
timisation as a code motion transformation as suggested].ihis approach is char-
acterised by a few concepts, sucteasliest latestandisolated that are not inherent in
the PRE problem itself. Alternatively, some formulatioristassic PRE [7, 23] avoid
these concepts by identifying code insertion points diye®he driving force behind

O SIM-PRE B LCM-DS OLCM-DS+COPY O E-Path

Bit-Vector Operations
S90S A=
ONBOO=-NEO®

Fig. 6. A comparison of four algorithms on UltraSPARC-III.

the development of these different formulations has priyldaden the insatiable desire
to find a good conceptual basis upon which an optimal forrianaif classic PRE can
be easily developed, understood and reasoned about. Hourea# existing formula-
tions of classic PRE, data-flow equations are still clevbdyad hocly designed. Their
optimality is usually not obvious to their users and theaqis tedious and non-intuitive
since the proofs have always been conducted at the low Iévedlividual paths. This
work provides a common high-level conceptual basis uporhvan optimal formula-
tion of PRE can be developed and proved. All optimal alganghmust find one way or
another the unique minimum cut on a flow netwafk, derived from a CFG.

Classic PRE has been extended to perform other importamtisgtions, including
strength reduction [8, 12, 16, 18], global value numberBigljve-range determination
[21], code size reduction [24], redundant load/store elation [21] and data specula-
tion [20]. Its scope has also been extended by means of cettacriring [2].

The earliest papers on speculative PRE can be found in [11Th&re are three
computationally optimal algorithms for speculative PRE4[125]. Later we also devel-
oped a lifetime optimal algorithm [26]. This work shows tlhath seemingly different
problems are inherently related and can be unified under axmmeconceptual basis.

PRE is an important optimisation in optimising compilersl atso serves as a clas-
sic classroom example for iterative and worklist data-flovalgsis. The results and
insights presented in this work are expected to be valuatijeth settings.

References

1. R. Bodik. Path-Sensitive Value-Flow Optimizations of PrograrReD thesis, University of
Pittsburgh, 1999.

2. R. Bodik, R. Gupta, and M. L. Soffa. Complete removal ofuredbnt computations. In
Proceedings of the ACM SIGPLAN '98 Conference on Programrmanguage Design and
Implementationpages 1-14, 1998.

3. P. Briggs and K. D. Cooper. Effective partial redundariayieation. InProceedings of the
ACM SIGPLAN '94 Conference on Programming Language Desigh lenplementation
pages 159-170, 1994.

4. Q. Cai and J. Xue. Optimal and efficient speculation-bgmetial redundancy elimination.
In 1st IEEE/ACM International Symposium on Code Generaticth @ptimization pages
91-104, 2003.

5. T. H. Cormen, C. E. Leiserson, and R. L. Rivebttroduction to Algorithms Cambridge,
Mass.: MIT Press, 1990.

10.
. R. Gupta, D. A. Berson, and J. Z. Fang. Path profile guidgetab redundancy elimina-
12.
13.
14,
15.

16.

17.

18.
19.

20.

21.
22.
23.

24.

25.

26.

D. M. Dhamdhere. A fast algorithm for code movement opgation. SIGPLAN Not.
23(10):172-180, 1988.

. D. M. Dhamdhere. E-patpre: partial redundancy elimination made eaSyGPLAN Not.

37(8):53-65, 2002.

. V. M. Dhaneshwar and D. M. Dhamdhere. Strength reductidarge expressionslournal

of Programming Language$8:95-120, 1995.

. K.-H. Drechsler and M. P. Stadel. A variation on Knoopttriig, and Steffen’s lazy code

motion. SIGPLAN Notices28(5):29-38, 1993.
L. R. Ford and D. R. Fulkersofrlows in NetworksPrinceton University Press, 1962.

tion using speculation. IRroceedings of the 1998 International Conference on Coerput
Languagespages 230-239, 1998.

M. Hailperin. Cost-optimal code motiolACM Transactions on Programming Languages
and System20(6):1297 — 1322, 1998.

R. Horspool and H. Ho. Partial redundancy eliminatiomedr by a cost-benefit analysis.
In 8th Israeli Conference on Computer System and SoftwarenEaghg pages 111-118,
1997.

T. C. Hu.Integer Programming and Network Flowaddison-Wesley, 1970.

R. Kennedy, S. Chan, S.-M. Liu, R. Lo, and P. Tu. Partidurelancy elimination in SSA
form. ACM Transactions on Programming Languages and Syst2h{3):627-676, 1999.
R. Kennedy, F. C. Chow, P. Dahl, S.-M. Liu, R. Lo, and Me#&th. Strength reduction via
SSAPRE. InProceedings of the 7th International Conference on Comilienstruction
pages 144-158, London, UK, 1998. Springer-Verlag.

J. Knoop, O. Rithing, and B. Steffen. Lazy code motion. Pioceedings of the ACM
SIGPLAN '92 Conference on Programming Language Design amgldmentationpages
224-234,1992.

J. Knoop, O. Rithing, and B. Steffen. Lazy strength cédo. Journal of Programming
Languages1(1):71 —91, 1993.

J. Knoop, O. Rithing, and B. Steffen. Optimal code mmtibheory and practice ACM
Trans. Program. Lang. Systl6(4):1117-1155, 1994.

J. Lin, T. Chen, W.-C. Hsu, P.-C. Yew, R. D.-C. Ju, T.-FaN@nd S. Chan. A compiler
framework for speculative analysis and optimizations. Phoceedings of the ACM SIG-
PLAN '03 Conference on Programming Language Design anddmphtationpages 289—
299, 2003.

R. Lo, F. Chow, R. Kennedy, S.-M. Liu, and P. Tu. Registammption by sparse partial
redundancy elimination of loads and stor8GPLAN Not.33(5):26—-37, 1998.

E. Morel and C. Renvoise. Global optimization by supgies of partial redundancies.
Commun. ACM22(2):96-103, 1979.

V. K. Paleri, Y. N. Srikant, and P. Shankar. A simple aldpon for partial redundancy elimi-
nation. SIGPLAN Not.33(12):35-43, 1998.

O. Ruthing, J. Knoop, and B. Steffen. Sparse code motiorConference Record of the
27th Annual ACM SIGPLAN-SIGACT Symposium on PrinciplesagfrBmming Languages
(Boston, Massachuseltpages 170 — 183. ACM, New York, 2000.

B. Scholz, R. N. Horspool, and J. Knoop. Optimizing foaspand time usage with specu-
lative partial redundancy elimination. Proceedings of the 2004 ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embe8gsttmspages 221-230,
2004.

J. Xue and Q. Cai. Profile-guided partial redundancyiehtion using control speculation: a
lifetime optimal algorithm and an experimental evaluatidechnical Report UNSW-CSE-
TR-0420, School of Computer Science and Engigeering, Wsityeof New South Wales,
Jul. 2004.

