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Abstract. Speculative parallelisation represents a promising solution to speed
up sequential programs that are hard to parallelise otherwise. Prior research has
focused mainly on parallelising loops. Recursive procedures, which are also fre-
quently used in real-world applications, have attracted much less attention. More-
over, the parallel threads in prior work are statically predicted and spawned. In
this paper, we introduce a new compiler technique, calledSpeculative Paralleli-
sation of Recursive Procedures (SPRP), to exploit speculative TLP (thread-level
parallelism) in recursive procedures. SPRP combines a dynamic thread-spawning
policy and a live-in prediction mechanism in a single helperthread that executes
a distilled version of a procedure on a dedicated core. It serves to predict both
the invocation order of recursive calls and their live-ins in concert and dispatches
these calls to the other cores in a multicore system for parallel execution. To
our knowledge, SPRP is the first compiler technique to speculatively parallelise
recursive procedures this way. Compared with existing static thread prediction
techniques, dynamic thread prediction reduces the number of useless threads
spawned, and consequently, misspeculation overhead incurred. Our preliminary
results demonstrate that this technique can speedup certain recursive benchmarks
that are difficult to parallelise otherwise.

1 Introduction

Parallelisation of sequential programs has been an on-going research area. Prior work
has focused mainly on loops. Recursive procedures, which are also frequently used in
real-world applications, have attracted much less attention.

When call sites in a recursive procedure are data-independent (as in many divide-
and-conquer algorithms), techniques for their automatic parallelisation exist [20, 22,
10, 24, 21]. Such techniques have demonstrated performanceadvantages in achieving
task-level parallelism among independent calls in regularprograms and even irregular
programs when they are either augmented with dependence-related programmer anno-
tations or written in a certain programming style, e.g., component-based programming.
Also, parallel programming languages such as those discussed in [5, 4] allow a con-
cise specification of parallel algorithms on irregular data; but they rely entirely on the
domain-expert programmer to expose the parallelism by identifying the tasks that can
safely be executed in parallel. However, when dependence analysis is inconclusive and
user/programmer involvements are unavailable, the potential presence of dependences
will limit parallelism to be exploited.



Speculative multithreading (SpMT) processors [15, 18, 19,1, 13, 9] enable the com-
piler to apply speculative parallelisation to optimistically create parallel threads for a
sequential program without having to prove they are independent. The basic idea is to
speculate on the absence of certain data/control dependences to expose more specula-
tive TLP (thread-level parallelism) at the cost of small misspeculation penalties [30, 23,
3, 17, 27, 11, 18, 1, 26, 8, 25, 29]. So far research efforts have been largely devoted to ex-
tracting speculative TLP from loops. A few attempts have been made to speculatively
parallelise whole programs [12, 15, 23, 3, 11, 6, 1]; but theyare not designed to maxi-
mally exploit speculative TLP in recursive procedures. Moreover, parallel threads in all
these existing approaches are either statically predictedand spawned or automatically
extracted by hardware at procedures, loops or cache line boundaries.

Static (thread) prediction can be quite effective in parallelising loops because the ex-
ecution order of loop iterations is statically predictable(except the last one, which needs
to be control-speculated). However, this compile-time decision becomes less effective
when applied to recursive procedures. The data structure operated on by a recursive pro-
cedure can vary from input to input and can also change dynamically during program
execution. Therefore, when the dynamic call graph of a recursive procedure is specu-
lated, the invocation order of recursive call instances becomes nondeterministic and the
potential presence of speculation failures can severely limit parallelism to be exploited.

In this paper, we present a new compiler technique, calledSpeculative Parallelisa-
tion of Recursive Procedures (SPRP), to speculatively parallelise recursive procedures
for SpMT architectures. We restrict ourselves to those irregular programs that cannot
be parallelised effectively by existing techniques. Furthermore, we are particularly in-
terested in those where recursive calls are control-dependent on some runtime values
so that only a portion of their underlying data structures, which may also change at run
time, may be traversed. As a result, the invocation order of recursive calls is non-trivial
to predict accurately, even at run time.

For a given recursive procedure,SPRP will transform it into a helper thread running
on a dedicated core and a group of worker threads running on the other cores in a
SpMT multicore system. The helper thread, which is a smaller, faster version distilled
from the original procedure, serves to predict both the invocation order of recursive
calls made and their live-in values as well as to dynamicallyschedule these calls to run
as parallel worker threads. The helper thread is not constrained by correctness. Thus,
its predictions are validated whenever a worker thread has run to completion. When a
prediction goes wrong, a recovery mechanism introduced in this paper will bring the
helper thread back to the point where new predictions (for the future recursive calls)
will be made. Due to dynamic thread prediction and thread spawning,SPRP is capable
of exploiting more TLP in recursive procedures that is otherwise difficult to exploit in
other ways as validated in our experiments.

We have evaluatedSPRP using four representative irregular recursive procedures
using a cycle-accurate simulator. Our preliminary resultsare encouraging. An average
region speedup of 1.29 for recursive procedures and an average program speedup of
1.21 have been achieved by our technique on four cores. It is important to emphasise
that such programs may have to be left to run sequentially on one single core otherwise
(unless they are manually parallelised by domain experts).So this work demonstrates



the significant performance potential achievable by automatic parallelisation of hard-
to-parallelise recursive procedures, providing insightson further research in this area.

The rest of this paper is organised as follows. Section 2 reviews the related work.
Section 3 introduces the basic idea behindSPRP by a motivating example. Section 4
discusses how to construct the helper thread for a recursiveprocedure. Section 5 de-
scribes our recovery mechanism. Section 6 presents and analyses our experimental re-
sults. Section 7 concludes the paper with some future work.

2 Related Work

Helper threads [28, 14, 7, 31, 16] have been used to speculatively execute a code region
to reduce the latency of its expensive instructions. In these research efforts, a helper
thread typically serves the purposes of data prefetching orbranch predictions or both.
In this work, the helper threads used inSPRP are required to predict quite accurately
both the order of recursive calls and their live-ins in orderto reduce the misspeculation
overhead incurred and thus improve the overall parallelismachieved.

MSSP [32] runs a distilled version of a given program on a master processor to
predict the live-ins for tasks running on slave processors.Our helper threads and worker
threads used inSPRP are conceptually similar to the master and slave threads in MSSP
but are specifically developed to parallelise recursive procedures. MSSP skips recursive
procedures when constructing distilled programs. In contrast, a helper thread used in
SPRP works not only as a producer for spawning worker threads to execute recursive
calls but also as a predictor for pre-computing the live-insfor worker threads.

Some compilation techniques for SpMT architectures [12, 2,23, 3, 27, 11, 18, 15] al-
low threads to be formed at arbitrary control flow edges. In [12], threads are formed at
loop or procedure boundaries using actual profile-run execution times. PD (Program
Demultiplexing) [2] attempts to execute different procedures in a program in parallel
as long as their inputs are speculatively available. The Mitosis compiler [23] encodes
a P-slice – a piece of code to predict thread live-in values (similar to a distilled pro-
gram in MSSP and a helper thread inSPRP) – into a speculative thread. Unlike [12, 2],
thread partitioning in Mitosis is not restricted to loop or procedure boundaries. How-
ever, what differsSPRP from all these previous techniques is thatSPRP embraces
dynamic thread prediction while all these earlier techniques resort to static thread pre-
diction. Furthermore, if these earlier techniques are applied to parallelise a recursive
procedure, the invocation order of recursive calls and their required live-in values have
to be predicted separately. Therefore, speculative TLP attainable by these techniques
seems to be limited for procedures with multiple recursive call sites.

Some researchers have also proposed microarchitecture enhancements to automati-
cally extract threads from sequential programs at run time.Capsule [20] automatically
parallelises component-based programs through frequent hardware resource probing.
Thread creation is by means of self-replication, and in addition, threads are allowed
to commit in any order. Hence, Capsule is applicable only to certain applications that
can be componentised. Instead of program structures, Atlas[6] only considers memory
access instructions when partitioning threads. DMT [1] creates threads at procedure
and loop boundaries. A speculative thread is always spawnedat the return address of a



1 main(){
2 f(p, d)
3 }

4 f(Node p, Data &d){

5 doit (p, d);

6 if (p->c1)
7 f(p->left, d);
8 if (p->c2)
9 f(p->right, d);
10 }
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(a) A recursive procedure (b) Initial tree data structure (c) Actual recursion tree

Fig. 1. A recursive procedure illustrated for some particular input.

main() {
spawn f help (f work SP-W FS, p,d);
f work (p, d, f work SP, L1);

L1:
kill

}
(a) main

f help (W SP, p, d){
if (p->c1)

spawn f work(p->left, d,W SP, L2);
f help(W SP-W FS, p->left, d);

if (p->c2)
spawn f work(p->right, d,W SP, L3);
f help(W SP-W FS, p->right, d);

}

(b) Helper thread code

f work (p, d,W SP, RA) {
doit (p, d);
if (p->c1)

check (p->left, d);
L2:

if (p->c2)
check (p->right, d);

L3:
return RA;

}

W SP: frame pointer of its
activation record

W FS: frame size
RA: return address

(c) Worker thread code

1f1

2f2 3f10

4f3 5f7 6f11

8f4 9f6 11f12 12f13

14f5

10f8

21f9

(d) Predicted recursion tree

Fig. 2. Speculative parallelisation of the example in Figure 1 by the SPRP approach.

call site. When DMT is applied to a recursive procedure, a speculative thread may be
spawned to execute a recursive call too early to have its live-ins predicted accurately
and its relevant dependences speculated successfully. This is because the spawner may
later create many less speculated threads to execute some recursive calls that would
have been executed earlier when the procedure were executedsequentially.

Techniques on automatic parallelisation of recursive procedures [22, 10, 24, 21] ex-
ploit task-level parallelism (i.e., coarse-grain parallelism) in embarrassingly parallel
recursive calls. In [10], data speculation is said to be supported but for all benchmark
applications used in their experiments, recursive calls are always independent. Irregular
recursive procedures are allowed in [22] provided that all multiple recursive calls are
independent and marked as such by (dependence-related) programmer annotations.

3 The SPRP Approach

Consider an irregular procedure given in Figure 1(a) with two recursive call sites. To
make this example concrete, let us assume that the data structure operated on is a tree.
The tree initially looks like what is shown in Figure 1(b) butmay grow and shrink at run



time. Whenever a tree node is visited, the core computationsabstracted bydoit(p, d) in
line 5 are performed. This statement accesses two live-insp, a pointer to a tree node, and
d, some global data. Insidedoit(p, d), all objects pointed to byp directly or indirectly
andd may be modified. Therefore, in any recursive call,d in lines 7 and 9 may have
different values since it may be modified in the first call madein line 7. The two call
sites in lines 7 and 9 are control-dependent onp. Hence, two successive call invocations
may be control-dependent or data-dependent. Figure 1(c) gives the dynamic call graph,
known as therecursion tree, for some input. Note that not all tree nodes in Figure 1(b)
may be visited. Each node in the recursion tree represents a recursive call invocation.
The two children of a parent node are the two calls invoked directly inside the parent.
The notationxfi shown inside a call node indicates thatxfi is thei-th recursive call
applied to the tree nodex in the data structure. (This tree node may be one created at run
time!) Sequential execution imposes a total ordering of alldynamic call invocations.

Figure 2 shows the parallelised code for the example. Thehelper thread running
on a dedicated core, say, core 0, serves to predict the recursion tree and the live-ins for
each recursive call and to dispatch these calls to run as worker threads on the remaining
cores (numbered from 1) in parallel. The helper thread is a sequential program running
in its own address space with its own runtime stack. All parallel worker threads run in
a shared address space by sharing a common runtime stack (starting from f work SP).
The meanings forW SP, W FS andRA are defined in Figure 2(c) and referred to later.

The execution starts frommain (Figure 2(a)), which is spawned as the first worker
thread to execute on a core. First, thespawn instruction is executed so that the helper
thread (Figure 2(b)) is spawned to execute on its dedicated core. Second, the call
f work(p, d, f work SP, L1) (Figure 2(c)) is made to start the recursion. This first
worker thread is thehead thread. In speculative execution, the head thread is the only
non-speculative worker thread that is allowed to commit. All other currently active
worker threads are speculative. Each active worker thread represents the execution of a
recursive call and thus runs in an activation record described in Section 5. Figure 2(d)
depicts the recursion tree predicted by the helper thread (if being allowed to run alone
to completion). However, the predicted recursion tree at run time may not be like this
since it will adapt itself according to the validation outcomes from worker threads.

Figure 3 illustrates our approach by giving a snapshot of allkey activities involved
during program execution. In Figures 3(a) and (b), the head thread1f1 has commit-
ted and validated that the next call2f2 predicted by the helper thread is correct. So
2f2 becomes the new head thread. Let us look at how roll-back is performed when
a misspeculated call is detected as illustrated in Figures 3(c) – (e). In Figure 3(c), the
speculative worker thread8f4 is validating if the execution of the next call predicted for
8f4 is correct or not. The answer is negative since the next node to be visited should be
node9 rather than14 as shown in Figure 1(c). So14f5 is squashed and the helper thread
is instructed to roll back its state to spawn the next recursive call,9f6 (Figure 2(d)).

3.1 Helper Thread

In the helper thread given in Figure 2(b), the instructions abstracted bydoit(p, d) hap-
pen to be all pruned according to our construction algorithmdescribed in Section 4.
The helper thread dynamically schedules worker threads by simulating the execution
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Fig. 3. An illustration ofSPRP. An arrow linking two calls represents their caller-calleerelation.
For the helper thread, all calls are part of its predicted recursion tree. For worker threads, the
recursion tree is dynamically constructed consisting of committed threads and the head thread.

of the given recursive procedure: it spawns a new worker thread by executing aspawn
instruction whenever it reaches a call site. The helper thread is stalled if there is no free
core for a new worker thread and resumed when a free core becomes available. For each
predicted call, the predicted live-ins, the correspondingstack pointer and the return ad-
dress for the call must be communicated to its executing worker thread. These data are
passed as the arguments tof work.

3.2 Boundaries or Lifetimes of Worker Threads

The actual execution of a procedure is done by worker threads. Every call invocation has
a unique activation record. A worker threadT is executed in its own activation record
if it represents a non-leaf call. For a leaf call,T initially executes in its own activation
record and later in some of its callers. LetT.SP be the stack pointer associated with
the (current) activation record ofT . Let Thread List be the list of all committed and
currently active worker threads in increasing order of their spawn times.Thread List
is the preorder traversal of the currently predicted recursion tree. All currently active
worker threads are ordered from least to most speculative inThread List. The caller
of an active worker threadT , denotedCaller(T ), is the last threadT ′ precedingT in
Thread List such thatT.SP = T ′.SP − W FS. This means that the call executed by
T would be made directly in the call executed byT ′ (during sequential execution).

Theboundary or lifetime of a worker threadT is defined as follows. When executing
f work, T starts at its first instruction and terminates at either the first check that it
dynamically executes or thekill instruction inmain. There are three cases:

1. If p->c1 evaluates to true,T terminates at the firstcheck.



2. If p->c1 evaluates to false andp->c2 to true,T terminates at the secondcheck.
3. When both guards are false,T represents a leaf call. By executing the “return RA”

instruction in f work, T will continue to execute at the return address RA with
the activation record ofCaller(T ) being set as its current activation record. The
execution of the code ofCaller(T ) may causeT to reach the secondcheck (where
we are back to the second case) or thereturn RA instruction inCaller(T ) (where
we are back to the third case again) inf work. As a result, a sequence of return
instructions executed byT will take it to either acheck or akill instruction.
To understand conceptually where a leaf call terminates, let RA(Callerm(T )) be
the return addressRA in the activation record ofCallerm(T ) at which T will
continue its execution, whereCallerm(T ) stands form applications of the func-
tion Caller to T . Let Caller∗(T ) be Callern(T ) for some uniquen > 1 such
thatRA(Callern(T )) is either L1 (Figure 2(a)) or L2 (Figure 2(c)), andp->c2
evaluates to true whenRA(Callern(T )) = L2. If RA(Caller∗(T )) = L1, the
dynamic last instruction ofT is kill. If RA(Caller∗(T )) = L2, the dynamic last
instruction ofT is the secondcheck to be executed in the activation record of
Caller∗(T ). Consider Figures 3(c) – (e), where8f4 is assumed to be a leaf call.
ThenCaller∗(8f4) = Caller(8f4) = 4f3 andRA(4f3) = L2. So8f4 will ter-
minate after it has executed the secondcheck in the activation record of4f3.

3.3 Validations of Predicted Calls

Consider when a worker threadT has reached its dynamically last instruction. There
are two cases. In one case, the last instruction is thekill instruction. IfT is speculative,
thenT is stalled. IfT is the head thread, then the execution of the recursive procedure
has completed successfully. So the helper thread is killed.In the other case, the last
instruction ofT is acheck instruction.T will search for thesuccessor worker thread
of T , denotedSucc Call(T ), that is responsible for executing the next call to be made
after T at thecheck call site inT during sequential execution.Succ Call(T ) is the
first threadT ′ following T in Thread List such thatT.SP = T ′.SP + W FS and the
live-outs ofT are identical to the predicted live-ins used byT ′.

If Succ Call(T ) is found, all threads betweenT and Succ Call(T ) in
Thread List are squashed. IfT is speculative,T is stalled. Otherwise,T is the head
thread. Thus, the results of the validatedT ′ are committed andT ′ becomes the new
head thread. IfSucc Call(T ) is not found, all more speculative threads thanT in
Thread List are squashed. A recovery mechanism introduced in Section 5 is used to
steer the helper thread back to the right track so that the successor call can be spawned
at thecheck call site. If T is the last thread inThread List, T is stalled until either
T is squashed or a more speculative threadT ′ than T is spawned (so that the valida-
tion at T can be performed). Let us consider Figures 3(c) – (e) again under the as-
sumption thatT = 8f4 as shown in Figure 3(c) is a leaf call. Thus,Caller∗(8f4) =
Caller(8f4) = 4f3. By the time when8f4 reaches the secondcheck instruction
in the activation record of4f3, we have8f4.SP = 4f3.SP and Thread List =
{1f1, 2f2, 4f3, 8f4, 14f5}. Since14f5 is the only worker thread following8f4 and
8f4.SP = 4f3.SP = (w − 160) 6= 14f5.SP + W FS = (w − 320) + 80 as shown
in Figure 5(a), the validation performed will fail. In fact,the next node to be visited
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Fig. 4. Program dependence graph (PDG) of the procedure in Figure 1.

should be node 9 rather than 14 as is clear in Figure 1(c). Thus, 14f5 is squashed and
the helper thread is re-directed to spawn9f6 (Figure 2(d)).

3.4 Memory Dependence Speculations

Misspeculated memory dependences are handled in the normalmanner [23, 27]. A mis-
speculation is raised if a worker thread writes into a memorylocation where a more
speculative worker thread has already read from the same location. The misspeculated
worker thread is squashed and re-started. All worker threads that depend on the mis-
speculated worker thread are also re-started.

4 Construction of Helper Threads

The accuracy and the size of the helper thread affect the amount of speculative paral-
lelism SPRP can achieve but not the correctness of theSPRP execution.

The Program Dependence Graph (PDG) of a recursive procedure is used to con-
struct its helper thread. In the data dependence subgraph ofPDG, only true or flow data
dependences are included. Each edgex → y in PDG is labelled with a probability value
px→y in [0, 1]. If x → y, is a data dependence, thenpx→y means that for everyN writes
atx, onlypN reads will access the same memory/register location aty during program
execution. Ifx → y is a control dependence, thenpx→y means that for everyN execu-
tion of x, only pN will reachy. Figure 4 gives the PDG of the recursive procedure in
Figure 1. A node is numbered using the line number of its corresponding statement.

Let H be the set of instructions forming the helper thread.H is initialised with
the set of nodes in PDG that correspond to all the recursive call instructions. Next,
for every nodeu in PDG, we addu to H if ∃ v ∈ H such that (1) edgeu → v is
in PDG, and (2)pu→v > D, whereD is relatively large, ifu → v is in the data
dependence subgraph andpu→v 6 C, whereC is relatively small, ifu → v is in
the control dependence subgraph. Here,D andC are some tunable parameters. The
intention is to ignore infrequently occurring data dependences and frequently occurring
control dependences. The instructions in PDG are included in H iteratively until a pre-
defined size limit has been reached or no more nodes can be added.

The values ofD, C and the helper thread size are likely to be application-dependent.
Our experience gained in this work is that data dependences tend to be bi-modal while
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Fig. 5. Machine state when a misspeculation is detected as illustrated in Figure 3(c).

control dependences tend to be tri-modal. These parameterscan be tuned by profiling
and program analysis. In our experiments,D > 0.8 andC 6 0.6 are reasonable.

In our example, let us assumeD = 0.8 andC = 0.6. There are two call sites. So
H = {7, 9} initially. Note that6 → 7 is a control dependence. So node 6 is added
to H sincep6→7 < 0.6. Node 8 is included inH for the same reason. The probabil-
ities of of all data dependences are small. Finally,H = {6, 7, 8, 9}. This leads to the
corresponding helper thread as depicted in Figure 2(b).

5 Misprediction Recovery

This section describes our recovery mechanism developed tosupport theSPRP scheme
using the motivating example with respect to Figure 3. As explained in Section 3.3,
a misprediction is raised in Figure 3(c).SPRP will then roll back the states for the
execution of both the helper thread and worker threads. Suppose that4f3, 8f4 and
14f5 run on cores 1, 2 and 3, respectively. (The helper thread runson core 0.)

5.1 Recovering the State of Worker Threads

Figure 5(a) depicts the state of the worker threads at the time when a misprediction is
detected. The activation records of all past and current head threads have already been
committed to the shared runtime stack. The activation records of all speculative ones are
buffered in on-chip memory. Let us assume that the frame sizeof an activation record is
W FS = 80. In the example, the activation records of1f1 and2f2 have been commit-
ted to the shared stack. The activation records of8f4 and14f5 are buffered since both
are speculative. The activation record of the head thread4f3 is on the shared stack. As a



Parameter Value
Fetch, Issue, Commit bandwidth 4, out-of-order issue

L1 I-Cache 16KB, 4-way, 1 cycle (hit)
L1 D-Cache 16KB, 4-way, 3 cycles (hit)

L2 Cache (Unified) 1MB, 4-way, 12 cycles (hit), 80 cycles (miss)
Local Register File 1 cycle

Spawn Overhead 5 cycles
Commit Overhead 5 cycles

Validation Overhead 15 cycles

Table 1. SpMT multicore system simulated.

leaf call,8f4 branches to L2 to execute in the activation record ofCaller∗(8f4) = 4f3
where a misprediction is detected. Hence, $SP on core 2 is pointing to the activation
record of4f3. The mispredicted thread14f5 is squashed (Figure 3(d)) and its buffered
data discarded. The helper thread is then informed to spawn9f6 according to the cur-
rent state of8f4 (Figure 3(e)), as described below.

5.2 Recovering the State of Helper Thread

As shown in Figure 5(b), the sequential execution of the helper thread is made to mirror
the parallel execution of worker threads. For every worker thread running on a core, the
execution results for the corresponding call invocation (including its activation record)
made in the helper thread are buffered in the mirrored private buffer for the core on core
0. Whenever a private buffer on a core is committed, discarded or released, the mirrored
private buffer is also committed, discarded or released in sync. Hence, the roll-back
activities performed by both the helper thread and worker threads are synchronised. In
general, the helper thread is smaller than a worker thread. For illustration purposes, we
assume the frame size of an activation record for each recursive call to f help made
in the helper thread (Figure 2(b)) is 40 (bytes). Recall thatwhen a misprediction is
detected by the worker thread8f4 running on core 2,8f4 is pointing to the second
check of f work, causing14f5 running on core 3 to be squashed. Correspondingly, (1)
the mirrored private buffer of core 3 is discarded, (2) the most up-to-date live-ins for
the successor call after8f4, which is9f6, are passed to the mirrored private buffer of
core 2, (3) $SP on core 0 is rolled back to the activation record corresponding to that of
4f3 that $SP on core 2 is pointing to, and finally, (4) the execution of the helper thread
is rolled back to point to the secondspawn instruction inf help. Therefore, the helper
thread will be restarted to spawn a worker thread9f6 with the most up-to-date live-ins.

6 Experimental Results

To evaluateSPRP, a preliminary implementation ofSPRP is built on top of GCC
4.1.1 with programmer annotations indicating which recursive procedures are to be
parallelised. All benchmarks are compiled under the optimisation level “-O2”. The gen-
erated code is simulated using a detailed execution-drivenmicroarchitectural simulator
built on top of SimpleScalar. The simulator models an SpMT quad-core system. Table 1
provides the main architectural parameters, which are similar to those used in the recent
work [23, 8]. Each core is capable of executing the Alpha ISA.One core is dedicated to
the helper thread while the other three cores are used to execute worker threads.



BenchmarkI-sizeFan-outW-sizeH-sizeH-size/W-size#Live-ins
Bh 256 1...8 131 29 0.22 7

Bisort 8192 2 57 27 0.47 5
Knapsack 15 2 447 24 0.05 6
Queens 9 1..9 2887 68 0.02 8

Table 2. Benchmarks.

In Section 6.1, we describe the benchmarks used. In Section 6.2, we present and
discuss the performance speedups achieved bySPRP. The speedups on a quad-core
system may not be huge but they are close to the ideal ones attainable. Otherwise, these
hard-to-parallelise may have to be either run sequentiallyon one single core or manually
parallelised by domain experts in a case-by-case basis. In Section 6.3, we compare
SPRP with two existing compiler techniques to demonstrate further the performance
stability and scalability ofSPRP when dealing with the same program with varying
inputs and dynamically changing runtime data structures.

6.1 Benchmarks

Four benchmarks are used in our experiments:Bh (Barnes-Hut) andBisort are taken
from the Olden benchmark suite andKnapsack andQueens are from the Cilk benchmark
suite. These benchmarks represent a wide spectrum of application domains.Bh solves
the N-body problem using hierarchical methods on a tree.Bisort implements a recursive
bitonic sorting algorithm on a tree.Knapsack is a combinatorial optimisation algorithm
that solves a one-dimensional backpack problem using branch-and-bound on an array.
Queens is modified from Cilk to find all solutions to the N-queens problem on an array.

To evaluate the performance ofSPRP, we parallelise only recursive procedures,
although selected benchmarks may have more parallelism if other program structures
such as loops are also used to form threads. Table 2 provides some statistics about the
four benchmarks. The input size (I-size) for each benchmarkis listed in Column 2.
The fan-out in Column 3 represents the range for the number ofchild calls invoked
directly in each parent call in the recursion tree of a recursive procedure. The fan-outs
of all four benchmarks are larger than 1. Therefore, these four benchmarks allow us
to evaluate the accuracy of our helper threads in predictingthe invocation order of
recursive calls made in these benchmarks. In Column 4, W-size represents the average
number of instructions executed for all committed worker threads in a benchmark (i.e.,
all recursive calls made in the sequential execution of the benchmark). In Column 5,
H-size is the average number of instructions executed by thehelper thread between two
successivespawn instructions for a benchmark. Thus, the ratio H-size/W-size listed in
Column 6 indicates how much faster the helper thread spawns recursive calls than if a
direct execution of the original procedure would do. The lower the ratio, the faster. The
ratios are very low forKnapsack andQueens. As forBh andBisort, the sizes of their
worker threads are small. It seems to be difficult to reduce the ratios any further.

In the last column, the number of live-ins for a procedure is given. This is the size
of data to be passed to a spawned thread. A maximum of 8 live-ins has been observed
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Fig. 7. Restart ratios ofSPRP.

in the four benchmarks, indicating that a latency of 5 cyclesfor spawn overhead is
adequate in our experiments, as previously demonstrated in[23, 8].

6.2 Performance and Analysis

It is important to understand the performance improvementsachieved bySPRP in the
context that the recursive procedures selected and used in our experiments are very
difficult to parallelise by existing methods. The parallelisation-inhibiting factors are
that (1) there is more than one dynamic call site (as in all four benchmarks), (2) call
sites are guarded by non-trivial expressions (as inBh,Knapsack andQueens), (3) there
are memory dependences among recursive calls (as in all fourbenchmarks), (4) the
underlying data structure may dynamically change at run time (as inBisort) and (5)
only part of the underlying data structure is traversed (as in Bh,Knapsack andQueens).

Figure 6 gives the speedups ofSPRP over sequential execution. The region speedups
(for recursive procedures only) range from 1.16 to 1.45 withan average of 1.29. The
program speedups are close to the region speedups forKnapsack andQueens. But this
is not trueBh andBisortsince the recursive procedures parallelised represent only 55%
and 46% of their total execution times, respectively.

Let us now analyse the performance results achieved bySPRP. First of all,SPRP
can achieve a good degree of speculative TLP in our benchmarks. The average num-
ber of active worker threads per cycle forBh, Bisort, Knapsack andQueens are 2.51,
2.14, 1.79 and 2.19, respectively. Whether this amount of speculative thread-level par-
allelism can translate into performance gains or not depends on how often speculated
work threads succeed and how precise the predictions made byhelper threads are.



Figure 7 shows the restart ratios for all four benchmarks. The restart ratio for a
benchmark represents the number of restarted threads over the number of committed
threads. A call that is restartedn times will be counted to have been restartedn times.
The restart ratio of a benchmark is a rough approximation of the impact of misspecula-
tions on performance. For example,Queens has the highest restart ratio, which is caused
by excessive misspeculations of memory dependences as discussed in Section 3.4. In
the parallelised recursive procedure ofQueens, every call invocation may depend on the
earlier calls made – they may not be the immediate predecessors, since every call uses
the passed-in arraya and may also update one element ofa as well as passa to the
ensuing call invocation. Hence, the performance improvement forQueens is limited.
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Fig. 8. Prediction rates ofSPRP for correctly executed recursive calls.

Figure 8 gives the prediction rate, i.e., success rate at which the recursive calls have
been correctly predicted by the helper thread for each benchmark. When constructing
the helper thread for a recursive procedure, a trade-off between the prediction rate and
the exposed speculative TLP has to be made. For example,Knapsack has the smallest
prediction rate since most branches used to prune the searching space are not included
in the helper thread. Hence,Knapsack has a very small H-size/W-size ratio as shown in
Table 2 indicating a large portion of speculative TLP has been exposed bySPRP. Any
further improvement on its prediction rate requires extra time-consuming computations
to be included in the helper thread, resulting in a significant decrease of the exposed
speculative TLP. Similarly, any further improvement on theprediction rate forBh re-
quires the entire subroutinesubdivp to be included in the helper thread. As a result,
very little speculative TLP could be exposed. On the other hand, as shown in Table 2,
the H-size/W-size ratio ofBisort is the largest due to the strong memory dependences
among the recursive calls since the underlying tree structure used byBisort may be
modified at run time. Any further reduction of its H-size/W-size ratio leads to a signifi-
cant drop of its prediction rate, resulting in a performanceslowdown. If we increase its
H-size/W-size ratio to obtain a better prediction rate, thehelper thread will be too large
to expose any speculative TLP in the benchmark.

Figure 9 shows the performance gap betweenSPRP and what can be achieved
during an ideal program execution (the H-size/W-size ratioduring the ideal execution
is negligible and the helper thread always makes precise prediction). On average, the
execution time ofSPRP is only 14% longer than the ideal execution. Hence,SPRP is
potentially effective in parallelising these irregular recursive procedures.
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Fig. 9. Normalised execution times ofSPRP with respect to ideal execution.
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Fig. 10. Normalised execution times of FC, SC andSPRP with respect toSPRP.

6.3 Dynamic Prediction and Static Prediction

Due to space limit, we useKnapsack to demonstrate the performance advantages of
SPRP over two static thread prediction and spawning schemes usedfor parallelising
recursive procedures, SC and FC. Insubroutine-continuation (SC) spawning scheme
[12, 15, 27, 1], a speculative thread is always spawned at thereturn address of a recursive
call site. In another scheme referred to asFirst Call (FC) in this paper, only the calls
made at the first call site are control-speculated to be always invoked. Note that unlike
SPRP, both FC and SC predict live-ins separately. By using a helper thread to predict
both the recursion tree and live-ins required by each predicted recursive call,SPRP
outperforms SC and FC almost always when different input data are used.

Figure 10 comparesSPRP with SC and FC in terms of five different inputs. The
search space ofKnapsack is a binary tree. We have carefully selected these inputs so that
five representative recursion trees are used at run time. Therecursion trees exercised by
Input1, Input2, Input3, Input4 and Input5 are a complete binary tree, a right-biased tree
(the left child of every tree node is a leaf), a left-biased tree (the right child of every
tree node is a leaf), a random tree (with its nodes randomly distributed) and a left-and-
right-biased tree (a combination of a left-biased subtree and a right-biased subtree),
respectively. FC is the worst performer in all cases, because it always sequentialises
all leaf nodes that contain some computations. SC performs only slightly better than
SPRP for Input2 (i.e., the right-biased tree) and similarly asSPRP for Input 1 (i.e., a
complete binary tree). In the other three cases,SPRP significantly outperforms SC. SC
is very sensitive to the shapes of recursion trees. When the underlying recursion trees
are left-biased, a large number of threads created in SC are later squashed to release
cores for less speculative threads.



By comparing with static thread prediction,SPRP can more precisely predict the
order in which recursive calls are made and thus expose more parallelism.

7 Conclusion

We have presented a new compiler technique for speculatively parallelising irregular
recursive procedures that are difficult to parallelise traditionally. These recursive pro-
cedures may sometimes be parallelised manually by domain experts in a case-by-case
basis. However, the potential presence of some dependencesin a program will cause
even the expert programmers to be conservative, limiting the parallelism to be exploited.
This works aims to make a case that these hard-to-parallelise recursive procedures can
be potentially parallelised automatically. Our preliminary results using four represen-
tative benchmarks are very encouraging. Our approach is general since it can handle
recursive procedures with code blocks appearing both before and after a call site by
spawning threads using a combination of preorder, inorder and postorder traversals.

There are a number of interesting research issues we will pursue in the future. One
is to develop good heuristics to construct faster helper threads with good prediction
accuracies. Another way to improve the prediction accuracies of helper threads is to
allow the helper thread to access more up to date memory variables. This means that
some tradeoffs must be made between the efficiency and accuracy of a helper thread.
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