Exploiting Speculative TLP in Recur sive Programs by
Dynamic Thread Prediction

Lin Gao', Lian Li !, Jingling Xue! and Tin-Fook Nga?

L University of New South Wales, Sydney, Australia
2 Microprocessor Technology Lab, Intel

Abstract. Speculative parallelisation represents a promising Esiub speed
up sequential programs that are hard to parallelise oteenfrior research has
focused mainly on parallelising loops. Recursive procesluwhich are also fre-
quently used in real-world applications, have attractedmiess attention. More-
over, the parallel threads in prior work are statically pregtl and spawned. In
this paper, we introduce a new compiler technique, céifmtul ative Paralleli-
sation of Recursive Procedures (SPRP), to exploit speculative TLP (thread-level
parallelism) in recursive procedures. SPRP combines andigrtaread-spawning
policy and a live-in prediction mechanism in a single helfpeead that executes
a distilled version of a procedure on a dedicated core. teseto predict both
the invocation order of recursive calls and their live-imngoncert and dispatches
these calls to the other cores in a multicore system for fghrakecution. To
our knowledge, SPRP is the first compiler technique to sp¢igely parallelise
recursive procedures this way. Compared with existingcstatead prediction
techniques, dynamic thread prediction reduces the numbeseless threads
spawned, and consequently, misspeculation overheadr@cu®ur preliminary
results demonstrate that this technique can speeduprcegtairsive benchmarks
that are difficult to parallelise otherwise.

1 Introduction

Parallelisation of sequential programs has been an orggesearch area. Prior work
has focused mainly on loops. Recursive procedures, whiglalao frequently used in
real-world applications, have attracted much less atianti

When call sites in a recursive procedure are data-indemeigde in many divide-
and-conquer algorithms), techniques for their automatialtelisation exist [20, 22,
10, 24,21]. Such techniques have demonstrated perfornah@ntages in achieving
task-level parallelism among independent calls in regotagrams and even irregular
programs when they are either augmented with dependetated@rogrammer anno-
tations or written in a certain programming style, e.g., poment-based programming.
Also, parallel programming languages such as those dieduss[5, 4] allow a con-
cise specification of parallel algorithms on irregular ¢déata they rely entirely on the
domain-expert programmer to expose the parallelism bytiiyérg the tasks that can
safely be executed in parallel. However, when dependeralgss is inconclusive and
user/programmer involvements are unavailable, the patgaresence of dependences
will limit parallelism to be exploited.

Speculative multithreading (SpMT) processors [15, 181193, 9] enable the com-
piler to apply speculative parallelisation to optimistigacreate parallel threads for a
sequential program without having to prove they are inddpet The basic idea is to
speculate on the absence of certain data/control depeesiemexpose more specula-
tive TLP (thread-level parallelism) at the cost of small spisculation penalties [30, 23,
3,17,27,11,18,1, 26,8, 25, 29]. So far research efforte baen largely devoted to ex-
tracting speculative TLP from loops. A few attempts haverbeade to speculatively
parallelise whole programs [12,15, 23, 3, 11, 6, 1]; but they not designed to maxi-
mally exploit speculative TLP in recursive procedures. &ter, parallel threads in all
these existing approaches are either statically predaneidspawned or automatically
extracted by hardware at procedures, loops or cache linedaoies.

Static (thread) prediction can be quite effective in patiling loops because the ex-
ecution order of loop iterations is statically predictafeecept the last one, which needs
to be control-speculated). However, this compile-timeislen becomes less effective
when applied to recursive procedures. The data structwetgd on by a recursive pro-
cedure can vary from input to input and can also change dyainiduring program
execution. Therefore, when the dynamic call graph of a s#eeiprocedure is specu-
lated, the invocation order of recursive call instance®bexs nondeterministic and the
potential presence of speculation failures can sevenaly fiarallelism to be exploited.

In this paper, we present a new compiler technique, c&8bedulative Parallelisa-
tion of Recursive Procedures (SPRP), to speculatively parallelise recursive procedures
for SpMT architectures. We restrict ourselves to thosegirta programs that cannot
be parallelised effectively by existing techniques. Fenthore, we are particularly in-
terested in those where recursive calls are control-depgrah some runtime values
so that only a portion of their underlying data structuresiclv may also change at run
time, may be traversed. As a result, the invocation ordeeaidrsive calls is non-trivial
to predict accurately, even at run time.

For a given recursive procedu&?RP will transform it into a helper thread running
on a dedicated core and a group of worker threads running emtier cores in a
SpMT multicore system. The helper thread, which is a smdHster version distilled
from the original procedure, serves to predict both the ¢ation order of recursive
calls made and their live-in values as well as to dynamicadhyedule these calls to run
as parallel worker threads. The helper thread is not cdnstidby correctness. Thus,
its predictions are validated whenever a worker thread tiaga completion. When a
prediction goes wrong, a recovery mechanism introducedigpgaper will bring the
helper thread back to the point where new predictions (ferftiiure recursive calls)
will be made. Due to dynamic thread prediction and threadep®y, SPRP is capable
of exploiting more TLP in recursive procedures that is othige difficult to exploit in
other ways as validated in our experiments.

We have evaluate8PRP using four representative irregular recursive procedures
using a cycle-accurate simulator. Our preliminary resalesencouraging. An average
region speedup of 1.29 for recursive procedures and an ggnagram speedup of
1.21 have been achieved by our technique on four cores.ripsitant to emphasise
that such programs may have to be left to run sequentiallyn@sigle core otherwise
(unless they are manually parallelised by domain expeststhis work demonstrates

the significant performance potential achievable by autmnparallelisation of hard-
to-parallelise recursive procedures, providing insigimtsurther research in this area.

The rest of this paper is organised as follows. Section Zvevithe related work.
Section 3 introduces the basic idea beh8RRP by a motivating example. Section 4
discusses how to construct the helper thread for a recupsaeedure. Section 5 de-
scribes our recovery mechanism. Section 6 presents angsasalur experimental re-
sults. Section 7 concludes the paper with some future work.

2 Redated Work

Helper threads [28, 14,7, 31, 16] have been used to spe@liagixecute a code region
to reduce the latency of its expensive instructions. Indghresearch efforts, a helper
thread typically serves the purposes of data prefetchiryamch predictions or both.
In this work, the helper threads usedSPRP are required to predict quite accurately
both the order of recursive calls and their live-ins in ordereduce the misspeculation
overhead incurred and thus improve the overall paralledishieved.

MSSP [32] runs a distilled version of a given program on a Bragtocessor to
predict the live-ins for tasks running on slave procesgous.helper threads and worker
threads used iBPRP are conceptually similar to the master and slave threadsS8R®
but are specifically developed to parallelise recursiveg@dares. MSSP skips recursive
procedures when constructing distilled programs. In @stfra helper thread used in
SPRP works not only as a producer for spawning worker threads ézete recursive
calls but also as a predictor for pre-computing the liveforavorker threads.

Some compilation techniques for SpMT architectures [12323,27,11, 18, 15] al-
low threads to be formed at arbitrary control flow edges. B [threads are formed at
loop or procedure boundaries using actual profile-run ei@edimes. PD (Program
Demultiplexing) [2] attempts to execute different procestuin a program in parallel
as long as their inputs are speculatively available. The&istcompiler [23] encodes
a P-slice — a piece of code to predict thread live-in valuesi to a distilled pro-
gram in MSSP and a helper threaddRRP) — into a speculative thread. Unlike [12, 2],
thread partitioning in Mitosis is not restricted to loop appedure boundaries. How-
ever, what differsSPRP from all these previous techniques is tt8®2RP embraces
dynamic thread prediction while all these earlier techagjresort to static thread pre-
diction. Furthermore, if these earlier techniques areiadpgb parallelise a recursive
procedure, the invocation order of recursive calls and tiegjuired live-in values have
to be predicted separately. Therefore, speculative TlL&tratble by these techniques
seems to be limited for procedures with multiple recursaégites.

Some researchers have also proposed microarchitectuma@rhents to automati-
cally extract threads from sequential programs at run tid@aasule [20] automatically
parallelises component-based programs through frequedivare resource probing.
Thread creation is by means of self-replication, and in taldi threads are allowed
to commit in any order. Hence, Capsule is applicable onlyetbain applications that
can be componentised. Instead of program structures, [Blasly considers memory
access instructions when partitioning threads. DMT [1htee threads at procedure
and loop boundaries. A speculative thread is always spaante return address of a

main(){
f(p, d)

WN P

4 f(Node p, Data &d)

() (o)

5 doit (p, d);
6 if (p- >c1)
& ey () Go) (om) (@)
8 if (p- >c2)
9 f(p- >right, d);
1o ONONONG
(a) A recursive procedurg (b) Initial tree data structure (c) Actual recursion tree
Fig. 1. A recursive procedure illustrated for some particular inpu
main() { f.work (p, d,W_SP, RA) {
spawn f_help (f_work SPW_FS, p,d); doit (p, d);
f_work (p, d, fwork_SP, L1); if (p- >c1)
L check (p- >left, d);
kill L2:
. if (p->c2)
(a) main check (p- >right, d);
L3:
f-help (W_SP, p, d){ return RA;
if (p- >c1) }
spawn f_work(p- >left, d, W_SP, L2);
~ f_help(W_SP-W_FS, p- >left, d); W_SP: frame pointer of its
if (p- >c2) activation record
spawn f_work(p- >right, d, W_SP, L3); W_FS: frame size
f_help(W_SP-W_FS, p- >right, d); RA: return address
(b) Helper thread code (c) Worker thread code (d) Predicted recursion tree

Fig. 2. Speculative parallelisation of the example in Figure 1 ®/SRRP approach.

call site. When DMT is applied to a recursive procedure, &usjative thread may be
spawned to execute a recursive call too early to have itsitiggredicted accurately
and its relevant dependences speculated successfullyisiiecause the spawner may
later create many less speculated threads to execute seomsive calls that would
have been executed earlier when the procedure were exesadgadntially.

Techniques on automatic parallelisation of recursive @doces [22, 10, 24, 21] ex-
ploit task-level parallelism (i.e., coarse-grain paf&ha) in embarrassingly parallel
recursive calls. In [10], data speculation is said to be suep but for all benchmark
applications used in their experiments, recursive callabways independent. Irregular
recursive procedures are allowed in [22] provided that alltiple recursive calls are
independent and marked as such by (dependence-relatgddpnmer annotations.

3 The SPRP Approach

Consider an irregular procedure given in Figure 1(a) with tecursive call sites. To
make this example concrete, let us assume that the datéustreperated on is a tree.
The tree initially looks like what is shown in Figure 1(b) lm&y grow and shrink at run

time. Whenever a tree node is visited, the core computatibasacted byloit(p, d) in
line 5 are performed. This statement accesses two livg;impointer to a tree node, and
d, some global data. Insid#oit(p, d), all objects pointed to by directly or indirectly
andd may be modified. Therefore, in any recursive cdlin lines 7 and 9 may have
different values since it may be modified in the first call madéne 7. The two call
sites in lines 7 and 9 are control-dependenpodence, two successive call invocations
may be control-dependent or data-dependent. Figure Me$ tie dynamic call graph,
known as theecursion tree, for some input. Note that not all tree nodes in Figure 1(b)
may be visited. Each node in the recursion tree represemisuasive call invocation.
The two children of a parent node are the two calls invokeedadly inside the parent.
The notationz fi shown inside a call node indicates thati is thei-th recursive call
applied to the tree nodein the data structure. (This tree node may be one created at ru
time!) Sequential execution imposes a total ordering ofiatlamic call invocations.
Figure 2 shows the parallelised code for the example. fidhger thread running
on a dedicated core, say, core 0, serves to predict the fecurse and the live-ins for
each recursive call and to dispatch these calls to run asavtitkeads on the remaining
cores (numbered from 1) in parallel. The helper thread igjaesstial program running
in its own address space with its own runtime stack. All patalorker threads run in
a shared address space by sharing a common runtime statik¢staom f_work_SP).
The meanings fowW_SP, W_FS andRA are defined in Figure 2(c) and referred to later.
The execution starts fromain (Figure 2(a)), which is spawned as the first worker
thread to execute on a core. First, 8gawn instruction is executed so that the helper
thread (Figure 2(b)) is spawned to execute on its dedicabed. Second, the call
f_work(p, d, f-work_SP, L1) (Figure 2(c)) is made to start the recursion. This first
worker thread is théead thread. In speculative execution, the head thread is the onl
non-speculative worker thread that is allowed to commit. gther currently active
worker threads are speculative. Each active worker threjaigesents the execution of a
recursive call and thus runs in an activation record deedrib Section 5. Figure 2(d)
depicts the recursion tree predicted by the helper thrddnifig allowed to run alone
to completion). However, the predicted recursion tree attime may not be like this
since it will adapt itself according to the validation outoes from worker threads.
Figure 3 illustrates our approach by giving a snapshot dfaflactivities involved
during program execution. In Figures 3(a) and (b), the hbaehtll f1 has commit-
ted and validated that the next calf2 predicted by the helper thread is correct. So
2f2 becomes the new head thread. Let us look at how roll-backrieneed when
a misspeculated call is detected as illustrated in Figufes-3(e). In Figure 3(c), the
speculative worker threa)f 4 is validating if the execution of the next call predicted for
8 f4 is correct or not. The answer is negative since the next rmbe visited should be
node9 rather thari4 as shown in Figure 1(c). Sal 5 is squashed and the helper thread
is instructed to roll back its state to spawn the next regarsall,9 f6 (Figure 2(d)).

3.1 Helper Thread

In the helper thread given in Figure 2(b), the instructiobpsteacted bydoit(p, d) hap-
pen to be all pruned according to our construction algorittescribed in Section 4.
The helper thread dynamically schedules worker threadsnbylating the execution

Time

8=

-
=g

=]
SE

[

5 0

g5
~ T
S
2.5
2=
5=

=1

o)
im
__% ________

g5
-

= = Ocommitted
.21—4

28

§E' Dhcad
o2
= =

S ©

2%
:C)E check

[aa) squash

(@ () © (C) (©

Fig. 3. Anillustration of SPRP. An arrow linking two calls represents their caller-caltekation.
For the helper thread, all calls are part of its predictedingion tree. For worker threads, the
recursion tree is dynamically constructed consisting oficitted threads and the head thread.

of the given recursive procedure: it spawns a new workeatht®/ executing apawn
instruction whenever it reaches a call site. The helpegathig stalled if there is no free
core for a new worker thread and resumed when a free core lescavailable. For each
predicted call, the predicted live-ins, the correspondiagk pointer and the return ad-
dress for the call must be communicated to its executing &rdtikead. These data are
passed as the argumentd twork.

3.2 Boundariesor Lifetimesof Worker Threads

The actual execution of a procedure is done by worker thr&aasy call invocation has
a unique activation record. A worker thre@ds executed in its own activation record
if it represents a non-leaf call. For a leaf cdll,nitially executes in its own activation
record and later in some of its callers. BtS P be the stack pointer associated with
the (current) activation record df. Let Thread_List be the list of all committed and
currently active worker threads in increasing order ofrtlspawn timesThread_List
is the preorder traversal of the currently predicted réourree. All currently active
worker threads are ordered from least to most speculatiidniead_List. The caller
of an active worker thread, denotedCaller(T), is the last thread” precedingl in
Thread_List such thafl.SP = T’.SP — W_FS. This means that the call executed by
T would be made directly in the call executed’BYy(during sequential execution).
Theboundary or lifetime of a worker thread” is defined as follows. When executing
f_work, T' starts at its first instruction and terminates at either tret ¢heck that it
dynamically executes or thkill instruction inmain. There are three cases:

1. If p- >cl evaluates to tru€l terminates at the firgtheck.

2. If p- >cl evaluates to false armgt >c2 to true,T" terminates at the secorteck.

3. When both guards are falsérepresents a leaf call. By executing thetirn RA”
instruction inf_work, 7" will continue to execute at the return address RA with
the activation record o€aller(7T") being set as its current activation record. The
execution of the code @aller(7') may causd’ to reach the secontheck (where
we are back to the second case) origeirn RA instruction inCaller(T") (where
we are back to the third case again)fimork. As a result, a sequence of return
instructions executed B will take it to either acheck or akill instruction.

To understand conceptually where a leaf call terminatésJé(Caller™ (7)) be
the return addresRA in the activation record o€aller™(T") at which T" will
continue its execution, whei@aller™(7T') stands forn applications of the func-
tion Caller to T. Let Caller*(T") be Caller*(T") for some unique: > 1 such
that R A(Caller™(T)) is either L1 (Figure 2(a)) or L2 (Figure 2(c)), apd >c2
evaluates to true wheR.A(Caller" (7)) = L2. If RA(Caller*(T)) = L1, the
dynamic last instruction of is kill. If RA(Caller*(T")) = L2, the dynamic last
instruction of 7" is the secondheck to be executed in the activation record of
Caller*(T"). Consider Figures 3(c) — (e), whes#¢4 is assumed to be a leaf call.
ThenCaller (8 f4) = Caller(8f4) = 4f3 andRA(4f3) = L2. So8f4 will ter-
minate after it has executed the secahdck in the activation record of f 3.

3.3 Validationsof Predicted Calls

Consider when a worker thre&d has reached its dynamically last instruction. There
are two cases. In one case, the last instruction igithstruction. IfT" is speculative,
thenT is stalled. IfT" is the head thread, then the execution of the recursive guree
has completed successfully. So the helper thread is killethe other case, the last
instruction ofT" is acheck instruction.T" will search for thesuccessor worker thread
of T', denotedSucc_Call(T"), that is responsible for executing the next call to be made
after T at thecheck call site inT" during sequential executioBucc_Call(T) is the
first threadI” following T" in Thread_List such thatl.SP = T’.SP + W_FS and the
live-outs of T are identical to the predicted live-ins used By

If Succ_Call(T) is found, all threads betweel” and Succ_Call(T) in
Thread_List are squashed. If' is speculativey" is stalled. Otherwisel" is the head
thread. Thus, the results of the validatBtlare committed and” becomes the new
head thread. IfSucc_Call(T) is not found, all more speculative threads tHarin
Thread_List are squashed. A recovery mechanism introduced in SectisruSed to
steer the helper thread back to the right track so that theessor call can be spawned
at thecheck call site. If T' is the last thread iThread_List, T" is stalled until either
T is squashed or a more speculative thréadhan T is spawned (so that the valida-
tion atT can be performed). Let us consider Figures 3(c) — (e) agaileruthe as-
sumption thafl” = 84 as shown in Figure 3(c) is a leaf call. Th@aller*(8f4) =
Caller(8f4) = 4f3. By the time wherg8f4 reaches the secorzheck instruction
in the activation record o f3, we have8f4.SP = 4f3.SP and Thread_List =
{1f1,2f2,4f3,8f4,14f5}. Sinceld f5 is the only worker thread following f4 and
8f4.SP = 4f3.5P = (w — 160) # 14f5.SP + W_FS = (w — 320) + 80 as shown
in Figure 5(a), the validation performed will fail. In fadhe next node to be visited

(a) Control dependence subgraph (b) Data dependence subgraph

Fig. 4. Program dependence graph (PDG) of the procedure in Figure 1.

should be node 9 rather than 14 as is clear in Figure 1(c)., THy$ is squashed and
the helper thread is re-directed to spa@yit (Figure 2(d)).

3.4 Memory Dependence Speculations

Misspeculated memory dependences are handled in the novamaler [23, 27]. A mis-
speculation is raised if a worker thread writes into a meniocation where a more
speculative worker thread has already read from the sanatidoc The misspeculated
worker thread is squashed and re-started. All worker treré¢laat depend on the mis-
speculated worker thread are also re-started.

4 Construction of Helper Threads

The accuracy and the size of the helper thread affect the anodspeculative paral-
lelism SPRP can achieve but not the correctness of 8RRP execution.

The Program Dependence Graph (PDG) of a recursive procedure is used to con-
struct its helper thread. In the data dependence subgraph@f only true or flow data
dependences are included. Each edge y in PDG is labelled with a probability value
Ps—y iN [0, 1]. If z — y, is a data dependence, then..,, means that for everdy writes
atx, only pN reads will access the same memory/register locatigrdatring program
execution. Ifr — y is a control dependence, thep ., means that for everyy execu-
tion of x, only p N will reachy. Figure 4 gives the PDG of the recursive procedure in
Figure 1. A node is numbered using the line number of its spwading statement.

Let H be the set of instructions forming the helper threadis initialised with
the set of nodes in PDG that correspond to all the recursilténstructions. Next,
for every nodeu in PDG, we addu to H if 3 v € H such that (1) edge — v is
in PDG, and (2p.—. > D, whereD is relatively large, ifu — v is in the data
dependence subgraph apg,, < C, where(C is relatively small, ifu — v is in
the control dependence subgraph. Hdpeand C are some tunable parameters. The
intention is to ignore infrequently occurring data deperwies and frequently occurring
control dependences. The instructions in PDG are includéditeratively until a pre-
defined size limit has been reached or no more nodes can bd.adde

The values oD, C and the helper thread size are likely to be application-déeet.
Our experience gained in this work is that data dependeeroéstd be bi-modal while

Core 1 Core 2 Core 3 Shared Worker Thread
Stack

Private Buffer Private Buffer Private Buffer 11 w
w-320 w-400 w-80
84 | 1415 || | 22
w-240 w-320 W-160
4f3
w-240
$sp $sp ‘ w-160 ‘ $sp ‘ w-320 ‘

(a) State of worker threads

Core 0 Helper Thread
Stack

Mirrored Private Mirrored Private Mirrored Private
buffer of Core 1 buffer of Core 2 buffer of Core 3

1¢1 |
H-120 H-160 H-200
\ \ 8f4 \ 14f5\ 2fp | HH40
H-80 H-120 H-160
4f3 | H80
$s H-120
P

(b) State of helper thread

Fig. 5. Machine state when a misspeculation is detected as iltastia Figure 3(c).

control dependences tend to be tri-modal. These parantzerise tuned by profiling
and program analysis. In our experimeridsz 0.8 andC' < 0.6 are reasonable.

In our example, let us assunie¢ = 0.8 andC' = 0.6. There are two call sites. So
H = {7,9} initially. Note that6 — 7 is a control dependence. So node 6 is added
to H sincepg_.7 < 0.6. Node 8 is included ir{ for the same reason. The probabil-
ities of of all data dependences are small. Findlly= {6, 7,8,9}. This leads to the
corresponding helper thread as depicted in Figure 2(b).

5 Misprediction Recovery

This section describes our recovery mechanism developrgmort theSPRP scheme
using the motivating example with respect to Figure 3. Aslarpd in Section 3.3,
a misprediction is raised in Figure 3(GPRP will then roll back the states for the
execution of both the helper thread and worker threads. ðatd /3, 8 f4 and
14f5run on cores 1, 2 and 3, respectively. (The helper threadonmsre 0.)

5.1 Recovering the State of Worker Threads

Figure 5(a) depicts the state of the worker threads at the wimen a misprediction is
detected. The activation records of all past and currerd te@ads have already been
committed to the shared runtime stack. The activation dscof all speculative ones are
buffered in on-chip memory. Let us assume that the frameddiaa activation record is
W_FS = 80. In the example, the activation recordslgfl and2 f2 have been commit-
ted to the shared stack. The activation record$fafand14 f5 are buffered since both
are speculative. The activation record of the head thitg&ds on the shared stack. As a

| Par ameter I Value

Fetch, Issue, Commit bandwidth 4, out-of-order issue
L1 I-Cache 16KB, 4-way, 1 cycle (hit)
L1 D-Cache 16KB, 4-way, 3 cycles (hit)
L2 Cache (Unified) 1MB, 4-way, 12 cycles (hit), 80 cycles (miss)
Local Register File 1 cycle
Spawn Overhead 5 cycles

Commit Overhead 5 cycles

Validation Overhead 15 cycles

Table 1. SpMT multicore system simulated.

leaf call,8 f4 branches to L2 to execute in the activation recor@afler* (8 f4) = 4f3
where a misprediction is detected. Hence, $SP on core 2 igipgito the activation
record of4 f3. The mispredicted thread! f5 is squashed (Figure 3(d)) and its buffered
data discarded. The helper thread is then informed to s@giraccording to the cur-
rent state o8 f4 (Figure 3(e)), as described below.

5.2 Recoveringthe State of Helper Thread

As shown in Figure 5(b), the sequential execution of thedralread is made to mirror
the parallel execution of worker threads. For every workegad running on a core, the
execution results for the corresponding call invocatioel(iding its activation record)
made in the helper thread are buffered in the mirrored pibatfer for the core on core
0. Whenever a private buffer on a core is committed, dischotleeleased, the mirrored
private buffer is also committed, discarded or releasedyit sHence, the roll-back
activities performed by both the helper thread and workezatis are synchronised. In
general, the helper thread is smaller than a worker threadll&stration purposes, we
assume the frame size of an activation record for each rigeutall to f_help made

in the helper thread (Figure 2(b)) is 40 (bytes). Recall thlhén a misprediction is
detected by the worker thre&d4 running on core 28 f4 is pointing to the second
check of f_work, causingl4 f5 running on core 3 to be squashed. Correspondingly, (1)
the mirrored private buffer of core 3 is discarded, (2) thesmup-to-date live-ins for
the successor call aft8f4, which is9f6, are passed to the mirrored private buffer of
core 2, (3) $SP on core 0 is rolled back to the activation @corresponding to that of
413 that $SP on core 2 is pointing to, and finally, (4) the executibthe helper thread
is rolled back to point to the secosgawn instruction inf_help. Therefore, the helper
thread will be restarted to spawn a worker thr@gd with the most up-to-date live-ins.

6 Experimental Results

To evaluateSPRP, a preliminary implementation d8PRP is built on top of GCC
4.1.1 with programmer annotations indicating which reimergrocedures are to be
parallelised. All benchmarks are compiled under the ogt@tion level “-O2”. The gen-
erated code is simulated using a detailed execution-dmieroarchitectural simulator
built on top of SimpleScalar. The simulator models an SpMadjaore system. Table 1
provides the main architectural parameters, which ardasing those used in the recent
work [23, 8]. Each core is capable of executing the Alpha ISAe core is dedicated to
the helper thread while the other three cores are used taexeorker threads.

[BenchmarKI-sizeg[Fan-oufW-sizgH-sizgH-size/W-siz§#Live-ing

Bh 256| 1.8 131 | 29 0.22 7
Bisort (8192 2 57 27 0.47 5
Knapsack|| 15 2 447 | 24 0.05 6
Queens || 9 1.9 | 2887| 68 0.02 8

Table 2. Benchmarks.

In Section 6.1, we describe the benchmarks used. In Secthym@ present and
discuss the performance speedups achieve8RiRP. The speedups on a quad-core
system may not be huge but they are close to the ideal onésaditia Otherwise, these
hard-to-parallelise may have to be either run sequentialigne single core or manually
parallelised by domain experts in a case-by-case basisedtidh 6.3, we compare
SPRP with two existing compiler techniques to demonstrate feirtthe performance
stability and scalability oSPRP when dealing with the same program with varying
inputs and dynamically changing runtime data structures.

6.1 Benchmarks

Four benchmarks are used in our experimeBts(Barnes-Hut) andisort are taken
from the Olden benchmark suite akidapsack anQueens are from the Cilk benchmark
suite. These benchmarks represent a wide spectrum of appticdomainsBh solves
the N-body problem using hierarchical methods on a Besart implements a recursive
bitonic sorting algorithm on a tre&napsack is a combinatorial optimisation algorithm
that solves a one-dimensional backpack problem using hrand-bound on an array.
Queens is modified from Cilk to find all solutions to the N-queproblem on an array.

To evaluate the performance 8PRP, we parallelise only recursive procedures,
although selected benchmarks may have more parallelisthéfr program structures
such as loops are also used to form threads. Table 2 prowides statistics about the
four benchmarks. The input size (I-size) for each benchnmatisted in Column 2.
The fan-out in Column 3 represents the range for the numbehitd calls invoked
directly in each parent call in the recursion tree of a ragargrocedure. The fan-outs
of all four benchmarks are larger than 1. Therefore, these ll@enchmarks allow us
to evaluate the accuracy of our helper threads in predidtieginvocation order of
recursive calls made in these benchmarks. In Column 4, W/siaresents the average
number of instructions executed for all committed workee#us in a benchmark (i.e.,
all recursive calls made in the sequential execution of #rechmark). In Column 5,
H-size is the average number of instructions executed blyehger thread between two
successivepawn instructions for a benchmark. Thus, the ratio H-size/Vé $igted in
Column 6 indicates how much faster the helper thread spasmssive calls than if a
direct execution of the original procedure would do. Thedothe ratio, the faster. The
ratios are very low foKnapsack an@ueens. As folBh andBisort, the sizes of their
worker threads are small. It seems to be difficult to redueedtios any further.

In the last column, the number of live-ins for a procedureivglg. This is the size
of data to be passed to a spawned thread. A maximum of 8 lsvéds been observed

O Region M Benchmark

15

144

124

hw ko

1 T T T
Bh

Bisort Knapsack Queens GeoMean

p

Speed

Fig. 6. Speedups oBPRP over sequential execution.

300%

Restart Ratio
n
=3
o
N

=
=]
N
B

0% -
Bh Bisort Knapsack Queens GeoMean

Fig. 7. Restart ratios c6PRP.

in the four benchmarks, indicating that a latency of 5 cyét@sspawn overhead is
adequate in our experiments, as previously demonstra{@dj8].

6.2 Performanceand Analysis

It is important to understand the performance improvemacigeved bySPRP in the
context that the recursive procedures selected and usedriexperiments are very
difficult to parallelise by existing methods. The parafiation-inhibiting factors are
that (1) there is more than one dynamic call site (as in alf flenchmarks), (2) call
sites are guarded by non-trivial expressions (eBhipKnapsack an@Queens), (3) there
are memory dependences among recursive calls (as in albinchmarks), (4) the
underlying data structure may dynamically change at rum t{es inBisort) and (5)
only part of the underlying data structure is traversedrfd@hi Knapsack an@ueens).

Figure 6 gives the speedups3PRP over sequential execution. The region speedups
(for recursive procedures only) range from 1.16 to 1.45 withaverage of 1.29. The
program speedups are close to the region speedupdtgpsack anueens. But this
is not trueBh andBisortsince the recursive procedures parallelised reptesgy 55%
and 46% of their total execution times, respectively.

Let us now analyse the performance results achieve®RiP. First of all, SPRP
can achieve a good degree of speculative TLP in our benclem@he average num-
ber of active worker threads per cycle Bh, Bisort, Knapsack an@ueens are 2.51,
2.14,1.79 and 2.19, respectively. Whether this amount e gative thread-level par-
allelism can translate into performance gains or not dependchow often speculated
work threads succeed and how precise the predictions makelpgr threads are.

Figure 7 shows the restart ratios for all four benchmark® fEtart ratio for a
benchmark represents the number of restarted threadsteeiumber of committed
threads. A call that is restartedtimes will be counted to have been restartetimes.

The restart ratio of a benchmark is a rough approximatioh@ifrnpact of misspecula-
tions on performance. For examplgieens has the highest restart ratio, which is caused
by excessive misspeculations of memory dependences asséstin Section 3.4. In
the parallelised recursive proceduregfeens, every call invocation may depend on the
earlier calls made — they may not be the immediate predecgssioce every call uses
the passed-in arrag and may also update one elementaoés well as pasa to the
ensuing call invocation. Hence, the performance improveriee Queens is limited.

100%

80% 1

60% -
40% -
20% -
0% - T T T T
Bh

Bisort Knapsack Queens GeoMean

Prediction Rate

Fig. 8. Prediction rates 08PRP for correctly executed recursive calls.

Figure 8 gives the prediction rate, i.e., success rate attwthie recursive calls have
been correctly predicted by the helper thread for each beadh When constructing
the helper thread for a recursive procedure, a trade-offdst the prediction rate and
the exposed speculative TLP has to be made. For exakipégsack has the smallest
prediction rate since most branches used to prune the $eguspace are not included
in the helper thread. Hendénapsack has a very small H-size/W-size ratio as shown in
Table 2 indicating a large portion of speculative TLP hasimeosed bysPRP. Any
further improvement on its prediction rate requires extreetconsuming computations
to be included in the helper thread, resulting in a significietrease of the exposed
speculative TLP. Similarly, any further improvement on grediction rate foBh re-
quires the entire subroutirsubdi vp to be included in the helper thread. As a result,
very little speculative TLP could be exposed. On the othedhas shown in Table 2,
the H-size/W-size ratio dBisort is the largest due to the strong memory dependences
among the recursive calls since the underlying tree straatsed byBisort may be
modified at run time. Any further reduction of its H-size/\i¢esratio leads to a signifi-
cant drop of its prediction rate, resulting in a performasiogvdown. If we increase its
H-size/W-size ratio to obtain a better prediction rate,hbper thread will be too large
to expose any speculative TLP in the benchmark.

Figure 9 shows the performance gap betw&&RP and what can be achieved
during an ideal program execution (the H-size/W-size rdtidng the ideal execution
is negligible and the helper thread always makes precis#igiien). On average, the
execution time oBPRP is only 14% longer than the ideal execution. Her8BRP is
potentially effective in parallelising these irregulacuesive procedures.

w

I
)

BN

Normalised Execution Time

o

Bisort Knapsack Queens GeoMean

Fig. 9. Normalised execution times &PRP with respect to ideal execution.

[oFc msc mSRPP |

E 18

Normalised Execution Time
a A A
- M » o

o
©

Input1 Input2 Input3 Input4 Input5

Fig. 10. Normalised execution times of FC, SC aBBRP with respect tiSPRP.

6.3 Dynamic Prediction and Static Prediction

Due to space limit, we usknapsack to demonstrate the performance advantages of
SPRP over two static thread prediction and spawning schemes fosgzarallelising
recursive procedures, SC and FC.slibroutine-continuation (SC) spawning scheme
[12,15,27,1], a speculative thread is always spawned aetben address of a recursive
call site. In another scheme referred toRaist Call (FC) in this paper, only the calls
made at the first call site are control-speculated to be awayked. Note that unlike
SPRP, both FC and SC predict live-ins separately. By using a hielpead to predict
both the recursion tree and live-ins required by each ptedicecursive callSPRP
outperforms SC and FC almost always when different inpud ded used.

Figure 10 compareSPRP with SC and FC in terms of five different inputs. The
search space #fhapsack is a binary tree. We have carefully selected thpsgsiso that
five representative recursion trees are used at run timeretliesion trees exercised by
Inputl, Input2, Input3, Input4 and Input5 are a completabjrree, a right-biased tree
(the left child of every tree node is a leaf), a left-biasexkt(the right child of every
tree node is a leaf), a random tree (with its nodes randorstyiblited) and a left-and-
right-biased tree (a combination of a left-biased subtree @ right-biased subtree),
respectively. FC is the worst performer in all cases, bezdualways sequentialises
all leaf nodes that contain some computations. SC perfomhsgightly better than
SPRP for Input2 (i.e., the right-biased tree) and similarly2RRP for Input 1 (i.e., a
complete binary tree). In the other three caS#RP significantly outperforms SC. SC
is very sensitive to the shapes of recursion trees. Whenrtberlying recursion trees
are left-biased, a large number of threads created in SCatgedquashed to release
cores for less speculative threads.

By comparing with static thread predictioBPRP can more precisely predict the
order in which recursive calls are made and thus expose nawadiglism.

7 Conclusion

We have presented a new compiler technique for specubatpaaiallelising irregular
recursive procedures that are difficult to paralleliseitiadally. These recursive pro-
cedures may sometimes be parallelised manually by domaierexin a case-by-case
basis. However, the potential presence of some dependenagsrogram will cause
even the expert programmers to be conservative, limitiag#rallelism to be exploited.
This works aims to make a case that these hard-to-parallg@ursive procedures can
be potentially parallelised automatically. Our preliminaesults using four represen-
tative benchmarks are very encouraging. Our approach isrgksince it can handle
recursive procedures with code blocks appearing both befod after a call site by
spawning threads using a combination of preorder, inondépastorder traversals.
There are a number of interesting research issues we wibjun the future. One
is to develop good heuristics to construct faster helpegattts with good prediction
accuracies. Another way to improve the prediction accesaof helper threads is to
allow the helper thread to access more up to date memoryblesiaThis means that
some tradeoffs must be made between the efficiency and agaira helper thread.

Acknowledgement

This work is supported the Australian Research Council 6(@R0881330) and the
UNSW Engineering-International Research Collaboratioan®(PS16380).

References

1. H. Akkary and M. A. Driscoll. A dynamic multithreading pressor. InMICRO-31, pages
226-236, 1998.

2. S. Balakrishnan and G. S. Sohi. Program demultiplexiregaBlow based speculative par-
allelization of methods in sequential prograrhSCA ' 01, 2006.

3. A. Bhowmik and M. Franklin. A general compiler framewordk Epeculative multithreaded
processorslEEE Trans. Parallel Distrib. Syst., 15(8):713-724, 2004.

4. G. E. Blelloch, J. C. Hardwick, J. Sipelstein, M. Zaghal & Chatterjee. Implementation
of a portable nested data-parallel languagjdarallel Distrib. Comput., pages 4-14, 1994.

5. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leisergor. Randall, and Y. L. Zhou.
Cilk: an efficient multithreaded runtime systefPPoPP ' 95, 1995.

6. L.Codrescu andD. S. Wills. On dynamic speculative thpeatitioning and the mem-slicing
algorithm. InPACT ' 99, 1999.

7. J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y. F. Lee,llAvery, and J. P. Shen.
Speculative precomputation: long-range prefetching bhdeent loads. INSCA '01, pages
14-25, 2001.

8. Z.H.Du, C. Ch. Lim, X. F. Li, C. Yang, Q. Zhao, and T. F. NgAicost-driven compilation
framework for speculative parallelization of sequenti@igyams. InPLDI ’04, 2004.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

. M. Franklin. The Multiscalar Architecture. PhD thesis, The University of Wisconsin at

Madison, 1993.

M. Gupta, S. Mukhopadhyay, and N. Sinha. Automatic pelizhtion of recursive proce-
dures.International Journal of Parallel Programming, 28(6):537-562, 2000.

T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Mitbfogram decomposition for
thread-level speculation. IRLDI *04, 2004.

T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Spaiud thread decomposition
through empirical optimization. IRPoPP ' 07, pages 205-214, 2007.

V. Krishnan and J. Torrellas. Hardware and software eudpr speculative execution of
sequential binaries on a chip-multiprocessorl@8’ 98, pages 85-92. ACM Press, 1998.
S.W. Liao, P. H. Wang, H. Wang, G. Hoflehner, D. Lavery, dnB. Shen. Post-pass binary
adaptation for software-based speculative precomputatio PLDI '02, pages 117-128,
2002.

W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, afidriellas. Posh: a tls compiler
that exploits program structure. RPoPP '06, pages 158-167, 2006.

C. K. Luk. Tolerating memory latency through softwaoevrolled pre-execution in simul-
taneous multithreading processors.|&CA 01, pages 40-51, 2001.

P. Marcuello and A. Gonzalez. A quantitative assessiofetiread-level speculation tech-
nigues. InlPPS’ 00, 2000.

T. Ohsawa, M. Takagi, S. Kawahara, and S. MatsushiteotPapeculative multi-threading
processor architecture exploiting parallelism over a watee of granularities. IMICRO-
38, 2005.

J. Oplinger, D. Heine, and M. Lam. In search of specugatiiread-level parallelism. In
PACT 99, 1999.

P. Palatin, Y. Lhuillier, and O. Temam. Capsule: Har@nassisted parallel execution of
component-based programs.NHCRO-39, pages 247-258, 2006.

A. J. Piper.Object-oriented Divide-and-conquer for Parallel Processing. PhD thesis, Uni-
versity of Cambridge, July 1994.

L. Prechelt and S. U. HanRRgen. Efficient parallel exeoutf irregular recursive programs.
IEEE Transactions on Parallel and Distributed Systems, 2002.

C. G. Quinones, C. Madrile, J. Sanchez, P. Marcuello,@nzalez, and D. M. Tullsen. Mi-
tosis compiler: An infrastructure for speculative thrempbased on pre-computation slices.
In PLDI ’ 05, 2005.

R. Rugina and M. C. Rinard. Automatic parallelizatiomivide and conquer algorithms. In
PPoPP ' 99, pages 72—-83, 1999.

J. Y. Tsai and P. Ch. Yew. The superthreaded architecfhread pipelining with run-time
data dependence checking and control speculatioRAGT ' 99, pages 35-46, 1999.

N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, @&nD@and D. |. August. Specu-
lative decoupled software pipelining. RACT ' 07, pages 49-59, 2007.

T. N. Vijaykumar. Compiling for the Multiscalar Architecture. PhD thesis, The University
of Wisconsin at Madison, 1998.

P. H. Wang, J. D. Collins, H. Wang, D. Kim, B. Greene, K. Mag, A. B. Yunus, T. Sych,
S. F. Moore, and J. P. Shen. Helper threads via virtual rudtétding on an experimental
Itanium 2 processor-based platform.ABPLOS XI, 2004.

S. Y. Wang, X. R. Dai, K. S. Yellajyosula, A. Zhai, and P..Gew. Loop selection for
thread-level speculation. InCPC’ 05, 2005.

H. T. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Wadag hidden loop level
parallelism in sequential applications. HPCA ' 08, 2008.

C. Zilles and G. Sohi. Execution-based prediction usipeculative slices. 1hSCA '01,
pages 2-13, 2001.

C. Zilles and G. Sohi. Master/slave speculative pdizditon. In MICRO-35, 2002.

