An Incremental Points-to Analysis
with CFL-Reachability

Yi Lu!, Lei Shangl, Xinwei Xie! 2, and Jingling Xue!

! Programming Languages and Compilers Group
School of Computer Science and Engineering
University of New South Wales, Sydney, NSW 2052, Australia
{ylu, shangl, xinweix, jingling}Q@cse.unsw.edu.au
2 School of Computer Science
National University of Defence Technology, Changsha 410073, China

Abstract. Developing scalable and precise points-to analyses is increasingly im-
portant for analysing and optimising object-oriented programs where pointers are
used pervasively. An incremental analysis for a program updates the existing anal-
ysis information after program changes to avoid reanalysing it from scratch. This
can be efficiently deployed in software development environments where code
changes are often small and frequent. This paper presents an incremental ap-
proach for demand-driven context-sensitive points-to analyses based on Context-
Free Language (CFL) reachability. By tracing the CFL-reachable paths traversed
in computing points-to sets, we can precisely identify and recompute on demand
only the points-to sets affected by the program changes made. Combined with
a flexible policy for controlling the granularity of traces, our analysis achieves
significant speedups with little space overhead over reanalysis from scratch when
evaluated with a null dereferencing client using 14 Java benchmarks.

1 Introduction

Points-to analysis is a static program analysis technique to approximate the set of mem-
ory locations that may be pointed or referenced by program variables, which is crucial to
software testing, debugging, program understanding and optimisation. But performing
precise points-to analysis is an expensive activity, even for small programs. Develop-
ing scalable and precise points-to analyses is increasingly important for analysis and
optimisation of object-oriented programs where pointers are used pervasively.

Points-to analysis has been studied extensively in order to improve its scalability,
precision or tradeoffs [15, 17,33, 34], and continues to attract significant attention [10,
9,26,25,27,35,30,37,39]. The majority of the previous solutions perform a whole-
program points-to analysis to exhaustively compute points-to information for all vari-
ables in the program, which is often too resource-intensive in practice, especially for
large programs. Some recent efforts have focused on demand-driven points-to analysis
[11,26,27,37], which mostly rely on Context-Free Language (CFL) reachability [22]
to perform only the necessary work for a set of variables queried by a client rather than
a whole-program analysis to find the points-to information for all its variables.

Incremental static analysis seeks to efficiently update existing analysis information
about an evolving software system without recomputing from scratch [4], allowing the
previously computed information to be reused. Incremental analysis is especially im-
portant for large projects in a software development environment where it is necessary
to maintain a global analysis in the presence of small and frequent edits. Several so-
lutions have been proposed by using incremental elimination [3, 5], restarting iteration
[20], a combination of these two techniques [18], timestamp-based backtracing [13],
and logic program evaluation [24]. In this paper, we introduce an incremental approach
for points-to analyses based on CFL-reachability.

Many program analysis problems can be solved by transforming them into graph
reachability problems [23]. In particular, CFL-reachability is an extension of graph
reachability. To perform points-to analysis with CFL-reachability, a program is rep-
resented by a Pointer Assignment Graph (PAG), a directed graph that records pointer
flow in a program. An object is in the points-to set of a variable if there is a reachable
path between them in the PAG, which must be labelled with a string in a specified CFL.
Such points-to analysis is typically field-sensitive (by matching load/store edges on the
same field), context-sensitive (by matching entry/exit edges for the same call site) and
heap-sensitive (by distinguishing the same abstract object from different call paths).

Pointer analyses derived from a CFL-reachability formulation achieve very high
precision and are efficient for a small number of queries raised in small programs, but
they do not scale well to answer many queries for large programs. Existing solutions
address the performance issue from several directions, by using refinement [27, 28],
(whole-program) pre-analysis [36], ad hoc caching [41], and procedural summarisation
[26,25,37]. In this paper, we tackle this issue from a different angle. Our goal is to
develop an incremental technique for boosting the performance of points-to analysis by
reusing previously computed points-to sets.

In this paper, we combine incremental analysis with graph reachability to obtain
naturally a trace-based incremental mechanism for points-to analysis, which is effec-
tive and simple to implement. The key to incremental analysis lies in approximating
dependency information for analysis results. By observing that each points-to query
in a CFL-reachability-based analysis is answered by finding the CFL-reachable paths
in the PAG from the queried variable to objects, we trace the set of nodes in the tra-
versed paths that the query depends on. Upon code changes, we can precisely iden-
tify and recompute on demand only those queries whose traces may overlap with the
changes made. Such trace-based falsification minimises the impact of changes on pre-
viously computed points-to sets, avoiding unnecessarily falsifying unaffected queries to
make them reusable after code changes. Our approach can support efficiently multiple
changes with overlapping traces, since multiple changes usually exhibit locality [40].

Precise tracing is costly in space, because it potentially involves thousands of nodes
in a PAG for each query, which may render the whole incremental approach impracti-
cal, especially for answering many queries in large programs. It is therefore useful to
allow tradeoffs between time and space to be made in an incremental analysis. Based
on the observation that a large portion of the analysis is performed on Java library code,
which is less likely to be changed, we introduce a flexible policy to control the granu-
larities of traces by approximating the variable nodes with their scopes (e.g., methods,

classes, etc.). Such trace policies describe different granularity levels used for different
parts of the program; they may be specified by programmers as an input to our analysis,
or inferred adaptively based on the frequency of code changes. Typically a finer (e.g.,
variable-level) granularity may be used for the code that is more likely to be changed
frequently (e.g., for the classes being developed) to minimise falsification and recom-
putation required after code changes, while a coarser (e.g., package-level) granularity
may be used for the code that is less frequently edited (e.g., for the classes in libraries)
to minimise the space required for storing the traces as required. In our experiments, we
find that only a small part of code needs to use finer granularities. By using the appro-
priate granularities for different parts of the programs, we are able to maintain sufficient
dependency information for precise falsification with little memory overhead.

In summary, this paper makes the following contributions:

— We propose a trace-based incremental approach for points-to analysis by exploiting
graph reachability. To our knowledge, this is the first points-to analysis with CFL-
reachability that allows previously computed points-to sets to be reused.

— We introduce a flexible trace policy to approximate traces. Programmers may take
advantage of domain knowledge to control their granularities for different parts
of the program. We also describe an adaptive technique to automatically infer the
policy based on the frequency of changes. Trace policies can significantly reduce
the size of traces without unnecessarily increasing the chances of falsification.

— We have implemented our incremental analysis in Soot-2.5.0, a Java optimisation
and analysis framework, and compared it with a state-of-the-art from-scratch anal-
ysis, REFINEPTS, introduced in [27] using a null dereferencing client in the pres-
ence of small code changes. For a single deletion of a class/method/statement, our
incremental analysis achieves an average speedup of 78.3X/60.1X/3195.4X.

The rest of the paper is organised as follows. We introduce the background infor-
mation on CFL-reachability and PAGs in Section 2. Section 3 introduces reachability
traces by example. Section 4 presents our trace-based incremental analysis, including
trace policies. Experimental results are presented and analysed in Section 5 with related
work discussed in Section 6, followed by a brief conclusion in Section 7.

2 CFL-Reachability

We introduce the state-of-the-art points-to analysis for Java formulated in terms of CFL-
reachability [26-28, 36] which uses Spark’s PAGs [17] as the program representation.
In Section 2.1, we consider the syntax of PAGs and how to represent a Java example as
a PAG. In Section 2.2, we describe the CFL-reachability formulation and show how to
answer points-to queries by finding reachable paths in the PAG of our example.

2.1 Program Representation

Points-to analysis for Java is typically flow-insensitive, field-sensitive and
context-sensitive (for both method calls and heap abstraction) to balance the precision
and efficiency for demand queries. When an analysis is flow-insensitive, control-flow
statements are irrelevant and thus ignored.

In its canonical form, a Java program is represented by a directed graph, known
as a Pointer Assignment Graph (PAG), which has threes types of nodes: objects, local
variables and global variables. The syntax of PAG is given in Fig. 1.

Local variables T,y Allocation sites 0
Global variables g Call sites i
Variables vi=gx|g Instance fields f
Nodes nu=olv
Edges PR new o | z assign y | v global g | g global
ld(f) st(f) entry; exit;
| = ylz ylz yloe—y

Fig. 1. Syntax of PAG.

All edges are oriented in the direction of value flow, representing the statements
in the program. For example, = <— o indicates the flow of o into z (an assignment
from an allocation site o to a local variable). As a result, x points directly to 0. An
assign edge represents an assignment between local variables (e.g., = y), so = points
to whatever y points to. In a global edge, one or both variables are static variables in
a class. A Id edge reads an instance field f (e.g., x = y.f) while a st edge writes to
an instance field f (e.g., z.f = y), where x and y are both local variables. An entry;
edge represents a binding of a (local) actual parameter y to its corresponding formal
parameter « for a call at the call site 7. Similarly, an exit; edge represents a call return
where the (local) return value in y is bound to the local variable x at the call site 7.

Fig. 2 gives an example, extending the original example in [27], which provides
an abstraction for the Java container pattern. The AddrBook class makes use of two
vectors. In lines 42-45, an AddrBook object created is assigned to p and populated
with a pair of objects: one with type st ring and the other with type Integer. In lines
46 and 47, calling getName/getNum results in v1 = n and v2 = c. Note that loads and
stores to array elements are modeled by collapsing all elements into a special field arr.

For this example, its PAG is shown in Fig. 3. Some notations are in order: (1) o;
denotes the abstract object o created at the allocation site in line ¢; (2) for temporary
variables (e.g., ret and tmp), the implicit self variable (this) and local variables (de-
clared in different scopes), we subscript them with their method names.

2.2 Points-to Analysis with CFL-Reachability

CFL-reachability [22, 38] is an extension of graph reachability that is equivalent to the
reachability problem formulated in terms of either recursive state machines [7] or set
constraints [14]. Each reachable path in a PAG has a string formed by concatenating
in order the labels of edges in the path, where load/store pairs on the same field must
be matched (field sensitivity) and entry/exit pairs for the same callsite must be matched
(context sensitivity). An object is in the points-to set of a variable if there is a reachable
(or flowsTo) path from the object to the variable. Two variables may be aliases if there
is a reachable path from an object to both of them.

O 00N W B LN —

25
26

class AddrBook{ 25 n.add(s);
private Vector names, nums; 26 c.add (1) ;
AddrBook () { 27 }}
n = new Vector (); 28 class Vector{
c = new Vector(); 29 Object[] elems; int count;
this.names = n; 30 Vector () {
this.nums = c; } 31 t = new Object [MAXSIZE];
Object getName (Integer i) { 32 this.elems = t; }
n = this.names; 33 void add (Object e) {
c = this.nums; 34 t = this.elems;
for (int j=0; j<c.count; j++) 35 t [count++] = e; // writes t.arr
if (c.get (j)==1) 36 }
return n.get (Jj); 37 Object get (int i) {
return null; } 38 t = this.elems;
Object getNum(String s){ 39 return t[i]; // reads t.arr
n = this.names; 40 }+}
c = this.nums; 41 static void main(String[] args) {
for (int i=0;i<n.count;i++) 42 AddrBook p = new AddrBook () ;
if (n.get (i)==s) 43 String n = new String("John Smith");
return c.get (i); 44 Integer c = new Integer (12345);
return null; } 45 p.addAddr (n,c) ;
void addAddr (Object s, Object 1i){ 46 String vl = (String) p.getName (c);
n = this.names; 47 Integer v2 = (Integer) p.getNum(n);
c = this.nums; 48 }

(a) original code

s = new String("Changel"); n.add(s); // Change 1
i = new String("Change2"); c.add(i); // Change 2
(b) code changes
Fig. 2. A Java example.
ocs _heW entry.;; T
—=
s «— +‘main thlsgetName a
thisaddaaddr entry s entry46 > %— %;
o /* [
Id(namesz/ \Id nums) entry,, 5 2 g %
& a o <
Naddaddr Caddaddr y o
thlS ngetN m
entryQR /entry% AddrBook ngetName qetName S Cgetium
St(names \St(nums IS
thisada n c \ %
AddrBook AddrBook n <
|d(e1ems)l @7 neW rJ’ S
. entry& /entry5 05 thisger
dd
043 . 044 thisyector } ld(elems)
st(arr T
new\ () new/ T st(elems) Cget
Npain €add Cmain € ©
& o B 5, tvector MPgetName e'wlg Id(arr) MPgetNum
S/8\ & 2\ & 3 T new T~ o)
&/ 2\ & Z\& = w3 fetger ©F LA
=) > 031 e P
B @ eXIt46 X
SgetNum SaddAddr iaddaddr 1getName vl «—— retgetName 20 retgetnum

Fig. 3. Complete PAG for the original code.

Field Sensitivity Let us start by considering a PAG G with only new and assign. It
suffices to develop a regular language, Lyt (FT for flows-to), such that if an object
o can flow to a variable v during the execution of the program, then v will be Lpp-
reachable from o in G. Then we have the following (regular) grammar for Ly:

flowsTo — new (assign)*

If o flowsTo v, then o belongs to the points-to set of v.
For field accesses, precise handling of heap accesses is formulated with the updated
Lyt being a CFL of balanced parentheses [27]. Two variables may be aliases if an

object may flow to both of them. Thus, v may point to o flowing into v’ if there exists
two statements z.f = v’ and v = y.f, such that the base variables x and y are aliases.
So o flows through the two statements with a pair of parentheses (i.e., st(f) and Id(f)),
first into v’ and then into v. Therefore, the flowsTo production is extended into:

flowsTo — new (assign | st(f) alias 1d(f))*

where x alias y means that = and y can be aliases. To allow alias paths in an alias
language, flowsTo is introduced as the inverse of the flowsTo relation. A flowsTo-path
p can be inverted to obtain its corresponding flowsTo-path p using inverse edges, and

vice versa. For each edge z £ y in p (where £ is the label of the edge), its inverse

edge is y Lrin p. Thus, o flowsTo x iff x flowsTo o. This means that flowsTo actually
represents the standard points-to relation. As a result, a flowsTo-path represents a points-
to path. (To avoid cluttering, the inverse edges in a PAG, such as the one given in Fig. 3,
are not shown explicitly.) As a result, x alias y iff x flowsTo o flowsTo y:

alias — flowsTo flowsTo
SflowsTo — (‘assign | Id(f) alias st(f))* new

Context Sensitivity A context-sensitive analysis requires call entries and exits to be
matched, which is solved also as a balanced-parentheses problem [22]. This is done by
filtering out flowsTo- and flowsTo-paths corresponding to unrealisable paths. A realis-
able path may not start and end in the same method. So partially balanced parentheses,
i.e., a prefix (suffix) with unbalanced closed (open) parentheses, are allowed.

To compute the points-to set of a variable v, we simply solve a CFL-reachability
problem for Ly context-sensitively to find the set of allocation sites o such that v is L-
reachable from o. The analysis is fully context-sensitive not only for method invocation
but for heap abstraction (by distinguishing allocation sites with calling contexts).

Example We use the PAG of our example in Fig. 3 to show how to resolve some simple
points-to relations via CFL-reachability. Let us see how to discover o4 as a pointer
target for nagqaqqr- In Fig. 2, 042 flows to p,.;,, Which is the actual parameter passed
to the formal parameter thisagqreoox Of constructor AddrBook and thiszggagqr Of
addAddr. So thisagareook @lias thisagaaqar. This fact is found in LgT because

thisaddrBook entry42 Prain NEW 042 NEW P entry45 thisaddaddr
We then know that o4 flowsTo niggaqgqr Since Lyt has the flowsTo-path:

04 NEW NnadgdrBook st(names) thisaddrrook alias thiszgdaddr Id(names) NaddAddr

This flowsTo-path is a realisable path. So n,gqaqqr points to oy4.

3 Tracing CFL-Reachability: An Example

Most points-to analyses only consider fixed programs. We illustrate how we cope with
program changes using the example given in Fig. 2. There are two changes made to the
original code in Fig. 2(a), in order in line 25 and line 26 as shown in Fig. 2(b). We show

|d(elems)i |d(elems)l
043 tada 044 043 tadd 044
new\ st(arr)t new/ new\ st(arr) { new/
Nmain €add Cmain Nmain €add Cmain
& ©) [©) &)) o)
w Q3 i >, » Q3 i >
& 2\ ¢ 2\ @ i, 9 2\ @ 2\ © %
ko) % ke %
SgetNum SaddAddr iaddaddr lgetName SgetNum SaddAddr iaddaddr lgetName
new /' new /! newh
/ A\
025 025 026
(a) after Change 1 (b) after Change 2

Fig. 4. Partial PAGs after code changes (marked by the dashed edges introduced).

how these changes impact the points-to sets of v1 and v2. Fig. 4 shows the partial PAGs
after each change. We have used dashed arrows to indicate newly added edges.

A points-to query is answered by searching for all reachable paths between objects
and the queried variable in a PAG. The answer to the points-to query depends on all
nodes in the reachable paths traversed. Changes made on these nodes (by either adding
or deleting edges connected to them) may falsify the points-to set of the query. The key
to incremental analysis lies in tracking such dependent information.

A straightforward way to track precise dependency information is to explicitly
maintain a set of variable nodes on which each points-to query depends, as traces. Let
us consider the traces for queries on v1 and v2 in Fig. 2 and see how they are affected
by code changes. By collecting all distinct variable nodes in the reachable path(s) from
043 to v1 in Fig. 3, we get the trace for v1: {v1, retgetname, retget, tget, thisget,
NgetNames ChiSgetNames Prains thiSaddreooks Naddrsook, Thisvector, tvector, thisSaddaddr,
Naddaddrs ChiSadds Tadd, €adds Saddaddrs Nmainy and the trace for v2: {v2, retgetwun,
retget, tget, thisget, Cgetvum, ThiSgetvums Ppain» ThiSaddrBook, CaddrBooks thiSvectors
tvector, thiSaddaddrs Caddaddrs thiSadd, tadd, €add, Laddaddrs Cmain} -

Change 1 adds a new edge to the local variable s,gqqaqqr. Since the variable is in the
trace of v1, after the change, the points-to set of v1 must be falsified and recomputed.
However, the trace of v2 does not contain s,44aqqr- Thus, its points-to set is still valid
and reusable. Similarly, change 2 adds a new edge to the local variable i,44aqq4r. This
falsifies the points-to set of v2 without affecting v1 .

Tracing all nodes is costly in space as traces may be large for large programs. Instead
of tracking precise dependencies, we approximate the variables in a trace using their
scopes, based on a predefined policy. Trace policies control the granularities of traces
so that their sizes can be significantly reduced to trade time for space.

Policies are formed by a set of program units (variables or their scopes), which
specify what may appear in traces. For example, if the policy for an analysis contains
a method name m, when nodes n; and ny are reached in computing a points-to set
such that nq and ns are contained (defined) in m, m (instead of n; and ns) is tracked
in the trace of the points-to set. The default granularity is package-level. For example,
if n is in a reachable path but not contained in any program unit in the given policy,
then n’s package name is used in the trace. This is particularly useful for specifying
an appropriate granularity for libraries. We do not have to explicitly include anything

from libraries in the policy. They are by default tracked at the coarsest package-level
granularity, because they are the least likely to change. For applications being developed
in an interactive programming environment, it is natural to use a finer granularity.

Let us now consider how traces and falsifications are enforced by trace policies.
We define a sample trace policy for analysing the Java example in Fig. 2: {main,
AddrBook .AddrBook, getName, getNum, addAddr}, which uses method-level gran-
ularity for the AddrBook class and the main method (they are considered as application
code in contrast to library code). Note that Vector is not explicitly mentioned in the
policy, since it is considered as part of library code. As a result, the default package-
level granularity is used to track the changes on vector. In Section 4.2, we introduce
some forms of shorthand to simplify the specification of policies.

By applying this policy (assuming that the Vector class is defined in package
util), the trace for v1 becomes much smaller: {main, getName, AddrBook . AddrBook,
addAddr, util} and the trace for v2 is also smaller: {main, getNum,
AddrBook .AddrBook, addAddr, util} . Clearly, either Change 1 or Change 2 may
falsify both v1 and v2, because we have used a method-level granularity for the changes
made in addAddr. It is possible to define a finer-grained policy for the code being
changed, but it may not always be possible to anticipate where changes will be made.

Policies can be inferred automatically based on the frequency of code changes in
different parts of a program. Typically finer-grained policies may be inferred for fre-
quently edited code and coarser-grained policies for code that is less likely to be mod-
ified. Therefore, the impact of changes on the points-to information related to the fre-
quently changed code may be kept to a minimum.

Let us show how to infer policies adaptively. The initial policy is empty (or supplied
by the programmer) and the traces of v1 and v2 are {my package,util}, assuming
that AddrBook and main are defined in the my_package package. After Change 1 at
line 25, the policy is adaptively changed to {thisaddadar, Saddaddrs iaddaddr, Naddaddr,
Caddnadr, getName, AddrBook . AddrBook, getNum, addAddr, AddrBook, main} by
adding finer-grained program units into the policy based on the change made.

Since code changes often exhibit locality, we choose a simple heuristic to reduce
the chance of falsification for units that are closely related to a certain change. When a
program unit is involved in a change, we add all units directly defined in its enclosing
scopes. For example, Change 1 affects variable s,4qaqqr and transitively all its enclos-
ing scopes: method addaddr, class AddrBook and package my _package. Therefore,
all variables defined in addaddr, all methods defined in AddrBook, and all classes
defined in my_package are added into the new policy.

After Change 1 at line 25, both v1 and v2 are conservatively falsified, because
the change overlaps with my_package in both traces. After recomputing the points-to
sets for v1 and v2 using the new policy, the new trace of v1 iS {Saaaadar, thiSadandar,
Nadaaadrs AddrBook . AddrBook, getName, main, util} , and the new trace of v2 is
{addrBook .AddrBook, getNum, thiSaddaddr, Caddaddrs iaddaddr, main, util} .

After Change 2 at line 26, an incremental analysis is used again. This time only
the points-to set of v2 is falsified, because i,4qaqqr does not overlap with the trace of
v1. The previous points-to set for v2 before the change was {044}. We knew that the
typecasting at line 47 was safe because the type of 044 Was Integer; we could omit a

runtime check for this cast. After recomputing the query, the points-set of v2 becomes
{044, 026}, where 096 is introduced by Change 2. Since 096 is a St ring, we know that
the typecasting at line 47 may no longer be safe.

4 Incremental Analysis with Reachability Traces

In this section, we describe our incremental analysis formally using inference rules [11,
28,24]. Our goal is to incrementalise the points-to analysis based on CFL-reachability.

In Section 4.1, we first introduce a simple form of incremental points-to analysis
based on reachability traces, where all nodes in the reachable paths traversed in com-
puting the points-to sets are traced. In Section 4.2, we then introduce a space-efficient
analysis by approximating traces using policies. Finally, in Section 4.3, we show how
to infer trace policies adaptively with each incremental analysis.

Our incremental analysis proceeds in two phases: initial phase and incremental
phase. The initial phase initialises the whole analysis by answering all queries from
scratch, and the answers (points-to sets) are cached for reuse. This occurs only when
a new program is analysed or after major program changes, where it is necessary to
reinstall the whole analysis. Unlike the initial phase, the incremental phase performs
falsification in addition to points-to analysis. This occurs after small changes and only
recomputes a small number of cached answers that are falsified by the changes made.

4.1 Points-to Analysis with Reachability Traces

We have developed our approach based on insights gained from formulating points-to
analysis as a graph reachability problem. Our CFL-reachability-based analysis com-
putes both points-to information and traces. The additional syntax is given in Fig. 5.

Contexts k:u=o| ki
Traces/Changes T Au=0 |{p}|TuT
Program units W= wv

Points-to sets cu=g|{o}|ocuo
Stores Yu=g|Xve (0,7)

Fig. 5. Additional syntax for points-to analysis.

Contexts represent how method calls are made. A calling context & is a finite stack
of call sites, whose order is significant. Traces track nodes traversed in reachable paths
in computing points-to sets. A trace 7 is a set of variable nodes (we do not track object
nodes), whose order is not significant. A points-to set o contains a set of objects cached
in a store X', which maps variables to their points-to sets and traces.

In addition to performing the standard CFL-reachability-based points-to analysis in
the PAG of a program, we maintain the traces along the search. Our points-to analysis
is described in Fig. 6 by a set of inference rules in the form of:

.
nk=—=n' k'

10

new

r—>0 -
{71} (new) " entry,;
x, k— o, k 7?1 (entry-9)
{x}
assign T, Yy,
(assign) exit;
—_— assign exit;
{=} r—>
z, k== y,k — (exit)
gobal T, k= y, ki
v——g _ _
P e (global-r) * ld(f) z 7 st(f)
v, k= g, j%) Y Iy
T T
— 2’ k= o0, k" Yy, k' —==ok"
global (field)
g——v {z}urur’ ,
e P w— (global-1) r, k——=y,k
9,9 —>v,J ,
- n, k :T> ’I’L", k’” n//7 IC” :T> n/’ k/ o
" entry,; y g (transitivity)
(entry) n, k— ’I’L/7 K

x,k:i%y,kz

Fig. 6. Points-to analysis with traces.

which follow the flowsTo paths, i.e., the flowsTo paths in the opposite direction in a
PAG. Each edge in a flowsTo path is translated into one or more inference rules. For
example, node n in context k can be reached by node n’ in context k&’ via a set of nodes
in trace 7. Traces are computed by tracking nodes along the traversal. To save space,
object nodes o tracked by mew) do not need to appear in a trace as they can be uniquely
identified by their corresponding left-hand side variables z that appear in the trace.

Global variables are context-insensitive (as our analysis is flow-insensitive). Thus,
(global-r) and (global-r) skip the sequence of calls and returns between the reads and writes
of a global variable. (entry) and (exit) achieve context sensitivity for method invocation
by matching call entries and exits. (entry-@) allows for partially balanced parentheses.
(field) achieves field sensitivity for field accesses (reads and writes) by matching field
loads and stores on field f, only if ' and 3’ may be aliases (when there is an object
o that may be pointed by 2’ and may flow to y’). In this rule, <= denotes the flows-
to analysis which is analogous to its inverse points-to analysis (by making inferences
based on traversing the flowsTo paths in a PAG) and thus omitted.

Given a points-to query for variable v, we find its point-to set, denoted as Pts(v),
by deriving all possible reachable paths ending with some objects:

Pts(v) = {(0,7) | v, & = 0, k} (pointsto)

where o is a pointed-to object in context k and 7 is the trace for computing it.

Initial Phase During this phase, all queries are answered by computing points-to sets
from scratch. The initial analysis Initialise takes a set of queried variables (v1.) as
input, and computes and caches each variable’s points-to set and trace in the store),.

Yo=0
Viel.n - PtS(Ui) = (O, T)lum M =2i_1,0, — (U OIA,m,UTIA.m)

- (initialisation)
Initialise(vi..n) = Xn

11

Incremental Phase Our incremental technique is based on the observation that if a
points-to set becomes invalid after a code change, then some part of its trace must be
involved in the change. In this phase, the incremental analysis Increment takes the
changes A (represented by a set of program units that are affected by either additions or
deletions of program constructs) and the points-to store X'y from the previous analysis
as input, and returns an update-to-date store X,,, where only the points-to sets affected
by the changes (whose traces 7; overlap the changes A) are recomputed.

Yo=@wm (0,7)1.n Viel.n
= (077_)

) _ Pts(vz)
if ALT then { Sia[v U01 m7U7'1)
else X; = 21,1

Increment(A, Xo) = X,

(increment)

We define the inference rules for determining if the changes overlap with a trace:

per per {upL{p}
Tl

(overlap-trace) TLT (overlap-reflectivity)

Here, traces or changes are only sets of variables, as a program unit 4 can only be a
variable. In the next section, we will provide a more flexible model to handle different
types of program units, such as methods, classes and packages.

4.2 Saving Space with Trace Policies

Trace policies control the granularities of traces in order to trade analysis time for mem-
ory usage. In Fig. 7, we introduce method, class and package names into the syntax of
program units p, which form traces 7 (and changes A). Policies are also formed by a
set of program units, which specify what program units may appear in traces.

Method names m
Class names c Program units pu=---|mlc|p
Package names D Policies =g |p|lul

Fig.7. Syntax of trace policies.

Policies may be defined by programmers. Writing down all program units to be
tracked in traces may not be practical. To simplify the specification of policies, we
introduce some forms of shorthand, formally defined by the syntactical equivalence:

{up:variable} = {v]|vpu} (policy-variable)
{u: method} = {m|m < u} (policy-method)
{,u : class} = {C | cd ,u} (policy-class)

Often programmers may simply specify a single line my_package:method in the policy
to indicate that my_package is the package being developed and request the method-
granularity to be used. The shorthand essentially includes all methods contained in
my_package. Any other code changes are tracked at package-level, which is the de-
fault (avoiding a need for a shorthand).

12

The containment relation between program units is reflective and transitive. We
capture it using the structure of a Java program with a few mappings. P maps a package
name to the set of names of all classes defined in the package. C' maps a class name
to the set of names of all methods and global variables defined in the class. M maps a
method name to the set of names of all local variables defined in the method. Given P,
C and M, we can easily find containment relations between each pair of program units:

ze M(m
(contain-local) ceP (p)
r<Im (contain-class)
cdp
e C(c
97() (contain-global) pn< /l” /l” < /ll . -
gdc 7 (contain-transitivity)
L
m e C(c)
_— (contain-method))7 < 17 (contain-reflectivity)
m<ec

Now we define the rules for approximating a trace according to a given policy:

Viel.n - u; = Approz(vi,I)
Approz(vi.n, I') = p1..n
v<dp if vy then p¢ I’
Approz(v, ') =p

(approx-trace)

(approx-default)

vdu pel
Vel - ifv<dy then p <y
Approz(v,I') = u

(approx-contain)

In (approx-default), if no enclosing scope of v is defined in the policy, then its package
is tracked by default. (approx-contain) only finds and tracks the smallest enclosing scope
in the policy. For example, if we find that both the method name and class name of v
are in the policy, we will then use the method name as its granularity.

Initial Phase The initial analysis is slightly modified to approximate the traces before
they are stored, according to the given policy as an input:

Yo=0
Viel.n - Pts(v;)=(0,7)1..m
X = 2»5717'111‘ g (U O1..m, APPTOIIU(U Tl.fmrr))
Initialise2(vi..n, I') = Xy

(initialisation-2)

Incremental Phase The incremental analysis is also slightly changed to approximate
the traces when recomputing points-to sets:

Yo=(@wr (6,7)1.n Viel.n
. ' Pts(vi) = (0,7)1.m
Zf Al Ti then {EL = 2i71[’l)i = (U O1..m, Appmx(U T{m7F))]
else Xy =X
Increment2(A, Yo, ') = X,

(increment-2)

We have just extended the syntax of program units in the traces and changes so that
we can now directly represent additions/deletions of not only statements but also, for

13

example, methods or classes. We now need to extend the rules for checking overlap
among traces/changes. An overlap relation is reflective and symmetric:

p 1 ‘ Tl
{M} T {Ml} (overlap-contain) e

(overlap-symmetry)

4.3 Adaptive Inference of Trace Policies

In order to specify a trace policy, we need to anticipate where changes will be made,
which may not always be possible. We describe how to gradually refine trace policies
from each incremental analysis, allowing policies to be inferred automatically based
on the frequency of changes in different parts of a program. Therefore, the impact of
changes on the existing points-to information related to the frequently changed code is
minimised.

Initial Phase The trace policy for the initial analysis is either empty or supplied by the
programmer, which can be set up by reusing Initialise2 from Section 4.2.

Incremental Phase Increment3 refines the trace policy by adding finer-grained pro-
gram units into it. This incremental analysis reuses Increment?2 after adapting the pol-
icy to the changes, and returns the refined policy as output:

Adapt(A) = I Increment2(A, X, T v I') =X’
Increment3(A, X,) =X T u I’

(increment-3)

The following adaption rules compute finer-grained program units to be added into
the policy, based on the type of changes made:

Adapt(@) =0 (adapt-2)
Adapt({u} v A) = Adapt({u}) v Adapt(A) (adapt-changes)
il S] m (ad: 1 1)
adapt-local
Adapt({z}) = {y [y Im} O Adapt({m}) b
9 S] ¢ adapt-global
Adapt({g}) = {9’ | § D c} v Adapt({c}) (acapreioba
mde d hod
Adapt(fm}) = {m | m’ D¢} o Adapi(ic}) (adapt-method)
C S] p > d 1, QQ
Adapt({e}) = (¢ [¢ < p} U Adapt({p}) (adapreless
Adapt({p}) =0 (adapt-package)

If a local variable z is changed in (adapt-local), we add all local variables in its method
into the policy, and then adapt the policy to the method changed. In general, we add
all programs units that are directly defined in the enclosing scopes of x. The last rule
(adapt-package) adapts nothing as package-level is the default granularity.

14

Whole Program [Application Code

Benchmark } #Classes #Methods #Statements | #Classes #Methods #Statements % #Queries
compress 5262 50667 372268 23 175 2989 443
jess 5402 51318 382460 161 798 13099 2064
db 5254 50667 372327 15 175 3035 239
javac 5422 51803 395661 183 1300 26238 5844
mpegaudio 5302 50944 384133 63 410 14869 7644
mtrt 5275 50799 374981 36 304 5714 911
jack 5307 50948 381756 68 443 12486 3296
avrora 2858 24412 197754 549 3194 42946 1413
batik 6827 60013 507723 1114 7356 125770 3574
fop 8441 74894 538179 978 7055 147677 10739
lusearch 2457 23113 190279 220 1979 32124 4053
sunflow 5508 52238 410396 170 1469 35267 1552
tradebeans 9272 83384 533529 909 6787 106480 4353
xalan 3053 28183 258840 618 6253 103348 2093

Table 1. Benchmark statistics. “Whole Program” includes the reachable parts of the Java libraries
and “Application Code” does not. The last column gives the number of queries issued.

5 Experimental Evaluation

We evaluate our incremental analysis using a null dereferencing client, Nul1lDeref.
We compare our analysis with a state-of-the-art from-scratch analysis, REFINEPTS,
from [27] using 14 Java programs, selected from the Dacapo and SPECjvm98 bench-
mark suites, given in Table 1. In the presence of small code changes targeted by this
work, our incremental analysis is significantly faster (by at least one order of magni-
tude) than REFINEPTS when tracing application code at different granularity levels.

5.1 Implementation

We have implemented our incremental analysis and Nul1lDeref in the Soot 2.5.0 [32]
and Spark [17] framework, and conducted our experiments using the Sun JDK 1.6.0_26
libraries. REFINEPTS is publicly available in the same framework. Unmodeled native
methods and reflection calls [19] are handled conservatively using Tamiflex [2]. The
on-the-fly call graph of the program is constructed so that a context-sensitive call graph
is always maintained for a program during the CFL-reachability computation.

5.2 Methodology

We have conducted our experiments on a machine consisting of Intel Xeon 2.27GHz
processors (4 cores) with 24 GB memory, running Ubuntu Linux operating system (ker-
nel version 2.6.38). Although the system has multi-cores, each analysis algorithm is
single-threaded. Table 1 gives some statistics about the benchmarks used. Columns 2—4
show the number of classes, methods and statements in each program. Columns 5-7 are
similar except the Java libraries are excluded. It can be seen that the application code is
usually a small part of a Java program, making it suitable to be analysed with different
trace policies depending on the nature of program changes made.

NullDeref detects null pointer violations, demanding high precision from points-
to analysis. Since this client issues a large number of queries, it is suitable to show the

15

affected and unaffected queries after a program change. The last column in Table 1
gives the number of queries issued by the client in a program.

In this paper, we consider changes to the program in terms of node additions and
deletions to its program representation (i.e. PAG). To evaluate our incremental analysis,
we have selected three different levels of code changes: class, method and statement.
Our experiments are conducted by randomly deleting a class/method/statement in the
program being analysed, as in [40]. We handle a class-level code change as a set of
multiple method-level changes except that we must also handle the changes related to
the fields in a changed class. When a field is deleted from a class, all edges related to the
field are removed. When a field is added to the class (without statement additions), the
PAG needs not to be updated. We have adopted this approach because it is reasonably
simple to implement, which enables us to collect data on many potential changes across
many programs. We find, in practice, that many code changes do not cause changes to
the points-to information; however such code changes are excluded in our experiments.

Traditional points-to analyses like REFINEPTS, which are not designed to accom-
modate program changes, must recompute points-to information upon a code change.
We compare the incremental analysis time, which includes the times on falsification
and query processing, with the from-scratch analysis time, which includes the times on
PAG construction and query processing. We repeated each experiment 20 times using
randomly generated changes and reported the average of the 20 runs. Below we describe
and analyse two sets of experiments depending on the granularities used for tracing the
application code of a program. In both cases, the library code of a program is traced at
package-level since it is unlikely to be modified.

Optimising for Analysis Time. We show the best speedups of our analysis over a
from-scratch analysis by tracing application code at variable-level. Our analysis
is significantly faster than REFINEPTS and remains so even under a stress test.

Trading Time for Space. We show that our analysis remains to be at least one order
of magnitude faster even if we trace application code at method-level or class-level.

At this stage, we do not have results for the scenario when our analysis uses trace
policies adaptively, because, unfortunately, we do not have enough change history data
to obtain statistically significant results. However, its performance is expected to lie
between the two scenarios studied here.

5.3 Optimising for Analysis Time

We consider code changes comprising a single deletion of a class or method or state-
ment. The situation for adding a class or method or statement is similar.

We have compared the analysis times in Table 2 for REFINEPTS (Columns 2—4)
and our incremental analysis (Columns 5-7). The execution times are all in seconds.
For each program, there are three level of changes: deleting a class (denoted as “del ¢”),
deleting a method (denoted as “del m”) and deleting a statement (denoted as “del s).
For REFINEPTS, “PAG” is the time elapsed on constructing the PAG and “QT” denotes
the time spent on recomputing all the issued queries. For our incremental analysis,
“Falsification” is the time spent on the falsification process and “QT2” is a fraction of
“QT” spent on recomputing the affected queries.

16

REFINEPTS Incremental Analysis

PAG QT Total Falsification QT2 Total

delc TI88 IT0 1298 0.0T1 03 03

compress del m 119.4 6.9 126.3 0.001 0.6 0.6
del s 118.9 6.5 125.4 0.000 0.09 0.09

del'c 1259 1577 283.6 0.013 70.3 703

jess del m 122.1 156.0 278.1 0.002 21.8 21.8
del s 122.1 155.8 2719 0.001 0.06 0.06

del ¢ T18.8 122 1310 0.007 0.4 0.4

db del m 119.1 122 131.3 0.001 0.5 0.5
del s 120.2 124 132.6 0.000 0.01 0.01

del ¢ 1254 2234 3488 0.032 455 455

javac del m 124.8 224.0 348.8 0.006 215 21.5
del s 125.1 226.5 351.6 0.002 4.93 4.93

delc 1247 27.0 1517 0.040 84 84

mpegaudio del m 1215 31.0 152.4 0.003 6.5 6.5
del s 120.8 29.2 150.0 0.001 0.09 0.09

delc 120.0 286 1486 0.014 29 29

mtrt del m 118.4 272 145.5 0.001 2.4 2.4
del s 119.3 25.1 1444 0.001 0.32 0.32

delc 1182 3T.0 1492 0.026 23 23

jack del m 118.4 31.6 150.0 0.001 2.1 2.1
del s 115.3 274 142.7 0.000 0.49 0.49

delc 389 151 54.0 0.009 I3 I3

avrora del m 379 16.8 54.7 0.001 1.6 1.6
del s 38.7 15.4 54.1 0.001 0.14 0.14

delc 1417 1489 290.6 0.014 73 73

batik del m 137.4 1459 2833 0.003 7.5 7.5
del s 138.9 141.2 280.1 0.003 0.04 0.04

del ¢ 192.0 3725 5645 0.065 1347 1347

fop del m 191.6 378.4 569.9 0.006 28.7 28.7
del s 190.4 366.4 556.8 0.001 0.11 0.12

del ¢ 38.0 59.7 97.7 0.010 4.6 46

lusearch del m 44.4 63.1 107.5 0.002 4.6 4.6
del s 38.8 61.8 100.6 0.000 2.03 2.03

delc 1233 323 155.6 0.0I8 34 34

sunflow del m 130.6 28.2 158.7 0.002 4.4 4.4
del s 126.7 31.0 157.7 0.002 0.48 0.49

delc 210.1 256.0 466.1 0.068 233 236

tradebeans del m 214.1 255.3 469.4 0.023 36.5 36.6
del s 211.4 246.1 457.5 0.001 5.91 5.91

delc 392 20.6 39.8 0.009 19 19

xalan del m 38.8 20.6 59.4 0.002 1.9 1.9
del s 369 20.3 572 0.002 0.02 0.02

Table 2. Analysis times of Nul1Deref in seconds for deleting a class, method or statement.

Our incremental analysis is much faster for all the benchmarks under three different
levels of code changes. The average speedups range from 4X to a factor reaching several
thousands. This is also true even if only the query time alone is used as a reference,
since QT2 is a small fraction of QT. In addition, the falsification process is very fast
and negligible relative to QT2. For a single deletion of a class/method/statement, the
average speedup is 78.3X/60.1X/3195.4X.

As the library code of a program is traced at package-level, our analysis consumes
only 11 MB more memory than REFINEPTS in the worst case.

Our incremental analysis is designed to handle small and frequent code changes.
Nevertheless, we have stress-tested it with some major changes, involving a deletion of
100 randomly selected methods in a program, as shown in Table 3. While the percentage
of valid queries is smaller than the case when only small changes are made, our analysis
still outperforms REFINEPTS by 1.8X on average.

Our incremental analysis is developed to avoid recomputing unaffected queries after
program changes. To understand the sources of performance gains, we have plotted the
percentage of unaffected queries, including the “major” changes (with 100 methods
deleted) in Fig. 8. On average, 99.1% of the queries are unaffected after a statement
deletion. The percentage becomes 93.1% (91.9%) when a method (class) is deleted,
respectively. In the case of the major changes, only 33.4% queries are unaffected. Note

17

M statement method M class M major

100%

80% - I

60% -

40% -

20% -

0%

Fig. 8. Percentage of unaffected queries after program changes.

Benchmark Falsification QT #Unaffected Queries (%) Speedup over REFINEPTS
compress 0.020 1.743 17.9 6.1
jess 0.043 141.896 11.6 1.1
db 0.024 3.611 12.5 33
javac 0.156 193.899 21.8 1.2
mpegaudio 0.095 19911 67.7 1.3
mtrt 0.024 14.576 16.7 1.8
jack 0.030 15.364 54.5 1.8
avrora 0.040 12.326 19.7 14
batik 0.041 115.812 31.3 1.2
fop 0.531 327.090 85.7 1.2
lusearch 0.044 43.284 25.4 14
sunflow 0.022 18.925 35.0 1.7
tradebeans 0.118 212.521 35.7 1.2
xalan 0.052 16.826 31.9 14
average 0.052 81.270 334 1.8

Table 3. Stress testing of our analysis with “major” changes (deleting 100 methods).

that neither “method” nor “class” is consistently better than the other in terms of the
percentage of affected queries. This may be due to the randomness of our experiments.

5.4 Trading Time for Space

For large programs, tracing the application code of a program at variable-level can be
space-prohibitive. Our analysis allows it to be traced at coarser granularities to trade
off analysis time for memory usage. As shown in Fig. 9 for a single method deletion,
the average trace size (measured in terms of PAG nodes) per query increases as the
trace policy becomes coarser. The percentage of unaffected queries for variable-level,
method-level and class-level are 93.1%, 87.4% and 74.3%, respectively, on average. As
a result, our analysis becomes slower but remains to be at least one order of magnitude
faster than a from-scratch analysis. As discussed earlier, our analysis is 60.1X faster
than REFINEPTS at variable-level. Its performance speedups has only dropped now to
24.2X and 18.0X at method-level and class-level, respectively.

At the two coarser trace policies, the largest analysis time increases are observed at
mt rt, which takes 2.438 secs at variable-level but now 9.232 secs at method-level and
13.437 secs at class-level. The speedup of our analysis over REFINEPTS has dropped
from 59.7X at variable-level to 15.8X at method-level and 10.X at class-level.

18

M variable ® method mclass

=

g 400

g

@ 300

o

(V]

N 200

(%]

ol

2100~

[

0

I~ S S5 N0 L O F @ XN KOO NN

9] S R RPN O R0 o8 (© NN

S & PSR SRR IV P S

< PN L5 3 &£ QL N
o & W9 ¥ ?
§ N @

Fig. 9. Trace sizes at three different granularities for a single method deletion.

6 Related Work

In recent years, there has been a large body of research devoted to points-to analysis.
We restrict our discussion to three related areas: context-sensitive points-to analysis,
incremental analysis and change impact analysis. As demonstrated via a null derefer-
encing client in our experiments, context sensitivity is needed for Java because many
queries issued will not be positively answered otherwise.

Whole-program points-to analysis exhaustively computes points-to information for
all its variables, which achieves context sensitivity by cloning [33] or summarisation
[12,34,39,31,29]. Demand-driven points-to analysis [11] reduces the cost of analysis
by only computing points-to information that is needed by its client analysis or optimi-
sation. The state-of-the-art algorithms for Java [27,26,36] and C [41] are formulated
in terms of CFL-reachability initially introduced in [23]. Given a CFL-reachability for-
mulation, demand-driven analyses answer points-to queries as described in Section 2.

Pointer analyses based on CFL-reachability are precise, but they do not scale well to
answer many queries for large programs. Sridharan et al. [28, 27] proposed a refinement-
based analysis to give an initial approximation and then gradually refine it until the
client is satisfied. This strategy is useful for clients that can be satisfied early enough.
Xu et al. [36] used an imprecise but cheap pre-analysis to find non-aliasing pairs to re-
duce redundancy in the subsequent points-to analysis. Zheng and Rugina [41] described
a memory alias CFL-reachability formulation, answering alias queries without comput-
ing the complete points-to sets. Shang et al. [26] proposed a technique to summarise
local points-to relations within a method. Such procedural CFL-reachability summaries
may be reused later by the points-to analysis in the same or different calling contexts.
In [25], they have also reported preliminary experience of using this technique to sum-
marise the whole program and allow each procedural summary to be updated inde-
pendently in response to edits from an IDE, achieving a limited form of incremental-
ity. However, it does not allow points-to information to be reused. Therefore, points-to
queries are always answered by recomputing from scratch. In contrast, our trace-based
incremental algorithm presented in this paper allows previously computed points-to re-
sults to be reused, by recomputing only the queries that are falsified by code changes.
Our technique is orthogonal to previous ones for improving the scalability of points-to

19

analysis based on CFL-reachability. It may be possible to use our algorithm in conjunc-
tion with other techniques such as pre-analysis and procedural summarisation.

Many incremental algorithm have been developed for data-flow analysis problems.
Some incremental analyses use the elimination method [3, 5], some are based on the
technique of restarting iterations [20] and some are hybrids of the two techniques [18].
A comparison of incremental iterative algorithm can be found in [4].

Incremental points-to analysis has been considered for C programs. Yur et al. [40]
introduced an incremental approximation of their previous flow- and context-sensitive
alias analysis [15] for C, by falsifying the aliases affected by the changed statements.
Their algorithm handles addition/deletion of one single statement, achieving a 6-fold
speedup for programs with 1 — 25K LOC. Their analysis is less precise than the reanal-
ysis from scratch (with a solution agreement on 75% of tests on average). In contrast,
our incremental algorithm produces exactly the same results as their full-analysis coun-
terpart, and naturally handles multiple changes efficiently.

Kodumal and Aiken [13] considered for a limited form of incremental analysis via
backtracking in their Banshee toolkit, which allows constraint systems to be rolled back
to any previous state for a code change and reanalyses the program from that point
forward. Their coarse-grained analysis is fast but imprecise due to its lack of support
for context sensitivity. Saha and Ramakrishnan [24] extended [11], also for C, based
on techniques for incremental evaluation of logic programs. When context sensitivity is
considered, their analysis is slow, by consuming 50 — 73% of the from-scratch time.

Change impact analysis determines the effects of code changes to support the plan-
ning, implementation and validation of code changes in software evolution and main-
tenance. A taxonomy for impact analysis can be found in [16]. Recent approaches [1,
6,8, 21] rely on slicing, dependence analysis, dynamic tracing and history mining. In
general, impact analysis requires fast and precise points-to information to be effective,
which may benefit from our incremental points-to analysis.

7 Conclusion

Incremental points-to analysis is important in large projects where it is necessary to
maintain a global analysis in the presence of small edits. We have described an incre-
mental approach via tracing graph reachability, a mechanism that is efficient and simple
to implement, for modern demand-driven context-sensitive points-to analyses. We have
shown experimentally that tracing CFL-reachability is very effective in avoiding re-
analysis of points-to information in Java. Our next step is to study the behaviour of
real-world changes and to integrate our analysis into an interactive programming envi-
ronment. We want to study changes made by real programmers, so that the sequence of
changes we test will reflect more accurately modifications likely to be made in practice.

Acknowledgements. This research is supported by Australian Research Grants,
DP0987236 and DP130101970.

References

1. M. Acharya and B. Robinson. Practical change impact analysis based on static program slicing for industrial software
systems. In ICSE’11.

20

20.
21.
22.
23.
24.

25.

E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini. Taming reflection: Aiding static analysis in the presence
of reflection and custom class loaders. In ICSE’11.

M. G. Burke. An interval-based approach to exhaustive and incremental interprocedural data-flow analysis. ACM Trans.
Program. Lang. Syst., 12(3), 1990.

M. G. Burke and B. G. Ryder. A critical analysis of incremental iterative data flow analysis algorithms. IEEE Trans.
Software Eng., 16(7), 1990.

M. D. Carroll and B. G. Ryder. Incremental data flow analysis via dominator and attribute updates. In POPL’88.

M. Ceccarelli, L. Cerulo, G. Canfora, and M. Di Penta. An eclectic approach for change impact analysis. In /CSE’10.
S. Chaudhuri. Subcubic algorithms for recursive state machines. In POPL’08S.

R. Goeritzer. Using impact analysis in industry. In ICSE’11.

B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for millions of lines of code. In CGO’11.

B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer analysis. In POPL’09.

. N. Heintze and O. Tardieu. Demand-driven pointer analysis. In PLDI’01.

V. Kahlon. Bootstrapping: a technique for scalable flow and context-sensitive pointer alias analysis. In PLDI’08.
J. Kodumal and A. Aiken. Banshee: A scalable constraint-based analysis toolkit. In SAS’05.

J. Kodumal and A. Aiken. The set constraint/CFL reachability connection in practice. In PLDI’04.

W. Landi and B. G. Ryder. A safe approximate algorithm for interprocedural aliasing. In PLDI’92.

. S. Lehnert. A taxonomy for software change impact analysis. In /IWPSE-EVOL’11.

O. Lhotdk and L. Hendren. Scaling Java points-to analysis using SPARK. In CC’03.

T. J. Marlowe and B. G. Ryder. An efficient hybrid algorithm for incremental data flow analysis. In POPL’90.

P. H. Nguyen and J. Xue. Interprocedural side-effect analysis and optimisation in the presence of dynamic class loading.
In ACSC’05.

L. L. Pollock and M. L. Soffa. An incremental version of iterative data flow analysis. IEEE Trans. Software Eng.,
15(12), 1989.

X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: a tool for change impact analysis of Java programs. In
OOPSLA’04.

T. Reps. Program analysis via graph reachability. In ILPS’97.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reachability. In POPL’95.

D. Saha and C. Ramakrishnan. Incremental and demand-driven points-to analysis using logic programming. In
PPDP’05.

L. Shang, Y. Lu, and J. Xue. Fast and precise points-to analysis with incremental CFL-reachability summarisation:
preliminary experience. In ASE’12.

. L. Shang, X. Xie, and J. Xue. On-demand dynamic summary-based points-to analysis. In CGO’12.

. M. Sridharan and R. Bodik. Refinement-based context-sensitive points-to analysis for Java. In PLDI’06.

. M. Sridharan, D. Gopan, L. Shan, and R. Bodik. Demand-driven points-to analysis for Java. In OOPSLA’05.

. Y. Sui, Y. Li, and J. Xue. Query-directed adaptive heap cloning for optimizing compilers. In CGO’13.

. Y. Sui, D. Ye, and J. Xue. Static memory leak detection using full-sparse value-flow analysis. In ISSTA’12.

. Y. Sui, S. Ye, J. Xue, and P.-C. Yew. SPAS: scalable path-sensitive pointer analysis on full-sparse SSA. In APLAS’11.

. R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan. Soot: a java bytecode optimization framework.

In CASCON’10.

. J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias analysis using binary decision diagrams. In

PLDI’04.

. R.P. Wilson and M. S. Lam. Efficient context-sensitive pointer analysis for C programs. In PLDI’95.
. X. Xiao and C. Zhang. Geometric encoding: forging the high performance context sensitive points-to analysis for Java.

In ISSTA’11.

. G. Xu, A. Rountev, and M. Sridharan. Scaling CFL-reachability-based points-to analysis using context-sensitive must-

not-alias analysis. In ECOOP’09.

. D. Yan, G. Xu, and A. Rountev. Demand-driven context-sensitive alias analysis for Java. In ISSTA’]].
. M. Yannakakis. Graph-theoretic methods in database theory. In PODS’90.
. H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang. Level by level: making flow- and context-sensitive pointer analysis

scalable for millions of lines of code. In CGO’10.

. J.-S. Yur, B. G. Ryder, and W. Landi. An incremental flow- and context-sensitive pointer aliasing analysis. In /CSE’99.
. X. Zheng and R. Rugina. Demand-driven alias analysis for C. In POPL’08.

