
To appear in 1st IEEE/ACM Int. Symposium on Code Generation and Optimization (CGO’03).

Optimal and Efficient Speculation-Based Partial Redundancy Elimination

Qiong Cai and Jingling Xue
School of Computer Science and Engineering

University of New South Wales
Sydney, NSW 2052, Australia�

qiongc,jxue�@cse.unsw.edu.au

Abstract

Existing profile-guided partial redundancy elimination
(PRE) methods use speculation to enable the removal of
partial redundancies along more frequently executed paths
at the expense of introducing additional expression evalua-
tions along less frequently executed paths. While being ca-
pable of minimizing the number of expression evaluations in
some cases, they are, in general, not computationally opti-
mal in achieving this objective. In addition, the experimen-
tal results for their effectiveness are mostly missing.

This work addresses the following three problems: (1)
Is the computational optimality of speculative PRE solv-
able in polynomial time? (2) Is edge profiling — less costly
than path profiling — sufficient to guarantee the computa-
tional optimality? (3) Is the optimal algorithm (if one exists)
lightweight enough to be used efficiently in a dynamic com-
piler? In this paper, we provide positive answers to the first
two problems and promising results to the third.

We present an algorithm that analyzes edge insertion
points based on an edge profile. Our algorithm guarantees
optimally that the total number of computations for an ex-
pression in the transformed code is always minimized with
respect to the edge profile given. This implies that edge pro-
filing, which is less costly than path profiling, is sufficient
to guarantee this optimality. The key in the development
of our algorithm lies in the removal of some non-essential
edges (and consequently, all resulting non-essential nodes)
from a flow graph so that the problem of finding an optimal
code motion is reduced to one of finding a minimal cut in the
reduced (flow) graph thus obtained. We have implemented
our algorithm in Intel’s Open Runtime Platform (ORP). Our
preliminary results over a number of Java benchmarks show
that our algorithm is lightweight and can be potentially a
practical component in a dynamic compiler. As a result,
our algorithm can also be profitably employed in a profile-
guided static compiler, in which compilation cost can often
be sacrificed for code efficiency.

1. Introduction

Partial redundancy elimination (PRE) is a powerful opti-
mization technique for removing partial redundancies along
some paths through a flow graph. The technique inserts and
deletes computations in a given flow graph in order to re-
duce the total number of remaining such computations in
the transformed code. Global common subexpressions and
loop-invariant computations are special cases of partial re-
dundancies. As a result, PRE has become an important
component in global optimizers [10, 12, 13].

Classic PRE methods [21, 22] guarantee computation-
ally optimal results, i.e., results where the number of com-
putations cannot be reduced any further by safe code motion
[20]. Under such a safety constraint, they insert an expres-
sion � at a point� in a flow graph only if all paths ema-
nating from� must evaluate� before any operands of� are
redefined. The expression� is known asfully anticipatable
at� [23]. In other words, they remove partial redundancies
along some paths but never introduce additional (new) com-
putations along any path. These safety-based formulations
have two consequences. First, the transformed code can-
not cause exceptions that do not exist in the original code.
If evaluating� can throw an exception, the exception —
which is inevitable — would have occurred a bit earlier in
the transformed code than in the original code. Second, due
to the absence of profiling information, they guarantee (al-
beit conservatively) that the transformed code cannot eval-
uate� more times than before in any program execution.

In practical programs, some points (nodes or edges) in a
flow graph are executed more frequently than others. If we
have their execution frequencies available and if we know
that an expression cannot cause an exception, we can per-
form code transformations missed by classic PRE methods.
The central idea is to usespeculation(i.e., unconditional ex-
ecution of an expression that is otherwise executed condi-
tionally) to enable the removal of partial redundancies along
some more frequently executed paths at the expense of in-
troducing additional (new) computations along some less

1

frequently executed paths. (So the safety criterion [20] en-
forced in classic PRE methods is no longer honored.)

There are two previously published papers devoted en-
tirely to speculation-based PRE (SPRE) [18, 19]. Horspool
and Ho [19] use edge profiling information to determine the
profitability of using speculation while Gupta, Berson and
Fang [18] employ more expensive path profiling. While be-
ing capable of minimizing the number of computations in
some cases as compared to the classic PRE methods, both
algorithms are, in general, not computationally optimal in
achieving this objective. In addition, both papers containno
implementation details, and consequently, no experimental
results on the effectiveness of their methods.

Motivated by these two previous research efforts, this
work addresses the following three problems:

� Is the computational optimality of SPRE solvable in
polynomial time?

� Is edge profiling (less costly than path profiling) suffi-
cient to guarantee the optimality?

� Is the optimal algorithm (if one exists) lightweight
enough to be used efficiently in a dynamic compiler?

This paper provides positive answers to the first two prob-
lems and promising results to the third.

We present an algorithm, calledMC-PRE (the “MC”
stands for Min-Cut), that enables the speculation of an ex-
pression in a flow graph using an edge profile.MC-PRE
guarantees that the total number of expression evaluations
in the transformed code iscomputationally optimal, i.e., the
smallest possible, with respect to the edge profile given.
The key in its development lies in the removal of some non-
essential edges (and consequently, all non-essential nodes)
from a given flow graph so that the problem of finding an
optimal code motion emerges to be one of finding a minimal
cut in the reduced graph thus obtained.

Our running example is the flow graph given in Fig-
ure 1(a), where the underlined numbers alongside the flow
edges represent the frequencies of execution.MC-PRE,
which is conceptually simple, proceeds in three steps. First,
we perform two standard data-flow analyses — one forward
and one backward — on the original flow graph shown in
Figure 1(a) to obtain the reduced flow graph as shown in
Figure 1(b), where all non-essential edges and nodes (in
dashes) have been removed from the original flow graph.
Next, we transform routinely the reduced flow graph to
obtain the single-source, single-sink graph given in Fig-
ure 1(c). Finally, we apply a standard min-cut algorithm
to the single-source, single-sink graph to obtain optimally
all the required edge insertion points, which are the edges
in the cut. The sum of the frequencies of the edges in the cut
is the minimal number of computations of� � � that must be
incurred with respect to the edge profile given. Figure 1(d)

shows the transformed flow graph, requiring 300 computa-
tions of� � �. Note that the speculative execution of�� � on
the edge�� � �� has made the three computations of� � � at
nodes 7, 8 and 10 in the original flow graph fully redundant.
For this same example, the classic PRE [22], known as lazy
code motion (LCM), would have produced the code in Fig-
ure 2, requiring 400 computations for the same expression.

We achieve computational optimality based on edge pro-
files. This implies immediately that the more expensive path
profiling is not necessary for this optimization objective.

In general, it is safe to perform speculations for expres-
sions that cannot throw exceptions at run time. But a spec-
ulative evaluation of an expression that may throw runtime
exceptions can change the semantics of the program. For-
tunately, hardware support available in modern processors
(e.g., speculative instructions as in IA-64) allows this con-
straint to be relaxed. For architectures that do not provide
such advanced features, our algorithm can only be applied
safely to exception-free expressions.

We have implemented our algorithm as a component in
Intel’s Open Runtime Platform (ORP) [1, 14]. We have
evaluated its effectiveness over a number of Java bench-
marks including SPEC JVM98, SciMark2, Linpack and
JavaG.1 In all experiments, we have restricted ourselves to
exception-free expressions. In comparison with ORP run-
ning in its dynamic recompilation configuration (known as
inst in [14]), our algorithm achieves comparable (and
mostly better) performance results in all programs. In the
case of SPEC JVM98, we obtain performance improve-
ments in six out of its seven programs. These preliminary
results are very encouraging in two aspects. First, our algo-
rithm is lightweight and efficient (at least for programs char-
acterized by the Java benchmarks used in our experiments).
Second, profile-guided PRE, which has been perceived to
be expensive in a dynamic compiler, can be profitably em-
ployed as one of its optimizing components.

The rest of this paper is organized as follows. Section 2
defines precisely speculation-based PRE as a code motion
transformation in terms of correctness and computational
optimality. Section 3 presents our optimal algorithm. Sec-
tion 4 evaluates experimentally its efficiency. Section 5
compares with the related work. Section 6 concludes the
paper.

2. Problem Statement

Section 2.1 defines the control flow graphs used, which
have been simplified to facilitate our presentation. Sec-
tion 2.2 provides a characterization of speculative PRE in
terms of its correctness and computational optimality.

1As for JavaG, ORP presently crashes on MonteCarlo due to a heap
error and fails to pass the validation phase for MolDyn and RayTracer.

2

� � � � �

�

� � � � � �

� � �

�

�

� �

	

 �

�
 ��

�

��

��� ���

��� ���

���

�����

��

���

���

��� ���

���

���

� � � � �

�

� � � � � �

� � �

�

�

� �

	

 �

�
 ��

�

��
(a) Original flow graph (b) Reduced flow graph (without the edges and nodes in dashes)

� � � � �

�

� � � � � �

� � �

�

� �

	

 �

� ��

�

��

��

�

�

�

� �
�

���

���

���

��

���

��� ���

� �� ���

� �

�

� �

� � � �

� �

�

�

� �

	

 �

�
 ��

�

��

� � � � �

� � � � �

(c) Single-source, single-sink graph (d) Transformed flow graph

Figure 1. A running example illustrating our optimal algori thm.

2.1. Control Flow Graphs

A (control) flow graph is a directed graph annotated with
an edge profile. We represent a flow graph (reducible or
not) as a weighted graph�� � �! � � �"� � �#� � �, where

� the nodes in the node set!� � represent basic blocks,

� the edges in the edge set"� � represent potential flow
of control between basic blocks, and

� # is aweight function: #� � $ " � � %& '((where'(is
the set of natural numbers starting from 0).

The weight#� � �) � * � attached to the edge�) � * � + " � �
is a nonnegative integer representing the frequency of its
execution. The edge profiling information required can be
gathered via code instrumentation [5], statistic samplingof
the program counter [3] or static program-based heuristics
[6, 27]. An edge profile has less runtime overhead to collect
than a path profile [7]. The information contained in an
edge profile, while less than a path profile, is sufficient to
guarantee computationally optimal results.

Let , + ! � � be a node in a flow graph�� � . We write
pred�, � -. / �. �, � + "� � 0 and succ�, � -. /
�, �. � + " � � 0 to denote the set of all immediatepredeces-

3

� � �

� � �

�

� �

� �

� �

�

� � � � �

�

� �

	

 � �

�
 ��

��

��� ���

��� ���

���
���

���

���

��

�� ���

���

���

���

���

Figure 2. Transformation of the flow graph
given in Figure 1(a) by the classic LCM [22].

sorsandsuccessorsof ,, respectively. We writeedge�, �
- �. �, � / . + pred�, �0 � - �, �. � / . + succ�, �0 to
denote the set of all edgesincidentto ,. The paths and sub-
paths, which are all directed, are used in the normal manner.

The following properties about�� � are assumed:

� � + ! � � represents a uniqueentry nodewithout any
predecessors,

� � + ! � � represents a uniqueexit nodewithout any suc-
cessors, and

� every node in!� � lies on some path from� to �.

To simplify our discussions, we make a number of as-
sumptions about the basic block nodes in a program. Each
node contains only a single assignment of the form* � ,
where* is a variable and� is an expression built in terms
of variables, constants and operators.

For each node,, we define the two local predicates with
respect to a generic expression� :

� COMP(n): , contains a computation of� (called a
computation nodeof �).

� TRANSP�, �: , is transparent, i.e.,, does not mod-
ify any operands of� . A node that is not transparent
for an expression is called amodification nodeof that
expression.

We further assume that each node cannot both compute
and modify� at the same time. That is, we disallow an

1. Introduce a new temporary variable�� for �
2. Insert�� � at every insertion edge in� �
3. Replace� by �� at every computation node of�

Figure 3. SPRE as a code motion transforma-
tion w.r.t. an expression � in a flow graph �� �.

assignment of the form� � � �. Such an assignment can
always be split into two sequential assignments� � � �
and� �, where� is a new temporary.

Assumption 1 A node cannot be simultaneously a compu-
tation node and a modification node of the same expression.

Finally, we consider� to be a modification node for every
expression� to be optimized by our algorithm. That is,�
has a definition of every variable in� to represent whatever
value the variable may have when� is entered. Technically,
this “prevents” any occurrence of� from being hoisted past
� speculatively when our algorithm is applied.

Assumption 2 The entry node� is a modification node for
every expression� to be optimized by our algorithm.

If the entry node in a flow graph is initially a computation
node of an expression� , then a pseudo basic block can be
introduced as the new entry node so that both assumptions
given above hold trivially in the modified flow graph.

2.2. SPRE: Correctness and Optimality

The SPRE is realized as a code motion transformation
with all insertions and deletions of an expression performed
in such a way that the semantics of the program is preserved.

The objective of this work is to minimize the total num-
ber of computations for a generic expression� in a flow
graph�� �. A SPRE code transformation is completely
characterized by a set, denoted� � and calledthe insertion
set, of edges (calledthe insertion edges) in the flow graph.
The transformation to implement the effect of a given� �
consists of the three steps as summarized in Figure 3.

A SPRE transformation is correct if�� is initialized on
every path leading to a computation node in such a way
that no modification occurs afterwards. Then�� always
represents the same value as� at every computation node.
So the semantics of the program is preserved.

Definition 1 (Correctness) � � is correct if the following
two properties hold for every computation node, in �� � .
P1. Every path from the entry node� to the node, must

include at least one insertion edge�) � * � + � � , and

4

P2. no node in the subpath from* to , (inclusive) is a mod-
ification node of� .

Due to Assumption 2, every computation node, which
cannot be the entry node, must have some incoming edges.
Hence, the existence of a correct insertion set is guaranteed.

The goal of minimizing the number of computations for
a given expression in a flow graph is reflected by the fol-
lowing criterion of computational optimality.

Definition 2 (Optimality.) � � is optimal if (a) � � is cor-
rect and (b)���� � #� � ��� is the smallest possible, i.e.,
���� � #� � ��� � ��� �� �� #� � ��� � for every possible cor-

rect insertion set� �� (for the flow graph�� �).
In the running example shown in Figure 1, the insertion

set� �	
 - �� � �� � �� � ��0 is optimal. The transformation
from Figure 1(a) to Figure 1(d) is straightforward.

3. MC-PRE: Optimal Algorithm

Figure 4 presentsMC-PREfor finding an optimal inser-
tion set� � for an expression� . The key in developing our
algorithm lies in the removal of the so-called non-essential
edges (and consequently, all resulting non-essential nodes)
from a flow graph�� � so that the problem of finding an op-
timal insertion set in�� � becomes one of finding a minimal
cut on the reduced flow graph thus obtained.

Our algorithm proceeds in three steps. We first explain
its three steps and prove its optimality. We then discuss its
time complexity and give some remarks.

3.1. Step 1: Constructing a Reduced Graph

This step is the key to the algorithm. By removing the
non-essential edges (and all resulting non-essential nodes)
from the flow graph, we are able to realize that an optimal
insertion set is simply a minimal cut on the reduced graph.

In 1(a), the standard availability system for an expres-
sion � from [23] is solved except that it is related to our
two local predicatesCOMP andTRANSP. The two global
predicatesN-AVAL andX-AVAL on nodes are defined as
follows. N-AVAL �, � denotes the availability of� on entry
of a node, andX-AVAL �, � the same property at the exit
of the same node. An expression is available on entry to a
node, if it is available on exit from each predecessor of the
node. An expression is available on exit from a node, if
it is locally available (i.e., the node is a computation node
of � by Assumption 1) or if it is available on entry of and
transparent at the node.

In 1(b), the partial anticipability system for an expres-
sion� is adapted from the anticipability system in [23]. The
two global predicatesN-PANT andX-PANT on nodes are

defined as follows.N-PANT �, � denotes the partial antici-
pability of � on entry of a node, andX-PANT �, � the same
property at the exit of the same node. An expression is par-
tially anticipatable on exit from the node, if it is partially
anticipatable on entry of at least one successor of the node.
An expression is partially anticipatable on entry to a node,
if it is locally available (i.e.,, is a computation node of�)
or if it is partially anticipatable at the exit of and transparent
at the node.

In 1(c), the four global predicates defined on the edges
of a flow graph serve to classify them, in that order, into
insertion-redundant, insertion-useless, non-essentialand
essentialedges. The forward availability analysis detects
the insertion-redundant edges while the backward partial
anticipability analysis detects the insertion-useless edges.

The concept of essentiality for edges induces a similar
concept for nodes. A node, in �� � is essentialif at least
one of its incident edges is essential andnon-essentialoth-
erwise.

In 1(d), the reduced graph�
� is constructed as consist-
ing of all essential edges in"� � and all essential nodes in
!� � from the original flow graph.

Figure 5 illustrates this step of the algorithm us-
ing our running example. Figure 5(a) illustrates the
exit-availability and insertion-redundant predicates, where
the four insertion-redundant edges�� � � � � �� � �� � �� � � � and
��� � ��� found are depicted in dotted edges. Figure 5(b)
illustrates the entry-partial-anticipability and insertion-
useless predicates, where the five insertion-useless edges
�� � �� � �� � � � � �� � �� � �� � ��� and ��� � ��� found are depicted
in dashed edges. Note the possibility that some non-
essential edges, such as�� � � � and ��� � ��� in this exam-
ple, are both insertion-redundant and insertion-useless.It
is not difficult to see from this example that an insertion-
redundant edge is so named because an insertion�� �
on the edge is redundant since the value of�� is already
available on the edge in any correct SPRE transformation.
Similarly, an insertion-useless edge is so named because an
insertion�� � on the edge can never make the value of
�� available to any computation node of� in �� � .

The following lemma implies that an optimal insertion
set exists on the reduced graph�
�. It will be used in es-
tablishing the optimality of� � found by our algorithm.

Lemma 1 Let � be a non-essential edge for an expression
� , where#� � ��� � �. If #� � ��� � �, then� cannot be an
insertion edge in any optimal insertion set� � . If #� � ���
�, then every optimal insertion set� � remains to be optimal
even after the edge� is removed from� � .

Proof. Suppose� � is an optimal insertion set including
the non-essential edge�. Let � be an insertion-redundant
(insertion-useless, resp.) edge. By Definition 1 and the
definition ofINS-REDUND��� (INS-USELESS���, resp.),
we find that� �� � � � -�0 is also a correct insertion set.

5

Algorithm MC-PRE

INPUT: a weighted flow graph�� � �! � � �"� � �#� � � and an expression�
OUTPUT: an optimal insertion set� �

1. Obtain from�� � a reduced (flow) graph�
� �!
 � �"
� �#
 � � by removing non-essential edges and nodes:

(a) Solve the standard forwardavailability analysis (initialized totrue):

N-AVAL �, � =

���
��

false if , is the entry node��
� �pred���

X-AVAL �. � otherwise

X-AVAL �, � = COMP �, � 	 �N-AVAL �, �
 TRANSP�, ��
(b) Solve the backwardpartial anticipability analysis (initialized tofalse):

X-PANT �, � =

���
��

false if , is the exit node��
� �succ���

N-PANT �. � otherwise

N-PANT �, � = COMP �, � 	 �X-PANT �, �
 TRANSP�, ��
(c) Define the four predicates on the edges of�) � * � + " � � (no flow analysis):

INS-REDUND �) � * � �� X-AVAL �) �
INS-USELESS�) � * � �� � N-PANT �* �

NON-ESS�) � * � �� INS-REDUND �) � * � 	 INS-USELESS�) � * �
ESS�) � * � �� �NON-ESS�) � * �

(d) Construct�
 � as follows:

!
 � = -, + ! � � /
 � + edge�, � $ ESS���0
"
 � = -� + "� � / ESS���0

 � = #� � restricted to the domain"
�

2. Convert�
� into asingle-source, single-sink graph� �� �! �� �" �� �# �� �:
(a) Let�
� -, + !
 � / /pred�, � / �0 and�
� -, + !
 � / /succ�, � / �0
(b) Let � � be a new entry node and� � a new exit node

(c) Construct� �� as follows:

! �� = !
� � -� � � � �0
" �� = "
� � - �� � �, � / , + �
� 0 � - �, � � �� / , + �
� 0
�� = #
 � (extended to" ��) such that� � + �" �� � "
� � $ # �� ��� � .

3. Find anoptimal insertion setas a minimal cut on� ��:
� � � �! � � � �� �� �;

Figure 4. An algorithm finding an optimal insertion set � � for an expression � in a flow graph �� �.

If #� � ��� � �, then� � � �� �� #� � �� �� � � � �� � #� � �� �,
which contradicts to the fact that� � is optimal. If#� � ���
�, then � � � �� �� #� � �� � � � � �� � #� � �� �, which im-

plies that� �� is also optimal. This concludes the proof of
the lemma.

3.2. Step 2: Obtaining a Single-Source, Single-Sink
Graph

Due to the removal of the non-essential edges and nodes,
the reduced graph�
� obtained in Step 1 is usually a multi-

6

� � � � �

�

� � � � � �

� � �

�

�

� �

	

 �

�
 ��

�

��

��� ���

��� ���

���

�����

��

���

���

��� ���

���

���

������
�����	
��

� � � � �

�

� � � � � �

� � �

�

�

� �

	

 �

�
 ��

�

��

��� ���

��� ���

���

�����

��

���

���

��� ���

���

���

�����

������	�	��

(a) Forward analysis (b) Backward analysis

Figure 5. Identification of non-essential (and essential) e dges in a flow graph �� �.

source, multi-sink graph. In 2(a),�
 � is defined to be the
set of all such source nodes and�
 � the set of all such sink
nodes. In 2(b), the new pseudo entry and exit nodes are
added. In 2(c), we obtain a single-source, single-sink graph,
in which all newly introduced edges have the weight� .

In our running example, where the original flow graph is
given in Figure 1(a), Figure 1(b) depicts the reduced graph,
where the nodes 1 and 3 are the sources and the nodes 2, 7
and 10 the sinks. Figure 1(c) gives the single source, single-
sink graph constructed from this reduced graph.

The following lemma will be used in establishing the
correctness of� � found by our algorithm.

Lemma 2 Let� �) � * � be a path from) to * in a flow graph
�� �, where) � * , such that

�) is a modification node of� () could be the entry node
� by Assumption 2),

� * is a computation node of� , and

� no other nodes on the path� �) � * � are modification or
computation nodes of� .

Then the following statements are true:

(a) �
� contains the path� �) � * � (i.e., all its nodes and
edges),

(b)) + �
�, and

(c) * + �
�.
Proof. Figure 6 illustrates the exit-availability and entry-
partial-anticipability of the end points of all the edges onthe
path� �) � * �. Note that the values of these two predicates
are completely defined by examining the nodes and edges
on the path� �) � * � alone. By the definition ofESS, all
the edges on this path are essential. As a consequence, all
the nodes on the path are also essential. Hence, (a) is true.
Since) is a modification node, all its incoming edges are
insertion-useless. This means that/pred�) � / � in �
 �.
Hence, (b) is true. Since* is a computation node and by also
noting Assumption 1, all its outgoing edges are insertion-
redundant. This means that/succ�* � / � in �
�. Hence,
(c) is true.

The following four lemmas provide some characteriza-
tions of the reduced graph�
 �. While useful in shedding
the light on its structure, they are not used in any way in es-
tablishing the correctness and optimality of our algorithm.
Therefore, their proofs are omitted.

Lemma 3 �
 � � iff �� � contains no computation nodes.

Lemma 4 Let , + �
�. Then, + �
� iff , is a modifica-
tion node of� .

Lemma 5 Let , + �
�. Then, + �
� iff , is a computa-
tion node of� .

Lemma 6 �
 � � �
� �.

7

�

�

�

������
�����

������	
��� ���

�����
	
��� ���

Figure 6. An illustration of the proof of
Lemma 2.

3.3. Step 3: Finding an Optimal Insertion Set

In this step,� � is chosen to be a minimal cut on the
single-source, single-sink graph� �� by applying a min-cut
algorithm. For our running example, Figure 1(c) depicts the
unique minimal cut on� �� , where� �	
 - �� � �� � �� � � �0.
The minimal number of computations of� � � is 300.

Theorem 1 � � found by MC-PRE is optimal.

Proof. The proof has two parts. The first part establishes
the correctness of� � while the second part its optimality.
Since we have converted the multi-source, multi-sink re-
duced graph�
 � into the single-source, single-sink graph
� �� in the standard way [15, p. 584], a minimal cut found
on � �� (that separates� � from � �) is also a minimal cut on
�
� (that separates all the source nodes in�
 � from all the
sink nodes in�
 �).
Part I: Correctness. Let , be an arbitrary but fixed com-

putation node of� . Let� �� � , � be an arbitrary but fixed
path from the entry node� to the node,. We proceed
to show that� � satisfies Properties P1 and P2 stated
in Definition 1. By Assumption 2,� �� �, � must con-
tain at least one modification node of� , which could
be the entry node�. Let) be the last modification
node on the path� �� �, �. Let * be the first compu-
tation node immediately after) (* could be the node
,). Such a computation node* must exist since the
node,, which is a computation node, appears at the
end of the path� �� �, �. By Assumption 1,) � * . Let
� �) � * � be the subpath of� �� �, � from) to * (inclu-
sive). By Lemma 2, Statements (a) – (c) stated in that

lemma are all true (see Figure 6 again). This means
that� � — which is a cut on�
 � — must include at
least one edge from� �) � * �. Hence, Property P1 is sat-
isfied. By construction, the subpath� �* �, � of � �� �, �,
i.e., its subpath starting from* to ,, does not contain
any modification nodes of� . Hence, Property P2 is
also satisfied. Thus,� � is a correct insertion set.

Part II: Optimality. � � is a minimal cut on �
 �.
Lemma 1 implies trivially that an optimal insertion set
for the original flow graph�� � can be found from�
 �.
It is easy to show that every correct insertion set (con-
sisting of only edges from�
 �) must be a cut on� �� .
Thus,� � , which is the best among all correct insertion
sets, must be optimal by Definition 2.

3.4. Time Complexity

The overall time complexity ofMC-PREis dominated by
the two uni-directional data-flow analysis passes performed
in Step 1 and the min-cut algorithm employed in Step 3.
The two passes can be done in parallel for all expressions
in a flow graph but the min-cut algorithm operates on each
expression separately (at least so in our current implementa-
tion). WhenMC-PREis applied to each expression in a flow
graph�� � �!� � �"� � �#� � � individually, the worst-case
time complexity for each iterative pass is� � /! � � /� ��� ���,
where � is the maximum number of back edges on any
acyclic path in�� � and typically� � � in practical cases
[24].

The min-cut step of our algorithm operates on the re-
duced graph�
 � �!
 � �"
 � �#
 � �. There are a vari-
ety of polynomial algorithms in the literature with differ-
ent time complexities [11]. In our implementation, we have
used Goldberg’spush-relabelHIPR algorithm since it has
been reported to be efficient with its worst-time complexity
being� � /!
 � /� � /"
 � /� [17]. Hence,MC-PREhas a poly-
nomial time complexity overall. In Section 4, we discuss
the compile-time overhead of our algorithm on benchmark
programs.

3.5. Discussion

There are two reasons why we have used edge insertions
based on edge profiles.

Edge Insertions v.s. Node Insertions.The edge in-
sertions are more general than the alternative of
permitting insertions only in basic block nodes. Based
on the criterion of the computational optimality given
in Definition 2, the edge insertions are at least as good
as the node insertions. Let� be the set of insertion
points at the node entries or exits. Let� be the set of
edges obtained from� by moving an entry insertion

8

point to all its incoming edges and an exit insertion
point to all its outgoing edges. The total number of
computations in both cases is the same. However, if
some of these edges are non-essential, the insertions
on these edges are not necessary. If these non-essential
edges have non-zero weights, then the total number of
computations using the edge insertions is smaller.

Edge Profiles v.s. Path Profiles.An edge profile is suffi-
cient to find an optimal insertion set. Let� be an opti-
mal (edge) insertion set obtained in some way based on
a path profile. Let� be an optimal insertion set found
in this paper based on the edge profile derived from the
path profile. This means that the edge frequencies are
the same in both cases. Then� is at best as good as
� by the criterion of computational optimality since�
is optimal. Nevertheless, we plan to investigate how to
exploit the extra information available in a path profile
for other optimization purposes.

4. Experiments

PRE, which is perceived as an expensive optimization,
has not been used in a number of dynamic or JIT com-
pilers [1, 2, 14]. We have implemented ourMC-PREal-
gorithm in Intel’s ORP — a dynamic compilation system
for Java programs [1, 14]. Our experimental results over a
number of Java benchmarks including SPEC JVM98, Sci-
Mark2, Linpack and JavaG demonstrate that our algorithm
is lightweight and efficient. We present and analyze our per-
formance results for the SPEC JVM98 benchmark below.

4.1. Implementation Details

ORP consists of two compilers: a baseline compiler
known as the O1 and an optimizer known as the O3 [14].
The O1 compiler translates all methods to native code
quickly when they are first invoked and performs only some
lightweight optimizations. Instrumentation code is inserted
into the native code to collect some profiling information.
As the code is executed, the instrumentation code updates
the profiling information. Based on the profiling informa-
tion, some methods are identified as hot methods and then
recompiled by the O3 optimizer, which performs a number
of standard optimizations such as common subexpression
elimination, loop-invariant motion and method inlining. In
the ORP paper [14], this option is referred to as theinst
configuration.

In our experiments, we have added a new configura-
tion, calledspre, which is the same asinst except that
the loop-invariant code motion in ORP is disabled and our
MC-PRE is used in its place. ORP eliminates common
subexpressions in a flow graph by performing only local
common subexpression elimination (LCSE) on extended

basic blocks. Since PRE only eliminates partial redundan-
cies across the basic blocks, we have turned LCSE on in
bothinst andspre. Therefore,MC-PRE, once imple-
mented in ORP, works with the basic blocks containing
multiple instructions. As in [22], only the upward- and
downward-exposed expressions in a basic block are consid-
ered as candidates for partial redundancy elimination.

In the spre configuration, we collect an edge profile
for the flow graph of a method via code instrumentation.
We insert instrumentation code at all the branches in the
native code generated by the O1 baseline compiler. When
the method becomes hot and needs to be recompiled, we
compute from the branch profiling information the edge fre-
quencies in the flow graph. We then feed the edge profile
thus constructed toMC-PREto obtain an optimal code mo-
tion for the method. The runtime overhead of our simplistic
profiling mechanism can be improved if some better tech-
niques are used [4, 26].

We evaluate the lightweightness and effectiveness of
MC-PRE by comparinginst and spre. All our ex-
periments were performed on a���MHz Pentium III
workstation with 512MB RAM. The default heap size
used when running ORP is��MB. In all experiments,
MC-PREis applied to exception-free expressions only.

4.2. Performance Evaluation

In a dynamic compiler, the totalrunning timeof a pro-
gram consists of the (dynamic) compilation time and the
actual execution time of the program. It is therefore un-
derstood that profiling overhead (if any) is reflected in both
time components. Any time the compiler spends on gen-
erating instrumenting code and manipulating the collected
profiling information is included as part of the compilation
time of the program. Any time taken on collecting profiling
information during the execution of the program becomes
part of its execution time. In practice, the former portion of
the profiling overhead is usually negligible.

Table 1 gives the times and speedups of all the seven
SPEC JVM98 benchmark programs obtained under the
inst and andspre configurations. In theinst configu-
ration, ORP uses its profiling mechanism to detect hot meth-
ods for recompilation by the O3 optimizer. In ourspre
configuration, we have added further instrumenting code in
order to build an edge profile for every method.

Let us examine the last three columns of Table 1, which
are also plotted graphically in Figure 7, to see howspre
performs as compared toinst. Speedup��� gives the
speedup of each program, i.e., how much faster each pro-
gram runs inspre than in inst. Speedup���� and
Speedup�� �� represent the percentage extra (re)compilation
cost incurred and percentage execution time reduction
obtained inspre over inst, respectively. By their
definitions,Speedup���=Speedup����+Speedup�� �� holds.

9

inst (secs) spre (secs) Speedups (%)

Program comp exec run comp exec run Speedup���� Speedup�� �� Speedup���
(��) (� �) (��) (��) (��) (��) (

�� ���
��) (

�� ���
��) (

�� ���
��)

compress 0.12 14.62 14.74 0.18 14.52 14.70 	�
� � 0.68 0.27
jess 0.44 7.86 8.30 0.49 7.56 8.05 	�
�� 3.73 3.11
db 0.12 23.89 24.01 0.19 23.81 24.00 	�
�� 0.33 0.04

javac 1.24 22.36 23.60 1.78 22.23 24.01 	�
�� 0.54 	 �
��
mpeg. 0.32 9.36 9.68 0.42 9.03 9.45 	 �
�� 3.49 2.43
mtrt 0.43 6.45 6.88 0.56 6.17 6.73 	 �
�� 4.16 2.23
jack 0.66 8.25 8.91 0.72 8.00 8.72 	�
�� 2.87 2.18

Table 1. Times and speedups. The three time components for a p rogram are interpreted as follows:
comp represents its compilation time, exec its execution time, and run its total running time such
that run=comp+exec. For the last three columns, we have Speedup���= Speedup����+ Speedup�� ��.

Thus, in order forspre to perform better thaninst for
a program, the increase in its compilation cost (represented
by Speedup����) must be more than offset by the decrease
in its execution time (represented bySpeedup�� ��). Note
that it makes sense to refer to the quantities denoted by
Speedup���� andSpeedup�� �� as speedups. Consider the
two extreme cases. IfSpeedup���� � � (i.e.,spre causes
no or little extra compilation cost), thenSpeedup�� �� �
Speedup��� . If Speedup�� �� � � (i.e., spre yields no
or little gain in execution time), thenSpeedup���� �
Speedup��� (which should usually be negative).

sp
ee

du
ps

 (
%

)

−
4

−
2

0
2

4
6

com
press

jess

db javac

m
peg.

m
trt

jack

Speedup�
��
Speedup�� ��
Speedup���

Figure 7. Speedups (in bar charts).

Figure 7 shows clearly thatspre outperformsinst in
six of the seven programs. By performing code motion op-
timally based on a runtime profile, our algorithm has re-
duced effectively the execution times of all seven programs.
In the case ofjavac where the performance improvement
is negative, a lot of methods are recompiled dynamically.
However,MC-PREdoes not benefit from the recompilation
since many of these methods have few exception-free ex-
pressions with little optimization opportunities. In thiscase,
the time taken for constructing edge profiles for their flow
graphs (since we instrument only at the branches) becomes
pure overhead. In addition,MC-PREhas been applied non-

Edge Prof (secs)�), (secs) Speedup���(%)
Program �� � (�� �� 	�) (

�� ���
��)

compress 0.09 14.61 0.89
jess 0.10 7.95 4.40
db 0.29 23.71 1.27

javac 0.18 23.83 	�
��
mpeg. 0.09 9.36 3.42
mtrt 0.08 6.65 3.46
jack 0.08 8.64 3.13

Table 2. Improved running times and
speedups without edge profiling overhead.
Note that � � and �� are from Table 1.

profitably to their corresponding reduced graphs. These two
factors together have resulted in the large increase in the
compilation overhead forjavac in Figure 7.

In a dynamic compiler where some edge profiling mech-
anism exists, the edge profiling information is very likely al-
ready used by a number of optimizations such as method in-
lining and locality optimizations. In this case, the edge pro-
filing overhead should not all be charged intoMC-PRE. To
estimate the edge profiling overhead incurred for a program,
we runinst with our edge profiling mechanism turned on
and off. The difference between the two running times ob-
tained is taken as a good estimate. In actuality,inst was
run many times in order to get an accurate estimate. Ta-
ble 2 gives the edge profiling times and improved running
times and speedups for all the SPEC JVM98 programs. The
improved speedups are compared graphically in Figure 8
against the original ones from Figure 7.

Table 3 shows for each program the average size of all
non-empty reduced graphs and the average size of their cor-
responding flow graphs. We exclude empty reduced graphs,
and accordingly, their corresponding flow graphs since

10

sp
ee

du
ps

 (
%

)

−
4

−
2

0
2

4
6

com
press

jess

db javac

m
peg.

m
trt

jack

Speedup���
Speedup���

Figure 8. A comparison of Speedup��� from
Table 1 and Speedup��� from Table 2.

Program
(#nodes

��� , #edges
���)

�� � �
�
compress (�� � ��, �� � ��) (� � ��, � � ��)

jess (�� � ��, �� � ��) (�� � ��, �� � ��)
db (�� � ��, �� � ��) (� � ��, � � ��)

javac (�� � ��, �� � ��) (� � �, � � ��)
mpeg. (�� � ��, �� � ��) (� � �, � � ��)
mtrt (�� � ��, �� � ��) (� � �, � � ��)
jack (�� � ��, �� � ��) (� � ��, �� � ��)

Table 3. Average sizes for non-empty reduced
graphs and their corresponding flow graphs.

MC-PREdoes not perform its min-cut step on them. There-
fore, these statistics represent the average sizes of the orig-
inal flow graphs and their reduced graphsper expression
that have been processed by the min-cut step ofMC-PRE.
Clearly, the removal of non-essential edges and nodes in
the first step ofMC-PREhave been effective in reducing
the sizes of the graphs to be solved by the min-cut step.
It should be pointed out that some relatively large graphs
processed byMC-PREmay not be directly evident from
Table 3. For example, the largest reduced graph (w.r.t the
number of nodes) fromjess has 127 nodes and 187 edges
and the largest fromjavac has 88 nodes and 119 edges.

5. Related Work

Partial redundancy elimination originated from the sem-
inal work of Morel and Renvoise [23] and was quickly real-
ized as an important optimization technique that subsumes
global common subexpression and loop invariant code mo-
tion. Ever since, their work has been extended in several
directions [10, 12, 16, 21, 22, 25]. In particular, Knoop,
Rüthing and Steffen describe a uni-directional bit-vector
formulation that is optimal by the criteria of computational
optimality and lifetime optimality [22], and more recently,

Kennedyet alpresent an SSA-based framework that shares
the same two optimality properties. These efforts are re-
stricted by the safety code motion criterion [20] and insen-
sitive to the execution frequencies of a program point in a
flow graph.

To overcome these two limitations, there have been two
papers devoted entirely to reducing the total number of ex-
pression evaluations in a flow graph even further by using
speculation. Horspool and Ho [19] analyze edge insertions
based on an edge profile while Gupta, Berson and Fang [18]
use a path profile, which is more expensive to collect. Both
methods are not computationally optimal as their respective
authors demonstrate by examples in their papers. In addi-
tion, both papers contain neither implementation details nor
experimental results on the effectiveness of their methods.

After this work was accepted, we have been made aware
of some results on profile-guided PRE described by Bodik
in his PhD thesis [8]. He proposes to solve the SPRE prob-
lem in four steps. First, he conducts iterative availabil-
ity and anticipability analyses on a flow graph to identify
the so-called CMP (Code-Motion-Preventing) region in the
flow graph. Both passes require two bits for each expression
since his predicates operate on four lattice values during the
CMP construction. Second, he finds a min-cut on the CMP
to obtain some insertion edges, which may not be all in-
sertion edges required. This component of the algorithm is
referred to as the CMP� estimator, one of the four estima-
tors developed in the thesis. Third, after having completed
the insertions on the insertion edges found, he repeats the
availability analysis (again requiring two bits for each ex-
pression) to find all insertion edges required. Finally, he
applies essentially the classic LCM [22] to obtain the trans-
formed code. In [8, Theorem 6.3], he gives a three-sentence
proof outline about the computational optimality of his al-
gorithm. He did not give experimental results forthisalgo-
rithm since CMP� is not implemented [8, p. 75]. Instead
he recommends that the non-optimal estimator CMP� be
the estimator of choice due to its simplicity [8, p. 76]. His
experimental results using SPEC95 benchmarks in a static
compiler indicate that this simple heuristic is nearly opti-
mal in many cases. In [9,�3.2], Bodiket alalso discussed a
non-optimal SPRE algorithm that does not use any control
flow restructuring.

Our algorithm,MC-PRE, proceeds in essentially two
major steps. The first step performs the standard availabil-
ity and partial anticipability analyses in order to find the re-
duced graph from a given flow graph — each pass requires
one bit for each expression. In the second step, all insertion
edges are found optimally as the edges in a minimal cut on
the reduced graph.MC-PREis always optimal. Our prelim-
inary experimental results over a range of Java benchmarks
indicate that it is efficient even in a dynamic compiler.

11

6. Conclusion

We have presented an algorithm for partial redundancy
elimination using speculation. Our algorithm always pro-
duces the best code possible with respect to a given edge
profile in the sense that the total number of computations for
any expression is minimized. This result implies that edge
profiling, which is less costly than path profiling, is suffi-
cient to guarantee this computational optimality. We have
implemented our algorithm in Intel’s ORP. Our preliminary
results over a number of Java benchmarks are promising. In
the case of the SPEC JVM98 benchmark, we have achieved
performance improvements in six out of its seven programs
over ORP’s dynamic recompilation. We expect our algo-
rithm to be useful in dynamic and static compilers.

We have achieved lifetime optimality and other results
on profile-guided PRE. They will be the subject of another
paper.

7. Acknowledgements

We would like to thank the referees and Partha Tirumalai
of SUN for their helpful comments and suggestions. We
would also like to thank Intel for making their ORP avail-
able. Finally, we are grateful to the ORP team for answering
our ORP-related questions.

References

[1] A. Adl-Tabatabai, M. Cierniak, G. Lueh, V. Parikh, and
J. Stichnoth. Fast, effective code generation in a just-in-
time Java compiler. InACM SIGPLAN’ 98 Conference on
Programming Language Design and Implementation, pages
280–280, 1998.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mer-
gen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapeño virtual machine.IBM System Jour-
nal, 39(1), 2000.

[3] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. L.
Henzinger, S.-T. Leung, R. L. Sites, M. T. Vandevoorde,
G. A. Waldspurger, and W. E. Weihl. Continuous profiling:
Where have all the cycles gone? In10th Symposium on Op-
erating System Principles, 1997.

[4] M. Arnold and B. G. Ryder. A framework for reducing the
cost of instrumented code. InACM SIGPLAN’ 01 Confer-
ence on Programming Language Design and Implementa-
tion, pages 168–179, 2001.

[5] T. Ball and J. H. Larus. Optimally profiling and tracing sys-
tems. ACM Transactions on Programming Languages and
Systems, 16(4):1319–1360, July 1994.

[6] T. Ball and J. R. Larus. Branch prediction for free. InACM
SIGPLAN’ 93 Conference on Programming Language De-
sign and Implementation, pages 300–313, 1993.

[7] T. Ball, P. Mataga, and M. Sagiv. Edge profiling versus path
profiling: The showdown. InACM Symposium on Principles
of Programming Languages, 1998.

[8] R. Bodik. Path-Sensitive Value-Flow Optimizations of Pro-
grams. PhD thesis, University of Pittsburgh, 1999.

[9] R. Bodik, R. Gupta, and M. L. Soffa. Complete removal of re-
dundant computations. InACM SIGPLAN’ 98 Conference on
Programming Language Design and Implementation, pages
1–14, 1998.

[10] P. Briggs and K. D. Cooper. Effective partial redundancy
elimination. InACM SIGPLAN’ 94 Conference on Program-
ming Language Design and Implementation, pages 159–170,
1994.

[11] C. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, and
C. Stein. Experimental study of minimum cut algorithms. In
ACM/SIAM Symposium on Discrete Algorithms, pages 324–
333, 1997.

[12] F. Chow. A portable machine-independent global optimizer
— design and measurements. PhD thesis, Computer Systems
Laboratory, Stanford University, 1983.

[13] F. Chow, M. Himelstein, E. Killian, and L. Weber. Engineer-
ing a RISC compiler. InProceedings of IEEE COMPCON,
pages 132–137, 1986.

[14] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. Practicing
JUDO: Java under dynamic optimizations. InACM SIG-
PLAN’ 00 Conference on Programming Language Design
and Implementation, pages 13–26, 2000.

[15] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction
to Algorithms. Cambridge, Mass.: MIT Press, 1990.

[16] D. M. Dhamdhere. Practical adaption of the global optimiza-
tion algorithm of Morel and Renvoise.ACM Transactions on
Programming Languages and Systems, 13(2):291–294, 1991.

[17] A. GoldBerg. Network Optimization Library.
http://www.avglab.com/andrew/soft.html.

[18] R. Gupta, D. A. Berson, and J. Z. Fang. Path profile guided
partial redundancy elimination using speculation. InIEEE In-
ternational Conference on Computer Languages, pages 230–
239, 1997.

[19] R. Horspool and H. Ho. Partial redundancy elimination
driven by a cost-benefit analysis. In8th Israeli Conference
on Computer System and Software Engineering, pages 111–
118, 1997.

[20] K. Kennedy. Safety of code motion.International Journal
of Computer Mathematics, 3(2–3):117–130, 1972.

[21] R. Kennedy, S. Chan, S.-M. Liu, R. Lo, and P. Tu. Partial
redundancy elimination in SSA form.ACM Transactions on
Programming Languages and Systems, 21(3):627–676, 1999.

[22] J. Knoop, O. Rüthing, and B. Steffen. Optimal code motion:
Theory and practice.ACM Transactions on Programming
Languages and Systems, 16(4):1117–1155, July 1994.

[23] E. Morel and C. Renvoise. Global optimization by suppres-
sion of partial redundancies.Communications of the ACM,
22(2):96–103, February 1979.

[24] S. S. Muchnick.Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann Publishers, Inc., 1997.

[25] L. T. Simpson.Value-Driven Redundancy Elimination. PhD
thesis, Rice University, 1996.

[26] O. Traub, S. Schechter, and M. Smith. Ephemeral instrumen-
tation for lightweight program profiling. Technical report,
Harvard University, 2000.

[27] Y. Wu and J. R. Larus. Static branch frequency and pro-
gram profile analysis. In27th International Symposium on
Microarchitecture, pages 1–11, 1994.

12

