To appear in 1lst | EEE/ ACM Int. Synposiumon Code Generation and Optim zation (CGO 03).

Optimal and Efficient Speculation-Based Partial Redundang Elimination

Qiong Cai and Jingling Xue
School of Computer Science and Engineering
University of New South Wales
Sydney, NSW 2052, Australia
{qi ongc, j xue}@se. unsw. edu. au

Abstract 1. Introduction

Existing profile-guided partial redundancy elimination Partial redundancy elimination (PRE) is a powerful opti-

(PRE) methods use speculation to enable the removal oy, ation technique for removing partial redundanciesglon
partial redundancies along more frequently executed paths paths through a flow graph. The technique inserts and
at the expense of introducing additional expression evalua yo|ates computations in a given flow graph in order to re-
tions along less frequently executed paths. While being ca-q,ce the total number of remaining such computations in
pable of minimizing the number of expression evaluations inyq transformed code. Global common subexpressions and
some cases, they are, in general, not computationally opti-5qp._jnvariant computations are special cases of patial r
mal in achieving this objective. In addition, the experimen 4,ndancies. As a result, PRE has become an important
tal results for their effectiveness are mostly missing. component in global optimizers [10, 12, 13].

This work addresses the following three problems: (1) |5ssic PRE methods [21, 22] guarantee computation-
Is the computational optimality of speculative PRE SOIV- o1y ontimal results, i.e., results where the number of com-
able in polynomial time? (2) Is edge profiling — less costly ,tations cannot be reduced any further by safe code motion
than path profiling — sufficient to guarantee the computa- [20]. Under such a safety constraint, they insert an expres-
tional optimality? (3) Is the optimal algorithm (if one ets¥ sion at a pointp in a flow graph only if all paths ema-
lightweight enough to be used efficiently in a dynamic com- nating fromp must evaluater before any operands afare
piler? In this paper, we prpvide positive answers to the first edefined. The expressianis known adully anticipatable
two problems and promising results to the third. atp [23]. In other words, they remove partial redundancies

We present an algorithm that analyzes edge insertion glong some paths but never introduce additional (new) com-
points based on an edge profile. Our algorithm guarantees pytations along any path. These safety-based formulations
optimally that the total number of computations for an ex- have two consequences. First, the transformed code can-
pression in the transformed code is always minimized with not cause exceptions that do not exist in the original code.
respect to the edge profile given. This implies that edge pro-|f evaluatingz can throw an exception, the exception —
filing, which is less costly than path profiling, is sufficient which is inevitable — would have occurred a bit earlier in
to guarantee this optimality. The key in the developmentthe transformed code than in the original code. Second, due
of our algorithm lies in the removal of some non-essential to the absence of prof|||ng information, they guarantee (a|-
edges (and consequently, all resulting non-essentialsjode peit conservatively) that the transformed code cannot eval
from a flow graph so that the problem of finding an optimal yater more times than before in any program execution.
code motion is reduced to one of finding a minimal cutinthe |, practical programs, some points (nodes or edges) in a
reduced (flow) graph thus obtained. We have implementedfoy graph are executed more frequently than others. If we
our algorithm in Intel's Open Runtime Platform (ORP). Our haye their execution frequencies available and if we know
preliminary results over a number of Java benchmarks showinat an expression cannot cause an exception, we can per-
that our algorithm is lightweight and can be potentially a form code transformations missed by classic PRE methods.
practical component in a dynamic compiler. As a result, The centralidea is to uspeculatior(i.e., unconditional ex-
our algorithm can also be profitably employed in a profile- ecution of an expression that is otherwise executed condi-
guided static compiler, in which compilation cost can often tjonally) to enable the removal of partial redundanciesglo
be sacrificed for code efficiency. some more frequently executed paths at the expense of in-

troducing additional (new) computations along some less

frequently executed paths. (So the safety criterion [20] en shows the transformed flow graph, requiring 300 computa-
forced in classic PRE methods is no longer honored.) tions ofa+b. Note that the speculative executioref b on
There are two previously published papers devoted en-the edgg3,4) has made the three computationsief b at
tirely to speculation-based PRE (SPRE) [18, 19]. Horspool nodes 7, 8 and 10 in the original flow graph fully redundant.
and Ho [19] use edge profiling information to determine the For this same example, the classic PRE [22], known as lazy
profitability of using speculation while Gupta, Berson and code motion (LCM), would have produced the code in Fig-
Fang [18] employ more expensive path profiling. While be- ure 2, requiring 400 computations for the same expression.
ing capable of minimizing the number of computations in ~ We achieve computational optimality based on edge pro-
some cases as compared to the classic PRE methods, bofiies. This implies immediately that the more expensive path
algorithms are, in general, not computationally optimal in profiling is not necessary for this optimization objective.
achieving this objective. In addition, both papers contain In general, it is safe to perform speculations for expres-
implementation details, and consequently, no experinienta sjons that cannot throw exceptions at run time. But a spec-
results on the effectiveness of their methods. ulative evaluation of an expression that may throw runtime
Motivated by these two previous research efforts, this exceptions can change the semantics of the program. For-
work addresses the following three problems: tunately, hardware support available in modern processors
(e.g., speculative instructions as in 1A-64) allows thisco
straint to be relaxed. For architectures that do not provide
such advanced features, our algorithm can only be applied
« Is edge profiling (less costly than path profiling) suffi- Safely to exception-free expressions. _
cient to guarantee the optimality? We have implemented our algorithm as a component in
Intel's Open Runtime Platform (ORP) [1, 14]. We have
e Is the optimal algorithm (if one exists) lightweight evaluated its effectiveness over a number of Java bench-
enough to be used efficiently in a dynamic compiler? marks including SPEC JVM98, SciMark2, Linpack and
JavaG: In all experiments, we have restricted ourselves to
This paper proyi(_jes positive answers to the first two prob- exception-free expressions. In comparison with ORP run-
lems and promising results to the third. ning in its dynamic recompilation configuration (known as
We present an algorithm, calledC-PRE (the “MC” i nst in [14]), our algorithm achieves comparable (and
stands for Min-Cut), that enables the speculation of an eX-mostly better) performance results in all programs. In the
pression in a flow graph using an edge profildC-PRE ¢ase of SPEC JVM98, we obtain performance improve-
guarantees that the total number of expression evaluationgnents in six out of its seven programs. These preliminary
in the transformed code éomputationally optimal.e., the results are very encouraging in two aspects. First, our-algo
smallest possible, with respect to the edge profile given. rjihm is lightweight and efficient (at least for programskeha
The key in its development lies in the removal of some non-ycterized by the Java benchmarks used in our experiments).
essential edges (and consequently, all non-essentialshode gecong, profile-guided PRE, which has been perceived to
from a given flow graph so that the problem of finding an g expensive in a dynamic compiler, can be profitably em-
optimal code motion emerges to be_ one of finding a minimal ployed as one of its optimizing components.
cutin the reduced graph thus obtained. o The rest of this paper is organized as follows. Section 2
Our running example is the flow graph given in Fig- yefines precisely speculation-based PRE as a code motion
ure 1(a), where the underlined numbers alongside the flowy.5nsformation in terms of correctness and computational
edges represent the frequencies of executidC-PRE nimality. Section 3 presents our optimal algorithm. Sec-
which is conceptually simple, proceeds in three stepst,Firs yion 4 evaluates experimentally its efficiency. Section 5

we perform two standard data-flow analyses — one forward .o mpares with the related work. Section 6 concludes the
and one backward — on the original flow graph shown in paper.

Figure 1(a) to obtain the reduced flow graph as shown in

Figure 1(b), where all non-essential edges and nodes (in

dashes) have been removed from the original flow graph.2. Problem Statement
Next, we transform routinely the reduced flow graph to

obtain the single-source, single-sink graph given in Fig- getion 2.1 defines the control flow graphs used, which
ure 1(c). Finally, we apply a standard min-cut algorithm 46 peen simplified to facilitate our presentation. Sec-

to the single-source, single-sink graph to obtain optiynall o, 5 5 provides a characterization of speculative PRE in
all the required edge insertion points, which are the edgesig g of its correctness and computational optimality.
in the cut. The sum of the frequencies of the edges in the cut

?S the minir_nal number of CompUtationS_‘Dﬂ‘b that m_USt be 1As for JavaG, ORP presently crashes on MonteCarlo due to@ hea
incurred with respect to the edge profile given. Figure 1(d) error and fails to pass the validation phase for MolDyn angTRacer.

e |s the computational optimality of SPRE solvable in
polynomial time?

hes)

(c) Single-source, single-sink graph (d) Transformed flow graph
Figure 1. A running example illustrating our optimal algori thm.
2.1. Control Flow Graphs The weightWy;(u, v) attached to the edg@:,v) € Ep

is a nonnegative integer representing the frequency of its

A (control) flow graph is a directed graph annotated with €xecution. The edge profiling information required can be
an edge profile. We represent a flow graph (reducible or9athered via code instrumentation [5], statistic sampdihg
not) as a weighted grapiy; = (N, By, Wy), where the program counter [3] or static program-based heuristics

[6, 27]. An edge profile has less runtime overhead to collect
e the nodes in the node sAt; represent basic blocks, than a path profile [7]. The information contained in an
edge profile, while less than a path profile, is sufficient to
¢ the edges in the edge sEBf; represent potential flow guarantee computationally optimal results.
of control between basic blocks, and
Letn € Ny be a node in a flow grapG'y;. We write
e W is aweight function Wy; : Ef; — IN (wherelN is predn) = {m | (m,n) € Eg} andsucn) = {m |
the set of natural numbers starting from 0). (n,m) € Ez} to denote the set of allimmedigpeedeces-

1. Introduce a new temporary varialilg for =
2. Inserth, = 7 at every insertion edge ih,
3. Replacer by h, at every computation node aof

Figure 3. SPRE as a code motion transforma-
tionw.r.t. an expression winaflowgraph Gy;.

assignment of the form = a + b. Such an assignment can
always be split into two sequential assignments a + b
anda = t, wheret is a new temporary.

50
Assumption 1 A node cannot be simultaneously a compu-
8latb tation node and a modification node of the same expression.
20 Finally, we consides to be a modification node for every
expressionr to be optimized by our algorithm. That is,
has a definition of every variable into represent whatever
Figure 2. Transformation of the flow graph value the variable may have wheiis entered. Technically,
given in Figure 1(a) by the classic LCM [22]. this “prevents” any occurrence affrom being hoisted past
s speculatively when our algorithm is applied.
Assumption 2 The entry node is a modification node for
sorsandsuccessorsf n, respectively. We writedgén) = every expressioni to be optimized by our algorithm.
{(m,n) | m € predn)} U {(n,m) | m € sucgn)} to : S .
denote the set of all edgéemsidentto n. The paths and sub- If the entry node in aflowgraphis |n|t|ally.a computation
paths, which are all directed, are used in the normal mannernode of an expression, then a pseudo basic block can be
The following properties abo ;; are assumed: introduced as the new entry node so that both assumptions

given above hold trivially in the modified flow graph.
e 5 € Ny represents a uniquentry nodewithout any

predecessors, 2.2. SPRE: Correctness and Optimality

o t € Ny represents a uniquexit nodewithout any suc-

cessors, and The SPRE is realized as a code motion transformation

with all insertions and deletions of an expression perfarme
e every node inVy; lies on some path fromto ¢. in such a way that the semantics of the program is preserved.

To simolif di . K ber of The objective of this work is to minimize the total num-
O SIMplity our dISCUSSIONS, We Make a NUMDET Of aS- o of computations for a generic expressioiin a flow

sumptions about the bgsic bIocI§ nodes in a program. Eachgraph Gy. A SPRE code transformation is completely
node contains only a single assignment of the forea , characterized by a set, denotég and callecthe insertion
Where_v is a variable andr is an expression built in terms set of edges (callethe insertion edgdsn the flow graph.
of variables, constants and operators. _ _ The transformation to implement the effect of a givep
For each noda,_we deflne_the two local predicates with consists of the three steps as summarized in Figure 3.
respect to a generic expresswn A SPRE transformation is correctif; is initialized on
e COMP(n): n contains a computation of (called a €very path leading to a computation node in such a way
computation nodef r). that no modification occurs afterwards. Thbp.always
_ _ represents the same valuemaat every computation node.
e TRANSP(n): n is transparent, i.en does not mod- So the semantics of the program is preserved.
ify any operands ofr. A node that is not transparent
for an expression is calledraodification nodef that Definition 1 (Correctness) Z; is correct if the following
expression. two properties hold for every computation nadén G;.

We further assume that each node cannot both computd?1. Every path from the entry nodeto the noden must
and modifyr at the same time. That is, we disallow an include at least one insertion ed@e, v) € Z,, and

P2. no node in the subpath fromto n (inclusive)isamod- defined as followsN-PANT (n) denotes the partial antici-
ification node ofr. pability of = on entry of a node andX-PANT (n) the same
property at the exit of the same node. An expression is par-
Due to Assumption 2, every computation node, which tially anticipatable on exit from the nodeif it is partially
cannot be the entry node, must have some incoming edgesanticipatable on entry of at least one successor of the node.
Hence, the existence of a correct insertion set is guardntee An expression is partially anticipatable on entry to a nade
The goal of minimizing the number of computations for if it is locally available (i.e.n is a computation node of)
a given expression in a flow graph is reflected by the fol- or if it is partially anticipatable at the exit of and transpat

lowing criterion of computational optimality. at the node.
o o In 1(c), the four global predicates defined on the edges
Definition 2 (Optimality.) Z is optimal if (a) Z is cor- of a flow graph serve to classify them, in that order, into

rect and (b)>_ .7 Wri(e) is the smallest possible, i.e., insertion-redundant insertion-uselessnon-essentialand
2eeT, Wri€) < 2.7 W(e') for every possible cor- essentialedges. The forward availability analysis detects
rect insertion sef;. (for the flow graphG;). the insertion-redundant edges while the backward partial
anticipability analysis detects the insertion-useleggesd
In the running example shown in Figure 1, the insertion The concept of essentiality for edges induces a similar
setZa4s = {(1,2),(3,4)} is optimal. The transformation concept for nodes. A nodein Gy, is essentialf at least

from Figure 1(a) to Figure 1(d) is straightforward. one of its incident edges is essential avuh-essentiabth-
erwise.
3. MC-PRE Optimal Algorithm In 1(d), the reduced gragH, is constructed as consist-

ing of all essential edges iBy; and all essential nodes in
Ny, from the original flow graph.

Figure 5 illustrates this step of the algorithm us-
ing our running example. Figure 5(a) illustrates the
exit-availability and insertion-redundant predicatefieve
the four insertion-redundant edgé 4), (7, 6), (8,9) and
(10,11) found are depicted in dotted edges. Figure 5(b)
illustrates the entry-partial-anticipability and insen-
useless predicates, where the five insertion-useless edges
(1,3),(5,9),(8,9),(9,11) and(10, 11) found are depicted
in dashed edges. Note the possibility that some non-
essential edges, such é9) and (10,11) in this exam-

i ple, are both insertion-redundant and insertion-usel#éss.
3.1. Step 1: Constructing a Reduced Graph is not difficult to see from this example that an insertion-
redundant edge is so named because an insédgtios =

This step is the key to the algorithm. By removing the on the edge is redundant since the valuéipfis already
non-essential edges (and all resulting non-essentialg)ode available on the edge in any correct SPRE transformation.
from the flow graph, we are able to realize that an optimal Similarly, an insertion-useless edge is so named because an
insertion set is simply a minimal cut on the reduced graph. insertionh, = « on the edge can never make the value of

In 1(a), the standard availability system for an expres- h, available to any computation node®ofn Gy;.
sion 7 from [23] is solved except that it is related to our The following lemma implies that an optimal insertion
two local predicate€OMP andTRANSP. The two global set exists on the reduced grafh,. It will be used in es-
predicatedN-AVAL and X-AVAL on nodes are defined as tablishing the optimality of . found by our algorithm.

follows. N-AVAL (r) denotes the availability of on entry Lemma 1 Lete be a non-essential edge for an expression

of a noden andX-AVAL (n) the same property at the exit
of the same node. An expression is available on entry to a"’ whereWy(e) > 0. If Wy(e) > 0, thene cannot be an

noden if it is available on exit from each predecessor of the insertion edge In any .optlm.al Insertion ﬁ I Wf’(e).:

o i X . 0, then every optimal insertion sét. remains to be optimal
node. An expression is available on exit from a nadié .
o even after the edgeis removed fron? ;.
it is locally available (i.e., the node is a computation node
of 7 by Assumption 1) or if it is available on entry of and Proof. SupposeZ, is an optimal insertion set including
transparent at the node. the non-essential edge Let e be an insertion-redundant

In 1(b), the partial anticipability system for an expres- (insertion-useless, resp.) edge. By Definition 1 and the

sionr is adapted from the anticipability systemin [23]. The definition ofINS-REDUND(e) (INS-USELESS(e), resp.),
two global predicatebl-PANT andX-PANT on nodes are we find thatZ,, = Z, \ {e} is also a correct insertion set.

Figure 4 presentsC-PREfor finding an optimal inser-
tion setZ,. for an expressiom. The key in developing our
algorithm lies in the removal of the so-called non-esséntia
edges (and consequently, all resulting non-essentialg)ode
from a flow graphG'y; so that the problem of finding an op-
timal insertion set irG's; becomes one of finding a minimal
cut on the reduced flow graph thus obtained.

Our algorithm proceeds in three steps. We first explain
its three steps and prove its optimality. We then discuss its
time complexity and give some remarks.

Algorithm MC-PRE

INPUT: aweighted flow grapliis; = (Nyi, Ey1, Wy) and an expression
OUTPUT: an optimal insertion seéf;

(a) Solve the standard forwaagailability analysis (initialized tdrue:

false if n is the entry node
N-AVAL (n) = /\ X-AVAL (m) otherwise
mepredrn)
X-AVAL (n) = COMP(n)V (N-AVAL (n) A TRANSP(n))
(b) Solve the backwarpartial anticipability analysis (initialized tdalsg:
false if n is the exit node
X-PANT (n) = \/ N-PANT(m) otherwise
meSUCEn)
N-PANT(n) = COMP(n)V (X-PANT (n) A TRANSP(n))

(c) Define the four predicates on the edgeéwgfv) € Ey; (no flow analysis):

1. Obtain fromGy,; areduced (flow) graphGrq = (Nyq, Erq, Wrq) by removing non-essential edges and nog

INS-REDUND(u,v) =g X-AVAL (u)
INS-USELESS(u,v) =4 - N-PANT(v)
NON-ESS(u,v) =g INS-REDUND(u,v)V INS-USELESS(u, v)
ESSwu,v) =4 —NON-ESHu,v)

(d) Construc, 4 as follows:

Ny,g = {ne€ Ny |Jec€ edgén): ESSe)}
E.., = {e € Efl | ESS(e)}
Wra = Wy restricted to the domaifi,.4

2. ConvertG,.q into asingle-source, single-sink grapls; = (N, Est, Wt):
(@) LetSyq ={n € Nyq||predn)| =0} andT,q = {n € N4 | |sucgn)| = 0}
(b) Lets' be anew entry node aritla new exit node
(c) ConstrucGg; as follows:

Ng = NpgU {sla t,}
Egy = EqU{(s',n)|neSqtUu{(nt)|neTrq}
Wg = W, (extended td&,;) suchtha¥ e € (Eq \ Erq) : Wy (e) = oc.

3. Find anoptimal insertion setas a minimal cut oi7 5
T.=MIN_CUT(Gg);

Figure 4. An algorithm finding an optimal insertion set 1, for an expression win aflow graph Gy;.

es!

It Wpi(e) > 0, theny 7w Walf') < Xz, Wrlf), 3.2. Step 2: Obtaining a Single-Source, Single-Sink

which contradicts to the fact that, is optimal. If Wy, (e) = Graph
0, then Ef’EI;_ Wﬂ(f’) = ZfGI" Wfl(f), which im-

plies thatZ;, is also optimal. This concludes the proof of Due to the removal of the non-essential edges and nodes,
the lemma. u the reduced grap@i,.; obtained in Step 1 is usually a multi-

e X-AVAL ® N-PANT

,,,,, » INS—REDUND ---» INS-USELESS

(a) Forward analysis (b) Backward analysis

Figure 5. Identification of non-essential (and essential) e dges in a flow graph G ;.

source, multi-sink graph. In 2(aj¥,.q is defined to be the (€) v € Tpq.

set of all such source nodes alfig, the set of all such sink Proof. Figure 6 illustrates the exit-availability and entry-

nodes. In 2(b), the new pseudo entry and exit nodes are__ " A :
added. In 2((5))we obtain apsingle-sourZe single-sinklgrap partial-anticipability of the end points of all the edgegha

inwhich all newly introduced edges have the weight pathp(u,v). Note that the values of these two predicates
In our running example, where the original flow graph is are completely defined by examining the nodes and edges

given in Figure 1(a), Figure 1(b) depicts the reduced graph,On the pathp(u,_v) alone By the _def|n|t|on ofESS all
e edges on this path are essential. As a consequence, all
where the nodes 1 and 3 are the sources and the nodes 2,

) . . ; . the nodes on the path are also essential. Hence, (a) is true.
and 10 the sinks. Figure 1(c) gives the single source, single . : L o)
. . Sincew is a modification node, all its incoming edges are
sink graph constructed from this reduced graph.

The following lemma will be used in establishing the |nsert|0n-u_seless. 'I.'hls.means t uaute{:(u)| = 0in Gra.
. Hence, (b) is true. Sinaeis a computation node and by also
correctness df ;. found by our algorithm.

noting Assumption 1, all its outgoing edges are insertion-

Lemma 2 Letp(u, v) be a path fromu towv in aflow graph ~ redundant. This means thtuc¢v)| = 0 in Grq. Hence,

G 41, whereu # v, such that (c) is true. . - .
The following four lemmas provide some characteriza-

e yisa modificqtion node of (u could be the entry node tions of the reduced grapf,.. While useful in shedding
s by Assumption 2), the light on its structure, they are not used in any way in es-
tablishing the correctness and optimality of our algorithm

* vis acomputation node af, and Therefore, their proofs are omitted.

computation nodes af. o .
Lemma 4 Letn € G,4. Thenn € S,4 iff n is a modifica-

Then the following statements are true: tion node ofr.

(&) Grq contains the pathp(u,v) (i.e., all its nodes and Lemmabs Letn € G,4. Thenn € T, iff n is a computa-
edges), tion node ofr.

(b) u € S,4, and Lemma6 S,qNTrq=0.

<—— Modification Node

® X-AVAL

® N-PANT

v| 7w | +—— Computation Node

I l l ...M

Figure 6. An illustration of the proof of
Lemma 2.

3.3. Step 3: Finding an Optimal Insertion Set

In this step,Z, is chosen to be a minimal cut on the
single-source, single-sink gragh,; by applying a min-cut
algorithm. For our running example, Figure 1(c) depicts the
unigue minimal cut o7, whereZ, ., = {(1,2),(3,4)}.
The minimal number of computations @t b is 300.

Theorem 1 7Z,. found by MC-PRE is optimal.

Proof. The proof has two parts. The first part establishes
the correctness df,; while the second part its optimality.
Since we have converted the multi-source, multi-sink re-
duced graplG,, into the single-source, single-sink graph
G in the standard way [15, p. 584], a minimal cut found
on Gy (that separates from t') is also a minimal cut on
G4 (that separates all the source nodesip from all the
sink nodes ir7.4).

Part I: Correctness. Letn be an arbitrary but fixed com-
putation node of. Letp(s,n) be an arbitrary but fixed
path from the entry nodeto the noder. We proceed
to show thatZ, satisfies Properties P1 and P2 stated
in Definition 1. By Assumption 2p(s,n) must con-
tain at least one modification node ®f which could
be the entry node. Letw be the last modification
node on the patip(s,n). Let v be the first compu-
tation node immediately after (v could be the node
n). Such a computation nodemust exist since the
noden, which is a computation node, appears at the
end of the pattp(s, n). By Assumption 1y # v. Let
p(u,v) be the subpath gb(s,n) from u to v (inclu-
sive). By Lemma 2, Statements (a) — (c) stated in that

lemma are all true (see Figure 6 again). This means
thatZ, — which is a cut onG,; — must include at
least one edge from(u, v). Hence, Property P1 is sat-
isfied. By construction, the subpatfw, n) of p(s,n),

i.e., its subpath starting fromto n, does not contain
any modification nodes af. Hence, Property P2 is
also satisfied. Thug,, is a correct insertion set.

Part Il: Optimality. Z, is a minimal cut on G,q.
Lemma 1 implies trivially that an optimal insertion set
for the original flow graplt7 s, can be found fronds.4.

It is easy to show that every correct insertion set (con-
sisting of only edges frorir,.;) must be a cut oii/s;.
Thus,Z,, which is the best among all correct insertion
sets, must be optimal by Definition 2.]

3.4. Time Complexity

The overalltime complexity dfIC-PREis dominated by
the two uni-directional data-flow analysis passes perfdrme
in Step 1 and the min-cut algorithm employed in Step 3.
The two passes can be done in parallel for all expressions
in a flow graph but the min-cut algorithm operates on each
expression separately (at least so in our currentimplesment
tion). WhenMC-PREis applied to each expressionin a flow
graphGy, = (N, Eg, Wy;) individually, the worst-case
time complexity for each iterative passi§| Ny | x (d+2)),
whered is the maximum number of back edges on any
acyclic path inG ¢ and typicallyd < 3 in practical cases
[24].

The min-cut step of our algorithm operates on the re-
duced graptG,y = (Npg4, Erq, Wrq). There are a vari-
ety of polynomial algorithms in the literature with differ-
ent time complexities [11]. In our implementation, we have
used Goldberg'push-relabeHIPR algorithm since it has
been reported to be efficient with its worst-time complexity
beingO(|N,q|*v/|Era|) [17]. Hence MC-PREhas a poly-
nomial time complexity overall. In Section 4, we discuss
the compile-time overhead of our algorithm on benchmark
programs.

3.5. Discussion

There are two reasons why we have used edge insertions
based on edge profiles.

Edge Insertions v.s. Node InsertionsThe edge in-
sertions are more general than the alternative of
permitting insertions only in basic block nodes. Based
on the criterion of the computational optimality given
in Definition 2, the edge insertions are at least as good
as the node insertions. L&t be the set of insertion
points at the node entries or exits. Lebe the set of
edges obtained froni by moving an entry insertion

point to all its incoming edges and an exit insertion basic blocks. Since PRE only eliminates partial redundan-
point to all its outgoing edges. The total number of cies across the basic blocks, we have turned LCSE on in
computations in both cases is the same. However, ifbothi nst andspre. Therefore MC-PRE once imple-
some of these edges are non-essential, the insertionsnented in ORP, works with the basic blocks containing
on these edges are not necessary. If these non-essentiatultiple instructions. As in [22], only the upward- and
edges have non-zero weights, then the total number ofdownward-exposed expressions in a basic block are consid-
computations using the edge insertions is smaller. ered as candidates for partial redundancy elimination.
. , L i In the spr e configuration, we collect an edge profile
Edge _Proﬁles_ vS. Path_Proﬂ_IesAn edge profile is SUﬁ_" for the flow graph of a method via code instrumentation.
cient to f|nd. an opt|mal '”SerF'O” §et. Létbe an opti- We insert instrumentation code at all the branches in the
mal (edge) _msertlon set Obta'DEd In Some way based OMhative code generated by the O1 baseline compiler. When
.apa.th profile. Let be an optimal Insertion set found 6 method becomes hot and needs to be recompiled, we
in this paper ba;ed on the edge profile derived fro_m the compute from the branch profiling information the edge fre-
path profllt_a. This means that the edge frequencies arequencies in the flow graph. We then feed the edge profile
the same n b.Oth cases. Thé.ns at be§t as gopd a5 thus constructed thC-PREto obtain an optimal code mo-
.I by t_he criterion of computational o_ptlma_llty SING€ i for the method. The runtime overhead of our simplistic
IS opt!mal. Never.theless,.we plan to Investigate hov‘_’ to profiling mechanism can be improved if some better tech-
exploit the e>_<tr§1 mformauon available in a path profile niques are used [4, 26].
for other optimization purposes. We evaluate the lightweightness and effectiveness of
) MC-PRE by comparingi nst and spre. All our ex-
4. Experiments periments were performed on 233MHz Pentium Il
workstation with 512MB RAM. The default heap size
PRE, which is perceived as an expensive optimization,used when running ORP i80MB. In all experiments,
has not been used in a number of dynamic or JIT com- MC-PREis applied to exception-free expressions only.
pilers [1, 2, 14]. We have implemented oMC-PREal-
gorithm in Intel's ORP — a dynamic compilation system 4.2. Performance Evaluation
for Java programs [1, 14]. Our experimental results over a
number of Java benchmarks including SPEC JVM98, Sci- In a dynamic compiler, the totalinning timeof a pro-
Mark2, Linpack and JavaG demonstrate that our algorithm gram consists of the (dynamic) compilation time and the
is lightweight and efficient. We presentand analyze our per- actual execution time of the program. It is therefore un-
formance results for the SPEC JVM98 benchmark below. derstood that profiling overhead (if any) is reflected in both
time components. Any time the compiler spends on gen-
4.1. Implementation Details erating instrumenting code and manipulating the collected
profiling information is included as part of the compilation
ORP consists of two compilers: a baseline compiler time of the program. Any time taken on collecting profiling
known as the O1 and an optimizer known as the O3 [14]. information during the execution of the program becomes
The O1 compiler translates all methods to native code part of its execution time. In practice, the former portidn o
quickly when they are first invoked and performs only some the profiling overhead is usually negligible.
lightweight optimizations. Instrumentation code is inedr Table 1 gives the times and speedups of all the seven
into the native code to collect some profiling information. SPEC JVM98 benchmark programs obtained under the
As the code is executed, the instrumentation code updates nst and andspr e configurations. In thé nst configu-
the profiling information. Based on the profiling informa- ration, ORP uses its profiling mechanism to detect hot meth-
tion, some methods are identified as hot methods and therods for recompilation by the O3 optimizer. In osipr e
recompiled by the O3 optimizer, which performs a number configuration, we have added further instrumenting code in
of standard optimizations such as common subexpressiororder to build an edge profile for every method.

elimination, loop-invariant motion and method inlining | Let us examine the last three columns of Table 1, which
the ORP paper [14], this option is referred to asitmest are also plotted graphically in Figure 7, to see hewr e
configuration. performs as compared tonst. Speedup,, gives the

In our experiments, we have added a new configura-speedup of each program, i.e., how much faster each pro-
tion, calledspr e, which is the same asnst exceptthat gram runs inspre than ininst. Speedug,,, and
the loop-invariant code motion in ORP is disabled and our Speedup,.. represent the percentage extra (re)compilation
MC-PREis used in its place. ORP eliminates common cost incurred and percentage execution time reduction
subexpressions in a flow graph by performing only local obtained inspre over i nst, respectively. By their
common subexpression elimination (LCSE) on extendeddefinitions,Speedup,,=Speedug,,,+Speedup,.. holds.

inst (secs) spre (secs) Speedups (%)
Program || COmp | exec run comp | exec run Speedup,,,, | Speedup,.. | Speedup,,
(@) | () |) | () | (ea) | (rd)) (572) (")

compress|| 0.12 | 14.62 | 14.74| 0.18 | 14.52 | 14.70 —0.41 0.68 0.27
jess 044 | 786 | 830| 049| 756 | 8.05 —0.62 3.73 3.11
db 0.12 | 23.89| 24.01| 0.19| 23.81| 24.00 —0.29 0.33 0.04
javac 1.24 | 22.36 | 23.60| 1.78 | 22.23| 24.01 —2.25 0.54 —-1.71
mpeg. 0.32| 9.36| 9.68| 042| 9.03| 945 —1.06 3.49 2.43
mtrt 043 | 645| 688| 056| 6.17| 6.73 —1.93 4.16 2.23
jack 066 | 825| 891| 0.72| 8.00| 8.72 —0.69 2.87 2.18

Table 1. Times and speedups. The three time components for a p rogram are interpreted as follows:
conp represents its compilation time, exec its execution time, and run its total running time such
that r un=conp+exec. For the last three columns, we have = Speedup,,= Speedup,,,,+ Speedup;...

Thus, in order forspr e to perform better thannst for Program Edge Prof (secs)run (secs)| Speedug(%)
a program, the increase in its compilation cost (represente (p) (Ts=15—0p) (”;T“)

by Speedup,,,) must be more than offset by the decrease compresd 0.09 1461 0.89

in its execution time (represented Bpeedup,..). Note jess 0.10 795 4.40
that it makes sense to refer to the quantities denoted by db 0.29 2371 1.97
Speedup,,,, and Speedup,.. as speedups. Consider the javac 0.18 2383 —0.97

two extreme cases. 8peedug,,, ~ 0 (i.e.,spr e causes mpeg 0.09 936 3.42

no or little extra compilation cost), theBpeedup,.. ~ mirt ' 0.08 6.65 3.46
Speedup,,. If Speedug,.. ~ 0 (i.e., spre yields no jack 0:08 8:64 3:13

or little gain in execution time), thespeedup,,, =

Speedup,,, (which should usually be negative). Table 2. Improved running times and
speedups without edge profiling overhead.
© Note that r; and r; are from Table 1.
O Speedupmp
< 4 ™ SpeedUPrec . mm

= O Speedup,n
9} N e W B B ! profitably to their corresponding reduced graphs. These two
E H IH I IB factors together have resulted in the large increase in the
g © *ﬂj.oﬁ s "o u B s 03 compilation overhead fgravac in Figure 7.
7 O% G ° u %J 3 U > * In a dynamic compiler where some edge profiling mech-
: S anism exists, the edge profiling information is very likely a
¥ ready used by a number of optimizations such as method in-
lining and locality optimizations. In this case, the edge-pr
Figure 7. Speedups (in bar charts). filing overhead should not all be charged iM&-PRE To
estimate the edge profiling overhead incurred for a program,
Figure 7 shows clearly thatpr e outperforms nst in we runi nst with our edge profiling mechanism turned on

six of the seven programs. By performing code motion op- and off. The difference between the two running times ob-
timally based on a runtime profile, our algorithm has re- tained is taken as a good estimate. In actualitst was
duced effectively the execution times of all seven programs run many times in order to get an accurate estimate. Ta-
In the case of avac where the performance improvement ble 2 gives the edge profiling times and improved running
is negative, a lot of methods are recompiled dynamically. times and speedups for all the SPEC JVM98 programs. The
However MC-PREdoes not benefit from the recompilation improved speedups are compared graphically in Figure 8
since many of these methods have few exception-free ex-against the original ones from Figure 7.

pressions with little optimization opportunities. In teisse, Table 3 shows for each program the average size of all
the time taken for constructing edge profiles for their flow non-empty reduced graphs and the average size of their cor-
graphs (since we instrument only at the branches) becomesesponding flow graphs. We exclude empty reduced graphs,
pure overhead. In additioMC-PREhas been applied non- and accordingly, their corresponding flow graphs since

10

O Speedug,,,

< 4 m MSpeedugm:
g
g N | H ””” H ””” H
p=}
8 o . | | 1
a 2 ® =3 3 3)
? EN U@ 3 %2 0%

o~ <, (e}

Figure 8. A comparison of
Table 1 and Speedugz from Table 2.

Speedup,,, from

Proaram (#nodestSD, #edgestSD)
g Gn | Gra

compress|| (18 £15,24+25) | (610, 7+ 16)
jess (35 £ 47,49 £ 71) | (11 £ 17, 14 £ 26)
db (15£15,21£25) | (7£10, 7+ 10)
javac || (22+£21,30£32) | (6+ 9, 7+13)
mpeg. || (13£10,17+17) | (6+ 7, 6+ 11)
mtrt (16+£13,21+22) | (7+ 8 8£13)
jack (19+ 16,26 + 25) | (9+ 10,10+ 16)

Table 3. Average sizes for non-empty reduced
graphs and their corresponding flow graphs.

Kennedyet al present an SSA-based framework that shares
the same two optimality properties. These efforts are re-
stricted by the safety code motion criterion [20] and insen-
sitive to the execution frequencies of a program point in a
flow graph.

To overcome these two limitations, there have been two
papers devoted entirely to reducing the total number of ex-
pression evaluations in a flow graph even further by using
speculation. Horspool and Ho [19] analyze edge insertions
based on an edge profile while Gupta, Berson and Fang [18]
use a path profile, which is more expensive to collect. Both
methods are not computationally optimal as their respectiv
authors demonstrate by examples in their papers. In addi-
tion, both papers contain neither implementation detaits n
experimental results on the effectiveness of their methods

After this work was accepted, we have been made aware
of some results on profile-guided PRE described by Bodik
in his PhD thesis [8]. He proposes to solve the SPRE prob-
lem in four steps. First, he conducts iterative availabil-
ity and anticipability analyses on a flow graph to identify
the so-called CMPQode-Motion-Preventingegion in the
flow graph. Both passes require two bits for each expression
since his predicates operate on four lattice values duhiag t
CMP construction. Second, he finds a min-cut on the CMP
to obtain some insertion edges, which may not be all in-

sertion edges required. This component of the algorithm is

referred to as the CMPestimator, one of the four estima-

tors developed in the thesis. Third, after having completed
MC-PREdoes not perform its min-cut step on them. There- the insertions on the insertion edges found, he repeats the
fore, these statistics represent the average sizes of itpe or availability analysis (again requiring two bits for each ex
inal flow graphs and their reduced grapper expression ~ Pression) to find all insertion edges required. Finally, he
that have been processed by the min-cut stellGfPRE applies essentially the classic LCM [22] to obtain the trans
Clearly, the removal of non-essential edges and nodes informed code. In[8, Theorem 6.3], he gives a three-sentence
the first step ofMC-PREhave been effective in reducing Proof outline about the computational optimality of his al-
the sizes of the graphs to be solved by the min-cut step.90rithm. He did not give experimental results fors algo-
It should be pointed out that some relatively large graphs ithm since CMP is not implemented [8, p. 75]. Instead
processed bMC-PRE may not be directly evident from he recommends that the non-optimal estimator CME
Table 3. For example, the largest reduced graph (w.r.t theth€ estimator of choice due to its simplicity [8, p. 76]. His
number of nodes) fromess has 127 nodes and 187 edges €xperimental results using SPEC95 benchmarks in a static

and the largest frofpavac has 88 nodes and 119 edges. compiler indicate that this simple heuristic is nearly opti
mal in many cases. In [§3.2], Bodiket alalso discussed a

non-optimal SPRE algorithm that does not use any control

5. Related Work flow restructuring.

Partial redundancy elimination originated from the sem- Our algorithm, MC-PRE proceeds in essentially two
inal work of Morel and Renvoise [23] and was quickly real- major steps. The first step performs the standard availabil-
ized as an important optimization technique that subsumesty and partial anticipability analyses in order to find tlee r
global common subexpression and loop invariant code mo-duced graph from a given flow graph — each pass requires
tion. Ever since, their work has been extended in severalone bit for each expression. In the second step, all insertio
directions [10, 12, 16, 21, 22, 25]. In particular, Knoop, edges are found optimally as the edges in a minimal cut on
Ruthing and Steffen describe a uni-directional bit-vecto the reduced grapMC-PREis always optimal. Our prelim-
formulation that is optimal by the criteria of computatibna inary experimental results over a range of Java benchmarks
optimality and lifetime optimality [22], and more recently indicate that it is efficient even in a dynamic compiler.

11

6. Conclusion

We have presented an algorithm for partial redundancy
elimination using speculation. Our algorithm always pro-

[7] T. Ball, P. Mataga, and M. Sagiv. Edge profiling versushpat
profiling: The showdown. ICM Symposium on Principles

of Prog.ramming Language4998. o
[8] R. Bodik. Path-Sensitive Value-Flow Optimizations of Pro-

grams PhD thesis, University of Pittsburgh, 1999.

duces the best code possible with respect to a given edge[9] R. Bodik, R. Gupta, and M. L. Soffa. Complete removal of re

profile in the sense that the total number of computations for
any expression is minimized. This result implies that edge
profiling, which is less costly than path profiling, is suffi-
cient to guarantee this computational optimality. We have
implemented our algorithm in Intel's ORP. Our preliminary

results over a number of Java benchmarks are promising. In

dundant computations. lCM SIGPLAN'’ 98 Conference on
Programming Language Design and Implementatioages

1-14, 1998. . .
[10] P. Briggs and K. D. Cooper. Effective partial redundanc

elimination. INACM SIGPLAN’ 94 Conference on Program-
ming Language Design and Implementatipages 159-170,
1994

the case of the SPEC JVM98 benchmark, we have achievedl11] C. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine,dan

performance improvements in six out of its seven programs
over ORP’s dynamic recompilation. We expect our algo-
rithm to be useful in dynamic and static compilers.

We have achieved lifetime optimality and other results
on profile-guided PRE. They will be the subject of another

paper.
7. Acknowledgements

We would like to thank the referees and Partha Tirumalai
of SUN for their helpful comments and suggestions. We
would also like to thank Intel for making their ORP avail-
able. Finally, we are grateful to the ORP team for answering
our ORP-related questions.

References

[1] A. AdI-Tabatabai, M. Cierniak, G. Lueh, V. Parikh, and
J. Stichnoth. Fast, effective code generation in a just-in-
time Java compiler. IIACM SIGPLAN’ 98 Conference on
Programming Language Design and Implementatipages

280-280, 1998.
B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,

P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mer-
gen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapefio virtual machinBM System Jour-

nal, 39(1), 2000.
[3] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. L.

Henzinger, S.-T. Leung, R. L. Sites, M. T. Vandevoorde,
G. A. Waldspurger, and W. E. Weihl. Continuous profiling:
Where have all the cycles gone? 16th Symposium on Op-

erating System Principle4997.
M. Arnold and B. G. Ryder. A framework for reducing the

cost of instrumented code. KWCM SIGPLAN’ 01 Confer-
ence on Programming Language Design and Implementa-

tion, pages 168-179, 2001.
[5] T.Ball and J. H. Larus. Optimally profiling and tracingssy

tems. ACM Transactions on Programming Languages and

Systemsl6(4):1319-1360, July 1994,
[6] T.Ball and J. R. Larus. Branch prediction for free. ACM

SIGPLAN'’ 93 Conference on Programming Language De-
sigh and Implementatigmpages 300-313, 1993.

(2]

(4]

12

C. Stein. Experimental study of minimum cut algorithms. In
ACM/SIAM Symposium on Discrete Algorithrpages 324—

333, 1997. o o
[12] F. Chow. A portable machine-independent global optimizer

— design and measuremenBhD thesis, Computer Systems

Laboratork//,l Stanford University, 1983.]
[13] F. Chow, M. Himelstein, E. Killian, and L. Weber. Engare

ing a RISC compiler. IProceedings of IEEE COMPCQN

pages 132-137, 1986.
[14] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. Practigin

JUDO: Java under dynamic optimizations. ACM SIG-
PLAN’ 00 Conference on Programming Language Design

and Implementatiorpages 13-26, 2000. .
[15] T.H.Cormen, C. E. Leiserson, and R. L. Rivéatroduction

to Algorithms Cambridge, Mass.: MIT Press, 1990.
D. M. Dhamdhere. Practical adaption of the global ofztan

tion algorithm of Morel and Renvois&CM Transactions on

Programming Languages and Syste¥(2):291-294, 1991.
[17] A. GoldBerg. Network Optl)mization Library.

http://www.avglab.com/andrew/soft.html. i)
[18] R. Gupta, D. A. Berson, and J. Z. Fang. Path profile guided

partial redundancy elimination using speculationHEE In-
ternational Conference on Computer Languagesges 230—

239, 1997.] o
[19] R. Horspool and H. Ho. Partial redundancy elimination

driven by a cost-benefit analysis. &th Israeli Conference
on Computer System and Software Engineernrages 111—

[16]

118, 1997.))
[20] K. Kennedy. Safety of code motiorinternational Journal

of Computer Mathemati¢c$(2-3):117-130, 1972.
R. Kennedy, S. Chan, S.-M. Liu, R. Lo, and P. Tu. Partial

redundancy elimination in SSA formrACM Transactions on

Programming Languages and Syste@143):627-676, 1999.
[22] J. Knoop, O. Ruthing, and B. Steffen. Optimal code moti

Theory and practice.ACM Transactions on Programming

Languages and Systend$(4):1117-1155, July 1994,
[23] E. Morel and C. Renvoise. Global optimization by sugpre

sion of partial redundanciesCommunications of the ACM

22(2):96-103, February 1979.]
[24] S. S. Muchnick.Advanced Compiler Design and Implemen-

tation. Morgan Kaufmann Publishers, Inc., 1997.
[25] L. T. Simpson.Value-Driven Redundancy EliminatioRhD

thesis, Rice University, 1996.) _
[26] O. Traub, S. Schechter, and M. Smith. Ephemeral instnim

tation for lightweight program profiling. Technical report

Harvard University, 2000.)
[27] Y. Wu and J. R. Larus. Static branch frequency and pro-

gram profile analysis. 127th International Symposium on
Microarchitecture pages 1-11, 1994.

[21]

