
Level by Level: Making Flow- and Context-Sensitive
Pointer Analysis Scalable for Millions of Lines of Code

Hongtao Yu∗ $ Jingling Xue† Wei Huo∗ $ Xiaobing Feng∗ Zhaoqing Zhang∗

∗Institute of Computing Technology
Chinese Academy of Sciences, China

$Graduate School
Chinese Academy of Sciences, China

{htyu, huowei, fxb, zqzhang}@ict.ac.cn

†School of Computer Science and Engineering
University of New South Wales, Australia

jingling@cse.unsw.edu.au

Abstract
We present a practical and scalable method for flow- and context-
sensitive (FSCS) pointer analysis for C programs. Our method an-
alyzes the pointers in a program level by level in terms of their
points-to levels, allowing the points-to relations of the pointers at
a particular level to be discovered based on the points-to relations
of the pointers at this level and higher levels. This level-by-level
strategy can enhance the scalability of the FSCS pointer analysis
in two fundamental ways, by enabling (1) fast and accurate flow-
sensitive analysis on full sparse SSA form using a flow-insensitive
algorithm and (2) fast and accurate context-sensitive analysis us-
ing a full transfer function and a meet function for each procedure.
Our level-by-level algorithm,LevPA, gives rises to (1) a precise
and compact SSA representation for subsequent program analy-
sis and optimization tasks and (2) a flow- and context-sensitive
MAY / MUST mod (modification) set and read set for each pro-
cedure. Our preliminary results show thatLevPA can analyze some
programs with over a million lines of C code in minutes, faster than
the state-of-the-art FSCS methods.

Categories and Subject Descriptors D.3.4 [Processors]: Com-
pilers; F.3.2 [Semantics of Programming Languages]: Program
Analysis

General Terms Algorithms, Languages, Performance

Keywords Pointer Analysis, Alias Analysis

1. Introduction
Pointer analysis is the basis of most other static program analyses
and many compiler optimizations, especially for C programs. The
motivation to enhance the scalability of flow- and context-sensitive
(FSCS) pointer analysis is that the increased precision thus ob-
tained is crucial for many security-related program analysis and
verification tasks and may also open up new opportunities forfu-
ture compiler optimizations in the multi-core era. However, none of
the existing FSCS pointer analysis algorithms [10, 13, 14, 17, 20,
25, 27] can analyze beyond a million of lines of code efficiently. In
this paper, we introduce a FSCS (and also field-sensitive) pointer
analysis that can analyze some of these programs in minutes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

CGO’10, April 24–28, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-60558-635-9/10/04. . . $10.00

Flow-sensitive pointer analysis provides the points-to informa-
tion in the form of points-to sets [1] or graphs [3], which is often
used by def-use analysis. Conversely, def-use analysis provides the
def/use information useful for flow-sensitive pointer analysis. For
example, assignments to a pointer through dereferences of other
pointers can alter the points-to information of that pointer. To facil-
itate def-use analysis, the static single assignment (SSA)form [8]
is widely used. As a result, many flow-sensitive analysis problems
can be sped up on SSA by using flow-insensitive algorithms.

In this paper, we present a FSCS pointer analysis,LevPA, that
analyzes the pointers in a C program level by level accordingto
their points-to levels. This level-by-level strategy may significantly
enhance the scalability of the FSCS pointer analysis. On onehand,
the time and space efficiency of flow-sensitive pointer analysis can
be improved by applying a flow-insensitive algorithm on full-sparse
SSA. On the other hand, the precise and compact SSA form enables
precise alias relations to be exploited to eliminate spurious def/use
points, sharpening the precision of def-use analysis.

The feasibility of binding full-sparse SSA and pointer analysis
together comes from a simple observation. If all the def (definition)
and use sites (either direct or indirect) of a pointer variable have
been determined, we can build the SSA form for all accesses tothe
pointer and then analyze them flow-sensitively (by using a flow-
insensitive algorithm). A variable can be referenced directly or
indirectly through dereferences of another pointer. If we want to
know all the indirect references of a variable, we need to analyze
all the pointers possibly pointing to it first. To guarantee this, we
assign a property,points-to level, to each variable and analyze the
variables in a program in decreasing order of their levels.

Hardekopf and Lin [11] have recently proposed a flow-sensitive
pointer analysis on SSA. However, their method is semi-sparse
in the sense that it only builds the SSA form for thetop-level
pointer variables, i.e., those that cannot be referenced indirectly,
in a program. In contrast,LevPA is fully sparse. By going beyond
just thetop-levelpointer variables,LevPA reaps the full benefits of
performing pointer analysis on SSA for all pointers at all levels.

Context-sensitive pointer analysis also benefits from a level-by-
level approach. The key in achieving context-sensitivity is to obtain
the output of a procedure according to a given input. Some methods
accomplish this by distinguishing different calling pathsfor a pro-
cedure, and consequently, have to analyze the entire program on an
exploded call graph [24, 27]. Instead,LevPA builds a full transfer
function for a procedure and applies it in all its calling contexts.

A transfer function for a procedure is a description of the rela-
tions between itsformal-out parameters and itsformal-in param-
eters. Theformal-in parameters of a procedureproc include not
only the declared formal parameters but also the global variables,
escaped local variables (into this procedure) and dynamic allocated

objects whose values may be accessed byproc or the procedures
thatproc invokes. Similarly, theformal-outparameters of a proce-
dureproc include not only its return value but also the global vari-
ables, escaped local variables (from this procedure) and dynamic
allocated objects whose values may be modified byproc or the
procedures thatproc invokes.

If the higher-level formal-in parameters of a procedure have
been analyzed, the pointers of a particular level in the procedure
body can be analyzed succinctly. Therefore, we make use of the
points-to sets of formal-in parameters at higher levels (and possibly
at the same level due to the presence of points-to cycles) to distin-
guish the calling contexts for a procedure and encode them inits
transfer function. Our transfer functions can precisely describe the
modification side effects of procedures while keeping theirspace
requirements and function application costs to a minimum. This
is mostly achieved by representing for the first time the points-to
relations with context-sensitive conditions using BDDs [2].

We do the same for the interprocedural read side effects for a
procedure by using a so-called meet function to describe theread
side effects of the procedure on all its formal-ins.

In summary, the paper contributes a fully flow- and context-
sensitive, and also field-sensitive pointer analysis that

• is the first to carry out a level-by-level FSCS pointer analysis
that is different from the summary-based algorithm in [14];

• performs a full-sparse flow-sensitive analysis on SSA flow-
insensitively with significantly reduced time and space costs;

• performs a context-sensitive analysis efficiently with a precise
full transfer function and a meet function for each procedure;

• yields flow- and context-sensitive interprocedural MAY/MUST
modification and read side effects on a compact SSA form; and

• analyzes million lines of code in minutes, faster than the state-
of-the art FSCS pointer analysis algorithms.

The rest of the paper is organized as follows. Section 2 intro-
duces theLevPA framework and describes how to compute the
points-to levels of variables. Section 3 discusses the pointer anal-
ysis performed byLevPA for a particular level. Section 4 presents
and discusses our experimental results. Section 5 introduces the re-
lated work, and finally, Section 6 concludes the paper.

2. TheLevPA Framework
Our method can cover full C features. As in [1], it suffices to con-
sider only four types of assignments: (1)x = y, (2) x = &y, (3)
∗x = y, and (4)x = ∗y. Arrays are treated as monolithic scalar ob-
jects. Heap objects are modeled by representing an allocation site
at a program pointloc by a statement of the formp = &allocloc. A
memory deallocation statement forp is replaced byp = NULL.
All memory operations on structs are flattened into memory op-
erations on scalar fields. Function pointers are handled as in [5].
Pointer arithmetic operations are handled by assigning theunion
of the points-to sets of all pointer operands in a pointer-related as-
signment to the resulting pointer [22]. Type casting is handled by
inferring the locations accessed by the pointer being cast.

Suppose we have computed a property,points-to level, for ev-
ery abstract memory location, such as a scalar variable or a dy-
namic allocated object (with all such abstract locations being called
variables henceforth). The points-to level of a variablev, denoted
ptl(v), satisfies the two conditions stated below.

Condition 1. If a variablex is possibly pointed to by a pointery
during an execution of the program, thenptl(x) 6 ptl(y).

Condition 2. If a variable x is possibly modified by assigning
the value ofy to x during an execution of the program, through

Algorithm 1 TheLevPA pointer analysis.
1: Compute the points-to levels for all variables;
2: Build the procedure call graph, denotedPCG;
3: ReducePCG to a SCC-DAG, denotedAV G;
4: repeat
5: for lev from highest to lowestdo
6: Bottom-upanalysis(AV G, lev)
7: Top-downanalysis(AV G, lev)
8: end for
9: UpdatePCG andAV G due to resolved indirect calls;

10: until PCG does not change;

direct or indirect references tox andy, thenptl(x) 6 ptl(y). (The
modification can happen due to (1)x = y, (2) ∗p = y, wherep
may point tox or (3) x = ∗q, whereq may point toy.)

Our LevPA framework is summarized in Algorithm 1. We start
by computing the points-to levels for all variables in a program.
We then build its procedure call graph (PCG), where no function
pointer is resolved yet. To handle recursive calls,PCG is parti-
tioned into strongly connected components (SCC) to form a di-
rected acyclic graph (a SCC-DAG), denotedAV G. The procedures
in the same SCC form a recursion cycle. We then start analyzing the
pointers of the same level together from highest to lowest. When
working at a level, only the points-to sets of the pointers atthis
level are computed. The points-to sets of higher-levels pointers are
used while the pointers at the lower level are ignored. Conditions 1
and 2 guarantee that whenever a variable is analyzed, all theother
variables that may have an impact on its value either have been ana-
lyzed earlier or are being analyzed at the same time. The analysis at
each level typically entails traversingAV G twice, first bottom-up
(by Algorithm 3) and then top-down (by Algorithm 6), but itera-
tions (not shown in Algorithm 1 explicitly) may be required as de-
scribed in the next paragraph. During the bottom-up phase, we con-
struct the (extended) SSA form for the pointers of the current level
and perform the pointer inference to compute the points-to set for
every pointer at the current level that may be possibly expressed in
terms of the points-to sets of some formal-ins. In addition,we also
build a full transfer function (and also a meet function) foreach
procedure. During the top-down phase, we propagate the points-to
sets of the formal-in pointers of the level being analyzed totheir use
sites, and at the same time, expand the dereferences for the pointers
at the current level to prepare for the analysis of the pointers at the
next level (and lower levels). In actuality, the pointer dereference
expansion performed signals the beginning of the SSA form con-
struction for the pointers at the next and lower levels but this step
can be moved into the bottom-up phase at the level below.

The pointer analysis at a level may involve two types of itera-
tions. First, on detecting some cyclic points-to relationsduring the
pointer dereference expansion performed in the top-down phase for
a level, the pointers at this level are analyzed iterativelyuntil their
points-to sets are fully resolved (as discussed in Section 3.1.6). Sec-
ond, in the presence of recursion, iterations are required to analyze
the pointers in the procedures in each recursion cycle inPCG. In
addition, in the presence of function pointers,PCG is built incre-
mentally, causing iterations to be performed in order to accommo-
date both the modification and read side effects introduced by the
newly resolved procedure calls on the program being analyzed.

As shown in Algorithm 2, we compute the points-to level of a
variable based on the points-to graph built by a Steensgaard-styled
pointer analysis [21? , 22] (line 1), which runs in almost linear
time. Steensgaard-styled pointer analysis is an equivalence-based
analysis. If there is an assignment between two variablesx and
y, both must point to the same object in the underlying points-

Algorithm 2 Computing points-to levels.
1: Perform the Steensgaard-styled pointer analysis;
2: Add pair-wise points-to edges for all predecessors of a nodein

the points-to graph thus obtained;
3: Reduce the points-to graph to a SCC-DAG;
4: Setptl(r) = 0 for every leaf noder;
5: for each non-leaf noder such that the points-to levels of all its

successors have already been computeddo
6: Let s1, . . . , sn be all the successors ofr;
7: Setptl(r) = max{ptl(s1), . . . , ptl(sn)} + 1;
8: end for

i n t obj , t ;

main ()
{

L1 : i n t ∗∗x , ∗∗y ;
L2 : i n t ∗a , ∗b , ∗c , ∗d , ∗e ;
L3 : x = &a ; y = &b ;
L4 : foo (x , y) ;
L5 : ∗b = 5 ;
L6 : i f (t) { x = &c ; y = &e ; }
L7 : e l s e { x = &d ; y = &d ; }
L8 : c = &t ;
L9 : foo (x , y) ;

L10 : ∗e = 10 ;
}

vo id foo (i n t ∗∗p , i n t ∗∗q)
{

L11 : i n t ∗ tmp = ∗q ;
L12 : ∗p = tmp ;
L13 : tmp = &ob j ;
L14 : ∗q = tmp ;

}

Figure 1. A motivating example.

to graph. In line 2, we ensure conservatively that Condition2 is
always satisfied. Otherwise, ifx and y point to the same object
in the points-to graph wheny participates in a cycle that does not
containx, thenptl(x) > ptl(y) would be possible. In this case, an
assignment likex = y would be rendered unanalyzable. In lines
3 – 8, the points-to level of a variable is computed as the longest
distance from the node containing the variable to a leaf node.

Theorem 1. Conditions 1 and 2 are satisfied by the points-to levels
of variables computed by Algorithm 2 for a program.

Proof. If a variablex is possibly pointed to by a pointery, there
must be a points-to edge from the node representingy to the node
representingx in the Steensgaard-styled points-to graph. After line
3, x andy may be in the same SCC. In any case,ptl(x) 6 ptl(y)
always holds. So Condition 1 is guaranteed to be satisfied. Due
to line 2, if a variablex is possibly modified by assigning the
value of y to x, thenx and y must be in the same SCC. Again
ptl(x) 6 ptl(y) holds. Condition 2 is satisfied, too.

Our motivating example is given in Figure 1. For convenience,
all assignments have already been put into the form supported in
theLevPA framework. By applying Algorithm 2, we find that the
pointers are organized in three levels:ptl(x) = ptl(y) = ptl(p) =
ptl(q) = 2, ptl(a) = ptl(b) = ptl(c) = ptl(d) = ptl(e) =
ptl(tmp) = 1 andptl(t) = ptl(obj) = 0. LevPA will compute the
points-to sets first for the pointers in{x, y, p, q}, then the pointers
in {a, b, c, d, e, tmp}, and finally, the pointers in{t, obj}.

Algorithm 3 Bottom-up analysis.
1: procedureBottom-upanalysis(AV G, lev)
2: begin
3: for each nodescc in reverse topological order ofAV G do
4: for each procedureproc of scc do
5: (a) Createµ χ for callsites(proc, lev);
6: (b) Build the extended SSA form;
7: (c) Perform pointer inference;
8: end for
9: end for

10: end

3. Analyzing a Level
Analyzing a level amounts to computing the points-to sets for the
pointers at this level.LevPA proceeds in two phases, first bottom-
up and then top-down. Both phases are inter-related. The bottom-
up phase determines the points-to set for a pointer at the level being
analyzed possibly in terms of the points-to sets of some formal-ins.
All these points-to sets will be fully resolved subsequently in the
top-down phase by propagating the points-to sets of formals-in to
their use sites (with the actual parameters of a procedure call being
bound to their corresponding formal parameters).

In this section, we focus on discussing how to analyze the
pointers of a specific level on the assumption that the pointers
of higher levels have already been analyzed. We first look at the
bottom-up phase and then the top-down phase.

3.1 Bottom-Up Analysis

Algorithm 3 gives the key steps performed for a given level,lev.
In this phase, we process the nodes inAV G in reverse topological
order. Step 3(a) collects the flow- and context-sensitive read and
modification side effects of all call sites in a procedure in terms
of theµ andχ operators, respectively [7]. Theµ andχ operators
for the dereferencing operations on the pointers of levellev+1 are
introduced earlier during the top-down analysis forlev+1. Step 3(b)
builds the extended SSA form [7, 8] for the pointers of levellev.
Step 3(c) performs the pointer inference to compute the points-to
set for every pointer of levellev, which may be expressed in terms
of some formal-ins atlev or higher. In this last step, we also obtain
a full transfer function for each procedure that encodes itsflow-
and context-sensitive MAY/MUST modification side effects for its
formal-outs and a meet function that gives its flow- and context-
sensitive read side effects for its formal-ins.

In Algorithm 3, a nodescc may represent multiple procedures
contained in a recursion cycle. As a result, the bottom-up analysis
for each procedure may have to be done iteratively using a work list
in a demand-driven fashion. Whenever the transfer or meet function
of a procedure has changed, the procedure is inserted into the work
list, causing more iterations for its callers and indirect callers until
a fixed point has been reached (i.e., when the work list is empty).

Section 3.1.1 introduces the full transfer functions used for
specifying the interprocedural MAY/MUST modification sideef-
fects of procedures. Section 3.1.2 introduces the meet functions
used for specifying the interprocedural read side effects of proce-
dures. Section 3.1.3 introduces the extended SSA form used in the
LevPA framework. Sections 3.1.4 - 3.1.6 describe Steps 3(a) - 3(c)
of Algorithm 3, respectively, and illustrate them by examples.

3.1.1 Full Transfer Functions

To obtain high scalability while maintaining context-sensitivity, we
build a single full transfer function for a procedure that can describe
the modification side effect of the procedure independentlyof its
inputs. Wilson and Lam [25] use partial transfer functions (PTFs)

in their flow- and context-sensitive pointer analysis. PTFsare built
for a procedure according to different alias inputs. This may result
in analyzing a procedure more than once. For example, in Figure 1,
the call sites L4 and L9 provide different alias inputs tofoo. The
formal parametersp andq do not alias with each other at L4 but
may both point tod at L9. They thus analyzefoo to build two
different PTFs. Our method may also analyze a procedure multiple
times, once for each level. However, the analysis at one level does
not overlap with the analysis of another level. Furthermore, their
parameterized representations of PTFs may result in precision loss.
In Figure 1, their method employs so-called extended parameters
1 p and1 q to represent all the variables pointed to byp and q,
respectively. As1 p and1 q are aliases at L9,foo is regarded as
having the same side effect on1 p and1 q, leading to the spurious
points-to relation thatc may point toobj after L9. Perhaps the
major advantage of PTFs is that they summarize the side effects
of a procedure only for those aliases that may actually occurin
the program. However, by proceeding level by level,LevPA also
eliminates unrealized alias relations according to calling contexts.
Once the full transfer function for a procedure is available, we can
apply it to different call sites accurately and efficiently.

We do not use full calling paths to distinguish calling contexts
of a procedure when working at a particular levellev. Instead, we
use the points-to sets of formal-in parameters at higher levels (and
possibly atlev due to the existence of points-to cycles) to distin-
guish the calling contexts for the pointer accesses to the pointers
at levellev and encode them into the transfer function for the pro-
cedure. We have designed a new points-to representation that not
only describes the objects pointed to but also under which condi-
tions the objects are pointed to. These context conditions are used
to distinguish the calling contexts of a procedure so that its transfer
function can be used in any calling context.

Definition 1 (Points-to Set). Given a variablep of level lev, its
points-to set,Ptr(p) is {〈v, M〉 | v is an abstract memory location
and M ∈ {may, must}}. For convenience, we writep ⇒ v
(p → v) to highlight the fact thatp must(may) point tov.

Definition 2 (Context Condition). When working at a levellev,
a context conditionC(c1, . . . , ck) is a Boolean function such that
ci evaluates totrue(false) if the points-to relation that it represents
for a pointer atlev or a higher level evaluates totrue(false).

As one of the contributions in this work, context conditions
are implemented using BDDs [2], thereby greatly reducing the
costs for representing and applying transfer functions. With BDDs,
we can not only compactly represent context conditions but also
enable Boolean operations to be evaluated efficiently. For example,
Figure 2 shows how the context conditionC = (p → a ∧ q →
a) ∨ p → b is represented by a BDD. Each variable node in the
BDD represents a points-to relation. We allocate a unique idfor
each points-to relation by organizing all points-to relations of all
levels in a vector. This vector is filled up incrementally during the
level-by-level analysis. The unique id of a points-to relation is just
the index of the vector. For example, if only the points-to relation
p → b holds at a call site, we can evaluate the context condition by
writing C|x1=0,x2=0,x3=1 to see whetherC holds at the call site or
not. (The formal parameters of a procedure inC will be mapped to
their corresponding actual parameters at the call site.)

Due to the inter-phase dependency between the top-down and
bottom-up phases conducted at a levellev, the points-to-setPtr(p)
of a variablep may not be explicitly computed until only after both
phases are finished. Specifically,Ptr(p) can be deduced from the
following two sets given in Definitions 3 and 4, respectively.

Definition 3 (Local Points-to Set). Given a variablep of levellev,
Loc(p) yields a so-called points-to set that is computed explicitly

variable x1 represents p a

variable x2 represents q a

variable x3 represents p b

x1

x2

x3

0 1

0

1

x2

0

1 1
0

Figure 2. The BDD forC = (p → a ∧ q → a) ∨ p → b.

during the bottom-up phase and that may be included inPtr(p). It is
recorded as a map{〈 v, C(c1, . . . , ck) 〉 | v is an abstract memory
location andC(c1, . . . , ck) is a context condition}, meaning thatp
may/must point tov if and only ifC(c1, . . . , ck) holds. (Whetherp
may or must point tov at a particular point depends on the objects
possibly pointed to byp, given byLoc(p) andDep(p), at the point.)

For example, ifx = &y is analyzed during the bottom-up phase
at a levellev, then〈y, true〉 will be included inLoc(x).

Definition 4 (Dependence Set). Given a variablep of level lev,
the dependence setDep(p) specifies the set of formal-insf whose
points-to sets may be included inPtr(p), i.e., are dependent on by
Ptr(p). It is is recorded as a map{〈 q, C(c1, . . . , ck) 〉 | q is a
formal-in parameter of levellev and C(c1, . . . , ck) is a context
condition}, meaning that for every(q, C(c1, . . . , ck)) ∈ Dep(p),
Ptr(p) includesPtr(q) if and only ifC(c1, . . . , ck) holds.

The dependence setDep(p) of a variablep at a levellev is
used to record the data dependency betweenp and some formal-
in parameters at the same level, since the points-to sets ofp and
the formal-ins will have to be determined together during the top-
down phase. For example, a pointer may point to whatever a formal
parameter points to when both are analyzed at the same level.The
points-to set of the pointer can be determined as soon as the points-
to set of the formal-in parameter is (propagated top-down).

The transfer function of a procedure is a combination of the
transfer functions of all its formal-out parameters.

Definition 5 (Transfer Function). Given a formal-outv at level
lev of a procedureproc, its transfer functionTrans(proc, v) is a
quadruple 〈Loc(v), Dep(v), C(c1, . . . , ck), M〉, where
C(c1, . . . , ck) is a context condition andM ∈ {may, must},
meaning thatv may (must) be modified at a call site invokingproc
if M = “may” (M = “must”) provided thatC(c1, . . . , ck) (with
all formal parameters ofproc being mapped to their actual param-
eters) holds at the call site. The transfer functionTrans(proc, lev)
of proc at level lev is a combination of the individual transfer
functionsTrans(proc, v) for all formal-out parametersv at lev.

Let us understand the transfer functions thus defined using the
example given in Figure 1. We start with the bottom-up analysis at
level 2 first. The procedurefoo does not modify any variable of
level 2. So its transfer function at level 2 is empty:

Trans(foo, p) = Trans(foo, q) = {} (1)

The proceduremain modifiesx andy, but these two variables are
local. So its transfer function at level 2 is also empty:

Trans(main, x) = Trans(main, y) = {} (2)

A top-down analysis that follows immediately propagates the
points-to sets of the actualsx andy of foo to their correspond-
ing formal-insp andq, respectively. In this case,LevPA finds that

Ptr(p) = {〈a, must〉, 〈c, may〉, 〈d, may〉}
Ptr(q) = {〈b, must〉, 〈d, may〉, 〈e, may〉} (3)

Next, we start the bottom-up analysis fora, b, c, d, e and tmp
at level 1, where the first five variables are formal-outs (andalso
formal-ins) offoo. The transfer functionTrans(foo, 1) is thus a
combination of the following five individual transfer functions:

Trans(foo, a) = 〈{}, {〈b, q ⇒ b〉, 〈d, q → d〉, 〈e, q → e},
p ⇒ a, must〉

Trans(foo, c) = 〈{}, {〈b, q ⇒ b〉, 〈d, q → d〉, 〈e, q → e},
p → c, may〉

Trans(foo, b) = 〈{〈obj, q ⇒ b〉}, {}, q ⇒ b, must〉
Trans(foo, e) = 〈{〈obj, q → e〉}, {〈e, q → e〉}, q → e, may〉
Trans(foo, d) = 〈{〈obj, q → d〉}, {〈b, p → d ∧ q ⇒ b〉,

〈d, p → d〉, 〈e, p → d ∧ q → e〉},
p → d ∨ q → d, may〉

(4)

As can be observed from the transfer functions given above,
Trans(foo, a) and Trans(foo, c) are structurally identical, and
similarly for Trans(foo, b) and Trans(foo, e). When analyzing
a procedure at a levellev during the top-down phase,LevPA tries
to allocate a common parameterized space to a set of its formal-
out parameters at the level below (i.e.,lev − 1) to merge their
transfer functions by merging the side effects on them. Thus,
Trans(foo, 1) is simplified to be a combination of the follow-
ing three transfer functions:

Trans(foo, V p) = 〈{}, {〈V q , true〉}, true, must〉
Trans(foo, V q) = 〈{〈obj, must〉}, {}, true, must〉
Trans(foo, d) = 〈{〈obj, q → d〉}, {〈V q, true〉, 〈d, p → d〉},

p → d ∨ q → d, may〉

(5)

where the formal-out parametersa andc are parameterized byV p,
andb ande by V q butd is not parameterized (during the top-down
analysis at level 2). Unlike [25], the way we merge the side effects
on formal-outs in a procedure by using a parameterized space(in
Algorithm 7) never loses precision because the formal-ins param-
eterized together have exactly the same def/use points in the pro-
cedure except they may differ in their MAY/MUST modification
effects. (This is whyd is not parameterized as either part ofV p or
V q.) Such differences are distinguished at a calling context when
the transfer function of the procedure is applied (lines 36 and 39 of
Algorithm 4).

3.1.2 Meet Functions

We also need to define a meet function for a procedure that merges
the inputs to the procedure at different calling contexts, specifying
essentially its interprocedural read side effects.

Definition 6 (Meet Function). Given a formal-in parameterv of
level lev read (referenced) in a procedureproc, its meet function
Meet(proc, v) is a tuple〈Ptr(v),C(c1, . . . , ck)〉, meaning that
v (or the corresponding actual parameter ofv if v is a formal
parameter ofproc) may/must be read at a call site invokingproc
only whenC(c1, . . . , ck) (with the formal parameters ofproc
being mapped to their actual parameters) holds at the call site. The
meet functionMeet(proc, lev) ofproc is a combination of all such
individual meet functionsMeet(proc, v, lev) for all its formal-ins
v at lev.

The level-wise meet functions for our example are:

Meet(foo, p) = 〈{〈a, must〉, 〈c, may〉, 〈d,may〉}, true〉
Meet(foo, q) = 〈{〈b, must〉, 〈d, may〉, 〈e, may〉}, true〉
Meet(foo, V q) = 〈{}, true〉
Meet(foo, d) = 〈{}, q → d〉

(6)

In each meet function, the pointed-to objects (if any) are the read
side effects. Note thatV p is not read (referenced) infoo.

3.1.3 Extended SSA Form

The SSA form on which our pointer analysis operates is an ex-
tended SSA form [7] that can effectively represent aliases and indi-
rect memory operations in the SSA. We employ and further extend
theµ andχ operators to precisely characterize aliasing effects.

In the extended SSA form [7], theµ andχ operators are intro-
duced to specify the aliasing effects for indirect memory operations
and call statements. Aµ operator for an indirect memory operation
is used to specify which variables may be read by the operation. In
µ(vi), µ takes as its operand the versioni of v that may be read and
produces no result. In our extension, we append a context condition
C(c1, . . . , ck) to µ to indicate the calling context that the variable
can be read. Thus, aµ operator has the formµ(vi, C(c1, . . . , ck)).

A χ operator for an operation is used to model which variables
the operation may modify. The operand of aχ operation is the
last version of a variable and its result is the version afterthis
potential definition. Soχ links up the use-def edges through a may-
definition. We add a context conditionC(c1, . . . , ck) to χ to model
under which calling context the variable can be modified. We also
add a MAY/MUST modification fieldM ∈ {may, must} to χ to
distinguish between the two types of modifications of a variable.
So aχ operation has the formvi+1 = χ(vi, C(c1, . . . , ck), M) .

Theµ andχ operators for the variables read and modified at a
call site are created in Step 3(a) of Algorithm 3. Theµ andχ oper-
ators for the variables read and modified by a pointer dereferencing
operation is created during the top-down phase (in Algorithm 6).

Property 1 (Context Condition for a Meet Function). The con-
text condition of a meet functionMeet(proc, p) for a formal-inp of
proc at levellev is a disjunction of the context conditions of all its
use sites, including all itsµ statements.

Property 2 (Context Condition for a Transfer Function). The
context condition of a transfer functionTrans(proc, p) for a
formal-out p of proc at level lev is a disjunction of the context
conditions of all its def sites, including all itsχ statements.

3.1.4 Step 3(a): Create theµ and χ Lists for a Call site

For every call site in a procedureproc, the µ and χ lists are
created at the call site for all variables of levellev that may be read
(referenced) and modified, respectively, by all the procedures that
may be invoked at the call site, as shown in Algorithm 4. In lines 5
– 22, all the variables read at a call site inproc are appended to the
µ list of the call site. In lines 23 – 46, all the variables modified at
a call site inproc are appended to theχ list of the call site.

For the sake of time and space efficiency (as discussed earlier in
Section 3.1.1), some parameterized spaces may be created for lev
during the top-down phase at the preceding level, i.e., atlev + 1
(as shown in Algorithms 6 and 7). Such parameterized spaces are
handled by the if statements in lines 10 and 29. In line 6, we
need to know the context condition of the meet function for each
callee. This is available at this phase but the associated points-to
set, which is not used here, is not known until after the top-down
analysis at the same level is finished (Property 1). In line 24, the
transfer function of each callee is known since it has just been
built in the bottom-up phase forlev (Property 2). In lines 9 and 28,
C

′′ is simplified fromC
′(c1, . . . , ck) to include only the points-to

relations that hold at the entry ofproc. It is then used to build the
context conditions required for theµ andχ operators created. When
creating a parameterized space for a set of formal-ins, their mayand
mustfields are also “merged” due to the fact they are collectively
represented by the MAY/MUST field of the parameterized space
(lines 32 – 36 in Algorithm 6). As a result, in lines 31 – 35, the
MAY/MUST field for a parameterized space is refined at a calling
context. In lines 37 and 40, the meet operator⊓ on {may, must}

f()
{

L1: p1 = &a;
L2: g1();

p2=χ(p1, true, may)
q2=χ(q1, true, may)
r2=χ(r1, true, may)

µ(r2, true)
L3: g2();

s2=χ(s1, true, may)

L4: g3();
s3=χ(s2, true, may)
t2=χ(t1, true, may)

L5: g4();
t3=χ(t2, true, must)

}

Figure 3. χ optimization (with redundant ones striken through).

has the standard meaning:may ⊓ e = e ⊓ may = may, for
e ∈ {may, must}, andmust⊓ must= must.

However, creating manyµ and χ variables this way at each
call site can sometimes introduce many constraints to be resolved
at the pointer inference stage performed in Step 3(c). Some of
these variables at a call site may not directly impact the points-
to relations of the caller if they are not accessed in any way in the
body of the caller; they only serve to transfer the modification or
read side effects upwards through the caller. In this case, we can
directly deduce their modification and read side effects on these
variables from the transfer and meet functions at each call site.

In our implementation, we only create explicitlyχ operators
at all call sites for a variablev in a procedureproc if one of the
following three conditions is satisfied:

W1. v may be read or modified by some non-call statement(s) in
the body ofproc, explicitly or implicitly;

W2. v may be modified at a call site and may also be read at
another call site that may or may not be different; and

W3. v must be modified at a call site that must be called byproc.

In the case ofµ operations, there are two conditions instead:

R1. v may be modified by some non-call statement(s) in the body
of proc, explicitly or implicitly; and

R2. v may be modified at a call site and may also be read at another
call site that may or may not be different.

This optimization looks simple but computationally significant.
By eliminating redundantµ and χ operators this way, we have
observed a ten-fold analysis time reduction in some benchmarks.

We use the example given in Figure 3 to illustrate the three
conditions for theχ optimization. Theχ for q can be removed since
it is possibly modified byg1 but not anywhere else. However, due
to Condition W1, theχ for p must be kept. Note thats is possibly
modified byg2 andg3. However, the points-to set ofs at the exit of
f is the union of the points-to sets ofs2 ands3 since neither of the
two definitions can be killed. In this case, theχ operations are not
created at L3 and L4. Instead,Trans(f, s) can be directly deduced
from Trans(g2, s) andTrans(g3, s) without losing any precision.
However, due to Condition W2,r is possibly modified byg1 and
possibly read byg2. Theχ for L2 and theµ for L3 must be created
in order not to miss any points-to relations. Finally,t is definitely
modified byg4. Due to Condition W3, we cannot merge the side

Algorithm 4 Creatingµ andχ for the call sites in a procedure.
1: procedureCreateµ χ for callsites(proc, lev)
2: begin
3: for eachcallsite of proc do
4: for eachcallee of callsite do
5: for each formal-inf of callee, whereptl(f) = lev do
6: Let C

′(c1, . . . , ck) be the context condition
C(c1, . . . , ck) of Meet(callee, f) with all the
formal parameters ofcallee being replaced by their
corresponding actual parameters atcallsite;

7: Let c′i be 1 ifci holds atcallsite and 0 otherwise;
8: if C

′(c′1, . . . , c′k) evaluates totrue then
9: Let C

′′ include all and only the points-to relations
in C

′(c1, . . . , ck) that hold at the entry ofproc;
10: if f is a parameterized spaceV p then
11: Mapp to an actual parameterq at callsite;
12: for each〈v, Cv〉 of Loc(q) do
13: Insertµ(v, C′′ ∧ Cv) to µ list of callsite;
14: end for
15: for each〈w, Cw〉 of Dep(q) do
16: Insertµ(V w, C′′ ∧ Cw) to µ list of callsite;
17: end for
18: else iff is not a formal parameter ofcallee then
19: Insertµ(f, C′′) to µ list of callsite;
20: end if
21: end if
22: end for
23: for each formal-outf of callee, whereptl(f) = lev do
24: Let the transfer function Trans(callee, f) =

〈Loc(f), Dep(f), C(c1, . . . , ck), M〉 be given;
25: Let C

′(c1, . . . , ck) be obtained fromC(c1, . . . , ck)
with all the formal parameters ofcallee being replaced
by their corresponding actual parameters atcallsite;

26: Let c′i be 1 ifci holds atcallsite and 0 otherwise;
27: if C

′(c′1, . . . , c′k) evaluates totrue then
28: Let C

′′ include all and only the points-to relations
in C

′(c1, . . . , ck) that hold at the entry ofproc;
29: if f is a parameterized spaceV p then
30: Mapp to an actual parameterq at callsite;
31: if (|Loc(q)| == 1 && Dep(q) == {}) ||

(Loc(q) == {} && |Dep(q)| == 1) then
32: M ′ = “must”;
33: else
34: M ′ = “may”;
35: end if
36: for each〈v, Cv〉 of Loc(q) do
37: Insert χ(v, C′′ ∧ Cv, M ⊓ M ′) to χ list of

callsite;
38: end for
39: for each〈w, Cw〉 of Dep(q) do
40: Insertχ(V w, C

′′ ∧ Cw, M ⊓ M ′) to χ list of
callsite;

41: end for
42: else iff is not the return vale ofcallee then
43: Insertχ(f, C′′, M) to χ list of callsite;
44: end if
45: end if
46: end for
47: end for
48: end for
49: end

µ(b1, true)
L4: foo(x, y);

a2=χ(a1, true, must)
b2=χ(b1, true, must)

µ(d1, true)
µ(e1, true)

L9: foo(x, y);
c2=χ(c1, true, may)
d2=χ(d1, true, may)
e2=χ(e1, true, may)

Figure 4. main with theµ andχ operations introduced for its two
call sites at level 2. Other statements are not shown.

effects oft2 andt3 sincet3 must kill the definition oft2. So theχ
operations fort must be kept.

3.1.5 Step 3(b): Build the Extended SSA Form

In applying the SSA creation algorithm described in [8], thevari-
able operands ofµ andχ are treated as uses and the results ofχ as
additional assignments. The variables in theµ andχ operations are
then renamed together with the rest of the program variables.

3.1.6 Step 3(c): Pointer Inference

After the extended SSA form has been created, we perform a
flow-sensitive pointer analysis on SSA using a flow-insensitive
algorithm. Each SSA variable is treated as an independent variable.
The flow-insensitive algorithm used is set-constraint-based, like
the Andersen-styled pointer analysis [1]. Therefore, there are two
stages: constraint generation and constraint resolution.

Constraint Generation In this first stage, we set up a constraint
system for the relevant statements including those withµ, χ andφ
operators, as shown in Table 1. Rule Init does the initialization for a
formal-in parameter, assuming that its first version in the SSA form
is 0. Rules Base and Simple are self-explanatory. Rules Mu and Chi
are applicable to pointer dereferencing operations. In particular, a
Mu constraint is introduced for a read access while a Chi constraint
for a write access. The operator⊇C is the conditional set inclusion.
Phi applies to aφ operation in the standard SSA form.

When encountering a call statement for a callee, the transfer
function of the callee is applied by calling Algorithm 5 to generate
the constraints required at the call site.

Consider the program given in Figure 1. Suppose that we have
already analyzed level 2. We are now working on the pointers at
level 1, a, b, c, d, e, and tmp, during the bottom-up phase. Sup-
pose that we have just finished analyzingfoo. Its transfer func-
tion Trans(foo, 1) is a combination of the three individual trans-
fer functionsTrans(foo, V p), Trans(foo, V q) andTrans(foo, d)
given earlier in (5). During the bottom-up analysis ofmain at level
1, we have created theµ andχ lists for its two call sites, L4 and
L9, as shown in Figure 4. To generate the constraints at the two call
sites,Trans(foo, 1) is applied at L4 and L9, respectively, by calling
Algorithm 5. At L4,a2 ⊇ b1 andb2 ⊇ {obj} are generated. At L9,
c2 ⊇ d1, c2 ⊇ e1, c2 ⊇ c1, e2 ⊇ {obj}, e2 ⊇ e1, d2 ⊇ {obj},
d2 ⊇ e1 andd2 ⊇ d1 are generated.

Constraint Resolution In this second stage, we obtain the points-
to relations by computing the transitive closure of the constraint
graph representing the constraints generated during the constraint
generation stage. When propagating the value from a node to a
successor, a guarded set union operation⊇C is used. So⊇ is a
special case of⊇C with its context condition beingtrue.

Some operations on local points-to sets are introduced below.

Algorithm 5 Applying a full transfer function at a call site.
1: procedureApply FTF(callsite, lev)
2: begin
3: for eachvm = χ(vn, Cv, M) generated forcallsite do
4: for eachcallee of callsite do
5: Mapv to a formal-out parameterf of callee;
6: Let Trans(callee, f) = 〈Loc(f), Dep(f), Cf , M〉;
7: for each〈p,C(c1, . . . , ck)〉 of Loc(f) do
8: Let C

′(c1, . . . , ck) be obtained fromC(c1, . . . , ck)
with all the formal parameters ofcallee being replaced
by their corresponding actual parameters atcallsite;

9: Let c′i be 1 ifci holds atcallsite and 0 otherwise;
10: if C

′(c′1, . . . , c′k) evaluates totrue then
11: Let C

′′ include all and only the points-to relations
in C

′(c1, . . . , ck) that hold at the entry of the caller;
12: Generate a constraintvm ⊇C′′ {p}
13: end if
14: end for
15: for each〈q, C(c1, . . . , ck)〉 of Dep(f) do
16: Let C

′(c1, . . . , ck) be obtained fromC(c1, . . . , ck)
with all the formal parameters ofcallee being replaced
by their corresponding actual parameters atcallsite;

17: Let c′i be 1 ifci holds atcallsite and 0 otherwise;
18: if C

′(c′1, . . . , c′k) evaluates totrue then
19: Let C

′′ include all and only the points-to relations
in C

′(c1, . . . , ck) that hold at the entry of the caller;
20: Map q to a list of actual parameters,actuals
21: for eachai in actuals do
22: Generate a constraintvm ⊇C′′ ai

23: end for
24: end if
25: end for
26: end for
27: if M == ”may” then
28: Generate a constraintvm ⊇Cv

vn

29: else
30: Generate a constraintvm ⊇∼Cv

vn

31: end if
32: end for
33: end

Definition 7 (Union for Local Points-to Sets). Loc(p)∪Loc(q) is
a new points-to set that contains〈v, C〉 if 〈v, C〉 is either contained
in Loc(p) or Loc(q) exclusively or satisfies the property that if
〈v, C1) ∈ Loc(p) and〈v, C2〉 ∈ Loc(q), thenC = C1 ∨ C2.

Definition 8 (Guarded Assignments for Local Points-to Sets).
Loc(p) × C = {〈v, C ∧ C

′〉 | 〈v, C′〉 ∈ Loc(p)}.

These operations on dependence sets are similarly defined. Dur-
ing the resolution process, a cycle in the constraint graph needs to
be resolved iteratively until a fixed point has been reached.

Transfer and Meet Functions For the meet function of a formal-
in v of a procedurefoo, Meet(foo, v) = 〈Ptr(v), C〉, Ptr(v) is
fully resolved in lines 8 – 19 in Algorithm 6 (but its points-to
relations are determined during the bottom-up phase) andC is
computed based on Property 1.

For the transfer function of a formal-outv of a procedurefoo,
Trans(foo, v) = 〈Loc(v), Dep(v), C, M〉, Loc(v) andDep(v) are
computed during the bottom-up phase andC by Property 2. The
M field is computed by solving a constraint propagation problem
together with the pointer inference. Each SSA variable is associated
with a property, namedmod ∈ {may, must}, to indicate how the

Rule Statement Constraint(s) Meaning

Init a1 = χ(a0, true, must)
ptl(a1) = lev

a1 ⊇ a0
Loc(a1) = {}
Dep(a1) = {〈a, true〉}

Base
ai = &b
ptl(ai) = lev

ai ⊇ {b}
Loc(ai) = {〈b, true〉}
Dep(ai) = {}

Simple
ai = bj

ptl(ai) = lev
ai ⊇ bj

Loc(ai) = Loc(bj)
Dep(ai) = Dep(bj)

Mu
µ(vk, Cv)

ai = ∗bj

ptl(ai) = lev
ai ⊇Cv

vk
Loc(ai) = Loc(ai) ∪ Loc(vk) × Cv

Dep(ai) = Dep(ai) ∪ Dep(vk) × Cv

Chi

∗ai = bj

vm = χ(vn, Cv, M)
ptl(vm) = lev

vm ⊇Cv
bi

if M == ”may”
vm ⊇Cv

vn

else
vm ⊇∼Cv

vn

Loc(vm) = Loc(bj) × Cv

Dep(vm) = Dep(bj) × Cv

if M == ”may”
Loc(vm) = Loc(vm) ∪ Loc(vn) × Cv

Dep(vm) = Dep(vm) ∪ Dep(vn) × Cv

else
Loc(vm) = Loc(vm) ∪ Loc(vn) × (∼ Cv)
Dep(vm) = Dep(vm) ∪ Dep(vn) × (∼ Cv)

Phi ai = φ(aj, ak)
ptl(ai) = lev

ai ⊇ aj

ai ⊇ ak

Loc(ai) = Loc(aj) ∪ Loc(ak)
Dep(ai) = Dep(aj) ∪ Dep(ak)

Call callsite c Call Apply FTF(c, lev) given in Algorithm 5

Table 1. Constraint generation for the pointer inference at levellev.

variable is defined. Initially, for an SSA variable defined bya direct
(Base) assignment or aχ (Chi) assignment whoseM field is must,
its mod is initialized to be “must”. For every other SSA variable,
its mod is initialized to be “may”. When resolving the points-to
constraints, we propagate the value ofmod from node to node
along the constraint edges corresponding toφ assignments in the
constraint graph. The left-hand side variable of aφ operation is
must-defined if and only if all its operands are.

3.2 Top-Down Analysis

The top-down analysis traversesACG and processes each of its
nodes in topological order, as shown in Algorithm 6. We propagate
the points-to sets of formal-ins to their use sites at each call site with
actual parameters being bound to formal parameters (lines 6– 20).
Again, due to the presence of recursion cycles, the computation of
Ptr(f) for a formal-in may have to be carried out iteratively. Recall
that the points-to set of a pointer computed during pointer inference
in the bottom-up phase may depend on the points-to sets of some
formal-ins. As a result of this points-to set propagation, the points-
to sets of all pointers at the level being analyzed are fully resolved.
In addition, we expand the pointer dereferences of the variables at
the level being analyzed by inserting theµ or χ operators for them
to expose the def/use points for the pointed-to variables sothat they
can be analyzed at the next level and lower levels (lines 24 – 54).

For the program in Figure 1, we perform the top-down analysis
for level 2 immediately after the bottom-up analysis for this level is
finished. In the top-down phase analyzingmain, we know that at
L4, x must point toa andy must point tob. At L9, x may point to
{c, d} andy may point to{d, e}. We propagate the points-to sets
of x and y to p and q, respectively, so thatp points to{a, c, d}
andq points to{b, d, e} as given in (3). Sincemain has no pointer
dereferences, we proceed to analyzefoo in the top-down phase. By
expanding the pointer dereferences∗p and∗q, we obtain the code
in Figure 5 with the newly introducedµ andχ operators, which are
used in analyzing the pointers at the next level, i.e., level1.

void foo(int **p, int **q)
{

µ(b, q ⇒ b)
µ(d, q → d)
µ(e,q → e)

L11: tmp1 = *q1;

L12: *p1 = tmp1;
a=χ(a, p ⇒ a, must)
c=χ(c, p → c, may)
d=χ(d, p → d, may)

L13: tmp2 = &obj;

L14: *q1 = tmp2;
b=χ(b, q ⇒ b, must)
d=χ(d, q → d, may)
e=χ(e, q → e, may)

}

Figure 5. foo with theµ andχ operations introduced during top-
down analysis at level 1 (without using parameterized spaces).

Let us revisit the notion of parameterized spaces discussedear-
lier. Many formal-in variables accessed in a procedure do not ex-
plicitly appear in its body since they only appear implicitly in some
µ or χ operators, either through pointer dereferences or call state-
ments. If we use a unique variable to represent the formal-invari-
ables that have the same def-use chains, we can save a lot of space
and reduce the analysis time as well. For the program in Figure 5,
a andc have the same def/use points, and similarly forb ande. In
a program, a formal-in parameter may point-to many variables at
different call sites. So a dereference of a formal-in parameter may
produce a lot ofµ or χ operators, resulting in space pressure. We
merge the side effects on such formal-ins by using a unique vari-

Algorithm 6 Top-Down Analysis.
1: procedureTop-downanalysis(AV G, lev)
2: begin
3: for each nodescc in topological order ofAV G do
4: for each procedureproc of scc do
5: for eachcallsite of proc do
6: for each actualv or µ(v, C) associated withcallsite,

whereptl(v) = lev do
7: for eachcallee of callsite do
8: Map v to a formal-inf of callee;
9: if |Loc(v)| == 1 && Dep(v) == {} then

10: M == “must”;
11: else
12: M == “may”;
13: end if
14: for each〈p,Cp〉 of Loc(v) do
15: Ptr(f) = Ptr(f) ∪ {〈p, M〉};
16: end for
17: for each〈p,Cp〉 of Dep(v) do
18: Ptr(f) = Ptr(f) ∪ Ptr(p);
19: end for
20: end for
21: end for
22: end for
23: ComVars= Alloc ParameterizedSpaces(proc, lev);
24: for each assignmentS :=def a = ∗b of proc do
25: if ptl(b) == lev then
26: for each〈v, C〉 of Loc(b) do
27: Insertµ(v, C) to µ list of S
28: end for
29: for each〈p,C〉 of Dep(b) do
30: Insertµ(V p, C) to µ list of S
31: for each〈v, C′, M〉 of ComVars(p) do
32: Insertµ(v, C ∧ C

′) to µ list of S
33: end for
34: end for
35: end if
36: end for
37: for each assignmentS :=def ∗b = a of proc do
38: if ptl(b) == lev then
39: if (|Loc(b)| == 1 && Dep(b) == {}) || (Loc(b)

== {} && |Dep(b)| == 1) then
40: M ′ = “must”
41: else
42: M ′ = “may”
43: end if
44: for each〈v, C〉 of Loc(b) do
45: Insertχ(v, C, M ′) to χ list of S
46: end for
47: for each〈p,C〉 of Dep(b) do
48: Insertχ(V p, C, M ′) to χ list of S
49: for each〈v, C′, M〉 of ComVars(p) do
50: Insertχ(v, C ∧ C

′, M ⊓ M ′) to χ list of S
51: end for
52: end for
53: end if
54: end for
55: end for
56: end for
57: end

Algorithm 7 Allocating Parameterized Spaces (forlev − 1).

1: procedureAlloc ParameterizedSpaces(proc, lev);
2: begin
3: for each formal-inp of proc, whereptl(p) = lev do
4: Let Meet(proc, lev) = 〈Ptr(p),Cp〉,
5: Let V p be a parameterized space representing a subset of

the pointed-to objects inPtr(p) such that ifv is explicitly
accessed inproc, where〈v, M〉 ∈ Ptr(p), thenv /∈ V p;

6: end for
7: Refine all parameterized spaces thus obtained so that they are

pair-wise disjoint and as large as possible;
8: for each formal-inp of proc, whereptl(p) = lev do
9: for each〈v, M〉 ∈ Ptr(p) such thatv /∈ V p do

10: Let Cv beq ⇒ v(q → v) if M is ”must” (” may”);
11: ComVars(p) = ComVars(p) ∪ {〈v, Cv, M〉}
12: end for
13: end for
14: end

able, called a parameterized space, to represent the dereference of
a formal-in parameter. This is done by calling Algorithm 7 inline
23 of Algorithm 6. However, care must be taken to avoid losing
any precision. If two formal-in parameters may point-to a common
variablev, thenv must not be parameterized (unlike [9, 23]). These
unparameterized formal-ins are collected inComVarsin Algorithm
7. If a variablev appears in the procedure body directly, thenv is
not represented by any parameterized space. By using parameter-
ized spaces, the code in Figure 5 becomes as shown in Figure 6.

void foo(int **p, int **q)
{

µ(Vq , true)
µ(d, q → d)

L11: tmp = *q;

L12: *p = tmp;
Vp=χ(Vp, true, must)
d=χ(d, may, p → d)

L13: tmp = &obj;

L14: *q = tmp;
Vq=χ(Vq, true, must)
d=χ(d, may, q → d)

}

Figure 6. Code offoo in Figure 5 using parameterized spaces.

Finally, the pointer analysis at a levellev may have to be
performed iteratively in the presence of points-to cycles formed by
some pointers atlev. During pointer dereferencing, if a pointed-to
variable introduced as an operand of aµ or χ operation happens
to be atlev, a points-to cycle has been detected. Whenever this
happens, the pointer analysis for the same level is repeatedso that
more points-to relations for the pointers atlev may be discovered,
resulting in potentially moreµ andχ statements to be introduced.
This iterative process stops as soon as all pointed-to variables
discovered in the last iteration are at a lower level thanlev.

4. Experiments
We have implemented ourLevPA algorithm in the Open64 com-
piler using the BDD library cudd-2.4.2. Our current implementa-
tion consists of over 20,000 lines of C++ code. We have measured

Benchmark KLOC #Pointers #Callsites #Indirect
Callsites

#Recursion
Cycles

#Proc in Largest
Recursion Cycle

#Points-to
Relations in BDDs

icecast-2.3.1 22 1618 877 40 14 1 350

sendmail 115 31004 19578 364 40 28 176640

httpd 128 20162 8992 270 23 6 4360

445.gombk 197 16076 10078 44 26 22 17433

wine-0.9.24 1905 336591 393689 24376 264 113 159149

wireshark-1.2.2 2383 333654 245278 2230 123 30 75899

Table 2. Benchmark characteristics.

Benchmark
LevPA: 64 Bit / 32 Bit (secs)

Mem (MB) Bootstrapping [14]
Points-to Levels Recursion Function Pointers Total

icecast-2.3.1 0.30 / 0.40 0.07 / 0.10 0.26 / 0.68 2.18 / 5.73 30 - / 29

sendmail 2.91 / 7.15 4.27 / 11.00 22.26 / 35.30 72.63 / 143.68 568 - / 939

httpd 0.23 / 0.53 0.50 / 1.70 2.30 / 5.39 16.32 / 35.42 136 - / 161

445.gombk 1.93 / 4.47 0.30 / 0.69 3.72 / 6.67 21.37 / 40.78 691 -

wine-0.9.24 45.79 / 120.75 15.10 / 27.32 35.66 / 76.8 502.29 / 891.16 2526 -

wireshark-1.2.2 17.86 / 52.31 11.97 / 24.63 17.36 / 56.26 366.63 / 845.23 2288 -

Table 3. Analysis statistics.

its performance by using the six benchmarks listed in Table 2. The
first three benchmarks are taken from Kahlon’s paper [14] in order
to compare the efficiency between the two methods. To our best
knowledge, Kahlon’s method is one of the latest FSCS pointeranal-
ysis techniques. Of these three benchmarks,icecast, sendmail
andhttpd, httpd is the largest used in his experiments. To evalu-
ate the ultimate performance of our method on larger benchmarks,
we have also selected three more benchmarks,gombk, wine and
wireshark. The characteristics of these benchmarks are summa-
rized in Table 2, including the numbers of lines, pointers, call sites,
indirect call sites, recursion cycles and procedures contained in the
largest recursion cycle (Columns 2 – 7). The last column gives the
number of points-to relations used for building the contextcondi-
tions in terms of BBDs (as discussed in Section 3.1.1).

We conducted our experiments on two computer platforms: an
Intel 64-bit 2.66GHz Xeon system with 16GB RAM and an Intel
3.0GHz Pentium 4 with 2GB RAM. To compare with Kahlon’s
method, we have selected our 32-bit Intel 3.0GHz Pentium4 with
2GB RAM purposely to analyze the first three benchmarks givenin
Table 2 since Kahlon conducted his experiments on a slightlyfaster
Intel 3.2GHz Pentium4 system with the same amount of RAM as
our 32-bit system. Table 3 gives the analysis times of the three
benchmarks byLevPA. In the last column, the times for the first
three benchmarks consumed by Kahlon’s method are taken directly
from his paper [14]. For all the three benchmarks, our methodis a
few times faster.

Looking again at Table 3, Column 5 gives the times taken by
LevPA for analyzing all the six benchmarks on each platform. In
addition, Columns 2 – 4 give the times consumed by some internal
phases of our method. In particular, Column 2 gives the time spent
computing the points-to levels for each benchmark on both plat-
forms, including the time elapsed in the Steensgaard-styled pointer
analysis. Column 3 gives the time due to the iterative analysis for

handling recursive calls for each benchmark. Column 4 givesthe
time taken due to the iterative analysis required for resolving func-
tion pointers. Due to the existence of recursion or indirectcalls,
we need to re-analyze pointers iteratively. As discussed inSection
3.1, we have adopted a demand-driven strategy to re-analyzethe
procedures in a cycle only when they may need to be analyzed. Of
the six benchmarks,wireshark has more than two million lines of
code. To our knowledge, this paper is the first to run a FSCS pointer
analysis on benchmarks of this scale in minutes.

This level of scalability ofLevPA is attributed to the facts that
LevPA conducts its pointer analysis on the full-sparse SSA form,
level by level, by avoiding redundantµ andχ operators at call sites
and pointer dereferences and by making use of BDDs to producea
full transfer function and a meet function for a procedure that are
precise as well as efficiently applicable to all calling contexts.

5. Related Work
There are many flow- and context-sensitive pointer analysistech-
niques reported during the last two decades, such as [4, 6, 9,10, 14–
17, 20, 25, 27] and some references therein.

Landi and Ryder [16] give a method that performs an iterative
dataflow analysis on the CFG of a program while maintaining an
alias relation set at each program point. Their method is notfully
flow-sensitive because it cannot perform indirect strong updates.
When encountering a procedure call, it enters into the body of a
callee and recomputes the alias set at its exit. So this method can
be classified a cloned-based context-sensitive analysis.

Choi et al. [6] present a method that performs an iterative
dataflow analysis on a Sparse Evaluation Graph (SEG) rather on
a CFG. SEG is a simplified CFG with the nodes that do not manip-
ulate pointer information omitted. Their interproceduralalgorithm

is summary-based but not fully context-sensitive because it only
considers one level of calling contexts.

Emaniet al.’s method [9] is an interval analysis. The algorithm
has an exponential time complexity since it is clone-based.

As discussed earlier in Section 3.1.1, Wilson and Lam [25]
use partial transfer functions to summarize the behavior ofalready
analyzed procedures. Unlike full transfer functions, partial transfer
functions describe the output of a procedure based on a specific
input. Their method is an iterative dataflow analysis and is fully
flow-sensitive. It can scale up to 20 KLOC of C code.

Chatterjeeet al. [9] use unknown initial values for parameters
and global variables so that the summaries about a procedurecan
be computed by flow-sensitive alias analysis. They use a two-phase
interprocedural analysis framework to compute flow- and context-
sensitive alias information. Their analysis is not sparse since it
needs to maintain a points-to graph at each program point. Inad-
dition, their strategy for handling function pointers is conservative.
They use an over-approximated call graph. For an indirect call site,
all functions with names taken and identical signatures areconsid-
ered as possible callees.

Zhu [27] proposes a flow- and context-sensitive pointer anal-
ysis by using BDDs. His analysis is symbolic but not fully flow-
sensitive because the kill information can only come from direct
assignments. His method can scale to 200 KLOC of C code.

Zheng and Yew [26] is the first to propose the idea of performing
the FSCS pointer analysis level by level. However, their method
relies on type declarations to determine points-to levels and does
not handle recursive data structures well. In addition, it does not
use SSA form to optimize the analysis, and uses a different form of
context-sensitivity.

Kahlon [14] proposes a bootstrapping algorithm that partitions a
program into small subsets and uses a divide-and-conquer strategy
to concurrently find solutions in these subsets. A summary-based
approach is used for scalable context-sensitive alias analysis. His
work is also based on the level-by-level strategy but his definition
of points-to level (called depth) does not go all the way as ours.
Furthermore, his approach to analyzing a level, by first comput-
ing flow- and context-insensitive alias summary and then analyzing
pointers flow- and context-sensitively differs from ours. His algo-
rithm can scale up to 128 KLOC of C code.

Kanget al. [15] propose a bottom-up flow- and context-sensitive
pointer analysis. It is based on a new modular pointer analysis
domain called the update history that can abstract memory states of
a procedure independently of the information on aliases between
memory locations and keep the information on the order of side
effects performed. However, their method is not very efficient since
for a 20 KLOC program, the elapsed analysis time is 213 seconds.

Chaseet al. [3] present a flow-sensitive but context-insensitive
pointer analysis. There are no experimental results reported. Toket
al. [23] give a similar method that also binds the def-use analysis
and the pointer analysis together. Their method can scale upto 70
KLOC of C code. Hastiet al. [12], Lundberget al. [18], Naeemet
al. [19] and Hardekopfet al. [11] use SSA form to optimize a flow-
sensitive but context-insensitive pointer analysis. Of these methods,
Hardekopf and Lin’s [11] is semi-sparse because in the sensetha it
only builds the SSA form for the top-level pointer variables.

6. Conclusion
We have proposed a practical and scalable flow- and context-
sensitive (FSCS) pointer analysis for C programs. We analyze the
pointers level by level according to their points-to levelson the
points-to graph in order to perform fast and accurate full sparse
flow-sensitive analysis in a flow-insensitive style. This level-by-
level strategy also facilitates a fast and accurate summary-based
context-sensitive analysis. Our pointer analysis resultsin 1) a pre-

cise and compact SSA form for subsequent program analyses and
optimizations, and 2) a flow- and context-sensitive mod/refset for
each procedure. We have implemented our algorithm in Open64
and our preliminary results show our new approach can analyze
some large benchmarks with over a million lines of C code in min-
utes.

Acknowledgments
Thanks to Zhaowei Ding who for building the whole environ-
ment for our experiments. This work is supported in part by a
Chinese National Basic Research Grant (2005CB321602), a Chi-
nese National High Technology Research and Development Grant
(2008AA01Z115), a Chinese National Science and Technology
Major Project (2009ZX01036-001-002), a NSFC Innovation Re-
search Group Project (60921002), a Chinese National Science Fund
for Distinguished Young Scholars (60925009), and an Australian
Research Council Grant (DP0987236).

References
[1] A NDERSEN, L. O. Program analysis and specialization for the c

programming language, 1994.

[2] BRYANT, R. E. Graph-based algorithms for boolean function manip-
ulation. IEEE Trans. Comput. 35, 8 (1986), 677–691.

[3] CHASE, D. R., WEGMAN, M., AND ZADECK, F. K. Analysis
of pointers and structures. InPLDI ’90: Proceedings of the ACM
SIGPLAN 1990 Conference on Programming Language Design and
Implementation(New York, NY, USA, 1990), ACM, pp. 296–310.

[4] CHATTERJEE, R., RYDER, B. G.,AND LANDI , W. A. Relevant con-
text inference. InPOPL ’99: Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages(New
York, NY, USA, 1999), ACM, pp. 133–146.

[5] CHENG, B.-C., AND HWU, W.-M. W. Modular interprocedural
pointer analysis using access paths: design, implementation, and eval-
uation. InPLDI ’00: Proceedings of the ACM SIGPLAN 2000 con-
ference on Programming language design and implementation(New
York, NY, USA, 2000), ACM, pp. 57–69.

[6] CHOI, J.-D., BURKE, M., AND CARINI , P. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side ef-
fects. InPOPL ’93: Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages(New York, NY,
USA, 1993), ACM, pp. 232–245.

[7] CHOW, F. C., CHAN , S., LIU , S.-M., LO, R., AND STREICH, M.
Effective representation of aliases and indirect memory operations in
ssa form. InCC ’96: Proceedings of the 6th International Confer-
ence on Compiler Construction(London, UK, 1996), Springer-Verlag,
pp. 253–267.

[8] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND

ZADECK, K. F. Efficiently computing static single assignment form
and the control dependence graph.ACM Transactions on Program-
ming Languages and Systems 13(1991), 451–490.

[9] EMAMI , M., GHIYA , R., AND HENDREN, L. J. Context-sensitive
interprocedural points-to analysis in the presence of function pointers.
In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation(New York, NY,
USA, 1994), ACM, pp. 242–256.

[10] HACKETT, B., AND A IKEN , A. How is aliasing used in systems soft-
ware? InSIGSOFT ’06/FSE-14: Proceedings of the 14th ACM SIG-
SOFT international symposium on Foundations of software engineer-
ing (New York, NY, USA, 2006), ACM, pp. 69–80.

[11] HARDEKOPF, B., AND L IN , C. Semi-sparse flow-sensitive pointer
analysis. InPOPL ’09: Proceedings of the 36th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages(New York, NY, USA, 2009), ACM, pp. 226–238.

[12] HASTI, R.,AND HORWITZ, S. Using static single assignment form to
improve flow-insensitive pointer analysis. InPLDI ’98: Proceedings

of the ACM SIGPLAN 1998 conference on Programming language de-
sign and implementation(New York, NY, USA, 1998), ACM, pp. 97–
105.

[13] HIND , M., BURKE, M., CARINI , P., AND CHOI, J.-D. Interproce-
dural pointer alias analysis.ACM Trans. Program. Lang. Syst. 21, 4
(1999), 848–894.

[14] KAHLON , V. Bootstrapping: a technique for scalable flow and
context-sensitive pointer alias analysis. InPLDI ’08: Proceedings of
the 2008 ACM SIGPLAN conference on Programming language de-
sign and implementation(New York, NY, USA, 2008), ACM, pp. 249–
259.

[15] KANG, H.-G.,AND HAN , T. A bottom-up pointer analysis using the
update history.Inf. Softw. Technol. 51, 4 (2009), 691–707.

[16] LANDI , W., AND RYDER, B. G. A safe approximate algorithm for
interprocedural aliasing.SIGPLAN Not. 27, 7 (1992), 235–248.

[17] L IVSHITS, V. B., AND LAM , M. S. Tracking pointers with path and
context sensitivity for bug detection in c programs. InESEC/FSE-
11: Proceedings of the 9th European software engineering conference
held jointly with 11th ACM SIGSOFT international symposiumon
Foundations of software engineering(New York, NY, USA, 2003),
ACM, pp. 317–326.

[18] LUNDBERG, J., AND L ÖWE, W. A scalable flow-sensitive points-
to analysis. InCompiler Construction - Advances and Applications,
Festschrift on the occasion of the retirement of Prof. Dr. Dr. h.c.
Gerhard Goos(2007), Springer Verlag. accepted.

[19] NAEEM, N. A., AND LHOTÁK , O. Efficient alias set analysis using
ssa form. InISMM ’09: Proceedings of the 2009 international sym-
posium on Memory management(New York, NY, USA, 2009), ACM,
pp. 79–88.

[20] RYDER, B. G., LANDI , W. A., STOCKS, P. A., ZHANG, S., AND
ALTUCHER, R. A schema for interprocedural modification side-effect
analysis with pointer aliasing.ACM Trans. Program. Lang. Syst. 23, 2
(2001), 105–186.

[21] STEENSGAARD, B. Points-to analysis by type inference of programs
with structures and unions. InCC ’96: Proceedings of the 6th Inter-
national Conference on Compiler Construction(London, UK, 1996),
Springer-Verlag, pp. 136–150.

[22] STEENSGAARD, B. Points-to analysis in almost linear time. InPOPL
’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages(New York, NY, USA, 1996),
ACM, pp. 32–41.

[23] TOK, T., GUYER, S.,AND L IN , C. Efficient Flow-Sensitive Interpro-
cedural Data-Flow Analysis in the Presence of Pointers. InCompiler
construction: 15th international conference, CC 2006, held as part
of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2006, Vienna, Austria, March 30-31, 2006: proceedings
(2006), Springer-Verlag New York Inc, p. 17.

[24] WHALEY, J.,AND LAM , M. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. InProceedings of the
ACM SIGPLAN 2004 conference on Programming language design
and implementation(2004), ACM New York, NY, USA, pp. 131–144.

[25] WILSON, R. P.,AND LAM , M. S. Efficient context-sensitive pointer
analysis for c programs. InPLDI ’95: Proceedings of the ACM
SIGPLAN 1995 conference on Programming language design and
implementation(New York, NY, USA, 1995), ACM, pp. 1–12.

[26] ZHENG, B., AND YEW, P. A hierarchical approach to context-
sensitive interprocedural alias analysis, 1999.

[27] ZHU, J. Towards scalable flow and context sensitive pointer analysis.
In DAC ’05: Proceedings of the 42nd annual Design Automation
Conference(New York, NY, USA, 2005), ACM, pp. 831–836.

