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Abstract

We present a practical and scalable method for flow- and xbnte
sensitive (FSCS) pointer analysis for C programs. Our ntegm
alyzes the pointers in a program level by level in terms ofrthe
points-to levelsallowing the points-to relations of the pointers at
a particular level to be discovered based on the pointstatioas

of the pointers at this level and higher levels. This leveldvel
strategy can enhance the scalability of the FSCS pointdysisa
in two fundamental ways, by enabling (1) fast and accurate-flo
sensitive analysis on full sparse SSA form using a flow-isgixe
algorithm and (2) fast and accurate context-sensitiveyaigalis-
ing a full transfer function and a meet function for each pahae.
Our level-by-level algorithmLevPA, gives rises to (1) a precise
and compact SSA representation for subsequent prograng-anal
sis and optimization tasks and (2) a flow- and context-seasit
MAY / MUST mod (modification) set and read set for each pro-
cedure. Our preliminary results show that/PA can analyze some
programs with over a million lines of C code in minutes, fagitan
the state-of-the-art FSCS methods.

Categories and Subject Descriptors D.3.4 [Processork Com-
pilers; F.3.2 Bemantics of Programming LanguapeBrogram
Analysis

General Terms  Algorithms, Languages, Performance
Keywords Pointer Analysis, Alias Analysis

1. Introduction

Pointer analysis is the basis of most other static prograayses
and many compiler optimizations, especially for C prograiise
motivation to enhance the scalability of flow- and contettsitive
(FSCS) pointer analysis is that the increased precision ti
tained is crucial for many security-related program aralgnd
verification tasks and may also open up new opportunitie$ufor
ture compiler optimizations in the multi-core era. Howeveme of
the existing FSCS pointer analysis algorithms [10, 13, 74,20,
25, 27] can analyze beyond a million of lines of code effidierih
this paper, we introduce a FSCS (and also field-sensitiviegro
analysis that can analyze some of these programs in minutes.
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Flow-sensitive pointer analysis provides the points-forima-
tion in the form of points-to sets [1] or graphs [3], which i&em
used by def-use analysis. Conversely, def-use analysiseothe
def/use information useful for flow-sensitive pointer aséd. For
example, assignments to a pointer through dereferencethef o
pointers can alter the points-to information of that painte facil-
itate def-use analysis, the static single assignment (3&4) [8]
is widely used. As a result, many flow-sensitive analysiblems
can be sped up on SSA by using flow-insensitive algorithms.

In this paper, we present a FSCS pointer analysigPA, that
analyzes the pointers in a C program level by level accortiing
their points-to levels. This level-by-level strategy méyn#ficantly
enhance the scalability of the FSCS pointer analysis. Orhand,
the time and space efficiency of flow-sensitive pointer asialgan
be improved by applying a flow-insensitive algorithm onfsglarse
SSA. On the other hand, the precise and compact SSA formesnabl
precise alias relations to be exploited to eliminate spusidef/use
points, sharpening the precision of def-use analysis.

The feasibility of binding full-sparse SSA and pointer s
together comes from a simple observation. If all the def (dtédin)
and use sites (either direct or indirect) of a pointer vadeidtave
been determined, we can build the SSA form for all accessié®to
pointer and then analyze them flow-sensitively (by using &-flo
insensitive algorithm). A variable can be referenced diyeor
indirectly through dereferences of another pointer. If wentvto
know all the indirect references of a variable, we need tdyara
all the pointers possibly pointing to it first. To guarantbistwe
assign a propertypoints-to levelto each variable and analyze the
variables in a program in decreasing order of their levels.

Hardekopf and Lin [11] have recently proposed a flow-seresiti
pointer analysis on SSA. However, their method is semisspar
in the sense that it only builds the SSA form for ttap-level
pointer variables, i.e., those that cannot be referenceieitly,
in a program. In contrast,evPA is fully sparse. By going beyond
just thetop-levelpointer variablesl.evPA reaps the full benefits of
performing pointer analysis on SSA for all pointers at alkls.

Context-sensitive pointer analysis also benefits from eliby-
level approach. The key in achieving context-sensitistioiobtain
the output of a procedure according to a given input. Soméaaaist
accomplish this by distinguishing different calling pafbsa pro-
cedure, and consequently, have to analyze the entire pnaginaan
exploded call graph [24, 27]. InsteddsvPA builds a full transfer
function for a procedure and applies it in all its calling texs.

A transfer function for a procedure is a description of tHa-re
tions between it§ormal-out parameters and it®ormal-in param-
eters. Theformal-in parameters of a procedugeoc include not
only the declared formal parameters but also the globahlbes,
escaped local variables (into this procedure) and dynathaicaded



objects whose values may be accessegrhy: or the procedures
thatproc invokes. Similarly, thdormal-outparameters of a proce-
dureproc include not only its return value but also the global vari-
ables, escaped local variables (from this procedure) andrdic
allocated objects whose values may be modifiedpbyc or the
procedures thairoc invokes.

If the higher-level formal-in parameters of a procedureehav
been analyzed, the pointers of a particular level in the qutace
body can be analyzed succinctly. Therefore, we make useeof th
points-to sets of formal-in parameters at higher leveld (@ssibly
at the same level due to the presence of points-to cycledktio-d
guish the calling contexts for a procedure and encode theits in
transfer function. Our transfer functions can preciselscdige the
modification side effects of procedures while keeping tlspeice
requirements and function application costs to a minimuis T
is mostly achieved by representing for the first time the {ssto
relations with context-sensitive conditions using BDDE [2

We do the same for the interprocedural read side effects for a

procedure by using a so-called meet function to describeche
side effects of the procedure on all its formal-ins.

In summary, the paper contributes a fully flow- and context-
sensitive, and also field-sensitive pointer analysis that

e is the first to carry out a level-by-level FSCS pointer anialys
that is different from the summary-based algorithm in [14];

e performs a full-sparse flow-sensitive analysis on SSA flow-
insensitively with significantly reduced time and spacesos

¢ performs a context-sensitive analysis efficiently with agse
full transfer function and a meet function for each proceglur

e yields flow- and context-sensitive interprocedural MAY/I9U0

Algorithm 1 ThelLevPA pointer analysis.

: Compute the points-to levels for all variables;

. Build the procedure call graph, denoted’ G,

: ReducePCG to a SCC-DAG, denoted VG,

: repeat

for lev from highest to lowesto
Bottom-upanalysis@V G, lev)
Top-downanalysis@V G, lev)

end for

: UpdatePCG and AV G due to resolved indirect calls;

: until PCG does not change;
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direct or indirect references to andy, thenptl(z) < ptl(y). (The
modification can happen due to ()= y, (2) *p = y, wherep
may point tax or (3) z = xq, whereq may point toy.)

Our LevPA framework is summarized in Algorithm 1. We start
by computing the points-to levels for all variables in a peog.
We then build its procedure call grapRCG), where no function
pointer is resolved yet. To handle recursive caltg;G is parti-
tioned into strongly connected components (SCC) to form-a di
rected acyclic graph (a SCC-DAG), denotélf G. The procedures
in the same SCC form a recursion cycle. We then start anajyhin
pointers of the same level together from highest to lowediekV
working at a level, only the points-to sets of the pointershig
level are computed. The points-to sets of higher-levelatpcs are
used while the pointers at the lower level are ignored. G 1
and 2 guarantee that whenever a variable is analyzed, aditties
variables that may have an impact on its value either have &es-

modification and read side effects on a compact SSA form; and lyzed earlier or are being analyzed at the same time. Thgsiaait

e analyzes million lines of code in minutes, faster than tlagest
of-the art FSCS pointer analysis algorithms.

The rest of the paper is organized as follows. Section 24ntro
duces thelevPA framework and describes how to compute the
points-to levels of variables. Section 3 discusses thetpoanal-
ysis performed by evPA for a particular level. Section 4 presents
and discusses our experimental results. Section 5 intesdihe re-
lated work, and finally, Section 6 concludes the paper.

2. ThelevPA Framework

Our method can cover full C features. As in [1], it suffices om<

sider only four types of assignments: @)= vy, (2) z = &y, (3)

xx =y, and (4 = xy. Arrays are treated as monolithic scalar ob-

jects. Heap objects are modeled by representing an albocatie

at a program pointoc by a statement of the form= &allocioc. A

memory deallocation statement fpiis replaced by = NULL.

All memory operations on structs are flattened into memory op

erations on scalar fields. Function pointers are handled §5].i

Pointer arithmetic operations are handled by assigningittien

of the points-to sets of all pointer operands in a pointéateel as-

sighment to the resulting pointer [22]. Type casting is heddy

inferring the locations accessed by the pointer being cast.
Suppose we have computed a propeptints-to level for ev-

ery abstract memory location, such as a scalar variable o a d

namic allocated object (with all such abstract locatioriadpealled

variables henceforth). The points-to level of a variablelenoted

ptl(v), satisfies the two conditions stated below.

Condition 1. If a variable x is possibly pointed to by a pointer
during an execution of the program, thpti(z) < ptl(y).

Condition 2. If a variable z is possibly modified by assigning
the value ofy to « during an execution of the program, through

each level typically entails traversingV G twice, first bottom-up
(by Algorithm 3) and then top-down (by Algorithm 6), but iter
tions (not shown in Algorithm 1 explicitly) may be requiresl de-
scribed in the next paragraph. During the bottom-up phase&on-
struct the (extended) SSA form for the pointers of the curierel
and perform the pointer inference to compute the pointetds
every pointer at the current level that may be possibly esq@é in
terms of the points-to sets of some formal-ins. In additive,also
build a full transfer function (and also a meet function) &ach
procedure. During the top-down phase, we propagate theésptmin
sets of the formal-in pointers of the level being analyzetthéir use
sites, and at the same time, expand the dereferences faititens
at the current level to prepare for the analysis of the posraethe
next level (and lower levels). In actuality, the pointereaference
expansion performed signals the beginning of the SSA form co
struction for the pointers at the next and lower levels bis step
can be moved into the bottom-up phase at the level below.

The pointer analysis at a level may involve two types of itera
tions. First, on detecting some cyclic points-to relatidosing the
pointer dereference expansion performed in the top-dovasefor
a level, the pointers at this level are analyzed iteratiwveigl their
points-to sets are fully resolved (as discussed in Sectih6) Sec-
ond, in the presence of recursion, iterations are requor@thalyze
the pointers in the procedures in each recursion cycldGrG. In
addition, in the presence of function pointef& G is built incre-
mentally, causing iterations to be performed in order t@ewno-
date both the modification and read side effects introdugeithd
newly resolved procedure calls on the program being andlyze

As shown in Algorithm 2, we compute the points-to level of a
variable based on the points-to graph built by a Steensgsglet
pointer analysis [22, 22] (line 1), which runs in almost linear
time. Steensgaard-styled pointer analysis is an equivaelbased
analysis. If there is an assignment between two variablesd
y, both must point to the same object in the underlying points-



Algorithm 2 Computing points-to levels.

Algorithm 3 Bottom-up analysis.

1. Perform the Steensgaard-styled pointer analysis; 1: procedure Bottom-upanalysisdV G, lev)
2: Add pair-wise points-to edges for all predecessors of a node 2: begin
the points-to graph thus obtained,; 3: for each nodecc in reverse topological order of VG do
3: Reduce the points-to graph to a SCC-DAG; 4:  for each procedurgroc of scc do
4: Setptl(r) = 0 for every leaf node; 5: (a) Createu_x_for_callsitesproc, lev);
5: for each non-leaf node such that the points-to levels of all its 6: (b) Build the extended SSA form;
successors have already been compdted 7: (c) Perform pointer inference;
6: Letsi,...,s, beallthe successors of 8: end for
7. Setptl(r) = max{ptl(s1),...,ptl(sn)} + 1, 9: end for
8: end for 10: end
int obj, t: 3. Analyzing a Level
) Analyzing a level amounts to computing the points-to setgHe
main () pointers at this levelLevPA proceeds in two phases, first bottom-
L1 int wex, sy up and then top-down. Both phases are inter.-related. Themot
Lo int sa. sb. sc. xd. xe: up phase deter_mln_es the points-to set for a pointer at tledebe;mg
L3: x = &a ;' ’y ='&b : ' ' analyzed possibly in terms of the points-to sets of somedibins.
L4:  foo(x, y); All these points-to sets will be fully resolved subsequeitl the
L5: b = 5; top-down phase by propagating the points-to sets of formnals
L6: if (t) {x=&c; y=2~&e; } their use sites (with the actual parameters of a procedlirbaiag
L7: else {x=¢&d; y=2&d; } bound to their corresponding formal parameters).
L8: c = &t; In this section, we focus on discussing how to analyze the
L9:  foo(x, y); pointers of a specific level on the assumption that the painte
L10:  xe = 10; of higher levels have already been analyzed. We first looket t
} bottom-up phase and then the top-down phase.
void foo(int *xp, int =*xq) 3.1 Bottom-Up Analysis
L1l:  int *tmp = xq; Algorithm 3 gives the key steps performed for a given leved,
L12: «p = tmp; In this phase, we process the nodesiiviGG in reverse topological
L13:  tmp = &obj; order. Step 3(a) collects the flow- and context-sensitiasl rand
) L14: xq = tmp; modification side effects of all call sites in a procedureémts

Figure 1. A motivating example.

to graph. In line 2, we ensure conservatively that Condifiois
always satisfied. Otherwise, if andy point to the same object
in the points-to graph when participates in a cycle that does not
containz, thenptl/(z) > ptl(y) would be possible. In this case, an
assignment likee = y would be rendered unanalyzable. In lines
3 — 8, the points-to level of a variable is computed as thedshg
distance from the node containing the variable to a leaf node

Theorem 1. Conditions 1 and 2 are satisfied by the points-to levels
of variables computed by Algorithm 2 for a program.

Proof. If a variablex is possibly pointed to by a pointey, there
must be a points-to edge from the node representitggthe node
representing: in the Steensgaard-styled points-to graph. After line
3,z andy may be in the same SCC. In any cap#(z) < ptl(y)
always holds. So Condition 1 is guaranteed to be satisfieé. Du
to line 2, if a variablex is possibly modified by assigning the
value ofy to z, thenxz andy must be in the same SCC. Again
ptl(z) < ptl(y) holds. Condition 2 is satisfied, too. O

Our motivating example is given in Figure 1. For convenignce
all assignments have already been put into the form suppante
the LevPA framework. By applying Algorithm 2, we find that the
pointers are organized in three levetél(z) = ptl(y) = ptl(p) =
ptllq) = 2, ptila) = pti(b) = ptl(c) = ptl(d) = ptl(e) =
ptl(tmp) = 1 andptl(t) = ptl(obj) = 0. LevPA will compute the
points-to sets first for the pointers {a, y, p, ¢}, then the pointers
in {a, b, ¢, d, e, tmp}, and finally, the pointers ifit, obj}.

of the . and x operators, respectively [7]. The and y operators
for the dereferencing operations on the pointers of léwvet1 are
introduced earlier during the top-down analysisifar+1. Step 3(b)
builds the extended SSA form [7, 8] for the pointers of lei¢al.
Step 3(c) performs the pointer inference to compute thetpam
set for every pointer of levékv, which may be expressed in terms
of some formal-ins atev or higher. In this last step, we also obtain
a full transfer function for each procedure that encodeglats-
and context-sensitive MAY/MUST modification side effeats its
formal-outs and a meet function that gives its flow- and cante
sensitive read side effects for its formal-ins.

In Algorithm 3, a nodescc may represent multiple procedures
contained in a recursion cycle. As a result, the bottom-glyais
for each procedure may have to be done iteratively using & ligbr
in a demand-driven fashion. Whenever the transfer or meetifin
of a procedure has changed, the procedure is inserted mtedtk
list, causing more iterations for its callers and indireatars until
a fixed point has been reached (i.e., when the work list is ¥mpt

Section 3.1.1 introduces the full transfer functions used f
specifying the interprocedural MAY/MUST modification sidé
fects of procedures. Section 3.1.2 introduces the meetitursc
used for specifying the interprocedural read side effetfrace-
dures. Section 3.1.3 introduces the extended SSA form ustbe i
LevPA framework. Sections 3.1.4 - 3.1.6 describe Steps 3(a) - 3(c)
of Algorithm 3, respectively, and illustrate them by exaswl

3.1.1 Full Transfer Functions

To obtain high scalability while maintaining context-sitniy, we
build a single full transfer function for a procedure that dascribe
the modification side effect of the procedure independeuitlits
inputs. Wilson and Lam [25] use partial transfer functioR3 Fs)



in their flow- and context-sensitive pointer analysis. PaFesbuilt
for a procedure according to different alias inputs. Thiy mesult
in analyzing a procedure more than once. For example, inr€igu
the call sites L4 and L9 provide different alias inputsfw. The
formal parameterg andq do not alias with each other at L4 but
may both point tod at L9. They thus analyzg¢oo to build two
different PTFs. Our method may also analyze a procedurapteult
times, once for each level. However, the analysis at oné tmes
not overlap with the analysis of another level. Furthermdineir
parameterized representations of PTFs may result in jppadisss.
In Figure 1, their method employs so-called extended paenne
1_p and1_q to represent all the variables pointed to pyand g,
respectively. Asl_p and1_q are aliases at L9 oo is regarded as
having the same side effect dop and1_q, leading to the spurious
points-to relation that may point toob; after L9. Perhaps the
major advantage of PTFs is that they summarize the sideteffec
of a procedure only for those aliases that may actually oatur
the program. However, by proceeding level by levalyPA also
eliminates unrealized alias relations according to ogliontexts.
Once the full transfer function for a procedure is available can
apply it to different call sites accurately and efficiently.

We do not use full calling paths to distinguish calling cotse
of a procedure when working at a particular lekeal. Instead, we
use the points-to sets of formal-in parameters at higheidgand
possibly atlev due to the existence of points-to cycles) to distin-
guish the calling contexts for the pointer accesses to theters
at levellev and encode them into the transfer function for the pro-
cedure. We have designed a new points-to representatiomaha
only describes the objects pointed to but also under whicldieo
tions the objects are pointed to. These context conditioasised
to distinguish the calling contexts of a procedure so tlsat#nsfer
function can be used in any calling context.

Definition 1 (Points-to Se}. Given a variablep of levellev, its
points-to setPtr(p) is {(v, M) | v is an abstract memory location
and M € {may,must}. For convenience, we writp = v
(p — v) to highlight the fact thap must(may) point towv.

Definition 2 (Context Condition). When working at a levékw,

a context conditiorC(cy, . .. , cx) is a Boolean function such that
¢; evaluates tdrue(falsg if the points-to relation that it represents
for a pointer atlev or a higher level evaluates tioue(false.

As one of the contributions in this work, context conditions
are implemented using BDDs [2], thereby greatly reducing th
costs for representing and applying transfer functionsh\®DDs,
we can not only compactly represent context conditions g a
enable Boolean operations to be evaluated efficiently. kamele,
Figure 2 shows how the context conditith= (p — a A ¢ —

a) V p — bis represented by a BDD. Each variable node in the
BDD represents a points-to relation. We allocate a uniqui®id
each points-to relation by organizing all points-to relai of all
levels in a vector. This vector is filled up incrementally idgrthe
level-by-level analysis. The unique id of a points-to rielatis just
the index of the vector. For example, if only the points-tiatien

p — b holds at a call site, we can evaluate the context condition by

writing C|,1=0,22=0,23=1 t0 See whethe€ holds at the call site or
not. (The formal parameters of a procedur€iwill be mapped to
their corresponding actual parameters at the call site.)

variable x1 represents p—~a

variable x2 represents g—a

variable x3represents p—b

Figure 2. TheBDD forC=(p —aAgq—a)Vp —b.

during the bottom-up phase and that may be include®titp). Itis
recorded as a map( v, C(ci,... ,cx) ) | vis an abstract memory
location andC(cy, . . . , ¢ ) is a context conditiop, meaning thap
may/must point te if and only ifC(cu, . .. , cx) holds. (Whethep
may or must point t@ at a particular point depends on the objects
possibly pointed to by, given byLoc(p) and Def(p), at the point.)

For example, ik = &y is analyzed during the bottom-up phase
at a levellev, then(y, true) will be included inLoc(x).

Definition 4 (Dependence Sét Given a variablep of levellev,
the dependence sBtep(p) specifies the set of formal-inswhose
points-to sets may be included Rir(p), i.e., are dependent on by
Ptr(p). It is is recorded as a mag( ¢,C(c1,... ,ck) ) | gis a
formal-in parameter of levelev and C(c1, ... ,cx) is a context
condition}, meaning that for everyg, C(c1, ... ,cx)) € Defp),
Ptr(p) includesPtr(q) if and only ifC(cy, ... , cx) holds.

The dependence s&efp) of a variablep at a levellev is
used to record the data dependency betweand some formal-
in parameters at the same level, since the points-to setsaofi
the formal-ins will have to be determined together during tibp-
down phase. For example, a pointer may point to whatevemadior
parameter points to when both are analyzed at the same Tnel.
points-to set of the pointer can be determined as soon a®thesp
to set of the formal-in parameter is (propagated top-down).

The transfer function of a procedure is a combination of the
transfer functions of all its formal-out parameters.

Definition 5 (Transfer Function). Given a formal-out at level
lev of a procedureproc, its transfer functionTrangproc, v) is a
quadruple (Loc(v), Dep(v),C(c1, ... ,ck), M), where
C(eiy... ,ck) is a context condition and/ € {may, must,
meaning thav may (must) be modified at a call site invokingoc

if M = “may’ (M = “must) provided thatC(c4, ... ,cx) (with
all formal parameters gproc being mapped to their actual param-
eters) holds at the call site. The transfer functib@ngproc, lev)

of proc at levellev is a combination of the individual transfer
functionsTrangproc, v) for all formal-out parameters at lev.

Let us understand the transfer functions thus defined ubimg t
example given in Figure 1. We start with the bottom-up ariglsts
level 2 first. The procedurgoo does not modify any variable of
level 2. So its transfer function at level 2 is empty:

Trang foo,p) = Trangfoo,q) = {} Q)

The procedurenain modifiesz andy, but these two variables are
local. So its transfer function at level 2 is also empty:

Due to the inter-phase dependency between the top-down and

bottom-up phases conducted at a Idvel, the points-to-sePtr(p)

of a variablep may not be explicitly computed until only after both
phases are finished. SpecificalBir(p) can be deduced from the
following two sets given in Definitions 3 and 4, respectively

Definition 3 (Local Points-to Se). Given a variablep of levellev,
Loc(p) yields a so-called points-to set that is computed expjicitl

Tran§main,z) = Tran§main,y) = {} 2

A top-down analysis that follows immediately propagates th
points-to sets of the actualsandy of foo to their correspond-
ing formal-insp andq, respectively. In this caséevPA finds that

Ptr(p) {{a, musb, (c, may, (d, may } 3)
Ptr(q) {(b, mus}, (d, may), (e, may }



Next, we start the bottom-up analysis fer b, ¢, d, e and tmp
at level 1, where the first five variables are formal-outs (alst
formal-ins) of foo. The transfer functiorirang foo, 1) is thus a
combination of the following five individual transfer fuimns:

Trang foo,a) = ({}, {{(b,q = b),{(d,q — d), (e, q — e},

p = a, mus}
Trang foo, c¢) = ({}, {{b,q = b),{d,q — d), (e, q — e},
p — ¢, may)
({(obj,q = b)},{}, ¢ = b, mus}
({(obj,q — €}, {(e,q — €)}, ¢ — e, may)
({{obj,q — &)}, {(b,p — d N q=1b),
(d,p—d),{e,p —dNqg—e)},
p—dVqg— d,may)

Trang foo, b) 4)
Trang foo, €)

Trang foo, d)

As can be observed from the transfer functions given above,
Trang foo, a) and Trang foo, c) are structurally identical, and
similarly for Trang foo,b) and Trang foo, ¢). When analyzing
a procedure at a levéév during the top-down phaséevPA tries
to allocate a common parameterized space to a set of its forma
out parameters at the level below (i.tep — 1) to merge their
transfer functions by merging the side effects on them. Thus
Trans(foo, 1) is simplified to be a combination of the follow-
ing three transfer functions:

Trang foo, V?) = ({}, {(V, true }, true, mus}

Trans foo, V) = ({{obj, must)}, {}, trug mus} ©)

Trang foo,d) = ({(obj,q — d)},{(V* true), (d,p — d)},
p—dVq— d,may

where the formal-out parametetr@andc are parameterized by?,
andb ande by V7 butd is not parameterized (during the top-down
analysis at level 2). Unlike [25], the way we merge the sideat$
on formal-outs in a procedure by using a parameterized sface
Algorithm 7) never loses precision because the formal-arsum-
eterized together have exactly the same def/use pointsiprir
cedure except they may differ in their MAY/MUST modification
effects. (This is whyl is not parameterized as either partiof or
V1.) Such differences are distinguished at a calling contenerw
the transfer function of the procedure is applied (lines 3 29 of
Algorithm 4).

3.1.2 Meet Functions

We also need to define a meet function for a procedure thataserg
the inputs to the procedure at different calling contextectying
essentially its interprocedural read side effects.

Definition 6 (Meet Function). Given a formal-in parametev of
levellev read (referenced) in a proceduggroc, its meet function
Mee(proc, v) is a tuple (Ptr(v),C(ci,... ,cx)), meaning that
v (or the corresponding actual parameter ofif v is a formal
parameter ofproc) may/must be read at a call site invokipgoc
only whenC(ey, ... ,cr) (with the formal parameters ofroc
being mapped to their actual parameters) holds at the ctl Jihe
meet functionV eet(proc, lev) of proc is a combination of all such
individual meet functiond/eet(proc, v, lev) for all its formal-ins
v atlev.

The level-wise meet functions for our example are:

Meet foo,p) = {({(a,must),{c,may), (d,may)}, true

Meet foo,q) = {{(b;must}, (4, may). e, ma)}. 1w o
Mee{ foo, V) = ({}, true

Meet foo,d) = {{},q — d)

In each meet function, the pointed-to objects (if any) arertad
side effects. Note that” is not read (referenced) ifvo.

3.1.3 Extended SSA Form

The SSA form on which our pointer analysis operates is an ex-
tended SSA form [7] that can effectively represent aliasekiadi-
rect memory operations in the SSA. We employ and furthemekte
the u andy operators to precisely characterize aliasing effects.

In the extended SSA form [7], the andx operators are intro-
duced to specify the aliasing effects for indirect memorgragions
and call statements. A operator for an indirect memory operation
is used to specify which variables may be read by the operatio
u(vi), ptakes as its operand the versioof v that may be read and
produces no result. In our extension, we append a contexiitemm
C(eu, ... ,cx) to p to indicate the calling context that the variable
can be read. Thus,aoperator has the form(v;, C(cu, ... , cx)).

A x operator for an operation is used to model which variables
the operation may modify. The operand ofyaoperation is the
last version of a variable and its result is the version atftés
potential definition. Sg links up the use-def edges through a may-
definition. We add a context conditid@(ci, . . . , cx) to x to model
under which calling context the variable can be modified. We a
add a MAY/MUST modification field\/ € {may, mus# to x to
distinguish between the two types of modifications of a \@ea
So ax operation has the form; 1 = x(vs, C(ca, ... ,cx), M) .

The 1 and y operators for the variables read and modified at a
call site are created in Step 3(a) of Algorithm 3. Thandx oper-
ators for the variables read and modified by a pointer dezeting
operation is created during the top-down phase (in Algori€).

Property 1 (Context Condition for a Meet Function). The con-
text condition of a meet functialeet proc, p) for a formal-inp of
proc at levellev is a disjunction of the context conditions of all its
use sites, including all itg statements.

Property 2 (Context Condition for a Transfer Function). The
context condition of a transfer functiorangproc,p) for a
formal-out p of proc at levellev is a disjunction of the context
conditions of all its def sites, including all ijg statements.

3.1.4 Step 3(a): Create the, and  Lists for a Call site

For every call site in a procedurgroc, the p and x lists are
created at the call site for all variables of leleb that may be read
(referenced) and modified, respectively, by all the prooesithat
may be invoked at the call site, as shown in Algorithm 4. le&®
— 22, all the variables read at a call sitepiroc are appended to the
w list of the call site. In lines 23 — 46, all the variables maetifiat
a call site inproc are appended to thelist of the call site.

For the sake of time and space efficiency (as discussedraarlie
Section 3.1.1), some parameterized spaces may be creatled fo
during the top-down phase at the preceding level, i.el¢att 1
(as shown in Algorithms 6 and 7). Such parameterized spaees a
handled by the if statements in lines 10 and 29. In line 6, we
need to know the context condition of the meet function farhea
callee. This is available at this phase but the associatedspm
set, which is not used here, is not known until after the topwd
analysis at the same level is finished (Property 1). In lingtd
transfer function of each callee is known since it has jusinbe
built in the bottom-up phase féev (Property 2). In lines 9 and 28,
C" is simplified fromC’(c1, . . . , cx) to include only the points-to
relations that hold at the entry pf-oc. It is then used to build the
context conditions required for theandy operators created. When
creating a parameterized space for a set of formal-ing, thayand
mustfields are also “merged” due to the fact they are collectively
represented by the MAY/MUST field of the parameterized space
(lines 32 — 36 in Algorithm 6). As a result, in lines 31 — 35, the
MAY/MUST field for a parameterized space is refined at a cgllin
context. In lines 37 and 40, the meet operdtoon {may, must



fO
{
L1: p =&a;
L2:  g1();
p2=x(p1, true may)

ro=x(r1, true may)

wu(re, trug
L3: g2();
Sy=xdSrtrue-may
L4:  g3();

to=x(t1, true may)

L5:  g4();
ts=x(t2, trug mus)

}

Figure 3. x optimization (with redundant ones striken through).

has the standard meaningiayn e = e N may = may, for
e € {may, mus#, andmustr must= must

However, creating many. and x variables this way at each
call site can sometimes introduce many constraints to havexs

at the pointer inference stage performed in Step 3(c). Soime o 2%

these variables at a call site may not directly impact thetgei
to relations of the caller if they are not accessed in any wahe
body of the caller; they only serve to transfer the modifaatdr
read side effects upwards through the caller. In this casecam
directly deduce their modification and read side effectshmsé
variables from the transfer and meet functions at eachitall s

In our implementation, we only create explicitly operators
at all call sites for a variable in a procedureproc if one of the
following three conditions is satisfied:

W1. v may be read or modified by some non-call statement(s) in 2

the body ofproc, explicitly or implicitly;

29:
W2. v may be modified at a call site and may also be read at 3q.

another call site that may or may not be different; and
W3. v must be modified at a call site that must be calleghbyc.

In the case of: operations, there are two conditions instead:

R1. v may be modified by some non-call statement(s) in the body 34:

of proc, explicitly or implicitly; and

R2. v may be modified at a call site and may also be read at another g?

call site that may or may not be different.

This optimization looks simple but computationally sigcefint.
By eliminating redundani: and x operators this way, we have
observed a ten-fold analysis time reduction in some bendtsna

We use the example given in Figure 3 to illustrate the three

conditions for they optimization. They for ¢ can be removed since
it is possibly modified by1 but not anywhere else. However, due
to Condition W1, thex for p must be kept. Note thatis possibly
modified byg2 andg3. However, the points-to set efat the exit of
f is the union of the points-to sets &f andss since neither of the
two definitions can be killed. In this case, theoperations are not
created at L3 and L4. Insteadlrans f, s) can be directly deduced
from Trangg2, s) and Trangg3, s) without losing any precision.
However, due to Condition W2, is possibly modified by1 and
possibly read byj2. Thex for L2 and theu for L3 must be created
in order not to miss any points-to relations. Finallys definitely

modified byg4. Due to Condition W3, we cannot merge the side

Algorithm 4 Creatingu andy for the call sites in a procedure.

1: procedure Createp._y_for_callsitesproc, lev)

2: begin

3: for eachcallsite of proc do

for eachcallee of callsite do

5: for each formal-inf of callee, whereptl(f) = lev do

6: Let C'(c1,...,ck) be the context condition
C(e1,... ,ck) of Meelcallee, f) with all the
formal parameters ofallee being replaced by their
corresponding actual parameters@l site;

A

7: Let ¢, be 1 ifc; holds atcallsite and O otherwise;

8: if C'(ch,...,c) evaluates tdruethen

9: Let C” include all and only the points-to relations

inC’(ci,. .. ,ck) that hold at the entry gfroc;

10: if fis a parameterized spat® then

11 Map p to an actual parameterat callsite;

12: for each(v, C,) of Loc(q) do

13: Insertu(v, C” A C,) to u list of callsite;
14: end for

15: for each(w, C.,) of Depq) do

16: Insertu(V®,C"” A Cy) to u list of callsite;
17: end for
18: else if f is not a formal parameter efillce then
19: Insertyu(f,C") to u list of callsite;
20: end if

end if
22: end for
23: for each formal-ouf of callee, whereptl(f) = lev do
24: Let the transfer function Trangcallee, f) =
(Loc(f), Dep f),C(ca, ... ,cx), M) be given;

25: Let C'(c1, ... ,c,) be obtained fronC(c1,. .. ,ck)

with all the formal parameters ofillee being replaced
by their corresponding actual parametersatsite;

26: Letc; be 1ifc; holds atcallsite and O otherwise;

27: if C'(cy,...,c;,) evaluates tdruethen

8: Let C” include all and only the points-to relations

inC’'(c1,...,c) that hold at the entry gfroc;
if fis a parameterized spat® then
Map p to an actual parameterat callsite;
31: it (|Loc(q)| == 1 && Dep(q) == {}) |
(Loc(q) == {} && |Dep(q)| == 1) then
32: M’ = “must;
33: else
M/ — “may7;
35: end if

for each(v, C,) of Loc(q) do
Insertx(v,C" A C,,, M 1 M) to x list of

callsite;

38: end for

39: for each(w, C,,) of Dep(q) do

40: Insertx(V*,C" A Cyw, M 11 M') to x list of
callsite;

41: end for

42: else if f is not the return vale afallece then

43: Insertyx (f,C"”, M) to x list of callsite;

44: end if

45: end if

46: end for

47:  end for

48: end for

49: end




(b1, true

foo(x, y);
a=x(a, true musj
ba=x(b1, true mus}

wu(dy, true)
e, trug)

foo(x, y);
c2=x(c1, trug may)
da=x(d1, trug may)
ex=x(e1, trug may)

Figure 4. main with theu andx operations introduced for its two
call sites at level 2. Other statements are not shown.

L4:

L9:

effects oft, andts sincets must kill the definition oft2. So they
operations for must be kept.

3.1.5 Step 3(b): Build the Extended SSA Form

In applying the SSA creation algorithm described in [8], taei-
able operands qf andy are treated as uses and the resultg aé
additional assignments. The variables in thendy operations are
then renamed together with the rest of the program variables

3.1.6 Step 3(c): Pointer Inference

After the extended SSA form has been created, we perform a 19

flow-sensitive pointer analysis on SSA using a flow-inséresit
algorithm. Each SSA variable is treated as an independeiate.
The flow-insensitive algorithm used is set-constraintebiadike
the Andersen-styled pointer analysis [1]. Therefore,etae two
stages: constraint generation and constraint resolution.

Constraint Generation In this first stage, we set up a constraint
system for the relevant statements including those with and¢
operators, as shown in Table 1. Rule Init does the inititibrefor a
formal-in parameter, assuming that its first version in t8&$orm
is 0. Rules Base and Simple are self-explanatory. Rules MCéun
are applicable to pointer dereferencing operations. Itiqudar, a
Mu constraint is introduced for a read access while a Chitcaims
for a write access. The operator: is the conditional set inclusion.
Phi applies to @& operation in the standard SSA form.

When encountering a call statement for a callee, the transfe
function of the callee is applied by calling Algorithm 5 torgeate
the constraints required at the call site.

Consider the program given in Figure 1. Suppose that we have

already analyzed level 2. We are now working on the pointers a
level 1, a,b,c,d, e, andtmp, during the bottom-up phase. Sup-
pose that we have just finished analyzifigo. Its transfer func-
tion Trang foo, 1) is a combination of the three individual trans-
fer functions Trang foo, V?), Trang foo, V) and Trang f oo, d)
given earlier in (5). During the bottom-up analysisofin at level

1, we have created the and x lists for its two call sites, L4 and
L9, as shown in Figure 4. To generate the constraints at theall
sites,Trang foo, 1) is applied at L4 and L9, respectively, by calling
Algorithm 5. At L4, a2 D by andbs O {obj} are generated. At L9,
c2 Ddi,c2 Del,c2 Dci, ez D {Obj}. ez Dey,da D {Obj},

d2 D e; anddz O d; are generated.

Constraint Resolution  In this second stage, we obtain the points-
to relations by computing the transitive closure of the t@ist
graph representing the constraints generated during thetraint

Algorithm 5 Applying a full transfer function at a call site.

1: procedure Apply_FTF(callsite, lev)
2: begin
3: for eachv,,, = x(vn, Cy, M) generated foeallsite do
for eachcallee of callsite do
Map v to a formal-out parametef of callee;
Let Trangcallee, f) = (Loc(f), Dep(f),Cys, M);
for each(p,C(c1, ... ,ck)) of Loc(f) do
Let C'(c1, ... ,cx) be obtained fronC(cy, ... ,cx)
with all the formal parameters ofillee being replaced
by their corresponding actual parametersatsite;
9: Letc, be 1ifc; holds atcallsite and O otherwise;

oNOaR

10: if C'(cy,...,c},) evaluates tdruethen
11: Let C” include all and only the points-to relations
inC’(c1, ... ,cx) that hold at the entry of the caller;

12: Generate a constraint, D¢~ {p}

13: end if

14: end for

15: for each(q, C(c, ... ,cx)) of Dep(f) do

16: Let C'(c1, ... ,ck) be obtained fronC(c1,... ,ck)
with all the formal parameters afillce being replaced
by their corresponding actual parametersatsite;

17: Let ¢, be 1ifc; holds atcallsite and O otherwise;

18: if C'(cy,...,cr) evaluates tdruethen

Let C” include all and only the points-to relations
inC’(ci, ... ,cy)that hold at the entry of the caller;

20: Map q to a list of actual parameterg¢tuals
21: for eacha; in actuals do

22: Generate a constraint, D¢ a;
23: end for

24: end if

25: end for

26: end for

27.  if M=="may then

28: Generate a constraint, D¢, vn

29: else

30: Generate a constraint, 2.~c, vn

31:  endif

32: end for

33: end

Definition 7 (Union for Local Points-to Setg. Loc(p)ULoc(q) is

a new points-to set that contaiis, C) if (v, C) is either contained
in Loc(p) or Loc(q) exclusively or satisfies the property that if
(v,C1) € Loc(p) and (v, Cz) € Loc(q), thenC = C; V Cs.

Definition 8 (Guarded Assignments for Local Points-to Sefs
Loc(p) x C = {{v,CAC") | {v,C’) € Loc(p)}.

These operations on dependence sets are similarly defined. D
ing the resolution process, a cycle in the constraint graggts to
be resolved iteratively until a fixed point has been reached.

Transfer and Meet Functions For the meet function of a formal-
in v of a procedurefoo, Meet foo,v) = (Pt(v),C), Ptr(v) is
fully resolved in lines 8 — 19 in Algorithm 6 (but its points-t
relations are determined during the bottom-up phase) @rid
computed based on Property 1.

For the transfer function of a formal-outof a procedurefoo,

generation stage. When propagating the value from a node to aTran€foo,v) = (Loc(v), Dep(v), C, M), Loc(v) andDep(v) are

successor, a guarded set union operafianis used. S is a
special case ab¢ with its context condition beingrue
Some operations on local points-to sets are introducedwbelo

computed during the bottom-up phase @hdy Property 2. The
M field is computed by solving a constraint propagation pnoble
together with the pointer inference. Each SSA variablesseisted
with a property, nameehod € {may, must, to indicate how the



Rule Statement Constraint(s) Meaning
. a1 = x/(ao, true mus} Loc(a1) = {}
int pHl(a1) = lev @2 Depay) = {{a, true}
a; = &b Loc(a;) = {(b, true }
Base pti{a;) = lev a: 2 {b} Depla:) = {}
. a; = b; _ Loc(a;) = Loc(by)
Simple ptl(as) = lev ai 2 b; Deg(a,) — Derlb,)
p(vr; Co) Loc(a:) = Loc(a;) U Loo(wy,) x C
Mu i = *bj a; Jc, v di) = : k) X
apt/(:i)J: lev = Dep(a;) = Defai) U Dep(vy) x Cy
Loc(vm,) = Loc(by) x (C
) Dep(vy) = Dep(b;) %
xa; = b; ﬁmMgfi ’l’);na v if M =="may
Chi v __D I Loc(vm) = Loc(vm) U Loc(vy) x C,
Vm = X(vn, Cy, M) olse " Dep(v,,) = Dep(vm) U Dep(v,) x C,
ptl(vm) = lev o O v else
m =~Co Tn Loc(vm) = LOC(vm) U LoC(vr) X (~ Cy)
Depvm) = Deplvm) U Defv,) x (~ Cy)
Phi a; = ¢(a;,ax) a; D aj Loc(a;) = Loc(a;) U Loc(ay)
ptl(a;) = lev ai 2 ag Depla;) = Dep(a;) U Deplay)
Call callsite ¢ Call Apply_FTF(c, lev) given in Algorithm 5

Table 1. Constraint generation for the pointer inference at Iéwel

variable is defined. Initially, for an SSA variable definedabgirect
(Base) assignment ora(Chi) assignment whos&/ field is must
its mod is initialized to be ‘must. For every other SSA variable,
its mod is initialized to be ‘may. When resolving the points-to
constraints, we propagate the valuembd from node to node
along the constraint edges corresponding tassignments in the
constraint graph. The left-hand side variable op aperation is
mustdefined if and only if all its operands are.

3.2 Top-Down Analysis

The top-down analysis traverse&”'G and processes each of its
nodes in topological order, as shown in Algorithm 6. We pozia
the points-to sets of formal-ins to their use sites at ealtsitawith
actual parameters being bound to formal parameters (lire20j.
Again, due to the presence of recursion cycles, the conipotaf
Ptr( f) for a formal-in may have to be carried out iteratively. Récal
that the points-to set of a pointer computed during poimtfarence
in the bottom-up phase may depend on the points-to sets o som
formal-ins. As a result of this points-to set propagatite, points-
to sets of all pointers at the level being analyzed are fidotved.
In addition, we expand the pointer dereferences of the bimsaat
the level being analyzed by inserting ther x operators for them
to expose the def/use points for the pointed-to variablélatdhey
can be analyzed at the next level and lower levels (lines 24)— 5
For the program in Figure 1, we perform the top-down analysis
for level 2 immediately after the bottom-up analysis fostlavel is
finished. In the top-down phase analyzingiin, we know that at
L4, x must point tox andy must point tob. At L9, x may point to
{¢,d} andy may point to{d, e}. We propagate the points-to sets
of x andy to p and g, respectively, so thah points to{a,c,d}
andgq points to{b, d, e} as given in (3). Sincenain has no pointer
dereferences, we proceed to analyze in the top-down phase. By
expanding the pointer dereferencgsand«q, we obtain the code
in Figure 5 with the newly introduced andx operators, which are
used in analyzing the pointers at the next level, i.e., lével

void foo( int **p, int **q)

w(b, g = b)

w(d, g — d)

u(e, g — e)
L11: tmp =*qq;

L12:  *p; =tmpy;
a=x(a,p = a, mus}
c=x(c,p — ¢, may)
d=x(d,p — d, may)

L13: tmp; = &obj;

L14: *gi =tmp;
b=x (b, ¢ = b, mus}
d=x(d,q — d, may)
e=x(e,q — e, may)

Figure 5. foo with the x andy operations introduced during top-
down analysis at level 1 (without using parameterized space

Let us revisit the notion of parameterized spaces discusaed
lier. Many formal-in variables accessed in a procedure dcere
plicitly appear in its body since they only appear impligiti some
1 Or x operators, either through pointer dereferences or caé-sta
ments. If we use a unique variable to represent the formedii
ables that have the same def-use chains, we can save a latoaf sp
and reduce the analysis time as well. For the program in Eigur
a andc have the same def/use points, and similarlyifande. In
a program, a formal-in parameter may point-to many varghblte
different call sites. So a dereference of a formal-in patemaay
produce a lot ofu or x operators, resulting in space pressure. We
merge the side effects on such formal-ins by using a uniqde va



Algorithm 6 Top-Down Analysis.

Algorithm 7 Allocating Parameterized Spaces (fev — 1).

1: procedure Top-downanalysisdV G, lev)

2: begin

3: for each nodecc in topological order ofAVG do
4.  for each procedurgroc of scc do

5: for eachcallsite of proc do
6: for each actuab or (v, C) associated witleallsite,
whereptl(v) = lev do
7: for eachcallee of callsite do
8: Map v to a formal-inf of callee;
9 if [Loc(v)| == 1 && Dep(v) == {} then
10: ==*"“must;
11: else
12: M =="may,
13: end if
14: for each(p, C,) of Loc(v) do
15: PH(f) = Pt(f) U {(p, M)};
16: end for
17: for each(p, C,,) of Depg(v) do
18: Ptr(f) = Ptr(f) U Ptr(p);
19: end for
20: end for
21: end for
22: end for
23: ComVars= Alloc_Parameterize®pacesfroc, lev);
24: for each assignmert :=4.¢ a = *b of proc do
25: if ptl(b) == lev then
26: for each(v, C) of Loc(b) do
27: Insertp(v, C) to p list of S
28: end for
29: for each(p, C) of Dep(b) do
30: Insertu(V?,C) to p list of S
31 for each(v, C’, M) of ComVargp) do
32: Inserty(v, C A C’) to p list of S
33 end for
34: end for
35: end if
36: end for
37 for each assignmerft :=4.¢ *b = a of proc do
38: if ptl(b) == lev then
39 if (JLoc(b)] == 1 && Depb) == {}) || (Loc(b)
== {} && |Depb)| == 1) then
40: M’ =“must
41 else
42: M' =“may
43: end if
44: for each(v, C) of Loc(b) do
45: Insertx(v,C, M’) to x list of S
46: end for
47: for each(p, C) of Dep(b) do
48: Inserty(V?,C, M') to x list of S
49: for each(v, C’', M') of ComVargp) do
50: Insertx(v,C AC', M M M’)tox listof S
51: end for
52: end for
53: end if
54: end for
55:  end for
56: end for
57: end

1: procedure Alloc_Parameterize®pacesfroc, lev);

2: begin

3: for each formal-irp of proc, whereptl(p) = lev do

4:  LetMeelproc,lev) = (Ptr(p),Cp),

5. Let VP be a parameterized space representing a subset of
the pointed-to objects iiPtr(p) such that ifv is explicitly
accessed iproc, where(v, M) € Ptr(p), thenv ¢ V?;

6: end for

7: Refine all parameterized spaces thus obtained so that teey ar
pair-wise disjoint and as large as possible;

8: for each formal-irp of proc, whereptl(p) = lev do

9: for each(v, M) € Ptr(p) such thawv ¢ V* do

10: LetC, beq = v(¢ — v) if M is"must (" may);
11: ComVargp) = ComVargp) U {(v,C,, M)}

12:  end for

13: end for

14: end

able, called a parameterized space, to represent the daredeof
a formal-in parameter. This is done by calling Algorithm 7iime
23 of Algorithm 6. However, care must be taken to avoid losing
any precision. If two formal-in parameters may point-to encoon
variablev, thenv must not be parameterized (unlike [9, 23]). These
unparameterized formal-ins are collecteddlamVarsn Algorithm
7. If a variablev appears in the procedure body directly, theis
not represented by any parameterized space. By using parame
ized spaces, the code in Figure 5 becomes as shown in Figure 6.

void foo( int **p, int **q)

Ve, trug
m(d, g — d)
L11: tmp="*q;
L12: *p=tmp;

VP=x(V?, true mus}
d=x(d, may,p — d)

L13: tmp = &obj;

L14: *g=tmp;
Vi=x(VY, trug mus}
d=x(d, may,q — d)

}

Figure 6. Code of foo in Figure 5 using parameterized spaces.

Finally, the pointer analysis at a levétv may have to be
performed iteratively in the presence of points-to cyctasted by
some pointers diev. During pointer dereferencing, if a pointed-to
variable introduced as an operand ofi@r x operation happens
to be atlev, a points-to cycle has been detected. Whenever this
happens, the pointer analysis for the same level is repsatéuhat
more points-to relations for the pointersiab may be discovered,
resulting in potentially more, andy statements to be introduced.
This iterative process stops as soon as all pointed-to hlaga
discovered in the last iteration are at a lower level than

4. Experiments

We have implemented ourevPA algorithm in the Open64 com-
piler using the BDD library cudd-2.4.2. Our current implerte
tion consists of over 20,000 lines of C++ code. We have measur



Benchmark KLOC | #Pointers | #Callsites @gﬁgﬁgg #Rg;;;sslon ?;Per:ucréri]ol;]a(g/?é el ;::c’)?]igtii"fBODDs
icecast-2.3.1 22 1618 877 40 14 1 350
sendmail 115 31004 19578 364 40 28 176640
httpd 128 20162 8992 270 23 6 4360
445.gombk 197 16076 10078 44 26 22 17433
wine-0.9.24 1905 336591 393689 24376 264 113 159149
wireshark-1.2.2|| 2383 333654 245278 2230 123 30 75899
Table 2. Benchmark characteristics.
Benchmark LevPA: 64 Bit/ 32 Bit (secs) Mem (MB) | Bootstrapping [14]
Points-to Levels | Recursion Function Pointers Total
icecast-2.3.1 0.30/0.40 0.07/0.10 0.26/0.68 2.18/5.73 30 -129
sendmail 2.91/7.15 4.27/11.00 22.26/35.30 72.63/143.68 568 -/939
httpd 0.23/0.53 0.50/1.70 2.30/5.39 16.32/35.42 136 -/161
445.gombk 1.93/4.47 0.30/0.69 3.72/6.67 21.37/40.78 691 -
wine-0.9.24 45.79/120.75 | 15.10/27.32 35.66/76.8 502.29/891.16 2526 -
wireshark-1.2.2 17.86/52.31 | 11.97/24.63 17.36 /56.26 366.63 / 845.23 2288 -

Table 3. Analysis statistics.

its performance by using the six benchmarks listed in Tableh2 handling recursive calls for each benchmark. Column 4 dgilies
first three benchmarks are taken from Kahlon’s paper [14}deo time taken due to the iterative analysis required for reaglfunc-

to compare the efficiency between the two methods. To our besttion pointers. Due to the existence of recursion or indieadts,
knowledge, Kahlon's method is one of the latest FSCS poartal- we need to re-analyze pointers iteratively. As discusseskiction
ysis techniques. Of these three benchmaitkecast, sendmail 3.1, we have adopted a demand-driven strategy to re-antigze
andhttpd, httpd is the largest used in his experiments. To evalu- procedures in a cycle only when they may need to be analyzed. O
ate the ultimate performance of our method on larger bendtsna  the six benchmarksiireshark has more than two million lines of
we have also selected three more benchmagtsbk, wine and code. To our knowledge, this paper is the first to run a FSCi8@oi
wireshark. The characteristics of these benchmarks are summa- analysis on benchmarks of this scale in minutes.

rized in Table 2, including the numbers of lines, pointe&d) sites, This level of scalability of_LevPA is attributed to the facts that
indirect call sites, recursion cycles and procedures ooedian the LevPA conducts its pointer analysis on the full-sparse S&#nf
largest recursion cycle (Columns 2 — 7). The last columnsgitie level by level, by avoiding redundaptandy operators at call sites
number of points-to relations used for building the conteodi- and pointer dereferences and by making use of BDDs to progluce
tions in terms of BBDs (as discussed in Section 3.1.1). full transfer function and a meet function for a procedurat tre

We conducted our experiments on two computer platforms: an precise as well as efficiently applicable to all calling @xts.

Intel 64-bit 2.66GHz Xeon system with 16GB RAM and an Intel
3.0GHz Pentium 4 with 2GB RAM. To compare with Kahlon’s
method, we have selected our 32-bit Intel 3.0GHz Pentiun# wi
2GB RAM purposely to analyze the first three benchmarks given
Table 2 since Kahlon conducted his experiments on a slidgher
Intel 3.2GHz Pentium4 system with the same amount of RAM as
our 32-bit system. Table 3 gives the analysis times of theethr
benchmarks by.evPA. In the last column, the times for the first
three benchmarks consumed by Kahlon’s method are takestlglire
from his paper [14]. For all the three benchmarks, our methed
few times faster.

Looking again at Table 3, Column 5 gives the times taken by
LevPA for analyzing all the six benchmarks on each platform. In
addition, Columns 2 — 4 give the times consumed by some ialtern
phases of our method. In particular, Column 2 gives the tipesis
computing the points-to levels for each benchmark on badit pl
forms, including the time elapsed in the Steensgaardéfydénter
analysis. Column 3 gives the time due to the iterative amafps

5. Related Work

There are many flow- and context-sensitive pointer anatgsis-
nigues reported during the last two decades, such as [416, 24—
17, 20, 25, 27] and some references therein.

Landi and Ryder [16] give a method that performs an iterative
dataflow analysis on the CFG of a program while maintaining an
alias relation set at each program point. Their method iurtyt
flow-sensitive because it cannot perform indirect strondates.
When encountering a procedure call, it enters into the bddy o
callee and recomputes the alias set at its exit. So this rdetan
be classified a cloned-based context-sensitive analysis.

Choi et al. [6] present a method that performs an iterative
dataflow analysis on a Sparse Evaluation Graph (SEG) rather o
a CFG. SEG is a simplified CFG with the nodes that do not manip-
ulate pointer information omitted. Their interproceduaigorithm



is summary-based but not fully context-sensitive becatsaly cise and compact SSA form for subsequent program analyskes an

considers one level of calling contexts. optimizations, and 2) a flow- and context-sensitive modsegffor
Emaniet al’s method [9] is an interval analysis. The algorithm each procedure. We have implemented our algorithm in Open64
has an exponential time complexity since it is clone-based. and our preliminary results show our new approach can aealyz
As discussed earlier in Section 3.1.1, Wilson and Lam [25] some large benchmarks with over a million lines of C code in-mi
use partial transfer functions to summarize the behaviatrefidy utes.

analyzed procedures. Unlike full transfer functions, igattansfer

functions describe the output of a procedure based on afigpeci

input. Their method is an iterative dataflow analysis andully f Acknowledgmer?ts. o .
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