
On-Demand Dynamic Summary-based Points-to Analysis

Lei Shang
School of Computer Science &

Engineering
The University of New South

Wales, NSW, Australia
shangl@cse.unsw.edu.au

Xinwei Xie
School of Computer Science &

Engineering
The University of New South

Wales, NSW, Australia
xinweix@cse.unsw.edu.au

Jingling Xue
School of Computer Science &

Engineering
The University of New South

Wales, NSW, Australia
jingling@cse.unsw.edu.au

ABSTRACT
Static analyses can be typically accelerated by reducing redundan-
cies. Modern demand-driven points-to or alias analysis techniques
rest on the foundation of Context-Free Language (CFL) reachabil-
ity. These techniques achieve high precision efficiently for a small
number of queries raised in small programs but may still be too
slow in answering many queries for large programs in a context-
sensitive manner.

We present an approach, called DYNSUM, to perform
context-sensitive demand-driven points-to analysis fully on-demand
by means of computing CFL-reachability summaries without any
precision loss. The novelty lies in initially performing aPartial
Points-To Analysis(PPTA) within a method, which is field-sensitive
but context-independent, to summarize its local points-torelations
encountered during a query and reusing this information later in the
same or different calling contexts. We have compared DYNSUM

with REFINEPTS, a refinement-based analysis, using three clients
(safe casting, null dereferencing and factory methods) fora suite
of nine Java programs. DYNSUM ’s average speedups are 1.95�,
2.28� and 1.37�, respectively. We have also compared DYNSUM

with a static approach, which is referred to STASUM here, to show
its improved scalability for the same three clients.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Optimization

General Terms
Algorithms, Languages, Experimentation, Performance

Keywords
Dynamic summary, points-to analysis, demand-driven analysis, CFL
reachability

1. INTRODUCTION
Many static analyses can be accelerated if some redundant com-
putations can be avoided. Considerable progress has been made,

resulting in, for example, cycle elimination [4, 5] for Andersen-
style points-to analysis [1] and sparse analysis [6, 7, 17, 24] for
flow-sensitive points-to analysis. In the case of context-sensitive
points-to analysis, computing a points-to summary for a method
[13, 19, 24] avoids re-summarizing it unnecessarily for thesame
and different calling contexts. Despite a lot of earlier efforts, it re-
mains unclear how to craft points-to analyses that can efficiently
answer demand queries (e.g., non-aliasing) for a specific client.

The majority of the current solutions perform a whole-program
points-to analysis to improve precision at the expense of efficiency,
by computing points-to information for all variables in theprogram.
Such exhaustive algorithms are too resource-intensive to be useful
in environments with small time budgets, such as just-in-time (JIT)
compilers and IDEs. One widely acceptable observation is that
points-to analysis is not a stand-alone task since it needs to be tai-
lored to suit the specific needs of a client application. As a result,
much recent work [15, 16, 20, 25] has focussed ondemand-driven
points-to analysis, which mostly relies on Context-Free Language
(CFL) reachability [14] to perform only the necessary work for a
set of variables specified by a client rather than a whole-program
analysis to find all its points-to information.

To perform points-to analysis with CFL reachability, a program is
represented as a directed graph, with nodes denoting variables/ob-
jects and edges pointer-manipulating statements. Determining if
a variablev points to an objecto requires finding a pathp be-
tween the nodesv ando in the graph such thatp’s label is in a CFL
that ensures the corresponding statements can causev to point to
o. To balance precision and efficiency for on-demand queries,a
points-to analysis is typically flow-insensitive, field-sensitive and
context-sensitive [15]. Context-sensitivity is realizedas a balanced-
parentheses problem along two axes: method invocation (by match-
ing call entries and exits so that only realizable paths are consid-
ered) and heap abstraction (by distinguishing the same abstract ob-
ject from different paths).

While such CFL-reachability formulation is promising, perform-
ing demand-driven points-to analysis for large, complex software
can still be costly, especially when a client issues a large number
of queries. Existing solutions have addressed the performance issue
from several directions, by using refinement [15], (whole-program)
pre-analysis [20] and ad hoc caching [15, 20, 25]. However, re-
dundant traversals along the same path are still repeatedlymade,
unless they are identified by a time-consuming whole-program pre-
analysis. Among all these existing efforts, REFINEPTS [15] repre-
sents a state-of-the-art solution. However, its refinementapproach
is well-suited only to clients that can be satisfied early enough when



most of heap accesses are still analyzed in a field-based manner
rather than field-sensitively. Otherwise, its field-based refinement
efforts (in terms ofmatch edges) are pure overhead.

In this paper, we introduce a novel technique, called DYNSUM,
to perform context-sensitive demand-driven points-to analysis fully
on-demand. Unlike existing techniques [15, 20, 25], our approach
exploits local reachability reuse by performing aPartial Points-
To Analysis(PPTA) within a method dynamically. PPTA is field-
sensitive but context-independent, thereby enabling the summa-
rized points-to relations in a method to be reused in its different
calling contexts without any precision loss. We identify such reuse
as a practical basis for developing an effective optimization for
demand-driven points-to analysis.

This paper makes the following contributions:
 We present a PPTA-based approach to boost the performance
of CFL-reachability-based context-sensitive demand-driven
points-to analysis by exploiting local reachability reuse. Our
dynamic approach improves the performance of
demand-driven points-to analysis without sacrificing preci-
sion and isfully on-demandwithout requiring any (costly)
whole-program pre-analysis. This appears to be the first
points-to analysis that computes dynamic method summaries
to answer demand queries.
 We have implemented DYNSUM in the Soot compiler frame-
work for Java. We have used three representative clients (safe
casting, null dereferencing and factory methods) to evalu-
ate the performance improvements against REFINEPTS, the
state-of-the-art demand-driven points-to analysis introduced
in [15]. The average speedups achieved by DYNSUM for the
three clients over a suite of nine Java benchmarks are 1.95�,
2.28� and 1.37�, respectively.
 We show that DYNSUM computes only a small percentage
of the summaries computed by STASUM, a static whole-
program analysis [22]. This makes DYNSUM more scalable
and better-suited for answering demand queries in environ-
ments such as JIT compilers and IDEs, particularly when the
program constantly undergoes a lot of edits.

2. PROGRAM REPRESENTATION
We consider Java programs although our approach applies equally
well to C programs. Since the analysis is flow-insensitive, control-
flow statements are irrelevant. By convention, parameter passing
and method returns have assignment semantics. Local and global
variables will be distinguished as global variables are
context-insensitive. Therefore, in this paper, a program is repre-
sented with the syntax given in Figure 1.

A Java program is represented by adirected graph, known as a
Pointer Assignment Graph(PAG), which has threes types of nodes,
V , G andO. All edges are oriented in the direction of value flow,
representing the statements in the program. A methodm is associ-
ated with the following seven types of edges:
 new, n2

new�ÝÝ n1: n1 is an object created andn2 is a local
variable both in methodm, with� indicating the flow ofn1

into n2. As a result,n2 points directly ton1.

Integer (Call Sites) i P N

Globals Variables g P G

Local Variables v P V

Fields f P F

Objects o P O

Allocations v � new o P V �O

Assignments v1 � v2 P V YG� V YG

Loads v1 � v2.f P V � V � F

Stores v1.f � v2 P V � F � V

Parameter Passingparam
entry

i�ÝÝÝ v P V � N ÞÑ V

Returns v
exiti�ÝÝ ret P V � N ÞÑ V

Figure 1: An abstraction of Java programs.
 assign, n2
assign�ÝÝÝ n1: n1 and n2 are local variables in

methodm. Son2 points to whatevern1 points to. Such
edges representlocal assignmentsin methodm.
 assignglobal,n2

assignglobal�ÝÝÝÝÝÝ n1: n1 or n2 or both are static
variables in a class of the program. Son2 points to what-
evern1 points to. Such edges represent (context-insensitive)
global assignmentsin the program.
 loadpfq, n2

loadpfq�ÝÝÝÝ n1: n1 andn2 are local variables in
methodm andf is an instance field, with the statement rep-
resenting the loadn2 � n1.f .
 storepfq, n2

storepfq�ÝÝÝÝ n1: n1 andn2 are local variables in
methodm andf is an instance field, with the statement rep-
resenting the storen2.f � n1.
 entryi, n2

entry
i�ÝÝÝ n1: n1 is a local variable in a calling

method that contains a call site at linei to methodm, such
thatn1 represents an actual parameter of the call andn2 is its
corresponding formal parameter of methodm. Son2 points
to whatevern1 points to.
 exiti, n2

exiti�ÝÝ n1: n1 is a local variable that contains a
return value of methodm andn2 is a local variable that is
assigned fromn1 at a call sitei in a calling method. Son2

points to whatevern1 points to.

Loads and stores to array elements are modeled by collapsingall
elements into a special fieldarr. As is customary, it is assumed
that no two classes (methods) contain the same identically named
global (local) variable.

Figure 2 gives an example and its PAG representation. To avoid
cluttering, the labels “assign” and “assignglobal” for assignment
edges are omitted. Note thatoi denotes the object created at the
allocation site in linei andvm (with a subscript) denotes variable
v declared in methodm.

In the PAG shown, the edges are classified intolocal edges(new,
assign, load andstore) andglobal edges(assignglobal, entryi

andexiti). The local edges are enclosed inside dotted rectangles
and the global edges span across them. DYNSUM aims to exploit
the local reachability reuse across the local edges to accelerate its
performance in answering demand queries.



1 c l a s s Vector {
2 Objec t [ ] e lems ;
3 i n t coun t ;
4 Vector ( ) {
5 t =new Objec t [ 8 ] ;
6 t h i s . e lems = t ; }
7 vo id add ( Ob jec t p ) {
8 t = t h i s . e lems ;
9 t [ coun t ++]= p ; }

10 Objec t g e t (i n t i ) {
11 t = t h i s . e lems ;
12 re tu rn t [ i ] ; }}
13 c l a s s C l i e n t {
14 Vector vec ;
15 C l i e n t ( ) {}
16 C l i e n t ( Vector v )
17 { t h i s . vec=v ; }

18 vo id s e t ( Vector v )
19 { t h i s . vec=v ; }
20 Objec t r e t r i e v e ( )
21 { t = t h i s . vec ;
22 re tu rn t . g e t ( 0 ) ; }}
23 c l a s s Main {
24 s t a t i c vo id main ( . . . ) {
25 Vector v1=new Vector ( ) ;
26 v1 . add (new I n t e g e r ( 1 ) ) ;
27 C l i e n t c1=new C l i e n t ( v1 ) ;
28 Vector v2=new Vector ( ) ;
29 v2 . add (new S t r i n g ( ) ) ;
30 C l i e n t c2=new C l i e n t ( ) ;
31 c2 . s e t ( v2 ) ;
32 s1=c1 . r e t r i e v e ( ) ;
33 s2=c2 . r e t r i e v e ( ) ; }
34 }

p

tadd

thisadd

stparrqldpelemsqo5tVector

thisVector

new

stpelemsq
tmp2 o29 s2

new

tmp1 o26
s1

new

v2 o28 o30 c2
new new

v1 o25 o27 c1
new new

thisget

tget

retget

ldparrq
ldpelemsq

retretrieve

tretrieve

thisretrieve

ldpvecq
vset thisset

vClient thisClient

stpvecqstpvecq

en
tr

y 2
2

exit22

ex
it 32

ex
it 3
3

en
try

3
3

entry32

entry
3
1en

try
31

entry
2
5

entry
2
8

entry29

entry 26

entry29

entry
26

en
try
27

entry
2
7

local edge global edge

Figure 2: A Java example and its PAG.

S1

alias

new

assign

loadpfqst
or

epfq S1 S2

alias alias

new new

assign assign

loadpfqst
or

epfq store
(f)lo

ad
(f

)

RRP

entry
i |exitiex

it i

|entry i
(a)LFT (with pointsTo, i.e.,flowsToshown on the left andalias on the right) (b)RRP

Figure 3: Recursive State Machines (RSMs) forLFT and RRP.

3. BACKGROUND AND MOTIVATION
In this section, we introduce the state-of-the-art demand-driven
points-to analyses for Java formulated in terms of CFL reachability
by Sridharan and Bodík [15, 16]. These analyses provide the base-
line for us to enhance its performance through dynamic reachability
reuse.

Section 3.1 reviews CFL reachability. Section 3.2 describes the
CFL reachability formulation of a field-sensitive points-to analy-
sis presented in [16]. This earlier analysis, however, is context-
insensitive. Section 3.3 gives a context-sensitive version with re-
finement [15], referred to here as REFINEPTS. Section 3.4 gives
an illustrating example, motivating the need for exploiting local
reachability reuse.

3.1 CFL Reachability
Context-free language (CFL) reachability [14, 23] is an extension
of graph reachability that is equivalent to the reachability problem
formulated in terms of either recursive state machines (RSMs) [3]
or set constraints [9]. LetG be a directed graph whose edges are
labeled by symbols from an alphabetΣ. Let L be a CFL overΣ.
Each pathp in G has a stringwppq in Σ� formed by concatenating
in order the labels of edges inp. A nodeu is L-reachablefrom a
nodev if there exists a pathp from v to u, called anL-path, such
thatwppq P L.

CFL reachability is computationally more expensive to solve than
standard graph reachability. In the case of the single-source L-
path problem, which requires finding all nodesL-reachable from
a source noden in a graphG, the worst-case time complexity is

OpΓ3N3q, whereΓ is the size of a normalized grammar forL and
N is the number of nodes inG [14]. Therefore, we are motivated
to exploit reachability reuse to lower its analysis overhead in this
work.

3.2 Field-Sensitivity
We discuss how to perform field-sensitive points-to analysis with-
out considering context sensitivity in CFL reachability. Acontext-
insensitive analysis merges information from different calls of a
method rather than reasoning about each call separately. Asa re-
sult, global assignment, call entry or call exit edges are all treated
as local assignment edges. Given a program, its PAG is thus simpli-
fied to possess only four types of local edges:new, assign, load
andstore.

Let us first consider a PAGG with only new andassign. It suffices
to develop a regular language,LFT (FT for flows-to), such that if
an objecto can flow to a variablev during the execution of the
program, thenv will be LFT-reachable fromo in G. Let flowsTo
be the start symbol ofLFT. Then we have the following (regular)
grammar forLFT:

flowsTo Ñ new p assignq� (1)

If o flowsTov, thenv isLFT-reachable fromo. Thus, we know that
o belongs to the points-to set ofv.

For field accesses, precise handling of heap accesses is formulated
with the updatedLFT being a CFL ofbalanced parentheses[16].
Two variablesx andy may be aliases if an objectomay flow to both
x andy. Thus,v may point too if there exists a pair of statements



p.f � q andv � u.f , such that the base variablesp andu can be
aliases. Soo flows through the above two statements with a pair of
parentheses (i.e.,storepfq andloadpfq), first into q and then into
v. Therefore, theflowsToproduction is extended into:

flowsTo Ñ new p assign | storepfq alias loadpfqq� (2)

wherex aliasy means thatx andy could be aliases. To allowalias
paths in analias language,flowsTois introduced as the inverse of
theflowsTorelation. AflowsTo-pathp can be inverted to obtain its
correspondingflowsTo-pathp using inverse edges, and vice versa.

For each edgex
ℓ�Ý y in p, its inverse edge isy

ℓ�Ý x in p. (To avoid
cluttering, the inverse edges in a PAG, such as the one given in Fig-
ure 2, are not shown explicitly.) Thus,o flowsTox iff x flowsToo.
This means thatflowsToactually represents the standard points-to
relation. As a result,x alias y iff x flowsToo flowsToy for some
objecto. Thus, thealias language is defined by:

alias Ñ flowsTo flowsTo
flowsTo Ñ p assign | loadpfq aliasstorepfqq� new

(3)

Our final CFLLFT for finding the points-to set of a variable con-
sists of the productions given in (2) and (3) withflowsToas its start
symbol. For convenience, we often writepointsToto meanflowsTo.

The RSMs [3] forpointsToandaliasare shown in Figure 3(a); they
will be referred later to facilitate the understanding of DYNSUM.

3.3 Context Sensitivity
A call entry or exit edge is treated as anassign edge as before in
LFT to represent parameter passing and method return butassign
andassignglobal edges are now distinguished.

A context-sensitive analysis requires call entries and exits to be
matched, which is solved also as a balanced-parentheses problem
[14]. This is done by filtering outflowsTo- andflowsTo-paths cor-
responding to unrealizable paths. The following CFLRRP (RP for
realizable paths) is used to describe all realizable paths in a PAG
G; its RSM is given in Figure 3(b):

C Ñ CallEntryi C CallExiti | C C | ǫ
CallEntryi Ñ entryi | exiti

CallExiti Ñ exiti | entryi

When traversing aflowsTo-path inG, entering a method viaentryi
from call sitei requires exiting from that method back to call sitei

via either (1)exiti to continue its traversal along the sameflowsTo-
path or (2)entryi to start a new search for aflowsTo-path. The
situation for entering a method viaexiti when traversing aflowsTo-
path is reversed.

REFINEPTS’scontext-sensitive analysis [15], given in Algorithms 1
and 2, is to compute CFL reachability for the CFLLREFINEPTS �
LFT X RRP. This is done by tracking the state ofRRP for each
explored path while computingLFT reachability. As we focus on
computingpointsTo, i.e.,flowsToin this paper, a state represents a
calling context, which is typically a finite stack configuration cor-
responding toCallEntryi edges.

Given a variablev and a call stackc, SBPOINTSTOpv, cq computes
pointsTopv, cq, i.e., the points-to set ofv in contextc. It traverses

edges in the reverse direction. Note that for eachflowsToedgex
ℓ�Ý

y, its inverseflowsToedge isy
ℓ�Ý x. Therefore, traversing from

Algorithm 1 REFINEPTS’s points-to analysis, SBPOINTSTO, for com-
puting flowsTo [15]. SBFLOWSTO called in line 21, which computes
flowsTo, is analogous to its “inverse” SBPOINTSTO and thus omitted.

SBPOINTSTO (v, c)
1: pts�H
2: for each edgev new�ÝÝ o do
3: pts� pts Y {(o, c)}

4: for each edgev
assign�ÝÝÝ x do

5: pts� pts Y SBPOINTSTO (x, c)

6: for each edgev
assignglobal�ÝÝÝÝÝÝ x do

7: pts� pts Y SBPOINTSTO (x,H)

8: for each edgev
exiti�ÝÝ x do

9: pts� pts Y SBPOINTSTO px, c.Push(i)q
10: for each edgev

entry
i�ÝÝÝ x do

11: if c.Peek()� i or c � H then
12: pts� pts Y SBPOINTSTO px, c.Pop()q
13: for each edgee � v

loadpfq�ÝÝÝÝ u do

14: for each edgeq
storepfq�ÝÝÝÝ p do

15: if e R fldsToRefinethen
16: fldsSeen� fldsSeenY { e}
17: pts� ptsY SBPOINTSTO pp,Hq
18: else
19: CSalias�H
20: for po, c1q P SBPOINTSTO (u, c) do
21: CSalias� CSalias Y SBFLOWSTO(o, c1)
22: for (r, c2) P CSalias do
23: if r � q then
24: pts� pts Y SBPOINTSTO (p, c2)
25: return pts

x to y alongx ℓ�Ý y in reverse direction means traversing fromx

to y alongy ℓ�Ý x. The check forc � H, i.e, ǫ in line 11 allows
for partially balanced parentheses (a prefix with unbalanced closed
parentheses and a suffix with unbalanced open parentheses) since a
realizable path may not start and end in the same method.

Algorithm 2 The REFINEPTS analysis
REFINEPTS (v)
26: while truedo
27: fldsSeen�H
28: pts� SBPOINTSTO pv,Hq
29: if satisfyClient(pts) then
30: return true
31: else
32: if fldsSeen� H then
33: return false
34: else
35: fldsToRefine� fldsToRefineY fldsSeen

SBPOINTSTO is context-sensitive for method invocation by match-
ing call entries and exits and also for heap abstraction by distin-
guishing allocation sites with calling contexts.

Global variables are context-insensitive. As a result, theRRP state
is cleared acrossassignglobal edges (lines 6 and 7). Thus, these
edges “skip” the sequence of calls and returns between the reads
and writes of a global variable.

To support iterative refinement, REFINEPTS operates with a refine-



ment loop, which is simplified in Algorithm 2 to avoid the compli-
cations in dealing with points-to cycles. For more detail, see [15,
16]. Given a points-to query, an initial approximation witha field-
based analysis is adopted and then gradually refined until the client
is satisfied. In lines 13 and 14, the base variablesu andq are as-

sumed to be aliases, ife � v
loadpfq�ÝÝÝÝ u is not in fldsToRefine,

a set controlling the refinement. In this case, an artificialmatch

edgev match�ÝÝÝ p is considered to have been introduced. By moving
directly from v to p, a sequence of calls and returns between the
read and write of fieldf can be skipped. Hence, the state ofRRP

is cleared (line 17). If satisfyClient(pts) returns false, then another
refinement iteration is needed. All encounteredmatch edges are
removed, and the analysis becomes field-sensitive for each such

match edge,v match�ÝÝÝ p, so that the paths between their endpoints
are explored. This may lead to newmatch edges to be discovered
and further refined until either a pre-set budget is exceededor the
query has been answered (lines 29 and 30).

3.4 A Motivating Example
We explain how REFINEPTS works by using it to compute the
points-to sets fors1 and s2 in Figure 2. We motivate the need
for local reachability reuse in DYNSUM in Section 4.

Consider REFINEPTSps1q first. To fully resolve its points-to set,
the following four iterations are performed:

1. Initially, REFINEPTS starts being field-based sincefldsSeen� fldsToRefine� H. In this first iteration, due to the exis-

tence of thematch edge,p matchÝÝÝÑ retget, we find that SB-
POINTSTOps1,Hq � to26, o29u since there are twoflowsTo-

paths: (1)o26
newÝÝÑ tmp1

entry
26ÝÝÝÝÑ p

matchÝÝÝÑ retget
exit22ÝÝÝÑ

retretrieve
exit32ÝÝÝÑ s1 and (2)o29

newÝÝÑ tmp1
entry

29ÝÝÝÝÑ p
matchÝÝÝÑ

retget
exit22ÝÝÝÑ retretrieve

exit32ÝÝÝÑ s1.

2. In the second iteration, REFINEPTS starts with

fldsToRefine� ttget loadparrqÝÝÝÝÝÑ retgetu. There are two new

match edges found:tVector
matchÝÝÝÑ tget and tVector

matchÝÝÝÑ
tadd. As tadd

match�ÝÝÝ tVector
new�ÝÝ o5

newÝÝÑ tVector
matchÝÝÝÑ

tget, tadd and tget are found to be aliases. Thus,
SBPOINTSTOps1,Hq � to26, o29u remains unchanged.

3. In the third iteration, REFINEPTS continues to refine the
two new match edges discovered in the second iteration.
SBPOINTSTO starts its traversal froms1 along the right part
of the graph. Initially,RRP � v w. On encounteringexit32
andexit22, the analysis pushes their call sites into the con-
text stack at noderetget: RRP � v32, 22w. Then it ar-
rives attretrieve after having popped the stack once so that
RRP � v32w. Traversing along another two newmatch

edges,tretrieve
match�ÝÝÝ vClient andtretrieve

match�ÝÝÝ vset, RE-
FINEPTS will next explore fromvClient andvset, one by one.
As botho25 ando28 can flow tothisVector andthisadd, so
thisVector and thisadd are aliases. So once again
SBPOINTSTOps1,Hq � to26, o29u is the same as before.

4. In the last iteration, REFINEPTS continues to refine the two
new match edges discovered in the third iteration. Due to

context sensitivity, only the edgethisretrieve
entry

32�ÝÝÝÝ c1 is
realizable becauseentry32 matches the top of context stack

v32w but thisretrieve
entry

33�ÝÝÝÝ c2 does not. Therefore,
thisClient andthisretrieve may be aliases. So SBPOINTSTO

will eventually visit o26 and obtain the final solution: SB-
POINTSTO ps1,Hq � to26u.

Similarly, s2 is resolved. However, REFINEPTS will traverse re-
dundantly a few paths that it did before in resolvings1 in order to
conclude that SBPOINTSTO ps2,Hq � to29u.
4. THE DYNSUM ANALYSIS
While REFINEPTS may bring benefits for some clients, our moti-
vating example exposes several of its limitations:
 The same paths can be traversed multiple times for a set of

queries under the same or different calling contexts. This
problem becomes more severe as modern software relies heav-
ily on common libraries (e.g., Java JDK).
 Ad hoc caching techniques [15, 20, 25] are ineffective for
three reasons. First, SBPOINTSTOpv, cq cannot be cached
unless it is fully resolved within a pre-set budget. Second,
the cached SBPOINTSTOpv, cq can only be reused in the
same contextc. When resolving SBPOINTSTOps1,Hq and
SBPOINTSTOps2,Hq previously, the points-to set ofretget
is computed twice, once forv32, 22w and once forv33, 22w.
As a result, the same path fromretget to thisget is still
redundantly traversed for such different contexts. Finally,
caching and refinement may be incompatible as a cached
points-to set may depend on thematch edges encountered
when the points-to set was computed.
 All field-based refinement iterations are pure overhead be-
fore a client can be satisfied with a particular query. This
“lazy” strategy is not well-suited for clients that requirepre-
cise points-to or aliasing information.

In this work, we propose to overcome these limitations by giving up
refinement and relying on exploiting local reachability reuse to ef-
ficiently answer demand queries. As shown in Figure 2, we distin-
guish two types of edges in a PAG:local edges(new, assign, load
andstore) andglobal edges(assignglobal, entryi andexiti). The
key observation is that local edges have no effects on the context of
a query while global edges have no effects on its field-sensitivity.

Therefore, our DYNSUM analysis is broken down into two parts.
DSPOINTSTO given in Algorithm 3 performs apartial points-to
analysis (PPTA) on-the-fly for a queried variable to summarize
its points-to relations along the local edges within a method field-
sensitively but context-independently. DYNSUM in Algorithm 4
handles the context-dependent global edges while collaborating with
PPTA to compute new summaries if they are unavailable for reuse.

4.1 PPTA: Partial Points-to Analysis
It is easy to understand what PPTA is in terms of the RSMs givenin
Figure 3, as the two RSMs (forpointsToandalias) in Figure 3(a),
which are together equivalent toLFT, handle field-sensitivity, and
the RSM forRRP shown in Figure 3(b) handles context-sensitivity.

PPTA aims to summarize all state transitions field-sensitively but
context-insensitively made along the local edges of a method ac-
cording to thepointsToandaliasRSMs given in Figure 3(a). Start-
ing with a points-to query for a variablev in contextc, we will



Algorithm 3 PPTA-based summarization
DSPOINTSTO (v, f, s, visited)
1: if pv, f, sq P visited then
2: return H
3: visited� visitedY { pv, f, sq }
4: pts�H
5: if s � S1 then
6: for each edgev

new�ÝÝ o do
7: if f � H then
8: pts� ptsY { o }
9: else

10: pts� ptsY DSPOINTSTO pv, f, S2, visitedq
11: for each edgev

assign�ÝÝÝ x do
12: pts� pts Y DSPOINTSTO px, f, S1, visitedq
13: for each edgev

loadpgq�ÝÝÝÝ x do
14: pts� pts Y DSPOINTSTO (x, f.Pushpgq, S1, visited)
15: if v has a global edge flowing intov then
16: pts� pts Y { pv, f, S1q }
17: if s � S2 then

18: for each edgex
loadpgq�ÝÝÝÝ v do

19: if f .Peek()� g then
20: pts� ptsY DSPOINTSTO (x, f.Poppq, S2, visited)

21: for each edgex
assign�ÝÝÝ v do

22: pts� pts Y DSPOINTSTO px, f, S2, visitedq
23: for each edgex

storepgq�ÝÝÝÝ v do
24: pts� pts Y DSPOINTSTO (x, f.Pushpgq, S1, visited)

25: for each edgev
storepgq�ÝÝÝÝ x do

26: if f .Peek()� g then
27: pts� ptsY DSPOINTSTO (x, f.Poppq, S1, visited)
28: if v has a global edge flowing out ofv then
29: pts� pts Y { pv, f, S2q }
30: return pts

eventually arrive at the two RSMs with a new querypu, f, sq, where
u is a node in some methodm, f is a field stackcontaining the
field edge labels encountered but not yet matched, ands is a state
indicating thedirection in which the analysis traverses—along a
flowsTopath ifs � S1 and aflowsTopath ifs � S2. The objective
of performing PPTA forpu, f, sq is to compute a so-calledpartial
points-to setfor u, denotedpptapu, f, sq, so that (1)pptapu, f, sq
contains all objectso in methodm that flow tou, and (2) all tu-
plespu1, f 1, s1q eventually reached by thepointsToandaliasRSMs
given in Figure 3(a) along only the local edges in methodm. Each
such tuple represents a state reached this way and will be cached
for later reuse just before a global edge is about to be traversed.

Consider our example given in Figure 2 again. We have
pptapretget,H, S1q � tpthisget, varr, elemsw, S1qu, which shows
intuitively that the points-to set ofthisget.elems.arr must be in-
cluded in the points-to set ofretget. Note that this PPTA informa-
tion is computed when answering the points-to query fors1 and
will be reused later when the points-to querys2 is answered.

For another example, suppose we want to compute the points-to
set for s2 with an empty context. By traversing the right part
of the PAG in Figure 2, we will eventually need to compute a
query for pthisset, varr, elems, vecw, S2q (as later illustrated in
Steps 6 – 7 fors2 in Table 1). By performing a PPTA, we find that
pptapthisset, varr, elems, vecw, S2q � tpvset, varr, elemsw, S1qu.

Algorithm 4 The DYNSUM analysis
DYNSUM (v, c)
1: pts�H
2: w � { pv,H, S1, cq }
3: while w �H do
4: removepu, f, s, c1q from w

5: if ppu, f, sq, lq P Cache then
6: ppta� l

7: else
8: ppta� DSPOINTSTO (u, f, s,H)
9: Cache � CacheY ppu, f, sq, pptaq

10: for eacho P ppta do
11: pts� pts Y { po, c1q }
12: for eachpx, f 1, s1q P ppta do
13: if s1 � S1 then
14: for eachx

exiti�ÝÝ y do
15: Propagatepw, y, f 1, S1, c

1.Push(i)q
16: for each edgex

entry
i�ÝÝÝ y do

17: if c1 � H or c1.Peek()� i then
18: Propagatepw, y, f 1, S1, c

1.Pop()q
19: for each edgex

assignglobal�ÝÝÝÝÝÝ y do
20: Propagatepw, y, f 1, S1,Hq
21: if s1 � S2 then
22: for each edgey

exiti�ÝÝ x do
23: if c1 � H or c1.Peek()� i then
24: Propagatepw, y, f 1, S2, c

1.Pop()q
25: for each edgey

entry
i�ÝÝÝ x do

26: Propagatepw, y, f 1, S2, c
1.Push(i)q

27: for each edgey
assignglobal�ÝÝÝÝÝÝ x do

28: Propagatepw, y, f 1, S2,Hq
29: return pts

Propagate(w, n, f , s, c)
1: if pn, f, s, cq R w then
2: w� w Y { pn, f, s, cq }

4.2 Algorithms

Algorithm 3. This is a recursive algorithm that propagates the
context-independent CFL-reachability information across a given
PAG. There can be points-to cycles in a PAG. Therefore, the set
visited of visited nodes is used to avoid re-traversing a cycle more
than once, as in [15].

The analysis strictly follows thepointsToandalias RSMs forLFT

given in Figure 3(a), which has two states,S1 andS2. All transi-
tions onS1 are handled in lines 5 – 16 and those onS2 in lines 17
– 29. Let us considerS1 first. On encountering an edgev

new�ÝÝ o

(lines 6 – 10), the analysis will insert the objecto into pts only
when the field stackf is empty. Otherwise, it will traverse aflowsTo
path to find analiasrelation betweenv and somex such thatv aliasx
holds. An alias relation is discovered by following thealias RSM
given in Figure 3(a). In lines 11 – 14, theassign and load edges
are handled. In lines 15 – 16, on encountering a global edge, PPTA
stores the current state inpts. Lines 17 – 29 for dealing with state
S2 are similar. The only interesting part happens in lines 25 –
27, which accepts astore edge when the top of the field stackf
matches the label of the store edge,g.

Note that the two statesS1 andS2 are handled asymmetrically



since thealiasRSM in Figure 3(a) is “asymmetric”, or precisely, is
recursive. There are four cases involved in handling field accesses:
loadpgq, storepgq, loadpgq andstorepgq. In the PPTA algorithm,
the loadpgq edges are handled inS1 while the other three inS2. In

S1, thealias RSM will process aloadpgq edge,v
loadpgq�ÝÝÝÝ x, and

stay inS1. In S2, thealias RSM will process (1) aloadpgq edge,

x
loadpgq�ÝÝÝÝ v, and stay inS2, (2) a storepgq edge,x

storepgq�ÝÝÝÝ v,
and then transit toS1 to look for aliases for the base variablex of

the store, and (3) astorepgq edge,v
storepgq�ÝÝÝÝ x, and transit toS1 if

the base variablev is an alias of the base variable of the most recent
load processed earlier in lines 13 – 14. Note that thealiasRSM can
only move fromS1 to S2 at an allocation site onnew new, i.e., by
first traversing the correspondingnew edge and then the same edge
in the opposite direction, which is thenew edge.

Algorithm 4. This is where our DYNSUM analysis starts. When
called, DYNSUM pv, cq will return the points-to set of a queried
variablev in contextc. This is a worklist algorithm that propa-
gates the CFL-reachability facts through a given PAG. Because the
local edges are handled as a PPTA by Algorithm 3, Algorithm 4
deals with only the context-dependent global edges according to
the RSMRRP in Figure 3(b) while calling Algorithm 3 to perform
all required PPTA steps.

Each worklist element is a tuple of the formpu, f, s, cq, indicat-
ing that the computation forv has reached nodeu, whereu is a
new queried variable generated, with the current field stackf , the
current “direction” states P tS1, S2u of the RSM given in Fig-
ure 3(a) and the current context stackc. In lines 5 – 9, the summary
ppta for the querypu, f, sq is reused if it is available inCache

and computed otherwise by calling Algorithm 3. Asppta returned
from PPTA contains both objects and tuples, DYNSUM handles ob-
jects in lines 10 – 11 and tuples in lines 12 – 28. Theassignglobal,
exiti andentryi edges are handled according to the RSM forRRP

given in Figure 3(b), similarly as in REFINEPTS.

4.3 Example
We highlight the advantages of DYNSUM using the example given
in Figure 2. In our implementation of Algorithm 4, DSPOINTSTO

is not called in line 8 to perform the PPTA ifu has no local edges.

Suppose we want to answer the same two points-to queriess1 and
s2 as before. Table 1 illustrates how local reachability reuseis
exploited in our analysis by showing only the traversed edges that
lead directly to their points-to targets:o26 for s1 ando29 for s2.

Supposes1 is issued first and then followed bys2. DYNSUM starts
from s1 with the initial state being (s1,H, S1,H). The analysis
encounters the incomingexit32 edge, staying atS1 and pushing32
into the context stack. The new state is (retretrieve,H, S1, v32w).
Next, DYNSUM processes edges according to the RSMs given in
Figures 3(a) and (b). On encountering a node with some local
edges, the analysis first performs a PPTA on the node and then uses
its summarized partial points-to set to continue its exploration. If
the summarized partial points-to set is available in the cache, then
it is reused straightaway to speed up the exploration.

Finally, DYNSUM reachestmp1
new�ÝÝ o26, by completing its anal-

ysis in 23 steps. The points-to set ofs1 is {o26}.

Step v f s c Edge

0 s1 v w S1 v w exit32
1 retretrieve v w S1 v32w exit22
2 retget v w S1 v32, 22w loadpaq
3 tget vaw S1 v32, 22w loadpeq
4 thisget va, ew S1 v32, 22w entry22
5 tretrieve va, ew S1 v32w loadpvq
6 thisretrieve va, e, vw S1 v32w entry32
7 c1 va, e, vw S1 v w new new
8 c1 va, e, vw S2 v w entry27
9 thisClient va, e, vw S2 v27w storepvq

10 vClient va, ew S1 v27w entry27
11 v1 va, ew S1 v w new new
12 v1 va, ew S2 v w entry25
13 thisVector va, ew S2 v25w storepeq
14 tVector vaw S1 v25w new new
15 tVector vaw S2 v25w storepeq
16 thisVector va, ew S1 v25w entry25
17 v1 va, ew S1 v w new new
18 v1 va, ew S2 v w entry26
19 thisadd va, ew S2 v26w loadpeq
20 tadd vaw S2 v26w storepaq
21 p v w S1 v26w entry26
22 tmp1 v w S1 v w new
23 o26 v w S1 v w
0 s2 v w S1 v w exit33
1 retretrieve v w S1 v33w exit22
2 retget v w S1 v33, 22w

loadpaq loadpeq reuse

2 thisget va, ew S1 v33, 22w entry22
3 tretrieve va, ew S1 v33w

loadpvq reuse

2 thisretrieve va, e, vw S1 v33w entry33
4 c2 va, e, vw S1 v w new new
5 c2 va, e, vw S2 v w entry31
6 thisset va, e, vw S2 v31w storepvq
7 vset va, ew S1 v31w entry31
8 v2 va, ew S1 v w new new
9 v2 va, ew S2 v w entry28

10 thisVector va, ew S2 v28w
storepeq new new storepeq reuse

20 thisVector va, ew S1 v28w entry28
11 v2 va, ew S1 v w new new
12 v2 va, ew S2 v w entry29
13 thisadd va, ew S2 v29w

loadpeq storepaq reuse

2 p v w S1 v29w entry2914 tmp2 v w S1 v w new
15 o29 v w S1 v w

Table 1: Traversals of DYNSUM when answering the points-
to queries for s1 and s2 in our motivating example (a, e and v

stand for fieldsarr, elems and vector, respectively).

Whens2 is issued, the summaries computed earlier can be reused.
As shown in the bottom part of Table 1, DYNSUM takes only 15
steps to find {o29} as its points-to set. Ad hoc caching techniques
[15, 20, 25] are not helpful since both queries require different call-
ing contexts to be traversed, as explained earlier.



Algorithm Full Precision Memorization Reuse On-Demandness

NOREFINE Yes No No Yes
REFINEPTS Yes Dynamic (within queries) Context Dependent Yes
STASUM No Static (across queries) Context Independent Partly
DYNSUM Yes Dynamic (across queries) Context Independent Yes

Table 2: Strengths and weaknesses of four demand-driven points-to analyses.

For this example, the summaries computed during querys1 are not
reused within in the same query. In general, however, reuse can
happen both within a query and during subsequent queries.

4.4 Comparison
We compare four context- and field-sensitive demand-drivenpoints-
to or alias analyses in Table 2 now and in our evaluation later:
 REFINEPTS. This is the algorithm from [15] with an open-

source release. As reviewed earlier, REFINEPTS uses a re-
finement policy to satisfy a client’s queries. All queries are
handled independently. Ad hoc caching is used to avoid un-
necessary traversals within a query.
 NOREFINE. This is the version of REFINEPTS with neither
refinement nor ad hoc caching.
 STASUM. This is the algorithm introduced in [22], which
computes all-pair reachability summaries for each method
off-line and then reuses the summaries to accelerate demand
queries. In our experiments, such summaries are computed
for all methods on the PAG instead of a symbolic graph of
the program. No efforts are made to avoid some summaries
based on some user-supplied heuristics.
 DYNSUM. This is the one introduced in this paper. DYNSUM

can deliver the same precision as REFINEPTS with enough
budgets and is fully on-demand without performing any un-
necessary computations to achieve great reuse.

5. EVALUATION
We evaluate the efficiency of DYNSUM by comparing it with RE-
FINEPTS using nine Java benchmarks, selected from the Dacapo
and SPECjvm98 benchmark suites. For reference purposes, the
performance of NOREFINE is also given. As STASUM is not avail-
able to us, we will compare it with DYNSUM in terms of the num-
ber of summaries computed. Our evaluation has validated thefol-
lowing two experimental hypotheses about the proposed DYNSUM

approach:
 DYNSUM is more scalable than REFINE PTS. DYNSUM

outperforms REFINEPTS by 1.95�, 2.28� and 1.37� on av-
erage for the three clients discussed below.

DYNSUM avoids a great number of unnecessary computa-
tions and thus represents a good optimization for context-
sensitive demand-driven analysis.
 DYNSUM is more scalable than STA SUM . DYNSUM com-
putes significantly fewer summaries than STASUM for the
same three clients, making it better-suited for low-budgeten-
vironments like JIT compilers and IDEs.

5.1 Implementation
REFINEPTS is publicly available in the Soot 2.4.0 [18] and Spark [10]
frameworks. We have implemented DYNSUM and NOREFINE in
the same frameworks and conducted our experiments using theSun
JDK 1.6.0_16 libraries. Unmodeled native methods and reflection
calls [12, 21] are handled conservatively and Tamiflex [2] isused.
As all three analyses are context-sensitive, the call graphof the pro-
gram is constructed on-the-fly so that acontext-sensitivecall graph
is always maintained during the CFL-reachability exploration.

When introducing all three algorithms earlier, we have assumed
cycle-free PAGs to make them easy to understand. However, re-
cursion is handled as described in [15] by computing the callgraph
on-the-fly with recursion cycles collapsed. Points-to cycles are also
handled using visited flags in Algorithm 3 as described in [15] by
ensuring that a node is not cyclically visited.

5.2 Methodology
We have conducted our experiments on a machine consisting of
four AMD Opteron 2.2GHz processors (12 cores each) with 32
GB memory, running RedHat Enterprise Linux 5 (kernel version
2.6.18). Although the system has multi-cores, each analysis algo-
rithm is single-threaded.

We have selected the following three representative clients:
 SafeCast. This client checks the safety of downcasts in a
program as also discussed in [15].
 NullDeref. This client detects null pointer violations, de-
manding high precision from points-to analysis.
 FactoryM. This client checks that a factory method returns
a newly-allocated object for each call as in [15].

The benchmarks we used for evaluation are nine Java programs
selected from the SPECjvm98 and Dacapo benchmark suites. Ta-
ble 3 shows the number of different kinds of nodes and edges inthe
context-sensitive PAG of a program. Thelocality of a PAG is mea-
sured as the percentage of local (flowsTo) edges (includingnew,
assign, load andstore) among all (flowsTo) edges. This metric is
used to demonstrate the scope of our optimization. As can be seen
from Table 3, the majority of the edges in a PAG are local edges.
This implies that a large number of paths with only local edges can
be summarized in context-independent manner and reused later.

In the last three columns, the total number of queries issuedby a
client in a program is given. Each client continuously issues points-
to queries to an analysis. A query is either positively answered by
the analysis or terminated once a pre-set budget is exceeded. In
our experiments, we have also carefully divided the queriesfrom a
client into batches to demonstrate the scalability of DYNSUM com-
pared to REFINEPTS and STASUM as the number of queries in-
creases.



Benchmark
#Methods #Nodes (K) #Edges (K)

Locality
#Queries

(K) O pV YGq new assign load store entry exit assignglobal SafeCast NullDeref FactoryM

jack 0.5 16.6 207.9 16.6 328.1 25.1 8.8 39.9 12.8 2.487.3% 134 356 127
javac 1.1 17.2 216.1 17.2 367.4 26.8 9.1 42.4 13.3 0.588.2% 307 2897 231
soot-c 3.4 9.4 104.8 9.4 195.1 13.3 4.2 19.3 6.4 0.789.4% 906 2290 619
bloat 2.2 10.3 115.2 10.3 217.2 14.5 4.6 20.6 6.1 1.089.9% 1217 3469 613
jython 3.2 9.5 109.0 9.5 168.4 14.4 4.2 19.5 7.1 1.387.6% 464 3351 214
avrora 1.6 4.5 45.1 4.5 38.1 6.0 2.9 9.7 2.9 0.3 80.0% 1130 4689 334
batik 2.3 10.8 118.1 10.8 119.7 13.4 5.3 24.8 7.8 0.681.8% 2748 5738 769
luindex 1.0 4.4 48.2 4.4 42.6 6.9 2.3 9.1 3.0 0.5 81.7% 1666 4899 657
xalan 2.5 6.6 75.8 6.6 76.4 14.1 4.4 15.7 4.0 0.283.6% 4090 10872 1290

Table 3: Benchmark statistics. Note that Column “O (objs)” is identical to Column “ new”. All of the numbers include the reachable
parts of the Java library, determined using a call graph constructed on the fly with Andersen-style analysis [1] by Spark [10]. Column
“ locality" gives the ratio of local edges among all edges in a PAG. The last three columns give the number of queries issued by each
client for a program.

We repeated each experiment three times and reported the average
time of the three runs, which includes the time elapsed on points-to
analysis and client analysis. All the experiments have low variance
in performance. For all analysis algorithms compared, the budget
limitation is 75,000, indicating the maximum number of edges that
can be traversed in a PAG in order to answer one points-to query.

5.3 Results and Analysis

Analysis Times.Table 4 compares the analysis times of DYN-
SUM with REFINEPTS and NOREFINE for the three clients. NORE-
FINE is the slowest in most cases but can be faster than REFINEPTS
in some benchmarks for clientsSafeCast andNullDeref. In
contrast, DYNSUM is always faster than NOREFINE in all bench-
marks for all three clients.

Let us compare DYNSUM and REFINEPTS. DYNSUM is only
slightly slower in avrora for SafeCast and luindex for
FactoryM. DYNSUM attains its best performance insoot-c for
NullDeref, outperforming REFINEPTS by 4.19�. The average
speedups achieved by DYNSUM for the three clientsSafeCast,
NullDeref andFactoryM are 1.95�, 2.28� and 1.37�, re-
spectively.

The client that benefits the most from DYNSUM is NullDeref,
which requires more precision than the other two clients. Given
such high-precision requirements, REFINEPTS can hardly termi-
nate early, effectively rendering its repeated refinement steps as
pure overhead. This fact is also reflected by the similar analysis
times taken by both REFINEPTS and NOREFINE for this client.

As garbage collection is enabled, it is difficult to monitor memory
usage precisely. In our all experiments, DYNSUM never exceeds
20% more than REFINEPTS in terms of the peak memory usage.

Scalability in Answering Demand Queries.We have se-
lectedsoot-c, bloat andjython to demonstrate that DYN-
SUM is more scalable than REFINEPTS and STASUM. These appli-
cations are selected because they have large code bases, i.e., large
PAGs and also a great number of queries issued as shown in Ta-
ble 3. For each program, we divide the sequence of queries issued
by a client into 10 batches. If a client hasnq queries, then each of

the first nine batches containstnq{10u queries and the last one gets
the rest.
 Comparing with R EFINE PTS Figure 4 compares

the times taken by DYNSUM for handling each batch of queries
normalized with respect to REFINEPTS.As more batches are
processed, more points-to relations will have been summa-
rized dynamically and recorded for later reuse, and conse-
quently, the less time that DYNSUM takes to process each
subsequent batch.
 Comparing with STA SUM We collect the number of sum-
maries computed by DYNSUM at the end of each batch and
compare it with STASUM for the three selected benchmarks.
For DYNSUM, the number of summaries computed is avail-
able as the size ofCache given in Algorithm 4. For STA-
SUM, all possible summaries for each call entry or exit in a
PAG are computed. While STASUM can reduce its number
of such summaries based on a user-supplied threshold [22],
it is unclear how this can be done effectively by the user,
particularly when its optimal value varies from program to
program.

Figure 5 compares the (cumulative) size of summaries com-
puted by DYNSUM normalized with respect to STASUM.
DYNSUM only needs to compute 41.3%, 47.7% and 37.3%
of the summaries computed by STASUM on average in order
to handle all the queries issued by the three clients. Further-
more, the number of summaries increases dynamically as the
number of queries increases, highlighting the dynamic nature
of DYNSUM.

Through these studies, we find that DYNSUM is effective in avoid-
ing unnecessary traversals made as in REFINEPTS and unneces-
sary summaries computed as in STASUM. The increased scalabil-
ity makes DYNSUM better-suited to low-budget environments such
as JIT compilers and IDEs in which software may undergo a lot of
changes.

6. RELATED WORK
In recent years, there has been a large body of research devoted to
points-to analysis, with the summary-based approach to be the most
popular and general for achieving context sensitivity. However,



jack javac soot-c bloat jython avrora batik luindex xalan

SafeCast

NOREFINE 31.0 68.1 134.7 68.2 61.8 39.1 43.4 47.6 459.1
REFINEPTS 28.4 77.9 127.9 76.3 50.9 30.2 29.8 44.9 457.5
DYNSUM 15.2 41.3 37.5 32.8 32.2 35.1 19.7 25.3 194.5

NullDeref
NOREFINE 121.0 174.4 212.3 72.8 160.0 84.4 95.0 57.1 797.9
REFINEPTS 145.6 163.9 221.0 73.5 150.2 20.6 80.7 60.1 575.7
DYNSUM 52.6 87.5 52.8 42.6 72.3 13.6 46.4 41.3 194.1

FactoryM

NOREFINE 26.3 85.1 22.8 147.1 15.7 30.1 41.2 20.7 139.1
REFINEPTS 25.4 60.5 9.5 104.6 15.4 27.9 33.9 13.1 117.8
DYNSUM 23.4 47.2 6.7 75.1 6.3 24.4 24.3 13.4 99.5

Table 4: Analysis times of NOREFINE , REFINE PTS and DYNSUM for the three clients: SafeCast, NullDeref and FactoryM.

soot-c bloat jython

1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

(a)SafeCast

N
or

m
a

liz
e

d
T

im
e

to
RE

F
IN

E
P

T
S

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(b) NullDeref

N
or

m
a

liz
e

d
T

im
e

to
RE

F
IN

E
P

T
S

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c) FactoryM

N
or

m
a

liz
e

d
T

im
e

to
RE

F
IN

E
P

T
S

Figure 4: Normalized analysis times for each batch of queries normalized with respect to REFINE PTS.

STASUM DYNSUM

all soot-c bloat jython

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

(a)SafeCast

S
um

m
a

ry
S

iz
e

(%
)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

(b) NullDeref

S
um

m
a

ry
S

iz
e

(%
)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

(c) FactoryM

S
um

m
a

ry
S

iz
e

(%
)

Figure 5: The cumulative number of summaries computed by DYNSUM normalized with respect to STA SUM .

existing summary-based algorithms [13, 17, 19, 24] are mostly
whole-program-based. How to compute summaries efficientlyfor
demand-driven analysis is less well-understood. Below we focus
only on the work directly related to demand-driven points-to anal-
ysis.

To accelerate demand queries, some techniques to speed up demand-
driven points-to analysis have been explored. In the refinement-
based approach introduced in [15], the analysis starts to befield-
based for all heap accesses and introduces gradually field-sensitivity
into those heap accesses where a better precision may be obtained.
In [20], a (whole-program) pre-analysis is presented to improve
the performance of demand-driven points-to analysis in Java. In
demand-driven analysis techniques [15, 20, 25], budget limitation
is commonly used to give a conservative answer for a query once a
pre-set budget has been exceeded.

Reps et al. [11, 14] pioneered the research on program analysis
via graph reachability. They formulate a number of static analysis
programs in terms of CFL reachability, leading to a natural solution
to demand-driven points-to analysis.

Heintze and Tardieu [8] introduced a deduction-based demand-driven
points-to analysis for C to determine the points-to sets based on de-
mand queries from a client.

Sridharan et al. [15, 16] have proposed two approaches to solving
CFL-reachability-based demand-driven points-to analysis for Java.
They initially presented a CFL-reachability formulation to model
heap accesses as a balanced-parentheses problem in a
context-insensitive manner [16]. Later, they extended this earlier
work to obtain a context-sensitive points-to analysis [15]. The start-
ing point of our PPTA-based solution, DYNSUM, is Sirdharan and
Bodik’s refinement-based analysis [15], using Spark’s PAG [10] as



our program representation. DYNSUM improves the performance
of this state-of-the-art work significantly without losingprecision.

Zheng and Rugina [25] described a demand-driven alias analysis
for C. Unlike Heintze and Tardieu’s analysis [8], Zheng and Rug-
ina’s analysis relies a memory alias CFL reachability formulation.
Their analysis is context-insensitive with indirect function calls be-
ing conservatively handled. As a result, realizable and unrealizable
paths are not distinguished, resulting in both precision and perfor-
mance loss for some queries.

Xu et al. [20] proposed a pre-analysis to speed up the context-
sensitive points-to analysis introduced in [15]. The analysis builds
a symbolic graph to reduce the size of a program’s PAG but it is
whole-program-based.

Yan et al. [22] have recently extended the work of [20] to perform a
demand-driven alias analysis without having to compute points-to
sets. The proposed approach, denoted STASUM, is compared with
DYNSUM in Table 2 and Figure 5.

Some existing techniques [15, 20, 25] on memorization are adhoc,
limiting their scope and effectiveness. The points-to setptspv, cq
of a variablev in a calling contextc is cached only after allv’s
pointed-to objects have been fully resolved, which does nothap-
pen once a pre-set budget has been exceeded. Due to such full
reachability reuse,ptspv, cq can only be reused forv in exactly
the same (full) contextc. In addition, these existing memorization
techniques do not directly apply to the state-of-the-art refinement-
based approach [15] since the underlying PAG may change due to
the iterative refinement used. To the best of our knowledge, this
work represents the first systematic investigation on how toexploit
local reachability reuse dynamically in order to improve the per-
formance of context-sensitive demand-driven points-to analysis in
CFL reachability.

7. CONCLUSION
In this paper, we investigate how to dynamically exploit local reach-
ability reuse to improve the performance of CFL-reachability based
demand-driven points-to analysis. Evaluation and validation using
three client applications over a range of nine Java benchmarks show
that our PPTA-based approach can significantly boost the perfor-
mance of a state-of-the-art demand-driven points-to analysis with-
out any precision loss. Our approach is particularly usefulin low-
budget environments such as JIT compilers and IDEs, especially
when the program undergoes constantly a lot of changes.

8. ACKNOWLEDGEMENTS
This research is supported by a grant from Oracle Labs and also an
Australian Research Council Grant DP0987236.

9. REFERENCES
[1] L. O. Andersen.Program analysis and specialization for the

C programming language. PhD thesis, DIKU, University of
Copenhagen, May 1994. (DIKU report 94/19).

[2] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and
M. Mezini. Taming reflection: Aiding static analysis in the
presence of reflection and custom class loaders. InICSE ’11,
pages 241–250, 2011.

[3] S. Chaudhuri. Subcubic algorithms for recursive state
machines. InPOPL ’08, pages 159–169, 2008.

[4] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken. Partial
online cycle elimination in inclusion constraint graphs. In
PLDI ’98, pages 85–96, 1998.

[5] B. Hardekopf and C. Lin. The ant and the grasshopper: fast
and accurate pointer analysis for millions of lines of code.In
PLDI ’07, pages 290–299, 2007.

[6] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pointer
analysis. InPOPL ’09, pages 226–238, 2009.

[7] B. Hardekopf and C. Lin. Flow-sensitive pointer analysis for
millions of lines of code. InCGO ’11, pages 289–298, 2011.

[8] N. Heintze and O. Tardieu. Demand-driven pointer analysis.
In PLDI ’01, pages 24–34, 2001.

[9] J. Kodumal and A. Aiken. The set constraint/CFL
reachability connection in practice. InPLDI ’04, pages
207–218, 2004.

[10] O. Lhoták and L. Hendren. Scaling Java points-to analysis
using Spark. InCC ’03, pages 153–169, 2003.

[11] D. Melski and T. Reps. Interconvertbility of set constraints
and context-free language reachability. InPEPM ’97, pages
74–89, 1997.

[12] P. H. Nguyen and J. Xue. Interprocedural side-effect analysis
and optimisation in the presence of dynamic class loading. In
ACSC ’05, pages 9–18, 2005.

[13] E. M. Nystrom, H. seok Kim, and W. mei W. Hwu.
Bottom-up and top-down context-sensitive summary-based
pointer analysis. InSAS ’04, pages 165–180, 2004.

[14] T. Reps. Program analysis via graph reachability. InILPS
’97, pages 5–19, 1997.

[15] M. Sridharan and R. Bodík. Refinement-based
context-sensitive points-to analysis for Java. InPLDI ’06,
pages 387–400, 2006.

[16] M. Sridharan, D. Gopan, L. Shan, and R. Bodík.
Demand-driven points-to analysis for Java. InOOPSLA ’05,
pages 59–76, 2005.

[17] Y. Sui, S. Ye, J. Xue, and P.-C. Yew. SPAS: Scalable
path-sensitive pointer analysis on full-sparse ssa. InAPLAS
’11, pages 155–171, 2011.

[18] R. Valle-Rai, L. Hendren, V. Sundaresan, P. Lam, and
E. Gagnon. Soot - a Java optimization framework. In
CASCON ’99, pages 125–135, 1999.

[19] R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programs. InPLDI ’95, pages 1–12,
1995.

[20] G. Xu, A. Rountev, and M. Sridharan. Scaling
CFL-reachability-based points-to analysis using
context-sensitive must-not-alias analysis. InECOOP ’09,
pages 98–122, 2009.

[21] J. Xue and P. H. Nguyen. Completeness analysis for
incomplete object-oriented programs. InCC ’05, pages
271–286, 2005.

[22] D. Yan, G. Xu, and A. Rountev. Demand-driven
context-sensitive alias analysis for Java. InISSTA ’11, pages
155–165, 2011.

[23] M. Yannakakis. Graph theoretic methods in database theory.
In PODS ’90, pages 230–242, 1990.

[24] H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang. Level by
level: making flow- and context-sensitive pointer analysis
scalable for millions of lines of code. InCGO ’10, pages
218–229, 2010.

[25] X. Zheng and R. Rugina. Demand-driven alias analysis for
C. In POPL ’08, pages 197–208, 2008.


