On-Demand Dynamic Summary-based Points-to Analysis

Lei Shang

Xinwei Xie

Jingling Xue

School of Computer Science & School of Computer Science & School of Computer Science &

Engineering
The University of New South
Wales, NSW, Australia

Engineering
The University of New South
Wales, NSW, Australia

Engineering
The University of New South
Wales, NSW, Australia

shangl@cse.unsw.edu.au Xxinweix@cse.unsw.edu.au jingling@cse.unsw.edu.au

ABSTRACT

Static analyses can be typically accelerated by reducitgnean-
cies. Modern demand-driven points-to or alias analysilsrtiegies
rest on the foundation of Context-Free Language (CFL) raith
ity. These techniques achieve high precision efficienttyafesmall
number of queries raised in small programs but may still ke to
slow in answering many queries for large programs in a cantex
sensitive manner.

We present an approach, called yNDSum, to perform
context-sensitive demand-driven points-to analysiyfoi-demand
by means of computing CFL-reachability summaries withawt a
precision loss. The novelty lies in initially performingRartial
Points-To Analysi§PPTA) within a method, which is field-sensitive
but context-independent, to summarize its local pointetations
encountered during a query and reusing this informatiaar iatthe
same or different calling contexts. We have comparedi Bum

resulting in, for example, cycle elimination [4, 5] for Anden-
style points-to analysis [1] and sparse analysis [6, 7, #T f&

flow-sensitive points-to analysis. In the case of contexis#tive
points-to analysis, computing a points-to summary for ahoet
[13, 19, 24] avoids re-summarizing it unnecessarily for $hene
and different calling contexts. Despite a lot of earlieoes, it re-
mains unclear how to craft points-to analyses that can effilyi

answer demand queries (e.g., non-aliasing) for a specifiotcl

The majority of the current solutions perform a whole-peogr
points-to analysis to improve precision at the expensefiaiefcy,
by computing points-to information for all variables in flv@gram.
Such exhaustive algorithms are too resource-intensive tsbful
in environments with small time budgets, such as just#imet{JIT)
compilers and IDEs. One widely acceptable observationas th
points-to analysis is not a stand-alone task since it neels tai-
lored to suit the specific needs of a client application. Asslt,

with REFINEPTS, a refinement-based analysis, using three clients much recent work [15, 16, 20, 25] has focussediemand-driven

(safe casting, null dereferencing and factory methodspfeuite
of nine Java programs. YN SuM’s average speedups are 1:95
2.28x and 1.3%, respectively. We have also comparedNC5UM
with a static approach, which is referred toASUM here, to show
its improved scalability for the same three clients.

Categories and Subject Descriptors
D.3.4 [Programming Language$: Processors-Optimization

General Terms
Algorithms, Languages, Experimentation, Performance

Keywords
Dynamic summary, points-to analysis, demand-driven ais|CFL
reachability

1. INTRODUCTION

Many static analyses can be accelerated if some redundemt co
putations can be avoided. Considerable progress has bedm ma

points-to analysis, which mostly relies on Context-Freadieage
(CFL) reachability [14] to perform only the necessary wook &
set of variables specified by a client rather than a wholexam
analysis to find all its points-to information.

To perform points-to analysis with CFL reachability, a piag is
represented as a directed graph, with nodes denoting lesiab-
jects and edges pointer-manipulating statements. Datérqnif
a variablev points to an objecb requires finding a pathp be-
tween the nodes ando in the graph such thats label is in a CFL
that ensures the corresponding statements can eatgspoint to
o. To balance precision and efficiency for on-demand quedes,
points-to analysis is typically flow-insensitive, fieldrs@ive and
context-sensitive [15]. Context-sensitivity is realizexh balanced-
parentheses problem along two axes: method invocation &bgtm
ing call entries and exits so that only realizable paths aresid-
ered) and heap abstraction (by distinguishing the samesabsb-
ject from different paths).

While such CFL-reachability formulation is promising, foem-
ing demand-driven points-to analysis for large, compleftvere
can still be costly, especially when a client issues a largaber
of queries. Existing solutions have addressed the perfocenssue
from several directions, by using refinement [15], (whotegwam)
pre-analysis [20] and ad hoc caching [15, 20, 25]. Howeer, r
dundant traversals along the same path are still repeatesitie,
unless they are identified by a time-consuming whole-progyee-
analysis. Among all these existing effortss RNEP TS [15] repre-
sents a state-of-the-art solution. However, its refinerapptoach
is well-suited only to clients that can be satisfied earlyugiowhen

most of heap accesses are still analyzed in a field-basedemann

: = STEE . In r Il Si i

rather than field-sensitively. Otherwise, its field-basefthement Gltc?g;s(\(;;iasbllt::) ’ g g
efforts (in terms ofmatch edges) are pure overhead. : g

Local Variables v €V
In this paper, we introduce a novel technique, calledBum, F|e]ds foer
to perform context-sensitive demand-driven points-tdysisfully Objects o € O
on-demand. Unlike existing techniques [15, 20, 25], ouraagh Allocations v=newo € VxO
exploits local reachability reuse by performingPartial Points- Assignments vi=v2 € VuGxVuG
To Analysis(PPTA) within a method dynamically. PPTA is field- ~ Loads v=uv.f € VXVxF
sensitive but context-independent, thereby enabling tmensa- Stores vi.f=v2 € VXFxV
rize'd points-to relgtions ina me.th.od to be reu.sed i.n itseckifit Parameter Passingparam EMi e UV xNes V
calling contexts without any precision loss. We identifgisueuse exit;

Returns ve—rret € VXNV

as a practical basis for developing an effective optimizatior
demand-driven points-to analysis. Figure 1: An abstraction of Java programs.

This paper makes the following contributions:

. assign . .
e assign, nz «—— ni1: n1 andn. are local variables in

methodm. Somns points to whatever; points to. Such

¢ \We present a PPTA-based approach to boost the performance edges represefical assignmenti methodm.

of CFL-reachability-based context-sensitive demandedlri

points-to analysis by exploiting local reachability reu€eir
dynamic approach improves the performance of
demand-driven points-to analysis without sacrificing prec
sion and isfully on-demandwithout requiring any (costly)

. i lobal .
assignglobal, ny <29% 1 0y or ny or both are static

variables in a class of the program. 8¢ points to what-
evern; points to. Such edges represent (context-insensitive)

whole-program pre-analysis. This appears to be the first global assignmentis the program.

points-to analysis that computes dynamic method summaries
. load(f) . .
to answer demand queries. e load(f), na «—— n1: ni andn. are local variables in
methodm and f is an instance field, with the statement rep-
e We have implemented ¥\ SuMm in the Soot compiler frame- resenting the loads = nq.f.
work for Java. We have used three representative clierfes (sa
casting, null dereferencing and factory methods) to evalu-
ate the performance improvements againstiREPTS, the
state-of-the-art demand-driven points-to analysis thioed
in [15]. The average speedups achieved ywBuwm for the
three clients over a suite of nine Java benchmarks arex1.95
2.28x and 1.3%, respectively.

store . .
o store(f), no oY) 1ty andns are local variables in

methodm and f is an instance field, with the statement rep-
resenting the stores. f = n1.

e entry;, na Rl ni: m1 is a local variable in a calling
method that contains a call site at linéo methodm, such
thatn; represents an actual parameter of the callanid its
corresponding formal parameter of methad Son. points
to whatevem; points to.

e \We show that INSuM computes only a small percentage
of the summaries computed byr&Sum, a static whole-
program analysis [22]. This makesr®BSum more scalable
and better-suited for answering demand queries in environ-) exit . . .
ments such as JIT compilers and IDEs, particularly when the ~ ® €Xit;, n2 «— n1: m1 is a local variable that contains a
program constantly undergoes a lot of edits. return value of methodr andn. is a local variable that is

assigned fromn; at a call site; in a calling method. Sas

points to whateven; points to.

2. PROGRAM REPRESENTATION

We consider Java programs although our approach appliedlequ
well to C programs. Since the analysis is flow-insensitizstol- Loads and stores to array elements are modeled by collapling
flow statements are irrelevant. By convention, parametesipg elements into a special fieldr. As is customary, it is assumed
and method returns have assignment semantics. Local ahdliglo that no two classes (methods) contain the same identicattyed
variables will be distinguished as global variables are global (local) variable.

context-insensitive. Therefore, in this paper, a programepre-
sented with the syntax given in Figure 1. Figure 2 gives an example and its PAG representation. Talavoi
cluttering, the labelsdssign” and “assignglobal” for assignment
edges are omitted. Note that denotes the object created at the
allocation site in ling andvy, (with a subscript) denotes variable

v declared in methoeh.

A Java program is represented bydimected graph known as a
Pointer Assignment GrapiPAG), which has threes types of nodes,
V, G andO. All edges are oriented in the direction of value flow,
representing the statements in the program. A methads associ-
ated with the following seven types of edges: In the PAG shown, the edges are classified Inotal edgeqnew,
assign, load andstore) andglobal edgeqassignglobal, entry;
andexit;). The local edges are enclosed inside dotted rectangles
and the global edges span across themmNBuM aims to exploit

the local reachability reuse across the local edges to @etelits
performance in answering demand queries.

new - . .
e new, ne «—— nq: ni is an object created and, is a local
variable both in methoeh, with « indicating the flow ofn;
into n2. As a resulty, points directly ton .

1 class Vector{ 18 void set(Vector v) —> local edge —> globaledgeentr
2 Object[] elems; 19 { this.vec=v; } “ Y32
) - b h QY st(vec) \ .
3 int count; 20 Object retrieve () i o\ 5 UClient 2> thisClicat Ehis
4 Vector (){ 21 { t=this.vec; thisvector, \ @ ient 3
i ' i < st(vec) ES i Id(vec)
5 t=new Object[8]; 22 return t.get(0); }} St(elemS)W\ =% Vsot —> thisset | @
6 this .elems=t;} 23 class Main{ tector g\ \| X R | tretrieve
7 v0|ci aqd(Objec.t p){ 24 static void main (...){ . o % 1 W o - onr 1Y o
8 t=this.elems; 25 Vector vl=new Vector (); e <t SR g retrieve
9 t[count++]=p;} 26 vl.addpew Integer (1)); o5 & Z 3 Tex,tm
10 Object get(nt i){ 27 Client cl=new Client(vl); LNty g @ 8
—thi . . thiSadd <——— new ne Tetget >
11 t=this.elems; 28 Vector v2=new Vector (); add F— 2 «<—— 028 030 s
12 return t[i]; }} 29 v2.addpew String ()); Id(elems)\ﬂ 5"71@2 d(arr)'w @
13 class Client{ 30 Client c2=new Client (); ‘ o bt
14 Vector vec; 31 c2.set(v2); add o tmpl pew ge
15 Client () {} 32 sl=cl.retrieve (); St(arr)'We:\”‘/’ elemS)'W
16 Client(Vector v) 33 s2=c2.retrieve ();} P imp2 & o this get,
17 { this.vec=v; } 34} entry,g -
Figure 2: A Java example and its PAG.
Aassign
new ®
new
Sl @ 3
=<
= g)
(e} e e
] =

(a) Lrr (with pointsTqi.e.,flowsToshown on the left andlias on the right)

(b)Rrp

Figure 3: Recursive State Machines (RSMs) fol.rr and Rrp.

3. BACKGROUND AND MOTIVATION

In this section, we introduce the state-of-the-art demduikn
points-to analyses for Java formulated in terms of CFL rahitity
by Sridharan and Bodik [15, 16]. These analyses providedbe-b
line for us to enhance its performance through dynamic iaaitity
reuse.

Section 3.1 reviews CFL reachability. Section 3.2 deserithe
CFL reachability formulation of a field-sensitive pointsdnaly-
sis presented in [16]. This earlier analysis, however, isted-
insensitive. Section 3.3 gives a context-sensitive varsidh re-
finement [15], referred to here aERNEPTS. Section 3.4 gives
an illustrating example, motivating the need for explajtilocal
reachability reuse.

3.1 CFL Reachability

Context-free language (CFL) reachability [14, 23] is areaston
of graph reachability that is equivalent to the reachabpitoblem
formulated in terms of either recursive state machines (RJ®|

or set constraints [9]. Lef! be a directed graph whose edges are

labeled by symbols from an alphabet Let L be a CFL overX.
Each pathp in G has a stringuv(p) in ©* formed by concatenating
in order the labels of edges jn A nodew is L-reachablefrom a
nodev if there exists a patlp from v to u, called anL-path, such
thatw(p) € L.

CFL reachability is computationally more expensive to sdivan
standard graph reachability. In the case of the singleesolir
path problem, which requires finding all nodBsreachable from
a source node: in a graphG, the worst-case time complexity is

O(T3N?), whereT is the size of a normalized grammar forand
N is the number of nodes i@ [14]. Therefore, we are motivated
to exploit reachability reuse to lower its analysis oveth@athis
work.

3.2 Field-Sensitivity

We discuss how to perform field-sensitive points-to analysth-

out considering context sensitivity in CFL reachabilitycéntext-
insensitive analysis merges information from differeniscaf a
method rather than reasoning about each call separatelg rAs
sult, global assignment, call entry or call exit edges ar&redted
as local assignment edges. Given a program, its PAG is tmisi
fied to possess only four types of local edgesw, assign, load

andstore.

Let us first consider a PAG with only new andassign. It suffices
to develop a regular languagérr (FT for flows-to), such that if
an objecto can flow to a variables during the execution of the
program, thery will be Lrr-reachable fronv in G. Let flowsTo
be the start symbol ofxr. Then we have the following (regular)
grammar forLy:

flowsTo — new (assign)*

@)

If o flowsTov, thenv is Lrr-reachable frona. Thus, we know that
o belongs to the points-to set of

For field accesses, precise handling of heap accesses iglébech
with the updated.rr being a CFL ofbalanced parenthesg46].
Two variablest andy may be aliases if an objegimay flow to both

x andy. Thus,v may point too if there exists a pair of statements

p.f = qandv = w.f, such that the base variablesndu can be
aliases. So flows through the above two statements with a pair of
parentheses (i.estore(f) andload(f)), first into ¢ and then into

v. Therefore, thdlowsToproduction is extended into:

flowsTo — new (assign | store(f) aliasload(f))*

@)

wherez aliasy means that: andy could be aliases. To alloalias
paths in aralias languageflowsTois introduced as the inverse of
theflowsTorelation. AflowsTepathp can be inverted to obtain its
correspondindlowsTepathp using inverse edges, and vice versa.

For each edge L yin p, its inverse edge ig <L zin p. (To avoid
cluttering, the inverse edges in a PAG, such as the one giMeig#
ure 2, are not shown explicitly.) Thus flowsToz iff x flowsToo.
This means thalowsToactually represents the standard points-to

relation. As a resulty alias y iff x flowsToo flowsToy for some
objecto. Thus, thealiaslanguage is defined by:
alias — flowsTo flowsTo 3)
flowsTo — (assign | load(f) aliasstore(f))™ new

Our final CFL Lgt for finding the points-to set of a variable con-
sists of the productions given in (2) and (3) witbwsToas its start
symbol. For convenience, we often wrieintsToto mearflowsTo

The RSMs [3] fompointsToandalias are shown in Figure 3(a); they
will be referred later to facilitate the understanding ofNDBUM.

3.3 Context Sensitivity

A call entry or exit edge is treated as assign edge as before in
Lt to represent parameter passing and method returadsign
andassignglobal edges are now distinguished.

A context-sensitive analysis requires call entries andsetxi be
matched, which is solved also as a balanced-parentheskiempro
[14]. This is done by filtering outiowsTe andflowsTepaths cor-
responding to unrealizable paths. The following CRkp (RP for
realizable paths) is used to describe all realizable patlessRPAG
G, its RSM is given in Figure 3(b):

C — Callentry, C CallExit; | C C |e
CallEntry, — entry, | exit;
CallExit; exit; | entry,

—

When traversing dowsTepath inG, entering a method vientry,
from call sitei requires exiting from that method back to call site
via either (L)exit; to continue its traversal along the saffevsTo
path or (2)entry, to start a new search for flowsTepath. The
situation for entering a method véxit; when traversing owsTo
path is reversed.

REFINEPTS’s context-sensitive analysis [15], given in Algorithin
and 2, is to compute CFL reachability for the CElrerinerts =
Lrr n Rrp. This is done by tracking the state 8xzp for each
explored path while computingrr reachability. As we focus on
computingpointsTg i.e., flowsToin this paper, a state represents a
calling context, which is typically a finite stack configuaoat cor-
responding tcCallEntry, edges.

Given a variable and a call stack, SBROINTSTO(v, ¢) computes
pointsTdw, ¢), i.e., the points-to set af in contextc. It traverses

edges in the reverse direction. Note that for efmvsToedger i
y, its inverseflowsToedge isy £ 2. Therefore, traversing from

Algorithm 1 REFINEPTS’s points-to analysis, SRPNTSTO, for com-
puting flowsTo[15]. SBF.owsTo called in line 21, which computes
flowsTq is analogous to its “inverse” SBRNTSToand thus omitted.

SBPOINTSTO (v, ¢)
1 pts— &
. for each edge <X o do
pts «— pts U {(o,)}
. for each edge <=

2

3

4 «——x do

5. pts < pts U SBPOINTSTO (z, ¢)
6: for each edge <29 ;4o

7: pts « pts U SBPOINTSTO (z, &)
8

9

. for each edge <% & do
pts « pts U SBPOINTSTO (z, c.Pushf))
entry;

. for each edge «—— = do
if c.Peek()=iorc= & then
pts < pts U SBPOINTSTO (z, c.Pop()

load(f)
——ud

: for each edge = v o]

store(f)

14: for each edgg «——— pdo

15: if e ¢ fldsToRefinethen

16: fldsSeen— fldsSeeru { e}

17: pts « pts U SBPOINTSTO (p, &)

18: else

19: CSalias «— &

20: for (o,c’) € SBPOINTSTO (u, c) do
21 CSalias « CSalias U SBFLOWSTO(o, ¢')
22: for (r,c”) € CSalias do

23: if r = g then

24: pts < pts U SBPOINTSTO (p, ¢”)

25: return pts

YA
x to y alongx « y in reverse direction means traversing fram

to y alongy £ 2. The check fore = &, i.e,ein line 11 allows
for partially balanced parentheses (a prefix with unbaldmtesed
parentheses and a suffix with unbalanced open parenthéseshs
realizable path may not start and end in the same method.

Algorithm 2 The REFINEPTS analysis
REFINEPTS @)

26: while truedo
27: fldsSeen— &
28: pts « SBPOINTSTO (v, &)

29: if satisfyClientpts) then

30: return true

31: else

32: if fldsSeer= & then

33: return false

34: else

35: fldsToRefine— fldsToRefine, fldsSeen

SBPoINTSTOIs context-sensitive for method invocation by match-
ing call entries and exits and also for heap abstraction bgindi
guishing allocation sites with calling contexts.

Global variables are context-insensitive. As a result,Rhe state

is cleared acrosassignglobal edges (lines 6 and 7). Thus, these
edges “skip” the sequence of calls and returns between #usre
and writes of a global variable.

To support iterative refinement #RINEP T S operates with a refine-

ment loop, which is simplified in Algorithm 2 to avoid the colinp
cations in dealing with points-to cycles. For more detadk §15,
16]. Given a points-to query, an initial approximation watlield-
based analysis is adopted and then gradually refined uetilitnt

is satisfied. In lines 13 and 14, the base variahlesdq are as-

sumed to be aliases, i = v Load(f) u is not in fldsToRefing

a set controlling the refinement. In this case, an artifigiatch

edgev Jrawch. p is considered to have been introduced. By moving

directly fromwv to p, a sequence of calls and returns between the

read and write of fieldf can be skipped. Hence, the stateftafp
is cleared (line 17). If satisfyClieni{s) returns false, then another
refinement iteration is needed. All encounteredtch edges are

removed, and the analysis becomes field-sensitive for eacih s

match edge,v Jmatch p, SO that the paths between their endpoints

are explored. This may lead to nematch edges to be discovered
and further refined until either a pre-set budget is exceedede
query has been answered (lines 29 and 30).

3.4 A Motivating Example

We explain how RFINEPTS works by using it to compute the
points-to sets fosl and s2 in Figure 2. We motivate the need
for local reachability reuse in ¥NSuM in Section 4.

Consider RFINEPTYs1) first. To fully resolve its points-to set,
the following four iterations are performed:

1. Initially, REFINEPTS starts being field-based sirftasSeen

= fldsToRefine= &. In this first iteration, due to the exis-

tence of thematch edge,p mateh, retger, We find that SB-

POINTSTO(s1, &) = {026, 020} Since there are twitowsTe

entry,g match
—— p —> retget

entry.
29

paths: (1)ozs — tmpl exitz
Fetretriove —225 51 and (2)020 = tmpl

exitoo exitgo
Tetget > T€lretrieve sl.

match

HINEPTS starts with

2. In the second
fldsToRefine= {tget retget}. There are two new
match match

match edges founditvector — tget 8NAtvector —

match new new match
tadd. AStadd e tVector < 05 — tVector

tget, tada and tgee are found to be aliases. Thus,
SBPOINTSTO(s1, &) = {026, 020} remains unchanged.

iteration,
load(arr)

3. In the third iteration, RFINEPTS continues to refine the
two new match edges discovered in the second iteration.
SBPoINTSTO starts its traversal froml along the right part
of the graph. Initially,Rrr = []. On encounteringxits2
andexity2, the analysis pushes their call sites into the con-
text stack at nodeetyi: Rrp = [32,22]. Then it ar-
rives att.etrieve after having popped the stack once so that

Rgrp = [32]. Traversing along another two nemvatch

match match
edgesytretrieve € UClient andtretrieve —— Vset, RE-

FINEPTS will next explore fromcjient aNduset, ONE by one.
As bothoss andosg can flow tothisvector aNdthisaaq, SO
thisvector and this,qaq are aliases. So once again
SBPOINTSTO(s1, &) = {026, 020} is the same as before.

4. In the last iteration, RFINEP TS continues to refine the two
new match edges discovered in the third iteration. Due to

context sensitivity, only the edgéis,eoiove <22 1 is
realizable becausentry,, matches the top of context stack

[32] but thisiemieve <235 ¢2 does not. Therefore,

thisclient @Ndthisretrieve May be aliases. So SBINTSTO
will eventually visit o6 and obtain the final solution: SB-
POINTSTO (s1, &) = {026}

Similarly, s, is resolved. However, BFINEPTS will traverse re-
dundantly a few paths that it did before in resolvingin order to
conclude that SBBINTSTO (s2,) = {020}.

4. THE DYNSuM ANALYSIS

While REFINEPTS may bring benefits for some clients, our moti-
vating example exposes several of its limitations:

e The same paths can be traversed multiple times for a set of
queries under the same or different calling contexts. This
problem becomes more severe as modern software relies heav-
ily on common libraries (e.g., Java JDK).

e Ad hoc caching techniques [15, 20, 25] are ineffective for
three reasons. First, SBINTSTO(v, c) cannot be cached
unless it is fully resolved within a pre-set budget. Second,
the cached SB®INTSTO(v,c) can only be reused in the
same context. When resolving SBBINTSTO(s1, &) and
SBPOINTSTO(s2, &) previously, the points-to set oktget
is computed twice, once fdB2, 22] and once foff33, 22].

As a result, the same path frometge; t0 thisge: IS Still
redundantly traversed for such different contexts. Finall
caching and refinement may be incompatible as a cached
points-to set may depend on theatch edges encountered
when the points-to set was computed.

o All field-based refinement iterations are pure overhead be-
fore a client can be satisfied with a particular query. This
“lazy” strategy is not well-suited for clients that requpee-
cise points-to or aliasing information.

In this work, we propose to overcome these limitations byngiwip
refinement and relying on exploiting local reachabilityseuo ef-
ficiently answer demand queries. As shown in Figure 2, wendist
guish two types of edges in a PAlBcal edgegnew, assign, load
andstore) andglobal edgegassignglobal, entry; andexit;). The
key observation is that local edges have no effects on thexof

a query while global edges have no effects on its field-seitgit

Therefore, our PNSuM analysis is broken down into two parts.
DSPoINTSTO given in Algorithm 3 performs gartial points-to
analysis (PPTA) on-the-fly for a queried variable to summarize
its points-to relations along the local edges within a métfield-
sensitively but context-independently. Y®Sum in Algorithm 4
handles the context-dependent global edges while cobligingrwith
PPTA to compute new summaries if they are unavailable f@eeu

4.1 PPTA: Partial Points-to Analysis

Itis easy to understand what PPTA is in terms of the RSMs diven
Figure 3, as the two RSMs (f@ointsToandalias) in Figure 3(a),
which are together equivalent fa-t, handle field-sensitivity, and
the RSM forRgrp shown in Figure 3(b) handles context-sensitivity.

PPTA aims to summarize all state transitions field-seraitibut
context-insensitively made along the local edges of a ntkdm
cording to thepointsToandalias RSMs given in Figure 3(a). Start-
ing with a points-to query for a variable in contexte, we will

Algorithm 3 PPTA-based summarization

Algorithm 4 The DyNSuMm analysis

DSPOINTSTO (v, f, s, visited

1 if (v, f, s) € visited then
2: return ¥
3: visited« visitedu { (v, f, s) }
4: pts — &
5:if s =57 then
6: for eachedge <=~ o do
7. if f= then
8: pts—ptsu{o}
9: else
10: pts < pts U DSPOINTSTO (v, f, S2, visited)
11: for each edge <" z do
12: pts « pts U DSPOINTSTO (z, f, S1, visited
13: for each edge <22 do
14: pts « pts U DSPOINTSTO (z, f.Push(g), S1, visited
15: if v has a global edge flowing into then
16: pts —pts v { (v, f,51) }
17: if s =S, then
18: for each edge: < 4, do
19: if f.Peek(=g then
20: pts « pts U DSPOINTSTO (z, f.Pop(), Sz, visited
21: for eachedge <" 4 do
22: pts « pts U DSPOINTSTO (z, f, So, visited
23; for eachedge <2°Y 4 do
24: pts « pts U DSPOINTSTO (z, f.Push(g), S1, visited
25. for each edge 2@ o
26: if f.Peek(=g then
27: pts <« pts U DSPOINTSTO (z, f.Pop(), S1, visited
28: if v has a global edge flowing out ofthen
29: pts «—pts v { (v, f,S2) }

30: return pts

eventually arrive at the two RSMs with a new quésy f, s), where

u is a node in some methad, f is afield stackcontaining the
field edge labels encountered but not yet matched,sana state
indicating thedirection in which the analysis traverses—along a
flowsTopath if s = S; and aflowsTopath if s = S2. The objective
of performing PPTA for(u, f, s) is to compute a so-callgghrtial
points-to sefor u, denotedopta(u, f, s), so that (Lppta(u, f, s)
contains all object® in methodm that flow tow, and (2) all tu-
ples(v’, f’, s’) eventually reached by thgointsToandalias RSMs
given in Figure 3(a) along only the local edges in methadEach
such tuple represents a state reached this way and will beedac
for later reuse just before a global edge is about to be tsader

Consider our example given in Figure 2 again. We have
ppta(retget, &, S1) = {(thisget, [arT, elems], S1)}, which shows
intuitively that the points-to set dfhisges.elems.arr must be in-
cluded in the points-to set okt.... Note that this PPTA informa-
tion is computed when answering the points-to querysfbrand

will be reused later when the points-to quagyis answered.

For another example, suppose we want to compute the paints-t
set for s2 with an empty context. By traversing the right part
of the PAG in Figure 2, we will eventually need to compute a
query for (thisset, [art, elems, vec]|, S2) (as later illustrated in
Steps 6 — 7 fos2 in Table 1). By performing a PPTA, we find that
ppta(thisset, [arT, elems, vec], S2) = {(vset, [arT, elems], S1)}.

DYNSUM (v, c)

1 pts— &
2: ’LU(—{ (U7®7‘917C)}
3: while w # & do

4: remove(u, f, s, c) fromw

5. if ((u, f,s),l) € Cache then

6: ppta «— 1

7. else

8 ppta «— DSPOINTSTO (u, f, s, &)

9: Cache < Cache u ((u, f, s), ppta)
10: for eacho € ppta do

11: pts —pts U { (o,c') }

12: for each(z, f',s’) € ppta do

13: if s"=.51 then

14: for eachr < y do

15: Propagatéw, y, f’, S1, ¢’ .Pushg))
16 for each edge: <™~ y do

17: if ¢ = orcd.Peek(i then
18: Propagatéw, y, f, S1, ¢ .Pop()
19: for each edge <299 4o
20: PrOpagateU:y:f,:Sh@)
21: if s =9, then _
22: for each edge < & do
23: if ¢ =@ orcd.Peek(=1i then
24: Propagatéw, y, f’, Sz, ¢’ .Pop()
25: for each edge <" 2 do
26: Propagatéw, y, f’, Se, ¢’ .Pushg))
27: for each edgg <29 do
28: Propagateu7y7f,7‘927g)

29: return pts

Propagatef, n, f, s, c)

1. if (n, f,s,c) ¢ w then

22 wewu{(nf,sc)}

4.2 Algorithms

Algorithm 3. This is a recursive algorithm that propagates the
context-independent CFL-reachability information aerasgiven
PAG. There can be points-to cycles in a PAG. Therefore, the se
visited of visited nodes is used to avoid re-traversing a cycle more
than once, as in [15].

The analysis strictly follows thpointsToandalias RSMs for Lt
given in Figure 3(a), which has two states, and S». All transi-
tions on.S; are handled in lines 5 — 16 and those$nin lines 17
—29. Let us consides; first. On encountering an edge<= o
(lines 6 — 10), the analysis will insert the objecinto pts only
when the field stack is empty. Otherwise, it will traverseflowsTo
path to find araliasrelation betweem and some: such thav aliasx
holds. An alias relation is discovered by following thigas RSM
given in Figure 3(a). In lines 11 — 14, tkssign andload edges
are handled. In lines 15 — 16, on encountering a global edgeAP
stores the current state jins. Lines 17 — 29 for dealing with state
So are similar. The only interesting part happens in lines 25 —
27, which accepts atore edge when the top of the field stagk
matches the label of the store edge,

Note that the two stateS; and S. are handled asymmetrically

since thealias RSM in Figure 3(a) is “asymmetric”, or precisely, is _Step v f s c Edge
recursive. There are four cases involved in handling fiete:sses: 0 sl 1 S1 [1 D exitsz
load(g), store(g), load(g) andstore(g). In the PPTA algorithm, 1 retretrieve Il St [32] eXitas
theload(g) edges are handled i, while the other three it§s. In 2 Telget [1 S1 [32,22] 8 load(a
S1, thealias RSM will process doad(g) edge,v L24@) - and i }f.ge“ Eaﬂ 21 [[33, ggﬂ 2 load(e)
stay inS;. In Ss, thealias RSM will process (1) doad(g) edge, thaseger [a.€] 1 [32,2] entry,,
load(g) . store(g) S tf'e“ieve [[a’_e]] S1 [[32]] Ioad(v)
«——= v, and stay inSs, (2) astore(g) edge,z «——— v, 6 thiscctrieve [, 8 70] Si [32] entry
and then transit t; to look for aliases for the base varialteof 7 cl [a,e, 7] Si [8 oW r?faw
the store, and (3) store(g) edge,w <. 4, and transit to, if 8 cl [a,e,7] S2 [1 entry,,
the base variable s an alias of the base variable of the most recent 9 thisciiens [@,&7] S2 = [27] store(v)
load processed earlier in lines 13 — 14. Note thatiies RSM can 10 vClient [a,e] S [27] entry,,
only move fromS; to S, at an allocation site onew new, i.e., by 11 vl [a.e] S [] few new
first traversing the correspondiingw edge and then the same edge 12 vl [a,e] S> [1 8 entry,,
in the opposite direction, which is thew edge. 13 thisvector [@,€] Se [25] store(e)
14 tvector [[Eﬂ S [[25]] New new
15 tvector [a] Sz [25] store(e)
Algorithm 4. This is where our PNSuMm analysis starts. When 16 thisvector [a,e] S1 [25] entry,,
called, DrNSuM (v, ¢) will return the points-to set of a queried 17 vl [a,e] S M1 8 New new
variablewv in contextc. This is a worklist algorithm that propa- 18 vl [a,e] S [entry,q
gates the CFL-reachability facts through a given PAG. Bsedhe 19 thisada [a,e] S2 [26] 8 load(e)
local edges are handled as a PPTA by Algorithm 3, Algorithm 4 20 tada [l S2 [26] % Store(a)
deals with only the context-dependent global edges acugriti 21 p [St [26] entry,g
the RSMRRgp in Figure 3(b) while calling Algorithm 3 to perform 22 tmpl [S1 [1 8 new
all required PPTA steps. 23 026 [1 S [I
0 52 H]] S1 [[ﬂ D eXit33
Each worklist element is a tuple of the forfa, f, s, ¢), indicat- 1 retretriove Il S1 [33] D eXitys
ing that the computation fos has reached node, whereu is a 2 Tetget [1 S [33,22]
new queried variable generated, with the current field sfadke foad(a) load(e) Il reuse
current “direction” states € {S1, 52} of the RSM given in Fig- this [@e S [33,22] -
ure 3(a) and the current context stackn lines 5 — 9, the summary 3 ¢ get) !) D entry,,
. e e . . . retrieve [[a7 6]] Sl [[33]] I
ppta for the query(u, f, s) is reused if it is available iCache — Il reuse
and computed otherwise by calling Algorithm 3. pgta returned load(v)
from PPTA contains both objects and tuples,\35um handles ob- thisretrieve [@,8,0] S1 [33] entry,
jectsin lines 10 — 11 and tuples in lines 12 — 28. &ksignglobal, 4 c2 [a.,e,v] S [1 8 Aew new
exit; andentry, edges are handled according to the RSMRg#> S c2 [a,e,v] 52 [1 entry,,
given in Figure 3(b), similarly as in BFINEPTS. 6 thissee [a,80] S2 [31] 8 store(v)
7 Vse [a,e] S1 [31] entry,,
5wl S 1] S e
4.3 Example 9 v2 [a,e] S [1 3 entry,
We highlight the advantages ofvB Sum using the example given 10 thisvector [a@,€] Sz [28] i
in Figure 2. In our implementation of Algorithm 4, D®NTSTO store(e) New new store(e) u, reuse
is not called in line 8 to perform the PPTAdfhas no local edges. thisvector [a,e] Si [28] D entry
| | 1 w2 [@el St Il S fewnew
Suppose we want to answer the same two points-to quetiead 12 v2 [@e] Sz [1 8 entry
s2 as before. Table 1 illustrates how local reachability reisse 13 thisSadd [a,e] S2 [29] i 2
exploited in our analysis by showing only the traversed sdbat load(e) Store(a) ! reuse
lead directly to their points-to targetsss for s1 andosg for s2. \
p [1 S [29] D entry,,
Supposes1 is issued first and then followed B2. DYNSuM starts 1‘51 t2§2 H gi [] D new

from s1 with the initial state being«(l, &, S1, &). The analysis

encounters the incomirgxits. edge, staying at, and pushing?2
into the context stack. The new statenst(ctrieve, &, S1, [32]).

Next, DYNSuUM processes edges according to the RSMs given in
Figures 3(a) and (b). On encountering a node with some local
edges, the analysis first performs a PPTA on the node and #&sn u
its summarized partial points-to set to continue its exgtion. If

Table 1: Traversals of DrNSumMm when answering the points-
to queries for s1 and s2 in our motivating example (a, e and v
stand for fields arr, elems and vector, respectively).

the summarized partial points-to set is available in thdeathen
it is reused straightaway to speed up the exploration.

Whens2 is issued, the summaries computed earlier can be reused.
As shown in the bottom part of Table 1,yRSum takes only 15
steps to find §20} as its points-to set. Ad hoc caching techniques
[15, 20, 25] are not helpful since both queries require cffie call-

ing contexts to be traversed, as explained earlier.

Finally, DYNSuM reachegmpl <=2 046, by completing its anal-
ysis in 23 steps. The points-to setdfis {o26}.

Algorithm || Full Precision Memorization Reuse On-Demandness
NOREFINE Yes No No Yes

REFINEPTS || Yes Dynamic (within queries) Context Dependent Yes

STASUM No Static (across queries) Context Independent Partly

DYNSuM Yes Dynamic (across queries) Context Independent Yes

Table 2: Strengths and weaknesses of four demand-driven puafis-to analyses.

For this example, the summaries computed during gegre not
reused within in the same query. In general, however, rease c
happen both within a query and during subsequent queries.

4.4 Comparison
We compare four context- and field-sensitive demand-dipeénts-
to or alias analyses in Table 2 now and in our evaluation:later

e REFINEPTS. This is the algorithm from [15] with an open-
source release. As reviewed earlieEFRNEPTS uses a re-
finement policy to satisfy a client’s queries. All querieg ar
handled independently. Ad hoc caching is used to avoid un-
necessary traversals within a query.

NOREFINE. This is the version of RFINEP TS with neither
refinement nor ad hoc caching.

STASUM. This is the algorithm introduced in [22], which

5.1 Implementation

REFINEPTS is publicly available in the Soot 2.4.0 [18] and Spark [10
frameworks. We have implementedr®Sum and NOREFINE in

the same frameworks and conducted our experiments usirgythe
JDK 1.6.0_16 libraries. Unmodeled native methods and rtidflec
calls [12, 21] are handled conservatively and Tamiflex [2}ded.

As all three analyses are context-sensitive, the call goatie pro-
gram is constructed on-the-fly so that@ntext-sensitiveall graph

is always maintained during the CFL-reachability expliomat

When introducing all three algorithms earlier, we have s
cycle-free PAGs to make them easy to understand. However, re
cursion is handled as described in [15] by computing thegralbh
on-the-fly with recursion cycles collapsed. Points-to egare also
handled using visited flags in Algorithm 3 as described il [
ensuring that a node is not cyclically visited.

5.2 Methodology

We have conducted our experiments on a machine consisting of

computes all-pair reachability summaries for each method four AMD Opteron 2.2GHz processors (12 cores each) with 32
off-line and then reuses the summaries to accelerate demandGB memory, running RedHat Enterprise Linux 5 (kernel varsio
queries. In our experiments, such summaries are computed2.6.18). Although the system has multi-cores, each arsablgo-

for all methods on the PAG instead of a symbolic graph of rithm is single-threaded.

the program. No efforts are made to avoid some summaries

based on some user-supplied heuristics.

DyNSuM. This is the one introduced in this papery DSUM

can deliver the same precision agRNEPTS with enough
budgets and is fully on-demand without performing any un-
necessary computations to achieve great reuse.

5. EVALUATION

We evaluate the efficiency of\INSum by comparing it with Fe-

We have selected the following three representative dient

e Saf eCast . This client checks the safety of downcasts in a
program as also discussed in [15].

e Nul | Der ef . This client detects null pointer violations, de-
manding high precision from points-to analysis.

e Fact or yM This client checks that a factory method returns
a newly-allocated object for each call as in [15].

FINEPTS using nine Java benchmarks, selected from the Dacapo

and SPECjvm98 benchmark suites. For reference purposes, th
performance of MREFINEIs also given. As $ASuM is not avail-
able to us, we will compare it with ENSuM in terms of the num-
ber of summaries computed. Our evaluation has validatetbthe
lowing two experimental hypotheses about the proposed Sum
approach:

e DYNSUM is more scalable than REFINEPTS. DYNSUM
outperforms RFINEPTS by 1.9%, 2.28x and 1.3 on av-
erage for the three clients discussed below.

DYNSuM avoids a great humber of unnecessary computa-
tions and thus represents a good optimization for context-
sensitive demand-driven analysis.

DYNSuUM is more scalable than SASum. DYNSuM com-
putes significantly fewer summaries thamaSum for the
same three clients, making it better-suited for low-budget
vironments like JIT compilers and IDEs.

The benchmarks we used for evaluation are nine Java programs
selected from the SPECjvm98 and Dacapo benchmark suites. Ta
ble 3 shows the number of different kinds of nodes and edgiin
context-sensitive PAG of a program. Tloeality of a PAG is mea-
sured as the percentage of locibWsTg edges (includinghew,
assign, load andstore) among all lowsTq edges. This metric is
used to demonstrate the scope of our optimization. As caed® s
from Table 3, the majority of the edges in a PAG are local edges
This implies that a large number of paths with only local exdigan

be summarized in context-independent manner and reusgd lat

In the last three columns, the total number of queries is$yea
clientin a program is given. Each client continuously isspeints-
to queries to an analysis. A query is either positively amsddy
the analysis or terminated once a pre-set budget is excedded
our experiments, we have also carefully divided the qudr@a a
client into batches to demonstrate the scalability gfh3um com-
pared to RFINEPTS and $ASuM as the number of queries in-
creases.

#Methodg #Nodes (K) #Edges (K) . #Queries
Benchmark - . . Locality
(K) O (VUG)| new assign load store entry exit assignglobal Saf eCast Nul | Deref FactoryM

jack 0.5(16.6 207.916.6 328.1 25.1 8.8 39.9 12.8 2.487.3%) 134 356 127
javac 1.1(17.2 216.117.2 367.4 26.8 9.1 424 13.3 0.588.2%) 307 2897 231
soot-c 34 94 104.4 9.4 1951 13.3 4.2 193 6.4 0.789.4% 906 2290 619
bloat 2.2/10.3 115.210.3 217.2 145 46 206 6.1 1.089.9%) 1217 3469 613
jython 3.2 9.5 109.0 95 1684 144 42 195 7.1 1.387.6% 464 3351 214
avrora 1.6 4.5 451 45 381 6.0 29 97 29 013 80.0% 1130 4689 334
batik 2.3/10.8 118.110.8 119.7 134 53 248 7.8 0.681.8% 2748 5738 769
luindex 1.0 4.4 48.2 44 426 69 23 91 30 015 81.7%) 1666 4899 657
xalan 2.5 6.6 75.4 6.6 764 141 4.4 157 4.0 0.283.6% 4090 10872 1290

Table 3: Benchmark statistics. Note that Column ‘O (objs)” is identical to Column “ new”. All of the numbers include the reachable
parts of the Java library, determined using a call graph consructed on the fly with Andersen-style analysis [1] by Spark [L0]. Column
“locality" gives the ratio of local edges among all edges in a PAG. Thedathree columns give the number of queries issued by each
client for a program.

We repeated each experiment three times and reported tregave the first nine batches contaifrs, /10| queries and the last one gets

time of the three runs, which includes the time elapsed ontpdd the rest.

analysis and client analysis. All the experiments have lavieance

in performance. For all analysis algorithms compared, tragbt

limitation is 75,000, indicating the maximum number of esltfeat e Comparing with REFINEPTS Figure 4 compares

can be traversed in a PAG in order to answer one points-to/quer the times taken by N Sum for handling each batch of queries
normalized with respect toEFINEPTS. As more batches are
processed, more points-to relations will have been summa-

5.3 Results and Analysis rized dynamically and recorded for later reuse, and conse-
quently, the less time that ¥ SumMm takes to process each
Analysis TimesTable 4 compares the analysis times of\D subsequent batch.

Sum with REFINEP TS and MREFINE for the three clients. NRE-
FINE is the slowest in most cases but can be faster teNREP TS
in some benchmarks for clien&af eCast andNul | Der ef . In
contrast, YNSuM is always faster than 8REFINE in all bench-
marks for all three clients.

e Comparing with STASuM We collect the number of sum-
maries computed by ¥NSuM at the end of each batch and
compare it with SASuM for the three selected benchmarks.
For DyNSuMm, the number of summaries computed is avail-
able as the size af'ache given in Algorithm 4. For SA-
Sum, all possible summaries for each call entry or exit in a
PAG are computed. While18 Sum can reduce its number
of such summaries based on a user-supplied threshold [22],
it is unclear how this can be done effectively by the user,
particularly when its optimal value varies from program to

Let us compare BNSumM and REFINEPTS. DrNSuM is only
slightly slower inavrora for Saf eCast and | ui ndex for
Fact or yM DYNSUM attains its best performancesmot - ¢ for
Nul | Der ef , outperforming RFINEPTS by 4.1%. The average
speedups achieved byyRSum for the three clientSaf eCast ,

Nul | Der ef andFact oryMare 1.9%, 2.28x and 1.3%, re- program.

spectively. Figure 5 compares the (cumulative) size of summaries com-
puted by DrnSum normalized with respect to 18 SuM.

The client that benefits the most frony®Sum is Nul | Der ef, DYNSuM only needs to compute 41.3%, 47.7% and 37.3%

which requires more precision than the other two clientsve@®i of the summaries computed by&Sum on average in order

such high-precision requirementseRNEPTS can hardly termi- to handle all the queries issued by the three clients. Furthe

nate early, effectively rendering its repeated refinemégpssas more, the number of summaries increases dynamically as the

pure overhead. This fact is also reflected by the similaryasisl number of queries increases, highlighting the dynamicreatu

times taken by both RFINEPTS and MREFINE for this client. of DYNSuM.

As garbage collection is enabled, it is difficult to monitoemory)] . o)
usage precisely. In our all experimentsyNDBUM never exceeds Through these studies, we find that fdSum is effective in avoid-

20% more than RFINEPTS in terms of the peak memory usage. ~ INg unnecessary traversals made as EFIREPTS and unneces-
sary summaries computed as imASuUM. The increased scalabil-

ity makes DrN SuM better-suited to low-budget environments such
as JIT compilers and IDEs in which software may undergo aflot o

Scalability in Answering Demand Queriese have se-
changes.

lectedsoot - ¢, bl oat andj yt hon to demonstrate that ¥\-
SuM is more scalable thanE¥INEP TS and $SASuM. These appli-
cations are selected because they have large code basdarge 6. RELATED WORK

PAGs and also a great number of queries issued as shown in Tadn recent years, there has been a large body of researchedeaweot
ble 3. For each program, we divide the sequence of queriesdss points-to analysis, with the summary-based approach todoambst
by a client into 10 batches. If a client has queries, then each of popular and general for achieving context sensitivity. idoer,

jack javac soot-c bloat jython avrora batik luindex xalan

NOREFINE 31.0 68.1 134.7 68.2 61.8 39.1 43.4 47.6 459.1

Saf eCast REFINEPTS 28.4 77.9 127.9 76.3 50.9 30.2 29.8 44.9 457.5
DYNSUM 15.2 41.3 375 32.8 32.2 35.1 19.7 25.3 194.5

NOREFINE 121.0 174.4 212.3 72.8 160.0 84.4 95.0 57.1 797.9

Nul | Der ef REFINEPTS 145.6 163.9 221.0 73.5 150.2 20.6 80.7 60.1 575.7
DYNSUM 52.6 87.5 52.8 42.6 72.3 13.6 46.4 41.3 194.1

NOREFINE 26.3 85.1 22.8 147.1 15.7 30.1 41.2 20.7 139.1

Fact or yM REFINEPTS 25.4 60.5 9.5 104.6 154 27.9 33.9 13.1 117.8
DYNSuM 23.4 47.2 6.7 75.1 6.3 24.4 24.3 13.4 99.5

Table 4: Analysis times of NOREFINE, REFINEPTS and DyNSum for the three clients: Saf eCast , Nul | Der ef and Fact oryM

bloat —+— jython

Y171 717 7 7 T 1 T
1.2}
1.0
0.8
0.6 -
0.4
0.2

soot-C
e e
aQ & 1.4
z 1.6 z ®
E 1.4 | E 1.2} \
fe) 1.2 - — o 1.0+
E osf — E o6l
- 0.6 1 T 04
g oal 1 ke
T 0.2 N T 02}
13 13
o o
2 2

(a) Saf eCast

1 2 3 4567 8 9 10
(b) Nul I Der ef

Normalized Time to RFINEPTS

1 2 3 45 67 8 9 10

(c)Fact oryM

Figure 4: Normalized analysis times for each batch of querie normalized with respect to REFINEPTS.

STASUM DYNSuUM
all soot-c bloat —+— jython

;@1007\ T T T T T T 1T T 11 ;@1007\ T T T T T T 1T T 11 ;@1007\ T T T T T T 1T T 71
N 80 1 & 8o 1 N 8o a
[}))] [7
> 60 B . > 60 [~ - > 60 [—
© © [1 © [1
g 401 . g 401 f £ 40| .
£ 20| 1 E L 1 £ = ,
) I - @) | i @ 20 B

oL = (= — S S (R [B ok |

|
1 2 3 4
(a) Saf eCast

5 6 7 8 9 10
(b) Nul | Der ef

(c) Fact oryM

Figure 5: The cumulative number of summaries computed by DN SuM normalized with respect to STA SuM.

existing summary-based algorithms [13, 17, 19, 24] are Imost
whole-program-based. How to compute summaries efficidatly
demand-driven analysis is less well-understood. Below aoei$
only on the work directly related to demand-driven poirtshal-
ysis.

To accelerate demand queries, some techniques to speethapdie
driven points-to analysis have been explored. In the refamsm
based approach introduced in [15], the analysis starts fietzk
based for all heap accesses and introduces gradually &ekitisity
into those heap accesses where a better precision may Ieesbta
In [20], a (whole-program) pre-analysis is presented torowe
the performance of demand-driven points-to analysis im.Jdm
demand-driven analysis techniques [15, 20, 25], budgetdtion

is commonly used to give a conservative answer for a querg anc
pre-set budget has been exceeded.

Reps et al. [11, 14] pioneered the research on program asalys
via graph reachability. They formulate a number of statialysis
programs in terms of CFL reachability, leading to a natuoéltson

to demand-driven points-to analysis.

Heintze and Tardieu [8] introduced a deduction-based ddrdairen
points-to analysis for C to determine the points-to setsthas de-
mand queries from a client.

Sridharan et al. [15, 16] have proposed two approaches wingol
CFL-reachability-based demand-driven points-to analii Java.
They initially presented a CFL-reachability formulatiom rhodel
heap accesses as a balanced-parentheses problem in
context-insensitive manner [16]. Later, they extended &arlier
work to obtain a context-sensitive points-to analysis [T%je start-
ing point of our PPTA-based solution,YR Sum, is Sirdharan and
Bodik's refinement-based analysis [15], using Spark’s PAQ hs

our program representation.YRSuUM improves the performance [4] M. Féahndrich, J. S. Foster, Z. Su, and A. Aiken. Partial

of this state-of-the-art work significantly without losipgecision. online cycle elimination in inclusion constraint graphs. |
PLDI '98, pages 85-96, 1998.

Zheng and Rugina [25] described a demand-driven alias sisaly ~ [5] B. Hardekopf and C. Lin. The ant and the grasshopper: fast

for C. Unlike Heintze and Tardieu’s analysis [8], Zheng andyR and accurate pointer analysis for millions of lines of cdde.

ina’s analysis relies a memory alias CFL reachability foiatian. PLDI 07, pages 290-299, 2007.

Their analysis is context-insensitive with indirect functcalls be- [6] B. Hardekopf and C. Lin. Semi-sparse flow-sensitive pein

ing conservatively handled. As a result, realizable anealirable analysis. IPPOPL '09 pages 226-238, 2009.

paths are not distinguisheq, resulting in both precisiah @erfor- [7] B. Hardekopf and C. Lin. Flow-sensitive pointer anatyir

mance loss for some queries. millions of lines of code. ICGO 11, pages 289-298, 2011.
. [8] N. Heintze and O. Tardieu. Demand-driven pointer arialys

Xu et al. [20] proposed a pre-analysis to speed up the context In PLDI ‘01, pages 24—34, 2001.

sensitive points-to analysis introduced in [15]. The asialypuilds
a symbolic graph to reduce the size of a program’s PAG but it is
whole-program-based.

[9] J. Kodumal and A. Aiken. The set constraint/CFL
reachability connection in practice. RLDI '04, pages
207-218, 2004.

[10] O. Lhotak and L. Hendren. Scaling Java points-to anglys
using Spark. IrCC '03, pages 153-169, 2003.

[11] D. Melski and T. Reps. Interconvertbility of set corsiits
and context-free language reachabilityPEPM '97, pages

Yan et al. [22] have recently extended the work of [20] to perfa
demand-driven alias analysis without having to computatgetio
sets. The proposed approach, denoted /M, is compared with
DYNSuM in Table 2 and Figure 5.

74-89, 1997.
Some existing techniques [15, 20, 25] on memorization atwag ~ [12] P. H. Nguyen and J. Xue. Interprocedural side-effeetysis
limiting their scope and effectiveness. The points-togetuv, c) and optimisation in the presence of dynamic class loadimg. |
of a variablev in a calling contextc is cached only after alb’s ACSC '05 pages 9-18, 2005.
pointed-to objects have been fully resolved, which doeshagpt [13] E. M. Nystrom, H. seok Kim, and W. mei W. Hwu.
pen once a pre-set budget has been exceeded. Due to such full ~ Bottom-up and top-down context-sensitive summary-based
reachability reusepts(v, ¢) can only be reused for in exactly pointer analysis. I'BAS '04 pages 165-180, 2004.
the same (full) context. In addition, these existing memorization [14] T. Reps. Program analysis via graph reachabilityL S
techniques do not directly apply to the state-of-the-dihesnent- '97, pages 5-19, 1997.
based approach [15] since the underlying PAG may changeodue t [15] M. Sridharan and R. Bodik. Refinement-based
the iterative refinement used. To the best of our knowledgs, t context-sensitive points-to analysis for JavaPlrDI '06,
work represents the first systematic investigation on hogxpoit pages 387400, 2006.
local reachability reuse dynamically in order to improve ther- [16] M. Sridharan, D. Gopan, L. Shan, and R. Bodik.
formance of context-sensitive demand-driven points-talyais in Demand-driven points-to analysis for JavaQ@PSLA '05
CFL reachability. pages 59-76, 2005.
[17] Y. Sui, S. Ye, J. Xue, and P.-C. Yew. SPAS: Scalable
7. CONCLUSION path-sensitive pointer analysis on full-sparse ss&RhAS
In this paper, we investigate how to dynamically exploidoeach- '11, pages 155-171, 2011.
ability reuse to improve the performance of CFL-reachghilased [18] R. Valle-Rai, L. Hendren, V. Sundaresan, P. Lam, and
demand-driven points-to analysis. Evaluation and vabdatising E. Gagnon. Soot - a Java optimization framework. In
three client applications over a range of nine Java bendts1stiow CASCON '99pages 125-135, 1999.
that our PPTA-based approach can significantly boost thiereer [19] R. P. Wilson and M. S. Lam. Efficient context-sensitive
mance of a state-of-the-art demand-driven points-to aislyith- pointer analysis for C programs. RLDI '95, pages 1-12,
out any precision loss. Our approach is particularly usieflbw- 1995.
budget environments such as JIT compilers and IDEs, edlyecia [20] G. Xu, A. Rountev, and M. Sridharan. Scaling
when the program undergoes constantly a lot of changes. CFL-reachability-based points-to analysis using
context-sensitive must-not-alias analysisE@OOP '09
8. ACKNOWLEDGEMENTS pages 98-122, 2009.
This research is supported by a grant from Oracle Labs anchals ~ [21] J. Xue and P. H. Nguyen. Completeness analysis for
Australian Research Council Grant DP0987236. incomplete object-oriented programs.@& '05, pages
271-286, 2005.
9. REFERENCES [22] D. Yan, G. Xu, and A. Rountev. Demand-driven
[1] L. O. AndersenProgram analysis and specialization for the context-sensitive alias analysis for Javal38TA '11 pages
C programming languagePhD thesis, DIKU, University of 155-165, 2011.
Copenhagen, May 1994. (DIKU report 94/19). [23] M. Yannakakis. Graph theoretic methods in databaseryhe
[2] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and In PODS '9Q pages 230-242, 1990.
M. Mezini. Taming reflection: Aiding static analysis in the [24] H.Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang. Level by
presence of reflection and custom class loadersC8E '11, level: making flow- and context-sensitive pointer analysis
pages 241-250, 2011. scalable for millions of lines of code. BGO '10, pages
[3] S. Chaudhuri. Subcubic algorithms for recursive state 218-229, 2010.
machines. IPOPL '08, pages 159-169, 2008. [25] X.Zheng and R. Rugina. Demand-driven alias analygis fo

C. InPOPL '08 pages 197-208, 2008.

